(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

2021.08.24

(21) Номер заявки

201791735

(22)Дата подачи заявки

2016.02.05

(51) Int. Cl. A61K 39/395 (2006.01) **C07K 16/12** (2006.01) **C07K 16/08** (2006.01) **C07K 16/10** (2006.01) **A61K 39/00** (2006.01)

СВЯЗЫВАЮЩИЕ МОЛЕКУЛЫ, НАПРАВЛЕННЫЕ ПРОТИВ ГЕМАГГЛЮТИНИНА ВИРУСА ГРИППА, И ПУТИ ИХ ПРИМЕНЕНИЯ

(31)15153957.4

(32)2015.02.05

(33) EP

(43) 2017.11.30

(86) PCT/EP2016/052556

(87)WO 2016/124768 2016.08.11

(71)(73) Заявитель и патентовладелец: ЯНССЕН ВЭКСИНС ЭНД ПРЕВЕНШН Б.В. (NL)

(72)Изобретатель:

> Бранденбург Буррис, Вогелс Роналд, Колкман Йост А., Фризен Роберт Хайнц Эдвард (NL)

(74) Представитель:

Медведев В.Н. (RU)

WO-A1-2013007770 EKIERT DAMIAN C ET AL.: "Crossneutralization of influenza A viruses mediated by a single antibody loop", NATURE (LONDON), vol. 489, no. 7417, September 2012 (2012-09), pages 526-532+3pp, XP002742148, abstract, figures 1-4; tables 1, 2, page 531, last paragraph

ŴÓ-AŽ-2009121004

DAVIDE CORTI ET AL.: "A Neutralizing Selected from Plasma Group 1 and Group Antibody Cells Binds to Influenza Hemagglutinins", SCIENCE, vol 333 6044, August 2011 (2011-08-12),850-856, XP002689150, pages AMERICAN ASSOCIATION FOR **ADVANCEMENT** THE THE INSTITUTION US; SCIENCE, ELECTRICAL ENGINEERS, STEVENAGE, GB, ISSN: 0036-8075, DOI: 10.1126/SCIENCE.1205669 [retrieved on 2011-07-28] abstract; page 851; figures

RICHARD H. GLAVEN ET AL.: "Linking Single Domain Antibodies that Recognize Different Epitopes on the Same Target", BIOSENSORS, vol. 2, no. 4, 1 February 2012 (2012-02-01), pages 43-56, XP055171796, DOI: 10.3390/bios2010043, the whole document

Настоящее изобретение относится к мономерным и мультимерным связывающим молекулам, способным специфично связываться с гемагглютинином (НА) по меньшей мере двух штаммов вируса гриппа А, при этом указанные штаммы содержат НА двух различных подтипов НА из филогенетической группы 2; или способное специфично связываться с гемагглютинином (НА) по меньшей мере одного вируса гриппа А из филогенетической группы 1 и по меньшей мере одного штамма вируса гриппа А из филогенетической группы 2; или способное специфично связываться с гемагглютинином (НА) по меньшей мере одного штамма вируса гриппа В. Связывающие молекулы предпочтительно также способны нейтрализовать по меньшей мере два штамма вируса гриппа А из филогенетической группы 2; или способны нейтрализовать по меньшей мере один штамм вируса гриппа А из филогенетической группы 1 и по меньшей мере один штамм вируса гриппа А из филогенетической группы 2; или способны специфично нейтрализовать по меньшей мере один штамм вируса гриппа В.

Область изобретения

Настоящее изобретение относится к области медицины. В настоящем изобретении предусматриваются связывающие молекулы, в частности однодоменные антитела и мультидоменные антитела, связывающиеся с гемагглютинином вируса гриппа вирусов гриппа А и/или В. Предпочтительно связывающие молекулы также способны нейтрализовать вирусы гриппа А и/или В. В настоящем изобретении также предусматриваются молекулы нуклеиновой кислоты, кодирующие однодоменные антитела и мультидоменные антитела, а также композиции, содержащие таковые. Настоящее изобретение дополнительно относится к диагностике, профилактике и/или лечению инфекции, вызванной вирусами гриппа А и/или гриппа В.

Введение

Сезонный вирус гриппа А является основной проблемой общественного здравоохранения, из-за которой ежегодно погибает более 250000 человек по всему миру и которая создает экономическое бремя для миллионов людей. Пандемический грипп, который возникает в случае появления нового вируса, и при этом он инфицирует людей по всему миру со слабым иммунитетом или без иммунитета, представляет собой еще большую угрозу для здоровья человека; например, в 1918 году пандемический "испанский грипп" стал причиной примерно 50 млн смертей. По-прежнему вызывает беспокойство высокопатогенный птичий грипп (HPAI), который продемонстрировал уровень смертности более 50% у инфицированных людей. Вирусы гриппа подтипов Н5, а также Н7 являются эндемическими для домашней птицы в некоторых частях мира. В настоящее время эти вирусы, вероятно, не способны легко передаваться от человека к человеку, однако новые данные касательно вируса птичьего гриппа Н5 указывают на то, что достаточно лишь нескольких аминокислотных изменений для обеспечения распространения данного вируса посредством аэрозольной передачи в модельной системе in vivo млекопитающих.

На сегодняшний день вирусам гриппа В уделяется меньше внимания. Это может быть связано с тем фактом, что, в основном ограничиваясь в качестве хозяев людьми, для вирусов гриппа В отсутствуют большие резервуары возбудителя инфекции, которые являются ключевыми для возникновения пандемических штаммов вируса гриппа А. Тем не менее, совокупное влияние ежегодных эпидемий превышает влияние пандемий, и хотя уровни заболеваемости и смертности, связанные с гриппом В, ниже таковых, например, у вирусов H3N2, они, как правило, выше, чем таковые у вирусов H1N1.

Несмотря на то, что вакцины являются основой борьбы с инфекцией, вызванной вирусом гриппа, их своевременное применение представляет несколько технических проблем. Они включают (i) прогнозирование того, какие штаммы вирусов появятся и инфицируют популяцию человека, (ii) период задержки между возникновением нового штамма вируса и доступностью клинически одобренной вакцины, (iii) низкая иммуногенность в определенных группах пациентов, например у людей пожилого возраста, малолетних детей или людей с ослабленным иммунитетом и (iv) ограниченные возможности производства во всем мире.

Противовирусные лекарственные средства, такие как ингибиторы нейраминидазы осельтамивир и занамивир и ингибиторы M2 амантадин и римантадин, представляют собой важное дополнение к комплексу вариантов лечения как сезонного, так и пандемического гриппа. Тем не менее, данные лекарственные средства имеют ограниченную эффективность при введении на поздних стадиях инфекции, а широкое применение, вероятно, приводит к появлению устойчивых штаммов вирусов. Кроме того, применение осельтамивира у взрослых связано с нежелательными реакциями, такими как тошнота, рвота, психические эффекты и явления, связанные с почками.

Антитела представляют собой один из наиболее ранних классов защитных средств, и во время предыдущих пандемий гриппа успешно применяли пассивное переливание сыворотки от выздоравливающих пациентов. Тем не менее, данный подход имеет ограниченный потенциал для осуществления в мировом масштабе в связи с (i) ограниченным обеспечением соответствующих сывороток, (ii) высоким риском токсичности, (iii) большим разбросом характеристик от партии к партии, (iv) неопределенным дозированием и (v) сложностями введения.

Преимущества технологии рекомбинантных моноклональных антител сделали данную стратегию заслуживающей дальнейшего исследования, не в последнюю очередь по той причине, что могут быть получены и накоплены неограниченные количества защитных антител с целью обеспечения оперативной защиты при появлении пандемии. Для эффективности данной стратегии может потребоваться нейтрализующая активность таких антител в отношении совокупности различных подтипов вирусов. Это представляет собой основную проблему, поскольку белки вирусной оболочки вирусов гриппа, в частности гемагтлютинин (НА), постоянно изменяются.

Гемагтлютинин или НА представляет собой тримерный гликопротеин, который заякорен в вирусной оболочке вируса гриппа и имеет двойную функцию: он отвечает за связывание с рецепторами поверхности клетки-хозяина, содержащими сиаловую кислоту, а после поглощения он опосредует слияние вирусной и эндосомальной мембраны, что приводит к высвобождению вирусной РНК в цитозоль клетки. НА содержит крупный и вариабельный домен головки и меньший более консервативный стеблевой домен. Большинство нейтрализующих антител к НА распознают эпитопы в гипервариабельных областях в области, представляющей собой головку, и, таким образом, препятствуют связыванию с клетками-

хозяевами. Однако недавно были идентифицированы новые моноклональные антитела, которые связываются со стеблевой областью НА и препятствуют слиянию мембран (Corti et al., 2011; Dreyfus et al., 2012; Ekiert et al., 2009, Ekiert et al., 2011 и Ekiert et al., 2012; Kashyap et al., 2010; Krause et al., 2012; Lee et al., 2012; Sui et al., 2009; Tan et al., 2012; Throsby et al., 2008; Tsibane et al., 2012; Wang et al., 2010; Yoshida et al., 2009).

По меньшей мере, некоторые из этих нейтрализующих антител широкого спектра действия продемонстрировали беспрецедентный широкий спектр перекрестной реактивности, делая возможной нейтрализацию ими многих различных штаммов в пределах подтипа, филогенетической группы или даже между различными группами и подтипами вируса гриппа. Терапевтический и профилактический потенциал этих антител был продемонстрирован как в мышиной модели, так и в модели на хорьках, и некоторые из них на данный момент оцениваются в клинических испытаниях с участием людей. Тем не менее, эти моноклональные антитела также могут иметь некоторые неотьемлемые ограничения, которые представляют собой основную проблему для их широкого применения в предупреждении и/или лечении гриппа. Эти ограничения могут включать (i) необходимость парентерального введения; (ii) высокую стоимость изделий; (iii) неполное покрытие распространяющихся штаммов гриппа; (iv) низкую биодоступность в участке инфекции и (v) риск возникновения устойчивости к лекарственному средству.

Однодоменные антитела (sdAb) представляют собой фрагменты антител, состоящие из единственного антигенсвязывающего вариабельного домена. Данные фрагменты имеют несколько преимуществ по сравнению с обычными моноклональными антителами, в том числе (i) небольшой размер (15 кДа), (ii) малозатратное микробиологическое получение, (iii) простое конструирование в многовидовые форматы, (iv) высокая стабильность с возможностью поддержки путей введения, отличных от инъекционных, и/или (iv) возможность доступа к внутренним или скрытым эпитопам. Эти благоприятные свойства делают sdAb привлекательной альтернативой моноклональным антителам, в частности в области инфекционных заболеваний. В литературе были описаны нейтрализующие sdAb к нескольким различным вирусам, в том числе HIV, вирусу гепатита В, респираторно-синцитиальному вирусу, вирусу бешенства, FMDV, вирусу полиомиелита и ротавирусу (Vanlandschoot et al., 2011).

Связывающие HA sdAb, которые способны нейтрализовать вирус гриппа, также были описаны в литературе. Таким образом, в Hultberg et al. (2011) идентифицировано sdAb (Infl-C8) с нейтрализующей активностью в отношении многих вирусов H5N1. Димеры и тримеры Infl-C8 продемонстрировали улучшенную и расширенную активность в отношении вирусов H5N1. Тем не менее, перекрестную нейтрализацию вирусов гриппа PR8 (H1N1) или X47 (H3N2) не наблюдали.

В WO 2009/147248 раскрыто несколько sdAb, демонстрирующих гетеросубтипическую активность связывания в ELISA. Тем не менее, никакие из таких sdAb, за исключением одного, не были активными в анализе нейтрализации вируса. Это одно нейтрализующее sdAb, называемое IV146, продемонстрировало ограниченное связывание филогенетической группы 1 в ELISA и было способно нейтрализовать 2 различных вируса H5.

B Tillib et al. (2013) описано множество sdAb с нейтрализующей активностью в отношении штамма H5N2 A/Mallard duck/Pennsylvania/10218/84 in vitro и in vivo.

В Hufton et al. (2014) идентифицировано несколько sdAb с перекрестно-субтипической нейтрализующей активностью в отношении вирусов H1, H2, H5 и/или H9. Тем не менее, ни одно из этих sdAb не было способно нейтрализовать H7N2. Димеризация одного из sdAb обеспечила повышение его активности в отношении H1, H2, H5 и H9, но не обеспечила в результате перекрестно-групповую нейтрализацию вирусов H7N2 или H3N2.

Таким образом, ни одно из мономерных или мультимерных sdAb, идентифицированных на сегодняшний день, не способно нейтрализовать все соответствующие сезонные (H1N1, H3N2 и В) и пандемические (например, H5N1 и H7N9) штаммы вируса гриппа. Учитывая тяжесть респираторного заболевания, вызванного вирусами гриппа А и гриппа В, а также сильное экономическое влияние сезонных эпидемий и постоянный риск пандемий, все еще существует потребность в новых эффективных ингибиторах с широким спектром активности в отношении вирусов гриппа А и В, которые можно применять в качестве лекарственных препаратов для предупреждения или лечения инфекции, вызванной вирусом гриппа.

Краткое описание изобретения

В настоящем изобретении предусматриваются новые однодоменные антитела (sdAb), способные специфично связываться с гемагглютинином (HA) по меньшей мере двух штаммов вируса гриппа А, при этом указанные по меньшей мере два штамма вируса гриппа содержат НА двух различных подтипов из филогенетической группы 2; или способные специфично связываться по меньшей мере с одним штаммом гриппа А из филогенетической группы 1 и по меньшей мере одним штаммом вируса гриппа А из филогенетической группы 2; или способные специфично связываться с гемагглютинином (HA) по меньшей мере одного штамма вируса гриппа В. В определенных вариантах осуществления sdAb также способны нейтрализовать по меньшей мере два различных штамма вируса гриппа А, содержащих два различных подтипа НА из филогенетической группы 2; или по меньшей мере один штамм вируса гриппа А из филогенетической группы 1 и по меньшей мере один штамм вируса гриппа А из филогенетической

группы; или по меньшей мере один штамм вируса гриппа В.

В настоящем изобретении дополнительно предусматриваются так называемые мультидоменные антитела, т.е. связывающие молекулы, содержащие по меньшей мере два, предпочтительно по меньшей мере три, более предпочтительно по меньшей мере четыре или еще более предпочтительно по меньшей мере пять вышеописанных однодоменных антител. В определенных вариантах осуществления мультидоменные антитела способны нейтрализовать по меньшей мере один штамм вируса гриппа А из филогенетической группы 1 и по меньшей мере один штамм вируса гриппа А из филогенетической группы 2. В определенных вариантах осуществления мультидоменные антитела способны нейтрализовать по меньшей мере один штамм вируса гриппа А из филогенетической группы 1, по меньшей мере один штамм вируса гриппа А из филогенетической группы 2 и по меньшей мере один штамм вируса гриппа В, предпочтительно по меньшей мере один штамм вируса гриппа В линии В/Yamagata и по меньшей мере один штамм вируса гриппа линии B/Victoria. В определенных вариантах осуществления мультидоменные антитела способны нейтрализовать вирусы гриппа, содержащие НА подтипа Н1 (такие как штаммы вируса гриппа H1N1), вирусы гриппа, содержащие HA подтипа H3 (такие как штаммы вируса гриппа H3N2), вирусы гриппа, содержащие НА подтипа Н5 (такие как штаммы вируса гриппа Н5N1), и вирусы гриппа, содержащие НА подтипа Н7 (такие как штаммы вируса гриппа Н7N9), и по меньшей мере один вирус гриппа В, предпочтительно по меньшей мере один штамм вируса гриппа В линии В/Yamagata и по меньшей мере один штамм вируса гриппа линии B/Victoria.

Кроме того, в настоящем изобретении предусматриваются молекулы нуклеиновых кислот, кодирующие sdAb или мультидоменные антитела, а также векторы и клетки-хозяева, содержащие указанные молекулы нуклеиновых кислот.

В настоящем изобретении также предусматриваются (фармацевтические) композиции, содержащие одно или несколько из sdAb, мультидоменных антител, молекул нуклеиновых кислот и/или векторов, описанных в данном документе.

В соответствии с настоящим изобретением предусматриваются новые молекулы, связывающие гемагглютинин вируса гриппа. Связывающие молекулы могут представлять собой однодоменные антитела или мультидоменные антитела. По меньшей мере, некоторые из связывающих молекул по настоящему изобретению отличаются тем, что они являются перекрестно-нейтрализующими между филогенетическими группами, т.е. способны связываться по меньшей мере с одним штаммом вируса гриппа А из филогенетической группы 1 и по меньшей мере одним штаммом вируса гриппа А из филогенетической группы 2 и нейтрализовать их. В определенных вариантах осуществления связывающие молекулы способны специфично связываться по меньшей мере с одним штаммом вируса гриппа В, предпочтительно по меньшей мере одним штаммом вируса гриппа В линии В/Yamagata и по меньшей мере одним штаммом вируса гриппа линии В/Victoria, и нейтрализовать их. Связывающие молекулы и последовательности нуклеиновых кислот по настоящему изобретению подходят для применения в качестве диагностических, профилактических и/или лечебных средств при инфекциях, вызванных вирусом гриппа, независимо от подтипа возбудителя гриппа.

Краткое описание фигур

На фиг. 1 показан анализ иммунного ответа у ламы № 3 и № 4 с помощью ELISA.

На фиг. 2 показана in vivo эффективность SD1016, SD1038 и SD1045 в отношении летального заражения вирусом A/Puerto Rico/8/1934-MA (H1N1). Показаны кривые выживания (слева) и потери веса (справа) мышей, обработанных 0,5 мг/кг sdAb за день до заражения (в день 0).

На фиг. 3 показана in vivo эффективность SD1036, SD1046 и SD1048 в отношении летального заражения вирусом A/Hong Kong/1/1968-MA (H3N2). Показаны кривые выживания (слева) и потери веса (справа) мышей, обработанных 5 или 0,5 мг/кг sdAb за день до заражения (в день 0).

На фиг. 4 показана in vivo эффективность SD1083 и SD1084 в отношении летального заражения вирусом B/Florida/4/2006. Показаны кривые выживания (слева) и потери веса (справа) мышей, обработанных 5 или 0,5 мг/кг sdAb за день до заражения (в день 0).

На фиг. 5 показана in vivo эффективность SD1038, MD1211, MD1212 или смеси 1:1 SD1038 и SD1036 в отношении летального заражения вирусом A/Puerto Rico/8/1934-MA (H1N1). Показаны кривые выживания (слева) и потери веса (справа) мышей, обработанных однодоменным или мультидоменным антителом за день до заражения (в день 0).

На фиг. 6 показана in vivo эффективность SD1036, MD1211, MD1212 или смеси 1:1 SD1036 и SD1038 в отношении летального заражения вирусом A/Hong Kong/1/1968-MA (H3N2). Показаны кривые выживания (слева) и потери веса (справа) мышей, обработанных однодоменным или мультидоменным антителом за день до заражения (в день 0).

На фиг. 7 показана in vivo эффективность SD1038 и MD1212 в отношении летального заражения вирусом A/Hong Kong/1/1968-MA (H3N2). Показаны кривые выживания (слева) и потери веса (справа) мышей, обработанных 5, 1,7, 0,6 или 0,2 мг/кг однодоменного или мультидоменного антитела за день до заражения (в день 0).

На фиг. 8 показана in vivo эффективность MD1221, MD1222 и MD1224 в отношении летального заражения вирусом B/Florida/4/2006. Показаны кривые выживания (слева) и потери веса (справа) мышей,

обработанных 5 или 0,5 мг/кг мультидоменного антитела за день до заражения (в день 0).

На фиг. 9 показана in vivo эффективность MD1301, MD2601 и CR9114 в отношении летального заражения вирусом A/Puerto Rico/8/1934-MA (H1N1). Показаны кривые выживания (слева) и потери веса (справа) мышей, обработанных 3 мг/кг мультидоменного антитела за день до заражения (в день 0).

На фиг. 10 показана in vivo эффективность MD1301, MD2601 и CR9114 в отношении летального заражения вирусом A/Puerto Rico/8/1934-MA (H1N1). Показаны кривые выживания (слева) и потери веса (справа) мышей, обработанных 0,2,0,05 или 0,01 мг/кг мультидоменного антитела за день до заражения (в день 0).

На фиг. 11 показана in vivo эффективность MD2617 в отношении летального заражения вирусом A/Puerto Rico/8/1934-MA (H1N1). Показаны кривые выживания (слева) и потери веса (справа) мышей, обработанных интраназально (вверху) или внутривенно (внизу) с помощью MD2617 за день до заражения (в день 0).

На фиг. 12 показана in vivo эффективность MD2617 и CR9114 в отношении летального заражения вирусом B/Florida/4/2006 (вверху) или A/Hong Kong/1/1968-MA (внизу). Показаны кривые выживания (слева) и потери веса (справа) мышей, обработанных интраназально или внутривенно (мультидоменным) антителом за день до заражения (в день 0).

На фиг. 13 показана in vivo эффективность MD2407, MD3606 и CR9114 в отношении летального заражения вирусом B/Florida/4/2006. Показаны кривые выживания (слева) и потери веса (справа) мышей, обработанных 0,02, 0,1 или 0,5 мг/кг (мультидоменного) антитела за день до заражения (в день 0).

На фиг. 14 показана in vivo эффективность MD3606 и CR9114 в отношении летального заражения вирусом B/Florida/4/2006. Показаны кривые выживания (слева) и потери веса (справа) мышей, обработанных 0,2,1 или 5 мг/кг (мультидоменного) антитела за день до заражения (в день 0).

На фиг. 15 показана in vivo эффективность MD2407, MD3606 и CR9114 в отношении летального заражения вирусом B/Florida/4/2006. Показаны кривые выживания (слева) и потери веса (справа) мышей, обработанных 0,02,0,1 или 0,5 мг/кг (мультидоменного) антитела за день до заражения (в день 0).

На фиг. 16 показана in vivo эффективность MD3606 и CR9114 в отношении летального заражения вирусом A/Hong Kong/1/1968-MA (H3N2). Показаны кривые выживания (слева) и потери веса (справа) мышей, обработанных 0,6, 1,7 или 5 мг/кг (мультидоменного) антитела за день до заражения (в день 0).

На фиг. 17 показана in vivo эффективность MD2407, MD3606 и CR9114 в отношении летального заражения вирусом A/Puerto Rico/8/1934-MA (H1N1). Показаны кривые выживания (слева) и потери веса (справа) мышей, обработанных $0,01,\,0,05$ или 0,25 мг/кг (мультидоменного) антитела за день до заражения (в день 0).

На фиг. 18 показана in vivo эффективность MD3606 и CR9114 в отношении летального заражения вирусом A/Puerto Rico/8/1934-MA (H1N1). Показаны кривые выживания (слева) и потери веса (справа) мышей, обработанных 0,6, 1,7 или 5 мг/кг (однодоменного) антитела за день до заражения (в день 0).

Определения

Ниже даны некоторые определения терминов, используемых в настоящем изобретении.

Термин "связывающая молекула", используемый в данном документе, относится как к однодоменным антителам (мономерные связывающие молекулы), так и к мультидоменным антителам (мультимерные связывающие молекулы) в соответствии с настоящим изобретением.

В контексте данного документа однодоменное антитело (sdAb) представляет собой связывающую молекулу, состоящую из одного мономерного вариабельного домена антитела, который специфично связывается с антигеном или эпитопом независимо от других V-областей или доменов. Однодоменные антитела известны из уровня техники, и их обычно получают из природных антител, содержащих "только тяжелую цепь", т.е. антител с тяжелой цепью, лишенных легких цепей. Такие антитела, содержащие только тяжелую цепь, могут быть получены от видов семейства Camelidae, например у верблюда, ламы, одногорбого верблюда или альпаки (их также называют антителами верблюдовых). Вариабельная область, полученная из указанного антитела, содержащего только тяжелую цепь, в целом известна как VHH-домен или однодоменное антитело (sdAb). В контексте данного документа однодоменное антитело также относится к выделенному одному вариабельному домену (VL или VH) из обычного иммуноглобулина, содержащего две тяжелые цепи и две легкие цепи. Данный иммуноглобулин преимущественно является человеческим, однако может включать также иммуноглобулины от других видов млекопитающих, в том числе грызунов.

Выражение "мультидоменное антитело", используемое в данном документе, относится к связывающей молекуле, содержащей по меньшей мере два однодоменных антитела, связанных между собой либо непосредственно, либо с помощью линкерной последовательности.

Термин "подтип вируса гриппа" в отношении вирусов гриппа А относится к штаммам вируса гриппа А, которые характеризуются различными комбинациями вирусных поверхностных белков, гемагтлютинина (Н) и нейраминидазы (N). Подтипы вируса гриппа А можно называть по числу их Н, как, например, "вирус гриппа, содержащий НА подтипа Н1 или Н3" или "вирус гриппа Н1", "вирус гриппа Н3", или по комбинации числа Н и числа N, как, например, "подтип Н3N2 вируса гриппа" или "H5N1". Термин "подтип" вируса гриппа включает, в частности, все отдельные "штаммы" вируса гриппа в пределах дан-

ного подтипа, которые обычно образуются в результате мутаций и характеризуются различными патогенными профилями, и включают природные изоляты, а также искусственные мутанты или реассортанты и т.п. Такие штаммы также можно называть различными "изолятами" подтипа вируса. Соответственно в контексте данного документа термины "штаммы" и "изоляты" можно использовать взаимозаменяемо.

Подтипы вируса гриппа А можно дополнительно классифицировать с помощью ссылки на их филогенетическую группу. Филогенетический анализ показал, что гемагглютинины вируса гриппа подразделяются на две основные группы: среди прочего, на подтипы H1, H2, H5 и H9 в филогенетической группе 1 (вирусы гриппа "группы 1") и подтипы H3, H4, H7 и H10 в филогенетической группе 2 (вирусы гриппа "группы 2").

Антигенная изменчивость НА в штаммах вируса гриппа типа В меньше, чем наблюдаемая в штаммах типа А. Два генетически и антигенно различающихся подтипа или "линии" вируса гриппа В, циркулирующие у людей, представлены линиями В/Yamagata/16/88 (также называемой В/Yamagata) и В/Victoria/2/87 (В/Victoria). В контексте данного документа штаммы вируса гриппа В называются штаммами вируса гриппа, полученными из "линии В/Yamagata" или "линии В/Victoria".

Термин "нейтрализующие", используемый в данном документе в отношении связывающих молекул по настоящему изобретению, относится к связывающим молекулам, которые подавляют репликацию вируса гриппа, in vitro и/или in vivo, у субъекта, независимо от механизма, с помощью которого достигается нейтрализация. Таким образом, нейтрализация также может достигаться путем ингибирования контакта или адгезии вируса с поверхностью клетки, или путем ингибирования слияния вирусной и клеточной мембран после контакта вируса с клеткой-мишенью, или путем ингибирования выхода вируса из инфицированных клеток и т.п. Выражения "осуществление перекрестной нейтрализации" или "перекрестная нейтрализация", используемые в данном документе в отношении связывающих молекул по настоящему изобретению, относится к способности связывающих молекул по настоящему изобретению нейтрализовать различные подтипы вирусов гриппа А и/или В.

В отношении связывающих молекул по настоящему изобретению выражение "(иммуно)специфичное связывание" относится к связывающим молекулам, которые связываются с эпитопами представляющего интерес белка, но которые по сути не распознают и не связывают другие молекулы в образце, содержащем смесь антигенных биологических молекул. Связывание может быть опосредовано ковалентными или нековалентными взаимодействиями или комбинацией и тех, и других.

Термины "грипп" или "заболевание, вызванное вирусом гриппа", используемые в данном документе, относятся к патологическому состоянию, возникающему в результате инфицирования клетки или субъекта вирусом гриппа А или В. В конкретных вариантах осуществления данный термин относится к респираторной болезни, вызываемой вирусом гриппа А или В. Термин "инфекция, вызванная вирусом гриппа", используемый в данном документе, означает инвазию, размножение и/или наличие вируса гриппа в клетке или у субъекта.

Подробное описание фигур

Согласно первому аспекту настоящего изобретения предусматриваются новые однодоменные антитела (sdAb), способные специфично связываться с гемагглютинином (HA) по меньшей мере двух штаммов вируса гриппа A, содержащих HA двух различных подтипов из филогенетической группы 2, т.е. sdAb, способные специфично связываться с гемагглютинином (HA) по меньшей мере двух различных штаммов вируса гриппа A, при этом указанные штаммы содержат HA двух различных подтипов HA из филогенетической группы 2. Кроме того, предусматриваются sdAb, способные связываться с HA по меньшей мере одного штамма вируса гриппа A из филогенетической группы 1 и с HA по меньшей мере одного штамма вируса гриппа A из филогенетической группы 2. Кроме того, предусматриваются sdAb, способные специфично связываться с HA по меньшей мере одного штамма вируса гриппа B. Однодоменные антитела, способные специфично связываться с HA двух различных подтипов штаммов вируса гриппа A из филогенетической группы 2 или способные связываться с HA штаммов вируса гриппа A как из филогенетической группы 1 (таких как вирусы гриппа HA подтипа H1, H2 и/или H5), так и филогенетической группы 2 (таких как вирусы гриппа HA подтипа H3, H7 и/или H10), ранее не были описаны. Кроме того, sdAb, способные специфично связываться с HA вирусов гриппа B, также ранее не были описаны.

sdAb по настоящему изобретению связываются с консервативными, подлежащими нейтрализации эпитопами в НА. В определенных вариантах осуществления sdAb связываются с эпитопом в стеблевой области белка НА вируса гриппа А или В. В других вариантах осуществления sdAb связываются с эпитопом в области, представляющей собой головку белка НА. В определенных вариантах осуществления sdAb связывается с эпитопом в области, представляющей собой головку белка НА вирусов гриппа В.

В определенных предпочтительных вариантах осуществления sdAb также способны нейтрализовать по меньшей мере два штамма вируса гриппа A, содержащих HA двух различных подтипов из филогенетической группы 2. В определенных вариантах осуществления sdAb способны нейтрализовать предпочтительно по меньшей мере один штамм вируса гриппа A из филогенетической группы 1 (например, такой как вирус гриппа, содержащий HA подтипа H1 или H5) и по меньшей мере один штамм вируса гриппа A из филогенетической группы 2 (например, такой как вирус гриппа, содержащий HA подтипа H3 или

H7); или по меньшей мере один штамм вируса гриппа B, предпочтительно по меньшей мере один штамм вируса гриппа B линии B/Yamagata и по меньшей мере один штамм вируса гриппа линии B/Victoria.

В определенных вариантах осуществления однодоменное антитело по настоящему изобретению представляет собой VHH-домен верблюдовых, т.е. вариабельный домен так называемого (содержащего только тяжелую цепь) антитела верблюдовых. В дополнительных вариантах осуществления однодоменное антитело представляет собой гуманизированный VHH-домен верблюдовых. Для гуманизации однодоменных антител верблюдовых требуется введение и мутагенез ограниченного количества аминокислот в одной полипептидной цепи. Это отличается от гуманизации scFv, Fab, (Fab) 2 и IgG, для которой требуется введение аминокислотных изменений в двух цепях, легкой и тяжелой цепях, и сохранение сборки обеих цепей. Способы гуманизации VHH-доменов верблюда известны из уровня техники, как, например, описано в WO 2008/020079, WO 2008/142164, WO 2010/139808. Гуманизация sdAb по настоящему изобретению описана в примере 11.

В определенных вариантах осуществления однодоменное антитело по настоящему изобретению содержит:

```
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 227, 228 и 229;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 230, 231 и 232;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 233, 234 и 235;
одну или несколько последовательностей CDR, выбранных из SEO ID NO: 236, 237 и 238;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 239, 240 и 241;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 242, 243 и 244;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 245, 246 и 247;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 248, 249 и 250;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 251, 252 и 253;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 254, 255 и 256;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 257, 258 и 259;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 260, 261 и 262;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 263, 264 и 265;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 266, 267 и 268;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 269, 270 и 271;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 272, 273 и 274;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 275, 2 7'6 и 277;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 278, 279 и 280;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 281, 282 и 283;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 284, 285 и 286;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 287, 288 и 289;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 290, 291 и 292;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 293, 122 и 123;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 124, 125 и 126;
одну или несколько последовательностей CDR, выбранных из SEO ID NO: 127, 128 и 129;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 130, 131 и 132;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 133, 134 и 135;
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 136, 137 и 138; или
одну или несколько последовательностей CDR, выбранных из SEQ ID NO: 139, 140 и 141.
```

Термин "определяющие комплементарность области" (CDR), используемый в данном документе, означает последовательности в вариабельных областях связывающих молекул, которые обычно вносят большой вклад в антигенсвязывающий участок, который комплементарен по форме и распределению зарядов эпитопу, распознаваемому на антигене. CDR-области могут быть специфичными по отношению к линейным эпитопам, прерывистым эпитопам или конформационным эпитопам белков или фрагментов белков, либо как присутствующих на белке в их нативной конформации, либо в некоторых случаях как присутствующих на белках, которые денатурированы, например с помощью солюбилизации в SDS.

В определенных вариантах осуществления однодоменное антитело выбрано из группы, состоящей из:

- а) однодоменного антитела, содержащего область CDR1 под SEQ ID NO:227, область CDR2 под SEQ ID NO: 228 и область CDR3 под SEQ ID NO: 229;
- b) однодоменного антитела, содержащего область CDR1 под SEQ ID NO:230, область CDR2 под SEQ ID NO: 231 и область CDR3 под SEQ ID NO: 232;
- с) однодоменного антитела, содержащего область CDR1 под SEQ ID NO:233, область CDR2 под SEQ ID NO: 234 и область CDR3 под SEQ ID NO: 235;
- d) однодоменного антитела, содержащего область CDR1 под SEQ ID NO:236, область CDR2 под SEQ ID NO: 237 и область CDR3 под SEQ ID NO: 238;
- e) однодоменного антитела, содержащего область CDR1 под SEQ ID NO:239, область CDR2 под SEQ ID NO: 240 и область CDR3 под SEQ ID NO: 241;
 - f) однодоменного антитела, содержащего область CDR1 под SEQ ID NO:242, область CDR2 под

- SEQ ID NO: 243 и область CDR3 под SEQ ID NO: 244;
- g) однодоменного антитела, содержащего область CDR1 под SEQ ID NO:245, область CDR2 под SEQ ID NO: 245 и область CDR3 под SEQ ID NO: 247;
- h) однодоменного антитела, содержащего область CDR1 под SEQ ID NO:248, область CDR2 под SEQ ID NO: 249 и область CDR3 под SEQ ID NO: 250;
- i) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 251, область CDR2 под SEQ ID NO: 252 и область CDR3 под SEQ ID NO: 253;
- j) однодоменного антитела, содержащего область CDR1 под SEQ ID NO:254, область CDR2 под SEQ ID NO: 255 и область CDR3 под SEQ ID NO: 256;
- k) однодоменного антитела, содержащего область CDR1 под SEQ ID NO:257, область CDR2 под SEQ ID NO: 258 и область CDR3 под SEQ ID NO: 259;
- l) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 260, область CDR2 под SEQ ID NO: 261 и область CDR3 под SEQ ID NO: 262;
- m) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 263, область CDR2 под SEQ ID NO: 264 и область CDR3 под SEQ ID NO: 265;
- n) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 266, область CDR2 под SEQ ID NO: 267 и область CDR3 под SEQ ID NO: 268;
- o) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 269, область CDR2 под SEQ ID NO: 270 и область CDR3 под SEQ ID NO: 271;
- р) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 272, область CDR2 под SEQ ID NO: 273 и область CDR3 под SEQ ID NO: 274;
- q) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 275, область CDR2 под SEQ ID NO: 276 и область CDR3 под SEQ ID NO: 277;
- r) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 278, область CDR2 под SEQ ID NO: 279 и область CDR3 под SEQ ID NO: 280;
- s) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 281, область CDR2 под SEQ ID NO: 282 и область CDR3 под SEQ ID NO: 283;
- t) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 284, область CDR2 под SEQ ID NO: 285 и область CDR3 под SEQ ID NO: 286;
- u) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 287, область CDR2 под SEQ ID NO: 288 и область CDR3 под SEQ ID NO: 289;
- v) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 290, область CDR2 под SEQ ID NO: 291 и область CDR3 под SEQ ID NO: 292;
- w) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 293, область CDR2 под SEQ ID NO: 122 и область CDR3 под SEQ ID NO: 123;
- х) однодоменного антитела, содержащего область CDR1 под SEQ ID NO:124, область CDR2 под SEQ ID NO: 125 и область CDR3 под SEQ ID NO: 126;
- у) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 127, область CDR2 под SEQ ID NO: 128 и область CDR3 под SEQ ID NO: 129;
- z) однодоменного антитела, содержащего область CDR1 под SEQ ID NO:130, область CDR2 под SEQ ID NO: 131 и область CDR3 под SEQ ID NO: 132;
- аа) однодоменного антитела, содержащего область CDR1 под SEQ ID NO:133, область CDR2 под SEQ ID NO: 134 и область CDR3 под SEQ ID NO: 135;
- bb) однодоменного антитела, содержащего область CDR1 под SEQ ID NO:136, область CDR2 под SEQ ID NO: 137 и область CDR3 под SEQ ID NO: 138, и
- сс) однодоменного антитела, содержащего область CDR1 под SEQ ID NO:139, область CDR2 под SEQ ID NO: 140 и область CDR3 под SEQ ID NO: 141.
- В определенных предпочтительных вариантах осуществления однодоменное антитело выбрано из группы, состоящей из
- а) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 275, область CDR2 под SEQ ID NO: 276 и область CDR3 под SEQ ID NO: 277;
- b) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 284, область CDR2 под SEQ ID NO: 285 и область CDR3 под SEQ ID NO: 286;
- с) однодоменного антитела, содержащего область CDR1 под SEQ ID NO:124, область CDR2 под SEQ ID NO: 125 и область CDR3 под SEQ ID NO: 126;
- d) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 127, область CDR2 под SEQ ID NO: 128 и область CDR3 под SEQ ID NO: 129;
- e) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 263, область CDR2 под SEQ ID NO: 264 и область CDR3 под SEQ ID NO: 265; и
- f) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 133, область CDR2 под SEQ ID NO: 134 и область CDR3 под SEQ ID NO: 135.
 - В соответствии со следующим вариантом изобретения однодоменное антитело по настоящему изо-

бретению содержит аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO: 1-29 или гомологичной аминокислотной последовательности. Гомологичная аминокислотная последовательность по настоящему изобретению, применяемая в данном документе, может содержать добавления, делеции или замены одной или нескольких аминокислот, которые по сути не изменяют функциональные характеристики связывающих молекул по настоящему изобретению. Если гомологичная последовательность указывает на идентичность аминокислотной последовательности, то это означает, что последовательность, которая предусматривает высокую идентичность аминокислотной последовательности (идентичную аминокислотной последовательности более чем на 70, 75, 80, 85, 90, 95 или 98%) исходной последовательности.

В определенных вариантах осуществления одна или несколько аминокислот в аминокислотных последовательностях, описанных в данном документе, могут быть подвергнуты мутации, т.е. замещены другой аминокислотой. Такие мутации могут быть введены для предотвращения возникновения посттрансляционных модификаций. Наиболее преобладающие модификации включают протеолизис, гликозилирование, окисление метионина и дезаминирование аспарагиновых и глутаминовых осадков. Другие модификации включают образование пироглутамата, изомеризацию аспартата и окисление триптофана. Следующие аминокислотные остатки и мотивы последовательностей являются восприимчивыми к посттрансляционной модификации, а, следовательно, их можно изменять путем сайт-направленного мутагенеза: N-концевая глутамовая кислота или глутамин, мотив N-гликозилирования Asn-Xxx-Ser/Thr, доступные для растворителя остатки метионина или триптофана, участок протеолитического отщепления Asp-Pro, мотивы деаминирования Asn-Gly и Gln-Gly и/или мотив изомеризации Asp Asp-Gly.

В определенных вариантах осуществления sdAb по настоящему изобретению является гуманизированным. Таким образом, в определенных вариантах осуществления sdAb содержат аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO: 146-226 и 340.

В определенных вариантах осуществления однодоменное антитело по настоящему изобретению содержит аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO: 13, или ее гуманизированный вариант, выбранный из группы, состоящей из SEQ ID NO: 177-187 и SEQ ID NO: 340; SEQ ID NO: 17 или ее гуманизированный вариант, выбранный из группы, состоящей из SEQ ID NO: 146-156; SEQ ID NO: 20 или ее гуманизированный вариант, выбранный из группы, состоящей из SEQ ID NO: 157-176; SEQ ID NO: 24 или ее гуманизированный вариант, выбранный из группы, состоящей из SEQ ID NO: 188-197; SEQ ID NO: 25 или ее гуманизированный вариант, выбранный из группы, состоящей из SEQ ID NO: 198-203; и SEQ ID NO: 27 или ее гуманизированный вариант, выбранный из группы, состоящей из SEQ ID NO: 204-226.

В определенных вариантах осуществления однодоменное антитело содержит аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO: 187, SEQ ID NO: 340, SEQ ID NO: 155, SEQ ID NO: 176, SEQ ID NO: 197, SEQ ID NO: 203 и SEQ ID NO: 221.

В соответствии со вторым аспектом настоящего изобретения предусматриваются так называемые мультидоменные антитела, т.е. связывающие молекулы, содержащие по меньшей мере два вышеописанных однодоменных антитела. Например, С-конец первого однодоменного антитела может быть связан с N-концом следующего однодоменного антитела с образованием димерной связывающей молекулы. В определенных вариантах осуществления мультидоменные антитела содержат по меньшей мере три, по меньшей мере четыре или по меньшей мере пять вышеописанных однодоменных антител, с образованием мультимера, такого как тример, тетрамер, пентамер и т.д. Связанные sdAb могут быть одинаковыми или различными sdAb, т.е. sdAb с различными аминокислотными последовательностями и специфичностью в отношении эпитопов.

В определенных вариантах осуществления мультидоменные антитела представляют собой одноцепочечные молекулы. В определенных вариантах осуществления мультидоменные антитела представляют
собой двухцепочечные молекулы, т.е. содержат по меньшей мере две цепи, каждая из которых предусматривает по меньшей мере одно однодоменное антитело. Две цепи могут быть идентичны или могут
отличаться.

Однодоменные антитела могут быть связаны с образованием каких-либо из мультидоменных антител, раскрытых в данном документе, с применением каких-либо способов, известных из уровня техники. Таким образом, однодоменные антитела могут быть связаны посредством химической связи или могут быть связаны между собой либо непосредственно, либо с помощью коротких полипептидных линкеров. Такая линкерная последовательность может представлять собой природную последовательность или последовательность, не встречающуюся в природе. Линкерная последовательность предпочтительно обеспечивает достаточную гибкость для мультидоменного антитела и в то же время является устойчивой к протеолитическому расщеплению.

В определенных вариантах осуществления по меньшей мере два однодоменных антитела генетически слиты посредством пептидных линкеров. Таким образом, однодоменные антитела генетически слиты на уровне ДНК путем формирования полинуклеотидной конструкции (или последовательности нуклеиновой кислоты), кодирующей полную полипептидную конструкцию, т.е. связывающей молекулы, содержащей два или более однодоменных антител.

В определенных вариантах осуществления по меньшей мере два однодоменных антитела связаны с помощью линкерной последовательности, содержащей от 1 до 100 аминокислот, предпочтительно от 1 до 80 аминокислот, или от 1 до 60 аминокислот, или от 10 до 60 аминокислот. Примеры линкеров включают без ограничения линкерные последовательности в таблице 15. Таким образом, в определенных вариантах осуществления линкерная последовательность содержит аминокислотную последовательность, выбранную из SEQ ID NO: 142-145.

В определенных вариантах осуществления мультидоменные антитела содержат по меньшей мере два sdAb в соответствии с настоящим изобретением. По меньшей мере два sdAb могут быть выбраны из табл. 14 и/или табл. 40. В определенных вариантах осуществления по меньшей мере два sdAb выбраны из группы, состоящей из SEQ ID NO: 1-29 и SEQ ID NO: 146-226. По меньшей мере два sdAb могут быть одинаковыми (гомомультимер) или могут отличаться (гетеромультимер).

В определенных вариантах осуществления мультидоменные антитела содержат по меньшей мере два, предпочтительно по меньшей мере три, более предпочтительно по меньшей мере четыре sdAb, выбранных из группы, состоящей из

- а) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 275, область CDR2 под SEQ ID NO: 276 и область CDR3 под SEQ ID NO: 277;
- b) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 284, область CDR2 под SEQ ID NO: 285 и область CDR3 под SEQ ID NO: 286;
- с) однодоменного антитела, содержащего область CDR1 под SEQ ID N0:124, область CDR2 под SEQ ID NO: 125 и область CDR3 под SEQ ID NO: 126;
- d) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 127, область CDR2 под SEQ ID NO: 128 и область CDR3 под SEQ ID NO: 129;
- e) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 263, область CDR2 под SEQ ID NO: 264 и область CDR3 под SEQ ID NO: 265; и
- f) однодоменного антитела, содержащего область CDR1 под SEQ ID NO: 133, область CDR2 под SEQ ID NO: 134 и область CDR3 под SEQ ID NO: 135.

В определенных вариантах осуществления мультидоменные антитела в соответствии с настоящим изобретением содержат по меньшей мере два, предпочтительно по меньшей мере три, более предпочтительно по меньшей мере четыре sdAb, выбранных из группы, состоящей из SEQ ID NO: 13, или ее гуманизированный вариант, выбранный из группы, состоящей из SEQ ID NO: 177-187 и SEQ ID NO: 340; SEQ ID NO: 17 или ее гуманизированный вариант, выбранный из группы, состоящей из SEQ ID NO: 146-156; SEQ ID NO: 20 или ее гуманизированный вариант, выбранный из группы, состоящей из SEQ ID NO: 157-176; SEQ ID NO: 24 или ее гуманизированный вариант, выбранный из группы, состоящей из SEQ ID NO: 188-177; SEQ ID NO: 25 или ее гуманизированный вариант, выбранный из группы, состоящей из SEQ ID NO: 198-203; и SEQ ID NO: 27 или ее гуманизированный вариант, выбранный из группы, состоящей из SEQ ID NO: 204-226.

В определенных вариантах осуществления мультидоменные антитела в соответствии с настоящим изобретением содержат аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO: 30-73.

В определенных вариантах осуществления мультидоменные антитела по настоящему изобретению способны нейтрализовать по меньшей мере один штамм вируса гриппа А из филогенетической группы 1 (например, такой как вирус гриппа, содержащий НА подтипа Н1 или Н5) и по меньшей мере один штамм вируса гриппа А из филогенетической группы 2 (например, такой как вирус гриппа, содержащий НА подтипа Н3 и/или Н7). В определенных вариантах осуществления мультидоменные антитела по настоящему изобретению способны нейтрализовать по меньшей мере один штамм вируса гриппа А из филогенетической группы 1 (например, такой как вирус гриппа, содержащий НА подтипа Н1 и/или Н5) и по меньшей мере один штамм вируса гриппа А из филогенетической группы 2 (например, такой как вирус гриппа, содержащий НА подтипа Н3 и/или Н7) и по меньшей мере один штамм вируса гриппа В, предпочтительно по меньшей мере один штамм вируса гриппа В линии В/Yamagata и по меньшей мере один штамм вируса гриппа в линии В/Yamagata и по меньшей мере один штамм вируса гриппа в линии В/Yamagata и по меньшей мере один штамм вируса гриппа в линии В/Yamagata и по меньшей мере один штамм вируса гриппа в линии В/Yamagata и по меньшей мере один штамм вируса гриппа в линии в в руса гриппа в поменьшей мере один штамм в в руса гриппа в линии в в руса гриппа в поменьшей мере один штамм в в руса гриппа в линии в в руса гриппа в поменьшей мере один штамм в в руса гриппа в поменьшей мере один штамм в в руса гриппа в поменьшей мере один штамм в в руса гриппа в поменьшей мере один штамм в в руса гриппа в поменьшей мере один штамм в в руса гриппа в поменьшей мере один штамм в в руса гриппа в поменьшей мере один штамм в поменьшей мере од

В определенных вариантах осуществления мультидоменные антитела способны нейтрализовать вирусы гриппа, содержащие НА подтипа Н1 (как, например, штаммы вируса гриппа Н1N1), вирусы гриппа, содержащие НА подтипа Н3 (как, например, штаммы вируса гриппа Н3N2), вирусы гриппа, содержащие НА подтипа Н5 (как, например, штаммы вируса гриппа Н5N1), вирусы гриппа, содержащие НА подтипа Н7 (как, например, штаммы вируса гриппа Н7N9), и по меньшей мере один вирус гриппа В, предпочтительно по меньшей мере один штамм вируса гриппа В линии В/Yamagata и по меньшей мере один штамм вируса гриппа линии В/Victoria.

Таким образом, мультидоменные антитела по настоящему изобретению можно соответствующим образом применять для предупреждения и/или лечения инфекций, вызванных вирусом гриппа, даже независимо от подтипа возбудителя гриппа.

Было показано, что в соответствии с настоящим изобретением перекрестно нейтрализующие мультидоменные антитела по настоящему изобретению предоставляют несколько преимуществ по сравнению

с другими небольшими и большими противогриппозными молекулами. Таким образом, аффинность и эффективность мультидоменных антител, а также спектр нейтрализации превосходят аффинность, эффективность и спектр нейтрализации опубликованных нейтрализующих Аb широкого спектра действия (bnAbs), нацеленных на HA вируса гриппа, как, например, CR9114 (WO 2013/007770) и FI6v3 (Corti et al., 2011). Кроме того, в случае мультидоменных антител, нацеленных на несколько независимых эпитопов, подлежащих нейтрализации, наблюдается меньшая тенденция к развитию устойчивости штаммов вируса гриппа к лекарственным средствам по сравнению с CR9114 и FI6v3.

Таким образом, как описано в данном документе, в настоящем изобретении предусматриваются новые молекулы, связывающие вирус гриппа, и перекрестно нейтрализующие связывающие молекулы. Связывающие молекулы могут быть мономерными, т.е. представлять собой однодоменные антитела, или мультимерными, т.е. представлять собой мультидоменные антитела. Связывающие молекулы по настоящему изобретению связываются со своей мишенью с высокой аффинностью и специфичностью. В этом состоит отличие от низкомолекулярных лекарственных средств, таких как противовирусные препараты, которые зачастую демонстрируют нецелевое связывание, что приводит в результате к нежелательным побочным эффектам. Кроме того, связывающие молекулы по настоящему изобретению связываются с рядом эпитопов НА, некоторые из которых недоступны для обычных антител. НА вируса гриппа содержит множество участков гликозилирования как в области, представляющей собой головку, так и в стеблевой области. Углеводы, присоединенные в данных участках, делают некоторые части на молекуле НА недоступными для обычных антител. Меньшие связывающие молекулы по настоящему изобретению сохраняют способность нацеливаться на эти потенциально функционально важные эпитопы. Кроме того, связывающие молекулы по настоящему изобретению стабильны в широком диапазоне экстремальных условий. Как правило, они являются устойчивыми к повышенным температурам (до 100°C), экстремальным значениям рН, денатурирующим средствам и протеолитическому расщеплению. Благоприятная стабильность связывающих молекул может обеспечивать продукты, которые можно хранить вне холодовой цепи и которые имеют более длительный срок хранения, чем другие лекарственные средства на основе белка, такие как моноклональные антитела. Кроме того, все связывающие молекулы по настоящему изобретению представляют собой отдельные белки, которые можно получать и очищать, следуя только одному способу.

Как правило, связывающие молекулы в соответствии с настоящим изобретением связываются с НА вируса гриппа А группы 1 (таким как H1N1), и/или вируса гриппа А группы 2 (таким как H3N2), и/или вируса гриппа В и/или его фрагментами с константой аффинности (Кd-значение) ниже $1,0\times10^{-6}$ М, $1,0\times10^{-7}$ М, предпочтительно ниже $1,0\times10^{-8}$ М, более предпочтительно ниже $1,0\times10^{-9}$ М. Константы аффинности можно измерять, например, с применением поверхностного плазмонного резонанса, например с применением системы BIACORE (Pharmacia Biosensor AB, Уппсала, Швеция) или так, как описано в примере 8.

В определенных вариантах осуществления связывающие молекулы проявляют нейтрализующую активность в отношении вирусов гриппа А и/или В. В определенном варианте осуществления связывающие молекулы по настоящему изобретению обеспечивают предотвращение инфицирования клетокхозяев вирусом А или В по меньшей мере на 99%, по меньшей мере на 95%, по меньшей мере на 90%, по меньшей мере на 85%, по меньшей мере на 80%, по меньшей мере на 75%, по меньшей мере на 70%, по меньшей мере на 60%, по меньшей мере на 50%, по меньшей мере на 45%, по меньшей мере на 40%, по меньшей мере на 45%, по меньшей мере на 35%, по меньшей мере на 30%, по меньшей мере на 25%, по меньшей мере на 20% или по меньшей мере на 10% по сравнению с инфицированием клеток-хозяев указанным вирусом гриппа в отсутствие указанных связывающих молекул. Например, нейтрализующую активность можно измерить так, как описано в данном документе. Альтернативные анализы, с помощью которых измеряют нейтрализующую активность, описаны, например, в WHO Manual on Animal Influenza Diagnosis and Surveillance, Geneva: World Health Organisation, 2005, version 2002.5. Как правило, связывающие молекулы в соответствии с настоящим изобретением обладают нейтрализующей активностью, составляющей 1000 нМ или меньше, предпочтительно 100 нМ или меньше, более предпочтительно нейтрализующей активностью, составляющей 10 нМ или меньше, еще более предпочтительно 1 нМ или меньше, которую измеряют в анализе нейтрализации вируса (VNA) in vitro, например так, как описано в

В определенных вариантах осуществления связывающие молекулы (то есть однодоменные антитела или мультидоменные антитела) дополнительно содержат Fc-концевую часть. Таким образом, в определенных вариантах осуществления вышеописанные связывающие молекулы связаны с Fc-фрагментом антитела, предпочтительно антитела человека, например Fc-фрагментом антитела к IgG человека, например, IgG1, IgG2, IgG3, IgG4 или IgG4. В соответствии с настоящим изобретением мономерные или мультимерные молекулы, описанные в данном документе, могут быть генетически слиты с Fc-фрагментом либо непосредственно, либо с помощью линкера. В определенных вариантах осуществления связывающие молекулы связаны с Fc-фрагментом с помощью линкерной последовательности, содержащей от 1 до 100 аминокислот, предпочтительно от 1 до 80 аминокислот, или от 1 до 60 аминокислот, или

от 10 до 60 аминокислот. Примеры линкеров включают без ограничения линкерные последовательности в табл. 15. Таким образом, в определенных вариантах осуществления линкерная последовательность содержит аминокислотную последовательность, выбранную из SEQ ID NO: 142-145. В определенных вариантах осуществления sdAb или мультидоменное антитело генетически слиты с С-концом Fc-фрагмента. В дополнительных вариантах осуществления однодоменное антитело или мультидоменное антитело слиты как с N-, так и с С-концом Fc-фрагмента.

В определенных вариантах осуществления Fc-фрагмент сконструирован так, что он характеризуется минимальными эффекторными функциями. Fc-фрагменты с минимальной эффекторной функцией и сохраненным временем полужизни описаны в уровне техники и включают, например, IgG2, негликозилированный IgGl (IgG1 agly), IgG4 с заменами S228P/L234A/L235A (IgG4 ProAlaAla), IgG2 с изменениями H268Q/309L/A330S/P331S (IgG2m4) и Fc-вариант IgG2, обозначенный как IgG2σ, содержащий замены V234A/G237A/P238S/H268A/V309L/A330S/P331S. Что касается мутантных версий IgG4, то определенная аффинность к FcγR была устранена с помощью замен L234A/L245A.

В определенных вариантах осуществления Fc-фрагмент сконструирован так, что он характеризуется усиленными эффекторными функциями. Таким образом, связывающие молекулы по настоящему изобретению могут быть сконструированы с усилением опосредованных Fc эффекторных функций, которые, как было показано в доклинических моделях инфекции, вызванной вирусом гриппа, способствуют эффективности лекарственного средства. В уровне техники описаны несколько мутаций в домене СН2 IgG1 человека, связанные с усиленной эффекторной функцией. Такие мутации включают без ограничения мутацию по аланину в положении 333, которая обеспечивает повышение как ADCC, так и CDC, тройной мутант (S239D/I332E/A330L) с более высокой аффинностью к FcyRIIIa и более низкой аффинностью к FcyRIIb, что приводит в результате к повышению ADCC, и еще один тройной мутант (\$239D/I332E/G236A) с улучшенной аффинностью к FcyRIIIa и соотношением FcyRIIa/FcyRIIb, что опосредует усиленный фагоцитоз. Другие мутации в Fc, влияющие на эффекторные функции, были описаны в литературе, например Strohl, 2009. В определенных вариантах осуществления Fc-фрагмент сконструирован так, что он характеризуется увеличенным временем полужизни в сыворотке. Несколько сконструированных Fc-остовов с увеличенным временем полужизни в сыворотке известны из уровня техники. Эти Fc-варианты включают без ограничения Fc hIgG1 с мутациями M252Y/S254T/T256E (YTE), Fc hIgG1 или hIgG2, несущий мутации T250Q/M428L (QL), Fc hIgG1 с мутацией N434A, Fc hIgG1 с мутациями Т307A/E380A/N434A (AAA) или Fc hIgG1 с заменами M428L/N434S (LS) (Kuo et al., 2011). В дополнительных вариантах осуществления связывающие молекулы (то есть однодоменные антитела или мультидоменные антитела в соответствии с настоящим изобретением) генетически слиты с сывороточным альбумином человека или однодоменным антителом, связывающимся с сывороточным альбумином. В других вариантах осуществления однодоменные антитела или мультидоменные антитела в соответствии с настоящим изобретением химически конъюгированы с РЕG. Таким образом, связывающие молекулы по настоящему изобретению могут быть сконструированы так, что они характеризуются периодами полужизни в сыворотке в диапазоне от, например, всего нескольких часов до нескольких недель или даже месяцев. Это открывает возможность лечения инфекции, вызванной вирусом гриппа, с помощью однократной дозы вместо схемы 2х в сутки, применяемой в настоящее время для ингибиторов нейраминидазы, таких как осельтамивир и занамивир.

В дополнительных вариантах осуществления вышеописанные однодоменное антитело или мультидоменное антитело могут быть слиты с Fc-концевой частью, предпочтительно Fc-концевой частью, сконструированной для содействия образованию гетеродимерной молекулы с Fc. Мутации, способствующие Fc-гетеродимеризации, описаны в уровне техники (Klein et al., 2012). В определенных вариантах осуществления мутации, способствующие FC-гетеродимеризации, представляют собой мутации "выступы-вовпадины", описанные в EP 0812357 В1 и EP 0979281 В1.

В определенных вариантах осуществления мультидоменные антитела в соответствии с настоящим изобретением содержат по меньшей мере одну цепь, содержащую аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO: 74-107, SEQ ID NO: 110-121 и SEQ ID NO: 293-339.

В определенных вариантах осуществления мультидоменные антитела содержат две цепи, при этом аминокислотные последовательности двух цепей идентичны. В определенных вариантах осуществления две цепи содержат аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO: 74-105 и SEQ ID NO: 293-298. В определенных вариантах осуществления две аминокислотные цепи содержат аминокислотную последовательность под SEQ ID NO: 293-298.

В определенных вариантах осуществления мультидоменные антитела содержат две различные аминокислотные цепи. В определенных вариантах осуществления две различные аминокислотные цепи выбраны из группы, состоящей из

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 299, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 300;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 301, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 302;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 303, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 305;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 306, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 307;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 308, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 309;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 310, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 311;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 312, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 313;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 315, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 315;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 316, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 317;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 318, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 319;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 106, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 317;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 320, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 321;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 322, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 323;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 324, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 325;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 326, одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 327;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 328, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 329;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 330, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 331;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 332, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 333;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 334, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 335;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 336, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 337; и

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 338, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 339.

В определенных вариантах осуществления две различные аминокислотные цепи выбраны из группы, состоящей из

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 301, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 302;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 310, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 311;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 322, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 323;

одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 330, и одной цепи, содержащей аминокислотную последовательность под SEQ ID NO: 331.

В еще одном аспекте в настоящем изобретении дополнительно предусматриваются молекулы нуклеиновых кислот (также называемые последовательностями нуклеиновых кислот), кодирующие вышеописанные однодоменные антитела или мультидоменные антитела. Предпочтительно последовательности нуклеиновых кислот кодируют связывающие молекулы, содержащие одну или несколько из вышеописанных CDR-областей.

В определенных вариантах осуществления последовательности нуклеиновых кислот кодируют однодоменное антитело, содержащее аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO: 1-29 или гомологичной аминокислотной последовательности.

В определенных вариантах осуществления последовательности нуклеиновых кислот кодируют однодоменное антитело, содержащее аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO: 146-226 и SEQ ID NO: 340, или гомологичную аминокислотную последовательность.

В определенных вариантах осуществления последовательности нуклеиновых кислот кодируют мультидоменное антитело, содержащее аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO: 30-107, SEQ ID NO: 110-121 и SEQ ID NO: 293-339 или гомологичную амино-

кислотную последовательность.

Последовательность нуклеиновой кислоты в соответствии с настоящим изобретением относится к полимерной форме нуклеотидов и включает РНК, mRNA, кДНК, геномную ДНК и синтетические формы и сочетания вышеуказанных полимеров. Нуклеотид относится к рибонуклеотиду, дезоксинуклеотиду или модифицированной форме любого типа нуклеотида. Термин также включает одно- и двухцепочечные формы ДНК. Специалист в данной области техники поймет, что функциональные варианты данных молекул нуклеиновых кислот также предусматриваются как часть настоящего изобретения. Функциональные варианты представляют собой последовательности нуклеиновых кислот, которые могут непосредственно транслироваться с помощью стандартного генетического кода с получением аминокислотной последовательности, идентичной транслированной с исходных молекул нуклеиновых кислот.

В предпочтительных вариантах осуществления молекулы нуклеиновой кислоты, кодирующие связывающие молекулы в соответствии с настоящим изобретением, являются кодон-оптимизированными для экспрессии в дрожжевых клетках или клетках млекопитающих, таких как клетки человека. Способы оптимизации по кодонам известны или были описаны ранее (например, WO 96/09378). Последовательность считается оптимизированной по кодонам, если по меньшей мере один кодон, не являющийся предпочтительным, по сравнению с последовательностью дикого типа замещен кодоном, который является более предпочтительным. В данном документе кодон, не являющийся предпочтительным, представляет собой кодон, который используется менее часто в организме, чем другой кодон, кодирующий такую же аминокислоту, и кодон, являющийся более предпочтительным, представляет собой кодон, который используется более часто в организме, чем кодон, не являющийся предпочтительным. Частоту использования кодонов для конкретного организма можно найти в таблицах частоты использования кодонов, таких как на сайте http://www.kazusa.or.jp/codon.

Предпочтительно более одного кодона, не являющегося предпочтительным, предпочтительно большинство или все кодоны, не являющиеся предпочтительными, замещают кодонами, которые являются более предпочтительными. Предпочтительно наиболее часто используемые кодоны в организме используют в кодон-оптимизированной последовательности. Как правило, замещение предпочтительными кодонами приводит к более высокой экспрессии.

Специалисту в данной области также будет понятно, что несколько различных молекул нуклеиновых кислот могут кодировать один и тот же полипептид в результате вырожденности генетического кода. Также понятно, что специалисты в данной области могут с помощью традиционных методик проводить нуклеотидные замены, которые не влияют на аминокислотную последовательность, кодируемую молекулами нуклеиновых кислот, для отражения частоты использования кодонов любым конкретным организмом-хозяином, в котором полипептиды будут экспрессироваться. Следовательно, если конкретно не указано иное, то выражение "последовательность нуклеиновой кислоты, кодирующая аминокислотную последовательность" включает все нуклеотидные последовательности, которые являются вырожденными версиями друг друга и которые кодируют одну и ту же аминокислотную последовательность. Последовательности нуклеиновых кислот можно клонировать с помощью стандартных методик молекулярной биологии или образовывать de novo путем синтеза ДНК, который можно осуществлять с помощью стандартных процедур с участием компаний, предоставляющих услуги в области синтеза ДНК и/или молекулярного клонирования (например, GeneArt, GenScript, Life Technologies, Eurofins).

В настоящем изобретении также предусматриваются векторы, содержащие по меньшей мере одну вышеописанную последовательность нуклеиновой кислоты. Термин "вектор" относится к молекуле нуклеиновой кислоты, в которую может быть вставлена вторая молекула нуклеиновой кислоты для введения хозяину, где она будет реплицироваться и в некоторых случаях экспрессироваться. Другими словами, вектор способен транспортировать молекулу нуклеиновой кислоты, с которой он был связан. Термин "вектор", используемый в данном документе, охватывает клонирующие векторы, а также векторы экспрессии. Определенные векторы способны к автономной репликации в хозяине, которому они введены (например, векторы, имеющие бактериальную точку начала репликации, могут реплицироваться в бактериях). Другие векторы можно встроить в геном хозяина после введения в клетку-хозяин, и, таким образом, они реплицируются наряду с геномом хозяина. Векторы в соответствии с настоящим изобретением легко могут быть получены с помощью способов, известных специалисту в данной области техники.

В определенных вариантах осуществления предусматриваются векторы, содержащие одну или несколько молекул нуклеиновой кислоты в соответствии с настоящим изобретением, функционально связанные с одной или несколькими регулирующими экспрессию последовательностями нуклеиновых кислот. Выражение "регулирующая экспрессию последовательность нуклеиновой кислоты", используемое в данном документе, относится к последовательностям нуклеиновых кислот, необходимым для экспрессии функционально связанной кодирующей последовательности и/или затрагивающим такую экспрессию, у конкретного организма-хозяина. Последовательности нуклеиновой кислоты, регулирующие экспрессию, такие как, среди прочих, подходящие последовательности для инициации, терминации транскрипции, промоторные, энхансерные последовательности; репрессорные или активаторные последовательности; эффективные сигналы процессинга РНК, такие как сигналы сплайсинга и полиаденилирования; последовательности, которые стабилизируют цитоплазматическую mRNA; последовательности,

которые повышают эффективность трансляции (например, сайты связывания с рибосомами); последовательности, которые повышают стабильность белка; и при необходимости последовательности, которые повышают секрецию белка, могут представлять собой любую последовательность нуклеиновой кислоты, проявляющую активность у предпочтительного организма-хозяина, и могут быть получены из генов, кодирующих белки, которые либо гомологичны, либо гетерологичны по отношению к организму-хозяину. Выявление и применение последовательностей, регулирующих экспрессию, не составят труда для специалиста в данной области техники.

Подходящие векторы в соответствии с настоящим изобретением представляют собой например векторы на основе аденовирусов, такие как, например, Aв26 или Ad35, векторы на основе аденоассоциированного вируса (AAV), векторы на основе лентивирусов, альфавирусов, парамиксовирусов, на основе вируса коровьей оспы, вируса герпеса, ретровирусов и т.п.

В определенных вариантах осуществления векторы применяют для целей генной терапии, как описано, например, Adam et al. (2014), Johnson et al. (2009) и Suscovich and Alter (2015).

В настоящем изобретении дополнительно предусматриваются клетки-хозяева, содержащие последовательность нуклеиновой кислоты, кодирующей вышеописанные однодоменное антитело или мульти-доменное антитело. Выражение "клетки-хозяева", используемое в данном документе, относится к клеткам, в которые был введен вектор, например клонирующий вектор или вектор экспрессии. Клетки-хозяева могут быть прокариотическими или эукариотическими.

В настоящем изобретении дополнительно предусматриваются фармацевтические композиции, содержащие одно или несколько из вышеописанных однодоменных антител, мультидоменных антител, молекул нуклеиновых кислот и/или векторов. Фармацевтические композиции по настоящему изобретению могут дополнительно содержать по меньшей мере один фармацевтически приемлемый наполнитель. Под "фармацевтически приемлемым наполнителем" подразумевается любое инертное вещество, которое объединяют с активной молекулой, такой как связывающая молекула в соответствии с настоящим изобретением, для получения подходящей композиции. Фармацевтически приемлемый наполнитель представляет собой наполнитель, который в применяемых дозах и концентрациях нетоксичен для пациентов, и является совместимым с другими ингредиентами состава. Фармацевтически приемлемые наполнители широко применяются и известны из уровня техники.

Фармацевтическая композиция в соответствии с настоящим изобретением может дополнительно содержать по меньшей мере одно отличающееся терапевтическое, профилактическое и/или диагностическое средство. Указанные дополнительные терапевтические и/или профилактические средства могут представлять собой, например, средства, которые также способны обеспечивать предупреждение и/или лечение инфекции, вызванной вирусом гриппа, такие как ингибиторы М2 (например, амантидин, римантадин) и/или ингибиторы нейраминидазы (например, занамивир, осельтамивир). Их можно применять в комбинации со связывающими молекулами по настоящему изобретению. Выражение "в комбинации" в данном документе означает одновременно, в виде отдельных составов, или в виде одного комбинированного состава, или в соответствии со схемой последовательного введения в виде отдельных составов, в любом порядке.

Согласно дополнительному аспекту в настоящем изобретении предусматриваются описанные в данном документе однодоменные антитела, мультидоменные антитела, молекулы нуклеиновых кислот и/или векторы для применения в диагностике, предупреждении и/или лечении инфекции, вызванной вирусом гриппа. Кроме того, в настоящем изобретении предусматривается применение описанных в данном документе однодоменных антител, мультидоменных антител, молекул нуклеиновых кислот и/или векторов в изготовлении лекарственного препарата для диагностики, предупреждения и/или лечения инфекции, вызванной вирусом гриппа. Такие инфекции могут возникать в небольших популяциях, но также могут распространяться по всему миру во время сезонных эпидемий или, что хуже, во время глобальных пандемий, при которых риску подвергаются миллионы людей. В настоящем изобретении предусматриваются связывающие молекулы, которые способны нейтрализовать инфекцию, вызванную штаммами вируса гриппа, которые являются причиной таких сезонных эпидемий, а также возможных пандемий. Важно отметить, что теперь защита и лечение обеспечиваются связывающими молекулами по настоящему изобретению независимо от вызывающего заболевания вируса гриппа, поскольку, как было раскрыто, связывающие молекулы по настоящему изобретению способны перекрестно нейтрализовать различные подтипы вирусов как филогенетической группы 1, охватывающей, например, подтипы Н1, Н2, Н5, Н6, Н8, Н9 и Н11, так и филогенетической группы 2, охватывающей, например, подтипы Н3, Н4, Н7 и Н1, а также подтипы вируса гриппа В.

В настоящем изобретении дополнительно предусматриваются способы предупреждения и/или лечения гриппа у субъекта, предусматривающие введение нуждающемуся в этом субъекту терапевтически эффективного количества описанных в данном документе однодоменного антитела, мультидоменного антитела, молекулы нуклеиновой кислоты и/или вектора. Термин "терапевтически эффективное количество" относится к количеству определенной в данном документе связывающей молекулы или молекулы нуклеиновой кислоты, которое является эффективным для предупреждения, облегчения и/или лечения состояния, являющегося результатом инфицирования вирусом гриппа. Выражение "улучшение состоя-

ния", используемое в данном документе, может относиться к ослаблению видимых или ощутимых симптомов заболевания, виремии или любых других поддающихся измерению проявлений инфекции, вызванной вирусом гриппа. Предупреждение охватывает ингибирование или снижение распространения вируса гриппа, или ингибирование, или ослабление начала проявления, развития или прогрессирования одного или нескольких симптомов.

Предупреждение и/или лечение может быть нацелены на группы пациентов, которые являются восприимчивыми к инфекции, вызванной вирусом гриппа. Такие группы пациентов включают без ограничения, например, пожилых (например, в возрасте ≥50 лет, в возрасте ≥60 лет и предпочтительно в возрасте ≥65 лет), молодых (например, в возрасте ≤5 лет, в возрасте ≤1 года), госпитализированных пациентов и уже инфицированных пациентов, которые получали лечение противовирусным соединением, однако продемонстрировали неудовлетворительный противовирусный ответ.

Схемы дозирования можно корректировать для обеспечения оптимального требуемого ответа (например, терапевтического ответа). Подходящий диапазон доз может, например, составлять 0,01-100 мг/кг веса тела, предпочтительно 0,1-50 мг/кг веса тела, предпочтительно 0,01-15 мг/кг веса тела. Кроме того, например, можно вводить однократную болюсную дозу, можно вводить несколько доз в течение некоторого периода времени или дозу можно пропорционально уменьшать или увеличивать по мере необходимости.

Связывающие молекулы, молекулы нуклеиновых кислот и/или векторы в соответствии с настоящим изобретением можно вводить субъекту, например, внутривенно, интраназально, посредством пероральной ингаляции, легочным путем, подкожно, внутрикожно, интравитреально, перорально, внутримышечно и т.д. На оптимальный путь введения будут влиять несколько факторов, включая физикохимические свойства активных молекул, неотложность клинической ситуации и взаимосвязь концентраций активных молекул в плазме крови с требуемым терапевтическим эффектом.

Высокая стабильность связывающих молекул по настоящему изобретению открывает возможность альтернативной безыгольной доставки, например путем интраназального введения с применением капель для носа или назального спрея или путем ингаляции с применением аэрозольного аппарата или порошкового ингалятора. В определенных вариантах осуществления молекула нуклеиновой кислоты или вектор, кодирующие по меньшей мере одно- или мультидоменное антитело в соответствии с настоящим изобретением, таким образом, вводят интраназально, как описано, например, Limberis et al. (2013).

В отличие от обычных антител и многих других биофармацевтических препаратов, связывающие молекулы по настоящему изобретению можно с высокой эффективностью получать в микробных системах. Примерами микробных клеток-хозяев, применяемых в крупномасштабном производстве, являются, например, дрожжи (Р. pastoris) и Е. coll. Эти микробные системы считаются наиболее экономически выгодным вариантом для производства биофармацевтических препаратов. Низкие показатели СОБ являются необходимым условием для широкого применения лекарственных средств против гриппа при лечении и профилактике гриппа. Таким образом, в определенных вариантах осуществления в настоящем изобретении предусматриваются способы получения связывающих молекул (то есть однодоменных антител или мультидоменных антител) в соответствии с настоящим изобретением, предусматривающие культивирование описанной в данном документе клетки-хозяина в условиях, способствующих экспрессии связывающей молекулы, и необязательно извлечение экспрессированной связывающей молекулы. Способы извлечения связывающих молекул из культуральной среды хорошо известны специалисту в данной области техники.

В определенном варианте осуществления клетки-хозяева представляют собой микробные клетки, такие как, без ограничения, дрожжевые клетки или E.coli.

В дополнительных вариантах осуществления клетки-хозяева представляют собой клетки млекопитающих, такие как, без ограничения, клетки CHO, клетки HEK или клетки PER.C6.

Настоящее изобретение дополнительно относится к способу выявления вируса гриппа в образце, при этом способ предусматривает стадии:

- а) приведение указанного образца в контакт с диагностически эффективным количеством связывающей молекулы в соответствии с настоящим изобретением и
 - b) определение того, специфично ли связывающая молекула связывается с молекулой в образце.

Образец может представлять собой биологический образец, в том числе без ограничения кровь, сыворотку крови, ткань или другой биологический материал от (потенциально) инфицированных субъектов. (Потенциально) инфицированные субъекты могут представлять собой субъектов-людей, однако животных, которые предположительно являются носителями вируса гриппа, также можно подвергать тестированию на предмет наличия вируса гриппа с использованием связывающих молекул по настоящему изобретению. Предпочтительно связывающие молекулы по настоящему изобретению приводят в контакт с образцом в условиях, обеспечивающих образование иммунологического комплекса между связывающими молекулами и вирусом гриппа или его антигенными компонентами, которые могут присутствовать в образце. Образование иммунологического комплекса, если таковое случается, указывающее на наличие вируса в образце, затем выявляют и измеряют с помощью подходящих способов. Помимо прочего, такие

способы включают гомогенный и гетерогенный иммунологические анализы связывания, такие как радиоиммунологические анализы (RIA), ELISA, иммунофлуоресцентный анализ, иммуногистохимический анализ, FACS, BIACORE и вестерн-блоттинг. Настоящее изобретение дополнительно проиллюстрировано следующими неограничивающими примерами.

Примеры

Пример 1. Иммунизации.

С целью индукции иммунного ответа, зависимого от антитела с тяжелыми цепями, четырех лам (Lama glama) иммунизировали антигенами вируса гриппа (коммерческая вакцина Inflexal® и рекомбинантный белок) в присутствии адъюванта Фрейнда в соответствии со схемой, описанной в табл. 1.

	Имакун . 1	Иммун. 2	Забор боль- шого объема крови A (1)	. Схема иммун	Забор боль- шого объема крови В (2)	Иммун. 4	Забор большого объема крови С (3)	Иммун. 5	Последний вабор крови D (4)
День	1	14	28	28	42	42	63	102	112
4 James	Inflexal (1 µosa) SC, CFA	Inflexal (1 nosa) SC, IFA	250 MJ	Inflexal (1 mosa) + rH7 (50 mkr) SC, IFA	250 MJ	rH7 (100 мкг) SC, IFA	100 MJ	rH7+rH2 (2×50 MKr) SC, IFA	250 MJI

Inflexal 09/10: A/Brisbane/59/2007(H1N1), A/Brisbane/10/2007 (H3N2), B/Brisbane/60/2008; вирус H1N1: A/New Caledonia/20/99; rH: рекомбинантный белок HA от Protein Sciences; rH1: A/New Caledonia/20/99; rH7: A/Netherlands/219/03; rH2: A/Japan/305/1957; B1: B/Florida/04/06; B2: B/Brisbane/60/08;

Иммун.: Иммунизация; **SC**: подкожно; **CFA**: полный адъювант Фрейнда; **IFA**: неполный адъювант Фрейнда

С помощью венопункции у лам собирали периферическую кровь в пробирки с цитратом для антикоагуляции образца в указанные моменты времени после 2, 3, 4 и 5-й иммунизации (табл. 1).

Гомологичный и гетерологичный иммунные ответы у каждого животного анализировали путем сравнения антигенспецифичных сывороточных титров образца, отобранного до иммунизации (день 0), и образца сыворотки, отобранного после введений антигена (день 28 и день 112) в ELISA с использованием НА. С данной целью рекомбинантный белок НА захватывали в 96-луночных микротитрационных планшетах Maxisorp. После блокирования добавляли образцы сыворотки в серийных разбавлениях и связанный IgG ламы выявляли путем добавления IgG-HRP козы к IgG ламы. Результаты показаны на фиг. 1. Эти данные показывают, что у всех иммунизированных животных вырабатывался гомологичный и гетерологичный иммунные ответы на НА.

Пример 2. Конструирование фаговой библиотеки.

Мононуклеарные клетки периферической крови (PBMC) выделяли из свежей крови с применением Ficoll-Paque plus (GE Healthcare) в соответствии с инструкциями производителя. Общая PHK, экстрагированная из PBMC, служила исходным материалом для RT-PCR с целью амплификации кодирующих VHH фрагментов генов. Эти фрагменты клонировали с помощью сайтов рестрикции для Sfil и NotI во фагмидный вектор на основе M13 pDV-LucStuffer (производный от pDV-C06; как описано в WO 02/103012) для создания слияния VHH-домена с белком pIII фага M13 (включая стоп кодон AMBER между двумя белками). Цитированные векторы трансформировали в бактерии TG-1 (Agilent), и 100-150 отдельных колоний анализировали с помощью PCR для определения качества каждой библиотеки. Как правило, частота вставки и завершенность составляла более 95%. Характеристики сконструированных библиотек показаны в табл. 2. Фаговые библиотеки от отдельных животных получали с применением хелперных фагов СТ, главным образом так, как описано (WO 02/103012), стерилизовали фильтрацией и применяли для отборов. Как показано в данном документе, комплексные фаговые библиотеки могли быть образованы от всех иммунизированных лам.

Таблица 2. Характеристики фаговых библиотек, экспрессирующих VHH

			1 1		, 1 12	•
	Nº	№ интактных	% интактных	из которых	длина CDR3	комплексность
	клоны	ORF	ORF	% уникальных	аминокислоты	Cfu
L01	104	100	96	98	5-21 AA	6,8E+06
L02	117	114	97	95	5-27 AA	1,4E+07
L03	111	109	98	98	6-28 AA	1,7E+07
L04	111	109	98	96	5-23 AA	1,6E+07

Пример 3. Отборы однодоменных антител к НА вируса гриппа.

Фрагменты антител отбирали с использованием вышеописанных библиотек фагового дисплея VHH, а также обычной технологии фагового дисплея и технологии MABSTRACT®, главным образом так, как описано в патенте США № 6265150, в WO 98/15833 и в "Phage display, A Laboratory Manual" by Т. Kuhlman, 2001 (которые включены в данные документ с помощью ссылки). Кроме того, в настоящем изобретении применяли способы и хелперные фаги, описанные в WO 02/103012 (который включен в данные документ с помощью ссылки).

Отборы специфичных связывающих молекул осуществляли с использованием гемагглютинина (НА) вируса гриппа А (Н1 A/California/07/2009, Н1 A/New Caledonia/20/1999, Н2 A/Japan/305/1957, Н3 A/Brisbane/10/2007, Н7 A/Netherlands/219/2003) и/или вируса гриппа В (Victoria clade B/Brisbane/60/2008, Yamagata clade B/Florida/04/2006) в качестве белка-мишени. Источником белка-мишени была либо клетка насекомого, либо полученный рекомбинантный белок (Protein Sciences, Коннектикут, США), или НА, экспрессируемый на поверхности инфицированных вирусом гриппа и фиксированных (3% параформальдегидом) клеток МДСК. Применяли различные условия отбора и они обобщены в табл. 3. "SD" относится к однодоменному антителу. Если не указано иное, то отборы осуществляли при рН 7,4 и с 5 мкг/мл белка НА. CR8033 и CR8071 представляют собой моноклональные антитела (IgG), связывающиеся с головкой и шейкой НА вируса гриппа В (Dreyfus et al. 2012).

Таблица 3. Условия отбора с использованием фагового дисплея

		Условия отбора с использов	анием фагового дисплея	
Однодомен-	Библиоте-	Отбор 1	Отбор 2	Отбор 3
ное	ка	0100p 1	0100p 2	0100p 3
			H7 A/Neth/219/03,	
SD1014	T03	H1 A/New Cal/20/99	рН5	
			-	
SD1016	LO4	H1 A/New Cal/20/99,	H7 A/Neth/219/03,	
		10 мкг/мл	2 мкг/мл	
GD1017	7.00	H1 A/New Cal/20/99,	H5 A/Vietnam/1203/04,	
SD1017	L03	10 мкг/мл	2 мкг/мл	
		H1 A/New Cal/20/99,	H7 A/Neth/219/03	
SD1018	L03		117 A/Nec11/213/03	
		10 мкг/мл		
SD1025	L03	H1 A/New Cal/20/99	H7 A/Neth/219/03,	
DD1023	103	111 11/ NCW Cd1/ 20/ 33	рН5	
			H7 A/Neth/219/03,	
SD1027	L04	H1 A/New Cal/20/99	Д В Н5	
SD1034	L04	H3 A/Brisbane/10/07	H1 A/New Cal/20/99,	
			PH5	
SD1035	L03	H3 A/Brisbane/10/07	H1 A/New Cal/20/99,	
301033	103	iis A/Biisballe/10/07	рН5	
			H1 A/New Cal/20/99,	
SD1036	L03	H3 A/Brisbane/10/07	рН5	
SD1038	L04	H3 A/Brisbane/10/07	H1 A/New Cal/20/99,	
			pH5	
SD1045	L01	H1 A/New Cal/20/99,	H3 A/Brisbane/10/07,	
301043	101	III A/New Cal/20/99,	рН5	
			H1	
SD1046	L01	H3 A/Brisbane/10/07	A/California/07/09,	
021010	201	110 11, 211324110, 10, 07	pH5	
			-	
			H1	
SD1047	L01	H3 A/Brisbane/10/07	A/California/07/09,	
	рН5		рН5	
	H1			
SD1048	L02	L02 H3 A/Brisbane/10/07 A/California/07/09,		
		рн5		
SD1049	SD1049 L02 H3 A/Brisbane/10/07 H1			
			A/California/07/09,	
	1	1	1	

			рН5	
SD1069	L03	H7 A/Netherl/219/03	H2 A/Japan/305/57, pH5	
SD1070	L03	H7 A/Netherl/219/03	H2 A/Japan/305/57, pH5	
SD1071	L04	H5 A/Vietnam/1203/04	H3 A/Uruguay/716/07, pH5	
SD1072	L04	H7 A/Netherl/219/03	H2 A/Japan/305/57, 5 мкг/мл, рН5	
SD1073	L04	H7 A/Netherl/219/03	H2 A/Japan/305/57, pH5	
SD1074	L04	H7 A/Netherl/219/03	H2 A/Japan/305/57, pH5	
SD1076	L07	H7 A/Netherl/219/03	H2 A/Japan/305/1957, pH5	
SD1083	L03	B/Brisbane/60/08	B/Florida/04/06, блокированный CR8033 и CR8071	
SD1084	L03	B/Brisbane/60/08	B/Florida/04/06, блокированный CR8033 и CR8071	
SD1085	L04	B/Brisbane/60/08	B/Florida/04/06	
SD1086	L04	B/Brisbane/60/08	B/Florida/04/06	
SD1087	L04	B/Brisbane/60/08	B/Florida/04/06	
SD2020	L03	MDCK, инфицированные НЗ A/Wisconsin/67/05	H3 A/Brisbane/10/07 блокированный CR8057	
SD2086	T03	B/Brisbane/60/08	B/Florida/04/06, блокированный CR8033 и CR8071	H3 A/Brisba ne/10/07 Блоки- рованный CR8057

Для первого раунда отборов пробирки для иммуноанализа покрывали в течение ночи НА (5,0 мкг/мл, разбавленным в PBS) и промывали блокирующим буфером (2% обезжиренное сухое молоко (ELK) в PBS). Аликвоты (5-10 мкл) из библиотек фагового дисплея блокировали в 2 мл блокирующего буфера (5% неинактивированная нагреванием фетальная бычья сыворотка (FBS), 1% сыворотка крови мыши и 2% ELK в PBS) и добавляли в пробирки для иммуноанализа. Спустя 2 ч инкубации при комнатной температуре (RT) пробирки промывали (5-15 раз 0,05% Tween-20 в PBS и 3-5 раз PBS). Связавшиеся фаги элюировали в течение 10 мин триэтиламином (100 мМ) и рН доводили до 7,5. E.coli XLI-Вluе инфицировали элюированными фагами, высевали и инкубировали в течение ночи при 37°C. Колонии подсчитывали (от 1E+04 до 1E+06 CFU) и соскабливали с чашек для получения обогащенной фагами библиотеки (как описано в WO 02/103012).

Второй раунд отборов осуществляли с применением фагов, полученных в результате первого раунда, и следуя в основном аналогичному протоколу, за исключением применения измененных антигенов, рН и добавления моноклональных антител, блокирующих эпитоп. Различные стратегии пэннинга применяли для отбора сильных связывающих молекул, специфично нацеленных на консервативную стеблевую

область НА. Для отбора клонов с перекрестно-реактивным доменом также применяли меньшие количества различных НА-антигенов, в отличие от первого раунда отбора. Стадия отмывки с низким рН была включена в протокол для повышения вероятности отбора фагов, которые могут связываться со стеблем и блокировать конформационное изменение НА, происходящее при рН 5,0 (Brandenburg et al. 2013). Для этого покрытые НА пробирки для иммуноанализа инкубировали в течение 10 мин с разбавленным в 5 раз Tryple Select (рекомбинантный трипсин; Invitrogen) с целью расщепления покрывающего НА₀ (на НА₁-НА₂) с последующими стадиями промывки и блокирования. После инкубации с фагами пробирки промывали, как описывалось ранее, с последующей 20-минутной инкубацией в цитрат-натрий-фосфатном буфере при рН 5,1. После трех стадий промывки РВЅ продолжали элюирование фагов, как описано выше. Добавление антител IgG1 (10 мкг/мл) в ходе отборов обеспечивало блокирование иммунодоминантных эпитопов в пределах головки или шейки НА и также могло обеспечивать повышение вероятности отбора фагов, экспрессирующих однодоменные антитела, связывающихся со стеблем НА. В ходе блокирования покрытых НА пробирок для иммуноанализа и в ходе инкубации с фаговыми библиотеками добавляли антитела СR8033 и CR8071 (Dreyfus et al. 2012).

До выделения отдельных sdAb осуществляли два или три последовательных раунда отборов. Каждый продукт отбора подвергали анализу последовательностей на предмет коэффициента обогащения и наилучшие продукты отбора выбирали для дополнительного анализа. Отдельные колонии Е. coli отбирали для получения периплазматических экстрактов, содержащих неочищенные моноклональные sdAb. Вкратце, элюированные фаги применяли для инфицирования культур штамма SF110 E. coli (среда 2YT, 10 мкг/мл тетрациклина, 4% глюкоза), отдельные колонии собирали и выращивали в 96-луночных планшетах с глубокими лунками (1 мл среды 2YT-ATG). Экспрессию VHH-домена индуцировали путем добавления IPTG (1 мМ). Периплазматические экстракты получали путем растворения осадков с бактериями в 150 мкл TES-буфера (100 мМ Трис-HCl, 1 мМ EDTA, 500 мМ сахароза, рН 8,0) в течение 30 мин на льду. В результате осмотического шока высвобождалась периплазматическая фракция, и прозрачный и стерилизованный фильтрованием супернатант, содержащий sdAb, применяли для функционального скрининга (см. пример 4).

SdAb из выработок в малом масштабе (1 мл в 96-луночных планшетах с глубокими лунками) очищали и концентрировали с применением центрифужных 96-луночных планшетов с Ni-NTA в соответствии с инструкциями производителя.

Параллельно с получением периплазматических экстрактов, оставшуюся культуру отдельных клонов применяли для образования маточных культур в глицерине и для выделения плазмидной ДНК для секвенирования генов VHH. Уникальные последовательности подвергали дополнительному тестированию.

Перекрестные отборы с применением белков НА вируса гриппа группы 1, группы 2 или В, а также стадии жесткой отмывки при низком рН, обеспечили выделение фагов, связывающих НА в широком диапазоне. Периплазматические экстракты из выработок в Е. Coli в малом масштабе давали в результате воспроизводимые уровни белка, подходящие для функционального скрининга.

Пример 4. Функциональный скрининг в отношении однодоменных антител, нейтрализующих вирус гриппа.

Периплазматические экстракты, содержащие SdAb, анализировали в анализе нейтрализации вируса (VNA) на предмет их способности предупреждать вызванную вирусом гриппа инфекцию клеток млекопитающих. Для данной цели клетки MDCK (ATCC, № CCL-34 по каталогу) высевали в 96-луночные планшеты (4E+04 клеток/лунку) и через 4 ч инкубировали со смесью вируса гриппа (100 TCID50/лунку) и стерилизованного фильтрованием периплазматического экстракта (15 мкл/лунку или его разбавлений). Спустя 3 дня инкубации при 37°С и 10% CO₂ количество вновь произведенного вируса в супернатанте клеточной культуры оценивали по гемагглютинации 1% эритроцитов индюка (TRBC) в планшетах с лунками с V-образным дном (нейтрализующие sdAb снижают вирусную нагрузку в супернатанте, что приводит к предотвращению гемагглютинации TRBC). Поскольку начальная концентрация sdAb для периплазматических экстрактов неизвестна, то образцы оценивали только как положительные или отрицательные в отношении нейтрализации вируса. Параллельно тестировали несколько штаммов вируса гриппа для отбора предпочтительно нейтрализующих sdAb широкого спектра действия (см. табл. 3а).

В заключение, в результате функционального скрининга было выявлено, что sdAb можно классифицировать как нейтрализующие вирусы гриппа A группы 1, A группы 2, A группы 1 и 2 или В.

Таблица 3а. Функциональный скрининг в отношении нейтрализующих вирус гриппа однодоменных антител ("+" отображает нейтрализацию, "-" отображает отсутствие нейтрализации, A g1 относится к вирусу гриппа A группы 1, A g2 относится к вирусу гриппа A группы 2, В относится к вирусу гриппа B;

пустые ячейки означают "не тестировали")

		CID	IC 7-1	CHI	и 03	начаю	т "не т	601	иров	зали)						
		A/New	Caledonia/20/99	A/Puerto	Rico/8/34-MA	A/PR8 H5N1 HK97	A/Vietnam/1194/04	A/Brisbane/10/200	7	А/нк/1/68-ма	A/NIBRG/60	(A/mallard/NL/12/	(00)	B/Brisbane/60/08	B/Florida/04/06	B/Lee/40
				Аі	руп	пы 1	•		A	групп	ы	2				
Класс С	Однодоменное	HIN	H	H1N	н	H5N 1	H5N 1	H3N	8	H3N 2	H7N	e			В	
A g1	SD1016		+		+	+	+		-	_		-		-	-	-
A g1	SD1018		+				+		-			_				
A g1	SD1027		+				+		-			-	7			
A g1	SD1071		+				+		-			-	\dashv			
A g1	SD1072		+				+		-			-	7			
A g1	SD1074		+				+		-	-		-		-	-	-
A g1	SD1076		+		+	+	+		-	-		-				
A g1	SD1034	,	+		+		+		-	-		-		-	-	-
A g1	SD1035		+				-		-			-				
A g2	SD1014		-		-		-		+	-		+				
A g2	SD1017		_		-		-		-	+		+				
A g2	SD1025		_		-	-	-		+	-		+		-	_	-
A g2	SD1036		_		-	† -	 -		+	+		+		-	_	-
A g2	SD1046		_		-	-	-		+	+		+		-	_	-
A g2	SD1047				-		-	\vdash		_		+				
A g2	SD1048		-		-	-	-		+	+		+		_	_	-
A g2	SD1049		_		-	-	-	T	+	+		+		-	-	-
A g2	SD1070		_		-	-	-		+			+			_	
A g2	SD2020						-		+			_				
A g1+g2	SD1038		+		+	+	+	T	+	+		+		-	_	-
A g1+g2	SD1045		+		+	+	+		+	-		-		-	_	-
A g1+g2	SD1069		+		+	+	+		-	-		+				
A g1+g2	SD1073		+		+	+	+		-	-		+				
В	SD1083		_		-	-	-		-	-		-		+	+	+
В	SD1084		-		-	-	-		_	-		-		+	+	-
В	SD1085		-		-	-	-	T	_	-		_		+	+	-
В	SD1086		_						_					+	-	+
В	SD1087		-						-					+	_	+
В	SD2086		_						_					-	-	+

Пример 5. Экспрессия и очистка однодоменных антител.

Соответствующие последовательности sdAb клонировали в стандартный эукариотический вектор экспрессии, подходящий для применения в суспензионной культуре клеток Expi293. Циклы продукции осуществляли в течение 5-6 дней. Экспрессированные sdAb секретировались в среду для культивирования клеток. Перед полным истощением глюкозы из среды супернатант собирали, центрифугировали и стерилизовали фильтрованием. SdAb очищали с применением содержащей ионы никеля смолы для связывания His (колонка для очистки с использованием HIS-метки complete; Roche, № 067 81543001 по каталогу) и элюировали с применением высокой концентрации имидазола (300 мМ). Для элюата осуществляли замену буфера на его конечный буфер для составления (20 мМ NaAc, 75 мМ NaCl, 5% сахароза, pH 5,5) с применением обессоливающей колонки (обессоливающая колонка HiPrep 26/10, GEHC № 17-5087 по каталогу) и концентрировали с применением центробежного фильтра Amicon Ultra 3K (Millipore, № UFC900324 по каталогу). После определения концентрации аликвоты очищенных sdAb дополнительно характеризовали с помощью SDS-PAGE, HPSEC, SEC-MALS и определения эндотоксина. Для каждой конструкции получали минимальный выход 5 мг очищенного sdAb из полученного после трансфекции объема 600 мл. Для дополнительного определения характеристик применяли только партии sdAb с содержанием мономеров более 95% и соответствующей молекулярной массой.

Для выбранных применений необходимыми были sdAb без меток (например, HIS-меток). Немеченые sdAb очищали посредством многостадийной ионообменной хроматографии (IEX). Прозрачный и отфильтрованный супернатант разбавляли в два раза в dH_2O для снижения проводимости, pH доводили до 8,0 и образец загружали на положительно заряженную смолу Capto Q Impress (GEHC, № 17-5470-02 по каталогу). Незаряженные sdAb оставались в фильтрате, который затем доводили до pH 3,5. Теперь положительно заряженные sdAb захватывали на отрицательно заряженной колонке HiTrap Capto SP ImpRes (GEHC, № 17-54 68-55 по каталогу) и элюировали с применением высокой концентрации хлорида натрия, pI sdAb может в значительной степени варьироваться, и данный способ применяли для молекул с зарядом от отрицательного до +1,0 при pH 8 и по меньшей мере зарядом более +10 в диапазоне pH 3-5. Элюированные sdAb дополнительно обрабатывали, как описано выше.

Как описано в данном документе, стратегии экспрессии в суспензионной культуре клеток Expi293 и очистки из них основывались на использовании HIS-метки и ионном обмене на конструкции без метки, которые обеспечивали большое количество и качество мономерных конструкций sdAb.

Пример 6. Определение характеристик однодоменных антител.

Охват нейтрализации вируса гриппа.

Нейтрализующие титры очищенных sdAb оценивали посредством тестирования диапазона концентраций в большой панели штаммов вируса гриппа с применением анализа нейтрализации вируса, описанного в примере 4. Титры приведены в таблицах 4-7. На основании их активности, sdAb можно разделить на молекулы, нейтрализующие вирус гриппа А группы 1 (охватывая вирусы Н1, Н5, Н2, Н6, Н11, Н9, Н8 и Н12), молекулы, нейтрализующие вирус гриппа А группы 2 (охватывая вирусы Н3, Н4, Н14, Н7 и Н10) и молекулы, нейтрализующие вирус гриппа В (охватывая вирусы Yamagata, Victoria и Predecessor/Old). Интересно, что некоторые из sdAb были способны нейтрализовать вирусы гриппа А как группы 1, так и группы 2 (табл. 6).

Таблица 4. Средние титры нейтрализации (нМ) для однодоменных антител к классу вирусов гриппа А группы 1 (пустые ячейки означают "не тестировали")

	лассу вирусов грипт	1.2						1	T	
Подтип	Штамм вируса гриппа	SD1016	SD1018	SD1027	SD1034	SD1035	SD1071	SD1072	SD1074	SD1076
	A/California/07 /09	9,1								3,1
H1N1	A/New Caledonia/20/99	7,1	>1000	862,0	160,6	74,8	1256 , 4	78 , 5	112,9	22,1
	A/Puerto Rico/8/34-MA	15,7			756,1					8,7
	A/PR8 H5N1 HK97	27,8								66,8
H5N1	A/Vietnam/1194/ 04	29,3	614,6	>1000	721,5	>1000	111,1	443,9	638,4	84,7
	A/Guiyang/1/57									>1000
H2N2	A/WF/HK/MPU3156 /05									38,5
	A/Brisbane/10/0 7	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000
	A/HK/1/68-MA	>1000			>1000					>1000
H3N2	A/Panama/2007/9	>1000								
	A/Wisconsin/67/ 05	>1000								>1000
H4	A/WF/HK/MPA892/ 06	>1000								>1000
H7N3	A/NIBRG/60 (A/mallard/NL/1 2/00)	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000
H7N7	A/PR8 H7N7-NY	>1000								
H10N7	A/Chick/Germany /N/49	>1000								>1000
Victori a	B/Brisbane/60/0 8	>1000								
Yamagat a	B/Florida/04/06	>1000								

Таблица 5. Средние титры нейтрализации (нМ) для однодоменных антител к классу вирусов гриппа A группы 2 (пустые ячейки означают "не тестировали")

Подтип Штамм вируса гриппа 4 10 01 00 00 00 00 00 00 00 00 00 00 00	SD1070	20
		SD2020
	>100	
	0	
A/New >100 >100 >100 >100 >100 >100	>100	
Caledonia/20/99 0 0 0 >1000 >1000 0 0	0	
A/Puerto >100 >100 >100 >100 >100 >100 >100 >10	>100	
Rico/8/34-MA 0 0 0 0 >1000 >1000 0 0 0	0	
A/Brisbane/59/07		
H1N1 A/Mississippi/03 >1000		
/01 274H A/Solomon		
Islands/3/2006		
A/WSN/33 >1000		
A/HK/54/98 >1000		
A/Christchurch/1		
6/10		
H1N2 A/Env/HK/MPU3156 /05 >1000		
A/PR8 H5N1 HK97 >1000 >1000 0		
H5N1 A/Vietnam/1194/0 >100 >100 >100 >100 >100 >100 >100 >1	>100	>100
A/Indonesia/5/05 >1000		
A/Eurasian >1000		
H5N2 A/Eurasian Wigeon/HK/MPF333 >1000		
/07		
A/Guiyang/1/57 >1000		
A/AnnArbor/23/57 >1000		
A/Env/HK/MPU3156 /05		
A/Eurasian Wigeon/MPG1884/0 9		
A/Taiwan/2/2013 >1000		
H6N8 A/Eurasian >1000		

	Wigeon/MPD411/07]					
	A/Northern										
H11N9	Pintail/MPC2085/				>1000						
	07										
	A/Ck/HK/SSP176/0				>1000						
	9				71000						
H9N2	A/Great										
115112	Cormorant/MP2934				677,4						
	/04										
	A/HK/466419/09				>1000						
H8N4	A/Eurasian				>1000						
110111	Wigeon/MPH571/08				7 1000						
H8N2	A/Env/MPJ1258/09				>1000						
H12N5	A/Env/MPK659/09				>1000						
	A/Brisbane/10/07	>100	>100	>100	86 , 7	6,6		19,5	19,1	15,3	9,3
	A/HK/1/68				114,6	202,0					
	A/HK/1/68				>1000	>1000					
	(D375N, I395V)				71000	71000					
	A/HK/1/68				>1000	202,0					
	(E443K)				71000	202,0					
	A/HK/1/68				>1000	570 , 7					
	(G379R)				7 1000	0,0,7					
	A/HK/1/68	_			>1000	>1000					
	(I395V)				, 1000	, 1000					
	A/HK/1/68				>1000	202,0					
	(L331I, E443K)				2000						
H3N2	A/HK/1/68 (N8S, E443K)				>1000	202,0					
	A/HK/1/68										
	(R201G, L331I,				>1000	339,3					
	E443K)										
	A/HK/1/68-MA	>100	>100	>100	73,2	26,4	>100	110,	76,1		
	A/ IIK/ I/ 00-MA	0	0	0	13,2	20,4	0	4	70,1		
	A/Panama/2007/99				>1000	>1000		>100			
	11, Lanama, 2007, 99				1/1000	1/1000		0			
	A/Wisconsin/67/0	>100	>100		>1000	>1000		>100	>100	>100	304,
	5	0	0		7 1000	1,1000		0	0	0	0
	A/Fukui/45/04				>1000						
	A/Aichi/2/68				6,5						
	A/Hiroshima/52/0				>1000						
	5										

	A/Johannesburg/3				600,6						
	A/Perth/16/09				76,4						
	A/Victoria/210/0				540,2						
	A/HK/1174/99				>1000						
H3N?	A/Env/MPJ193/09				41,0						
11011.	A/WF/HK/MPA892/0				11,0						
H4	6				40,4	34,3		34,3			
H4N1	A/Northern Pintail/MPB1368/ 06				80,7						
H4N6	A/Great Cormorant/MPB168 3/06				44,5						
H14N5	A/Mallard/Astrak han/263/1982				16,2						
H7N3	A/NIBRG/60 (A/mallard/NL/12 /00)	136 , 8	34,7	52,0	10,9	26,4	509 ,	20,6	114 , 6	366 , 2	>100
	A/PR8 H7N7-NY				8,8	25,9		93,0			
	A/Northern Shoveler/MPF518/				44,7						
	08										
H7N7	A/Netherlands/21 9/2003				28,9						
	A/Common Teal/MPF139/07				18,3						
	A/Anhui/1/13				65,9	46,1		•			
H7N9	A/Shanghai/1/13				101,2						
	A/Shanghai/2/13	_			33,0						
H10N7	A/Chick/Germany/ N/49				22,2	34,3		34,3			
H10N8	A/Jiangxi/346/20				83,9						
H10N3	A/Common Teal/MPH11/08				28,9						
	A/Northern										
H10N9	Shoveler/MPE2531				19,9						
Victoria	B/Brisbane/60/08				>1000	>1000		>100			
Yamagata	B/Florida/04/06				>1000	>1000		>100		>100	

Таблица 6. Средние титры нейтрализации (нМ) для однодоменных антител к классу вирусов гриппа A группы 1 и 2 (пустые ячейки означают "не тестировали")

Подтип	Обравец	SD1038	вричения однач вричения однач вричения однач	SD1069	SD1073
	A/California/07/09	17,5	85,9	3,3	30,3
	A/New Caledonia/20/99	10,1	165,6	20,8	98,9
	A/Puerto Rico/8/34- MA	8,8	206,4	12,8	89,6
	A/Brisbane/59/07	3,1			
H1N1	A/Mississippi/03/01 274H	4,7			
	A/Solomon Islands/3/2006 (IVR 145)	4,1			
	A/WSN/33	5,0			
	A/HK/54/98	16,5			
	A/Christchurch/16/10	2,6			
H1N2	A/Env/HK/MPU3156/05	40,5			
	A/PR8 H5N1 HK97	9,7	117,2	241,7	179,1
H5N1	A/Vietnam/1194/04	30,1	63,5	74,0	223,9
	A/Indonesia/5/05	32,8			
H5N2	A/Eurasian Wigeon/MPF461/07	18,8			
пэм2	A/Eurasian Wigeon/HK/MPF333/07	11,0			
	A/Guiyang/1/57	101,7			
H2N2	A/WF/HK/MPU3156/05	31,4			
ΠΖΝΖ	A/AnnArbor/23/57	33,0			
	A/Env/HK/MPU3156/05	23,2			
	A/Eurasian	16,2			
H6N1	Wigeon/MPG1884/09	10,2			
	A/Taiwan/2/2013	15,3			
H6N8	A/Eurasian Wigeon/MPD411/07	13,2			
H11N9	A/Northern Pintail/MPC2085/07	160,0			

	A/Ck/HK/SSP176/09	90,8			
H9N2	A/Great	104,6			
n9N2	Cormorant/MP2934/04	104,0			
	A/HK/466419/09	700,0			
TI ONI 4	A/Eurasian	F 2 4			
H8N4	Wigeon/MPH571/08	53,4			
H8N2	A/Env/MPJ1258/09	58 , 7			
H12N5	A/Env/MPK659/09	>1000			
	A/Brisbane/10/07	19,0	640,9	>1000	>1000
	A/HK/1/68	40,2	>1000	>1000	>1000
	A/Fukui/45/04	632,5			
H3N2	A/Aichi/2/68	127,2			
	A/Johannesburg/33/94	442,7			
	A/Perth/16/09	253,0			
	A/Victoria/210/09	253,0			
H3N?	A/Env/MPJ193/09	185,4			
H4	A/WF/HK/MPA892/06	>1000	492,4	>1000	>1000
TI ANT 1	A/Northern	404 7			
H4N1	Pintail/MPB1368/06	484,7			
II AN C	A/Great	075			
H4N6	Cormorant/MPB1683/06	275 , 2	•		
H14N5	A/Mallard/Astrakhan/	253,0			
niano	263/1982	233,0			
H7N3	A/NIBRG/60	>1000	>1000	>1000	135,1
117113	(A/mallard/NL/12/00)	>1000	>1000	>1000	133,1
	A/PR8 H7N7-NY	80,6	>1000		
	A/Northern	441,4			
	Shoveler/MPF518/08	111,1	-		
н7N7	A/Netherlands/219/20	180,6			
	03	100,0			
	A/Common	359,1			
	Teal/MPF139/07	333,1			
	A/Anhui/1/13	253 , 0			
H7N9	A/Shanghai/1/13	503,0			
	A/Shanghai/2/13	239,1			
H10N7	A/Chick/Germany/N/49	468,6	984,7	>1000	316,6
H10N8	A/Jiangxi/346/2013	239,1			
H10N3	A/Common	300,6			
1110110	Teal/MPH11/08	500,0			
H10N9	A/Northern	327,0			
1110110	Shoveler/MPE2531/08	527,0			
Victoria	B/Brisbane/60/08	>1000	>1000]	
Yamagata	B/Florida/04/06	>1000	>1000		
			1 2000		

Таблица 7. Средние титры нейтрализации (нМ) для однодоменных антител к классу вирусов гриппа В (пустые ячейки означают "не тестировали")

Подтип	Образец	SD1083	SD1084	SD1085	SD1086	SD1087	SD2086
Victoria	B/Brisbane/60/08	178,5	20,5	40,7	826,6	10,2	934,2
	B/Malaysia/2506/04	293,8	34,9	66,3	>1000	79,1	546,1
	B/Florida/04/06	219,7	68,8	186,9	>1000	>1000	814,7
Yamagata	B/Harbin/7/94	258,9	240,0	631,2	>1000	503,0	963,8
	B/Massachusetts/02/12		40,0				
Old	B/Lee/40	216,7	>1000			6 , 5	273,1

Охват связывания с НА.

Платформу для интерферометрии биослоев Octet Red384 (Forte Bio, Pall) применяли для проведения безмаркерного анализа белок-белковых взаимодействий на основе связывания в режиме реального времени в быстром способе Dip and Read на поверхности специфических сенсоров. Смещение выявленной массы на кончике функционализированного сенсора позволило исследовать связывание sdAb с рекомбинантным HA. При выполнении в диапазоне концентраций определяли не только связывание как таковое, но также K_D sdAb.

Очищенные sdAb с C-концевой HIS-меткой захватывали на сенсоре с антителами к His (фаза загрузки, сенсоры с антителами к пента-His, Forte Bio, № 18-0020 по каталогу). Далее сенсоры с загруженными sdAb инкубировали с различными подтипами HA (20 мкг/мл) для тестирования связывания (фаза ассоциации). Последняя стадия анализа включала инкубацию сенсоров в буфере для измерения кинетики с целью определения скорости диссоциации комплекса HA-sdAb. Связывающие способности тестируемых sdAb приведены в табл. 8. Во многих случаях sdAb связывали HA большего количества штаммов, чем они способны нейтрализовать. Более широкий спектр связывания связан с их индивидуальной аффинностью к HA (см. также табл. 9 со значениями K_D).

Таблица 8. Безмаркерное выявление связывания sdAb с HA ("+" отображает связывание с HA, "-" отображает отсутствие связывания, A g1 относится к вирусу гриппа A группы 1, A g2 относится к вирусу гриппа B;

пустые ячейки означают "не тестировали")

		A/New Caledonia/20/99	A/Puerto P Rico/8/34-MA		H A/PR8 H5N1 HK97	A/Vietnam/1194/04	A/Brisbane/10/07	₩ A/HK/1/68	A/Wisconsin/67/05	N A/NIBRG/60 (A/mallard/NL/12/	B/Brisbane/60/08	w B/Florida/04/06	B/Lee/40
Класс	Однодоменное	H1N1	H1N1	HINI	H5N1	H5N1	H3N2	H3N2	H3N2	H7N3			
A g1	SD1016	+	+	+	+	+	<u> </u>	_ _	т,	_	_	_	\vdash
A g1	SD1018	+				+							Н
A g1	SD1071	+				+	_			_	_	_	\forall
A gl	SD1072	+				+	-			-	_	_	\forall
A g1	SD1074	+				+	_			_	-	_	\Box
A g1	SD1076	+	+	+	+	+	_	_	_	_	_	_	+
A g1	SD1035	+		+				_		_	-	_	+
A g2	SD1017	_		-		-	+	+		+	-	_	П
A g2	SD1025						+			+			\Box
A g2	SD1070					-	+			+	-	_	Ħ
A g2	SD2020						+						П
A g1+g2	SD1014	+		-		+	+	+	-	+	_	-	
A g1+g2	SD1027	+				+	+			+	_		
A g1+g2	SD1034	+	+	+		+	+	+		-	_	-	
A g1+g2	SD1036	+		-		+	+	+		+	_	-	
A g1+g2	SD1038	+	+	+	+	+	+	+		+	-		
A g1+g2	SD1045	+	+	+	+	+	+	-		-	_	_	
A g1+g2	SD1046	+		+		+	+	+		+	-	-	
A g1+g2	SD1047	+				+		+		+	_		
A g1+g2	SD1048	+		-		+	+	+		+	_	-	
A g1+g2	SD1049	+		-		+	+	+	_	+	-	_	

A	GD1060	١					l .]
g1+g2	SD1069	+	+	+	+	+	+	_	+	_	_	
A	SD1073	+	+		+	+	_		+	-	-	
g1+g2												
В	SD1083	-					_			+	+	+
В	SD1084	-					-			+	+	
В	SD1085	-					-			+	+	
В	SD1086	-					_			+	+	+
В	SD1087	-					-			+	+	+

Безмаркерную интерферометрию биослоев применяли для определения равновесных констант диссоциации (значений K_D) как меры сил связывания между sdAb и рекомбинантными молекулами HA различных штаммов вируса гриппа. Значения K_D определяли с помощью аппроксимации ответов связывания sdAb в диапазоне концентраций в устойчивом состоянии (средний ответ связывания в последние 10 с, измеренный при достижении плато в фазе ассоциации) с получением концентрации при 50% насыщения, которая отображала значение K_D ($R=R_{ma}x*[sdAb]/(K_D+[sdAb])$). Измерения для серийных разбавлений проводили в двух повторах, и средние геометрические значения K_D приведены в табл. 9.

Таблица 9. Аффинность отобранных sdAb. Средние геометрические значения K_D (нМ) связывания sdAb с HA (пустые ячейки означают "не тестировали")

	H1N1	H1N1	H3N2	H3N2	H3N2	H7N3	н7N9	Victoria
	A/New Caledonia/20/1999	A/Brisbane/59/07	А/нк/1/68	A/Wisconsin/67/05	A/Brisbane/10/2007	A/NIBRG/60 (A/mallard/NL/12/00)	A/Hangzhou/1/2013	B/Brisbane/60/08
SD1036	230	290	2	122	10	2	3	
SD1038	4	3	44	42	14	88	57	
SD1016	6							
SD1045	5							
SD1046					2	3		
SD1048					3	3		
SD1083								3
SD1084								109

Конкуренция однодоменных антител с другими молекулами, связывающими НА.

Исследования конкуренции за связывание были разработаны для скрининга sdAb на предмет конкуренции между собой и в отношении других связывающих НА белков, в том числе хорошо изученных моноклональных антител (IgG) с известными эпитопами на НА. Если наблюдалась конкуренция, то предполагалось, что обе молекулы связываются с одним и тем же или, по меньшей мере, перекрывающимся эпитопом на поверхности НА.

Для этого был разработан конкурентный анализ AlphaLISA (Perkin Elmer), основанный на связывании НА (Protein Sciences, 10 мкл, конечная концентрация 0,5 нМ в 50 мкл) IgG или His-меченными sdAb (Perkin Elmer, 10 мкл, конечная концентрация 0,3 нМ в 50 мкл). Взаимодействие между НА и связывающей молекулой выявляли через 1 ч инкубации при RT с двумя типами гранул, донорной гранулой со стрептавидином, распознающей НА (10 мкл, 10 мкг/мл) и акцепторной гранулой с антителами к Fc или His (10 мкг/мл), распознающей либо IgG, либо используемые sdAb. Если спустя дополнительный час инкубации возбужденная донорная гранула (при 680 нМ) и акцепторная гранула оказывались в непосредственной близости, то перенос энергии (образование синглетного кислорода) можно было измерить

в виде сигнала люминесценции акцепторной гранулы. Интенсивность сигнала в данном гомогенном формате анализа прямо пропорциональна силе связывания (аффинность/авидность) между обоими партнерами по связыванию. Конкурирующая молекула, в зависимости от ее аффинности и концентрации (обычно тестируемая в диапазоне от 100 нМ до 0,5 пМ), могла нарушать сигнал AlphaLISA, что давало в результате сигмоидальную кривую ингибирования, которую аппроксимировали с применением стандартной четырехпараметрической логистической модели нелинейной регрессии в SPSS. Средние рассчитанных значений pIC50 показаны в табл. 10 и 11.

В табл. 10 и 11 показаны средние значений pIC50 в AlphaLISA (отрицательный log концентрации полумаксимального ингибирования, более высокие значения указывают на более высокую эффективность, растущую экспоненциально). "H1_Ca1_HA" относится к H1N1 A/California/07/2009, "H1_NCa_HA" относится к HA H1N1 A/New Caledonia/20/1999, "H5_Vie_HA" относится к HA H5N1 A/Vietnam/1203/2004, "H3_Bri_HA" относится к HA H3N2 A/Brisbane/10/2007, "H3_Wis_HA" относится к HA A/Wisconsin/67/2005, "H7_Net_HA" относится к HA H7N7 A/Netherlands/219/2003; B_Bri_HA" относится к HA B/Brisbane/60/2008; "B_Flo_HA" относится к HA B/Florida/04/2006 "CR8033", "CR8071" и "CR9114" представляют собой HA, связывающие IgG, охарактеризованные Dreyfus et al. 2012. "2D1" относится к IgG, связывающемуся с рецептор-связывающим участком HA, охарактеризованный Ekiert et al. (2010). "CR8020" представляет собой IgG, связывающийся со стеблем HA, охарактеризованный Ekiert et al. (2011). "39.29" представляет собой IgG, связывающийся со стеблем HA, охарактеризованный в WO 2014/078268. Все SDxxxx имеют His-метку, применяемую для выявления, за исключением указанных версий "без меток". Пустые ячейки означают "не тестировали".

Таблица 10. Конкуренция SdAb за связывание с НА вируса гриппа А

таолица то. Конкуренция SdAb за связывание с нА вируса гриппа А								
	SD1014	SD1016	SD1036	SD1038	SD1046	SD1083	SD1084	SD1087
H1_Cal_HA_2D1			< 7	< 7	< 7			< 7
H1_Cal_HA_CR9114	< 7	10,3	< 7	9,9	< 7			< 7
H1_NCa_HA_CR9114	< 7	9,9	< 7	10,1				
H1_Cal_HA_SD1038			< 7	9,9		< 7	< 7	< 7
H5_Vie_HA_CR9114	< 7	9,6	< 7	9,3				
H3_Bri_HA_CR8020	7,2	< 7	9,2	7,8	9,6			
H3_Bri_HA_CR8057	< 7	< 7	< 7	< 7	< 7			
H3_Bri_HA_CR9114	7,8	< 7	9,4	8,6	9,9			< 7
H3_Bri_HA_SD1036			9,1	7,9				< 7
H3_Bri_HA_SD1038			9,3	8,3		< 7	< 7	< 7
H3_Bri_HA_39,29			9,2	8,3				< 7
H3_Wis_HA_CR9114	< 7	< 7	7,8	8,0				
H3_Wis_HA_CR8020	< 7	< 7	7,2	7,2				
H3_Wis_HA_CR8057	< 7	< 7	< 7	< 7				
H7_Net_HA_CR9114	9,2	< 7	9,3	7,5				
H7_Net_HA_SD1038						< 7	< 7	

Таблица 11. Конкуренция SdAb за связывание с НА вируса гриппа В

таолица 11. Конкуренция бало за связывание с пл вируса гриппа в								
	SD1014	SD1036	SD1038	SD1083	SD1084	SD1085	SD1086	SD1087
B_Bri_HA_CR8071				< 7	< 7		< 7	< 7
B_Bri_HA_CR9114	< 7	< 7	< 7	9,4	7,4		8,6	7,5
B_Bri_HA_SD1083		< 7		8,9				
B_Bri_HA_SD1084		< 7		< 7	9,7			
B_Bri_HA_SD1085		< 7		8,7				
B_Bri_HA_SD1086		< 7		9,1				
B_Bri_HA_SD1087		< 7		9,0	< 7			
B_Flo_HA_CR8033				< 7	8,5	< 7	< 7	< 7
B_Flo_HA_CR8071				< 7	< 7		< 7	
B_Flo_HA_CR9114				9,3	8,0		8,0	8,8
B_Flo_HA_SD1083		< 7		9,0				
B_Flo_HA_SD1084		< 7		< 7				
B_Flo_HA_SD1085		< 7		8,9				
B_Flo_HA_SD1086		< 7		9,2				
B_Flo_HA_SD1087		< 7		9,1				

Блокирование связывания с рецептором - ингибирование гемагглютинации.

Анализ ингибирования гемагглютинации, общепринятый вариант анализа НА, применяли для тестирования sdAb на предмет их способности связываться вблизи верхней части области, представляющей собой головку, и физически блокировать взаимодействие с рецепторами, содержащими сиаловую кислоту, на клетках-мишенях, в данном случае эритроцитах. Если sdAb в достаточной концентрации блокировало взаимодействие с сиаловой кислотой, то "агглютинация" (эритроциты агрегируют вместе) ингибировалась. Серийное разбавление sdAb готовили в PBS (25 мкл/лунка) и добавляли 25 мкл вируса в разбавлении 8 НАU/50 мкл, перемешивали. После инкубации в течение 1 ч при 37°С добавляли 50 мкл 1% эритроцитов индюка (TRBC) и перемешивали. После инкубации в течение 30-60 мин при RT визуально оценивали профиль агглютинации (образование "капель"). Кроме образцов в четырех повторностях и антител положительного контроля, брали образец после обратного титрования исходного вируса. Титр ингибирования гемагглютинации, минимальная концентрация, при которой полностью блокируется взаимодействие вируса с рецепторами на TRBC, содержащими сиаловую кислоту, рассчитывали с использованием формулы Спирмена-Карбера.

Результаты показаны в табл. 12. Все sdAb, связывающие вирус гриппа A, были отрицательными (то есть характеризовались титрами HI>50 мкг/мл).

Таблица 12. Титры ингибирования гемагглютинации (мкг/мл) однодоменных антител (пустые ячейки означают "не тестировали")

		В							
	B/Brisbane/60/08	B/Florida/04/06	B/Harbin/7/94	B/Lee/40	A/Vietnam/1194/04				
SD1083	>50	>50	>50	>50	>50				
SD1084	0,07	0,42	1,10		>50				
SD1087	>50	>50	>50	>50	>50				

Наряду с его профилем связывания и нейтрализации, было показано, что SD1084 является эффективной молекулой, связывающей головку НА, и предотвращает связывание с рецепторами, содержащими сиаловую кислоту.

Ингибирование конформационного изменения НА посредством связывания sdAb в стебле.

Для подтверждения того, что связывание sdAb стебля, аналогично связыванию антител, с которыми они конкурируют, предотвращает конформационное изменение HA, и тем самым блокирует слияние вируса и последующее инфицирование, был разработан анализ, с помощью которого определяют присутствие головки HA (HA1) после обработки при низком рН и восстановления соединяющего дисульфидного мостика между HA1 и HA2 (Brandenburg et al., 2013).

Анализ конформационного изменения основан на безмаркерном выявлении и осуществляется с применением платформы для интерферометрии биослоев Octet Red384 (Forte Bio, Pall). Сперва партию биотинилированного по C-концу рекомбинантного НА расщепляли (250 мкг НА инкубировали с 10 мкл 0,05% трипсин-EDTA в течение 20 мин при 37°C, затем добавляли 30 мкл DTI для остановки активности трипсина). Затем НА (2 мкг/мл) захватывали на сенсорах со стрептавидином (Forte Bio, № 18-5020 по каталогу) на приборе Octet с последующим инкубированием с партнером по связыванию (sdAb, антитела положительного и отрицательного контроля в концентрации до 50 нМ). После данной стадии инкубации сенсоры будут подвергать воздействию в диапазоне рН (рН 6,5-5,0 с шагом 0,2 рН). Если партнер по связыванию не стабилизировал и не блокировал НА, то он будет претерпевать конформационное изменение; домен НА1 головки отдаляется, тогда как домен НА2, охватывающий механизм слияния, разворачивает и выпячивает пептид слияния наружу. НА1 теперь соединен только с НА2 посредством дисульфидного мостика, который может быть восстановлен путем воздействия DTT на заключительной стадии анализа (50 мМ DTT в PBS). Затем НА1 будет диссоциировать от биотинилированного домена НА2, что обеспечит выявление значительной потери массы на детекторе. Результаты обобщены в табл. 13.

Таблица 13. Предотвращение конформационного изменения НА с помощью однодоменных антител "++" обозначает сильное и "+" обозначает среднее ингибирование конформационного изменения НА. "-" обозначает отсутствие ингибирования. Пустые ячейки означают "не тестировали"

	н1	нз	н7	н7	Victoria
	A/Brisbane/59/07	A/HK/1/68-MA	A/NIBRG/60 (A/mallard/NL/12/00)	A/Hangzhou/1/2013	B/Brisbane/60/08
SD1036	-	++	++	++	-
SD1038	++	+	+/-	+/-	-
SD1046	+	++			-
SD1069	++	++			-
SD1083	-	-			++
SD1084	-	-			-
SD1087	-	-			++

Результаты показывают, что sdAb, связывающие стебель HA, способны предотвращать конформационное изменение HA в соответствии с их профилем нейтрализации. Для такой способности необходимо, чтобы sdAb оставалось связанным при низком pH, аналогично условиям в поздних эндосомах. Уровень блокирования конформационного изменения положительно коррелируют с их титром нейтрализации соответствующих штаммов вируса.

Последовательности однодоменных антител.

Последовательности отобранных и охарактеризованных sdAb в соответствии с настоящим изобретением представлены в табл. 14. Последовательности CDR-областей представлены в табл. 14а.

Таблица 14. Последовательности однодоменных антител в соответствии с настоящим изобретением

Класс	Однодо- менное	Последовательность	SEQ ID NO:
A g1	SD1018	EVQLVESGGGLVQAGGSLRLSCAASGQTYHMGWFRQTPGNERESVAAVTWSGAV TRYADSVKGRFTISRDNAKNTVYLQMNSLVPEDTAIYYCAATRSMAPIIQLSPG SYDYWGPGTQVTVSS	1
A g1	SD1071	EVQLVESGGGLVQTGESLRLSCAFSGFTYSTYWMYWVRQGPEKGLKWVSSTNAA GTVTYYAANVRDRFTASKDNAKNTLYLQMNRLKPEDTGLYYCASKDGLIVAATL DDYDYRGQGTQVTVSS	2
A g1	SD1035	EVQLVESGGGLVQAGGTLRLSCAASGSAVSISRMAWYRQAPGKQRELVADIFSG GGTNYADSVKGRFTISRDNAKNTVDLQMNSLKPEDTAVYYCSARSAVAAIHWDQ YDYWGQGTQVTVSS	3
A g1	SD1016	EVQLVESGGGLVQAGGSLRLSCVASGMFFGIAAMGWYRQAPGKQRELVANITSD FSTNYADSVKDRFTISRDNAENTVYLQMNSLKPEDTAVYYCAADSLGTGWRHYY YWGQGTQVTVSS	4
A g1	SD1072	EVQLVESGGGLVEAGGSLRLSCAVSGRTFSMYATGWFRQAPGKEREFVAAINSS GDKTTYADSVEGRFTISRDIGTVYLQMNNLNPEDTAVYYCAAARTLAVVTIPGG YEYWGQGTQVTVSS	5
A g1	SD1074	EVQLVESGGGLVQAGGSLRLSCAASRNFDAIGAMGWYRQAPGKQRELVAEITSD GSTNYTDSVKGRFTISRDNALRTMYLQMNALEPEDTAVYYCKADISIYGLTNFP YWGQGTQVTVSS	
A gl	SD1076	EVQLVESGGGLVQAGGSLTLSCAGSGFAFSIATMGWYRQAPGKQRELVADITSG GSTNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNADSLATGWRQYS YWGKGTQVTVSS	7
A g2	SD1017	EVQLVESGGGLVQAGGSLRLSCAASGRTYAMAWFRQAPGKEREFVAHINALGTR AYYSDSVEGRFTISRDNAKNTGYLQMNSLEPEDTAVYVCAAGGQWRAAPVADAA QYDFWGQGTQVTVSS	8
A g2	SD1025	EVQLVESGGGLVQAGGSLRLSCAASGRTYAMAWFRQAPGKEREFVAHINALGTR TYYSDSVQGRFTISRDNAKNTEYLQMNSLKPEDTAVYYCAAGGQWRAAPVADAA QYDFWGQGTQVTVSS	9
A g2	SD1070	EVQLVESGGGLVQAGGSLRISCAASGRTFSIYSMGWFRQAPGKEREFVATIGWN SGRTFYADSMKERFTISADNARNTLYLQMNSLKFEDTAVYYCAAAKGPLRLSSQ ADYWGQGTQVTVSS	10
A g2	SD2020	EVQLVESGGGLVQPGGSLRLSCAAAGGAFNRQLVAWFRQAPGKKREFVATVTTS GGSSYYADSVKGRFTISRDTAKNTVALQMNSLKAEDAAVYYCAARDSFTVAPYY PPESYAYWGQGTQVTVSS	11
A g1+g2	SD1069	EVQLVESGGGLVQAGDSLRLSCAASGPTFGMSAMGWFRQAPGKEREFVAAISGL GNPNYSDDVKGRFTISRENGRNTVYLQMNSLKPEDTAVYYCAQRKVYHVQGGDR	12

		PQAYDYWGQGTQVTVSS	
A g1+g2	SD1046	EVQLVESGGGLVQAGDSLRISCAASGRTLSIYSMGWFRQAPGKEREFVATIGWN SGRTFYPDSLKGRFTISRDNARNTLYLQMNNLRPEDTAVYYCAAAKGPLRLSSQ ADYWGQGTQVTVSS	13
A g1+g2	SD1048	EVQLVESGGGVVQPGGSLRLSCVASGRTSSMYSIGWFRQAPGKEREFVAVIGWY SGRTFYTDSMKGRFTISRDNARNTVYLQMNSLKPEDTAVYYCAAANGPLRLSNQ ADYWGQGTQVTVSS	14
A g1+g2	SD1049	EVQLVESGGGLVQAGGSLRLSCAASGRTLSLYSVGWFRQAPGKEREFVATIGWN SGRTFYVDSMKGRFTISRDNAKNTVYLQMNDLKVEDTAVYYCAAAKGPLRLSNQ ADYWGQGTQVTVSS	15
A g1+g2	SD1027	EVQLVESGGGMVQAGGSLRLSCAASGGTFSLYHMGWFRQAPGEEREFVAAISGS GGNTYYADSVKGRFTISRDNNKNTVYLQMSSLEPEDTAVYFCAAMKWPGILRDA NAYDYWGQGTQVTVSS	16
A g1+g2	SD1036	EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTR TYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAA EYEFWGQGTQVTVSS	17
A g1+g2	SD1014	EVQLVESGGGLVQAGGSLTLSCAASGRTYAMAWFRQAPGKEREFVAHINALGTR TYYSDSVKGRFTISRDNAKNTEYLQMNSLNPEDTAVYYCAAGGQWRAAPVADAA QYDFWGQGTQVTVSS	18
A g1+g2	SD1047	EVQLVESGGGLVQAGGSLRISCAASGRTYAMAWFRQAPGKEREFVAHINALGTR TYYSDSVKDRFTISRDNAKNTEYLQMNSLKPEDTAVYYCVAGGQWRAAPVAAAE SYDFWGQGTQVTVSS	19
A g1+g2	SD1038	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRD GSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAG GMGVYWGKGALVTVSS	20
A g1+g2	SD1045	EVQLVESGGGLVQAGGSLRLSCAASGSSFSINVMGWYRQAPGKQREMVATITYG GSTNYVDSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNSRLAQINYWGQG TQVTVSS	21
A g1+g2	SD1073	EVQLVESGGGLVQAGGSLRLSCAASGSAFSIAAMGWYRQAPGKQRELVATITTG GSTNYADSVKGRFTISRDNSKNTAYLQMNSLKPEDTAVYYCTAKSVVAETFGDL YNYWGQGTQVTVSS	22
A g1+g2	SD1034	EVQLVESGGGLVQAGGSLRLSCAASGTIFGIRVNTMGWYRQAPGEQRELVATIT RSGGTNYADSVKDRFTISGDFAKDTVYLQMMHLKPEDTAVYYCNGRWALTDYWG QGTQVTVSS	23
В	SD1083	EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKS GSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWD GTTFSRLASSWGQGTQVTVSS	24
В	SD1084	EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTD GGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQ GTQVTVSS	25
В	SD1085	EVQLVESGGGLVQAGDSLRLSCVISGLSLDTYAVGWFRQAPGKEREGITCISSG HGMTYYADSVKGRFTVSTDNAKNTVYLQMNGLQPEDTARYYCATESRYYCSDNW PAPQRYIYWGQGTQVTVSS	26
В	SD1087	EVQLVESGGGLVQPGGSLRLSCVISGLSLDTYAVGWFRQAPGKEREGITCISSG HGMTYYADSVKGRFTVSTDNAKNTVYLQMNGLQPEDTARYYCATESRYYCSDNW PAPQRYIYWGQGTQVTVSS	27
В	SD1086	EVQLVESGGGLVQAGGSLRLSCTASGSISSIDYMRWYRQYPGKHRELVATITSG GAADSRDSVKGRFTVSRGNAANTMYLQMNNLKPEDTAVYYCNAYGLEIGAHWGR	28

		GTQVTVSS	
В	SD2086	EVQLVESGGGLVQAGGSLRLSCATSGQTFSSYAMGWFRQAPGKEREFVAAISWN GGSTYYADSVKGRFTISRESPENLVYLQMNSLKPEDTAVYYCAARGAYYTGSYY LGSTYDYWGQGTQVTVSS	29

Таблица 14а. Последовательности CDR-областей однодоменных антител в соответствии с настоящим изобретением

	CDR1 (SEQ ID NO)	CDR2 (SEQ ID NO)	CDR3 (SEQ ID NO)
SD1018	QTYHMG (227)	AVTWSGAV (228)	AATRSMAPIIQLSPGSYDY (229)
SD1071	FTYSTYWMY (230)	STNAAGTV (231)	ASKDGLIVAATLDDYDY (232)
SD1035	SAVSISRMA (233)	DIFSGGG (234)	SARSAVAAIHWDQYDY (235)
SD1016	MFFGIAAMG (236)	NITSDFS (237)	AADSLGTGWRHYYY (238)
SD1072	RTFSMYATG (239)	AINSSGDK (240)	AAARTLAVVTIPGGYEY (241)
SD1074	NFDAIGAMG (242)	EITSDGS (243)	KADISIYGLTNFPY (244)
SD1076	FAFSIATMG (245)	DITSGGS (246)	NADSLATGWRQYSY (247)
SD1017	RTYAMA (248)	HINALGTR (249)	AAGGQWRAAPVADAAQYDF (250)
SD1025	RTYAMA (251)	HINALGTR (252)	AAGGQWRAAPVADAAQYDF (253)
SD1070	RTFSIYSMG (254)	TIGWNSGR (255)	AAAKGPLRLSSQADY (256)
SD2020	GAFNRQLVA (257)	TVTTSGGS (258)	AARDSFTVAPYYPPESYAY (259)
SD1069	PTFGMSAMG (260)	AISGLGN (261)	AQRKVYHVQGGDRPQAYDY (262)
SD1046	RTLSIYSMG (263)	TIGWNSGR (264)	AAAKGPLRLSSQADY (265)
SD1048	RTSSMYSIG (266)	VIGWYSGR (267)	AAANGPLRLSNQADY (268)
SD1049	RTLSLYSVG (269)	TIGWNSGR (270)	AAAKGPLRLSNQADY (271)
SD1027	GTFSLYHMG (272)	AISGSGGN (273)	AAMKWPGILRDANAYDY (274)
SD1036	RTYAMG (275)	HINALGTR (276)	TAQGQWRAAPVAVAAEYEF (277)
SD1014	RTYAMA (278)	HINALGTR (279)	AAGGQWRAAPVADAAQYDF (280)
SD1047	RTYAMA (281)	HINALGTR (282)	VAGGQWRAAPVAAAESYDF (283)
SD1038	SIFDIYAMD (284)	TSFRDGS (285)	HVSLYRDPLGVAGGMGVY (286)
SD1045	SSFSINVMG (287)	TITYGGS (288)	NSRLAQINY (289)
SD1073	SAFSIAAMG (290)	TITTGGS (291)	TAKSVVAETFGDLYNY (292)
SD1034	TIFGIRVNTMG (293)	TITRSGG (122)	NGRWALTDY (123)
SD1083	FTLENKAIG (124)	CISKSGSW (125)	ATTTAGGGLCWDGTTFSRLASS (126)
SD1084	FTFSTSWMY (127)	VINTDGG (128)	AKDWGGPEPT (129)
SD1085	LSLDTYAVG (130)	CISSGHGM (131)	ATESRYYCSDNWPAPQRYIY (132)
SD1087	LSLDTYAVG (133)	CISSGHGM (134)	ATESRYYCSDNWPAPQRYIY (135)
SD1086	SISSIDYMR	TITSGGA (137)	NAYGLEIGAH (138)
	(136)		
SD2086	QTFSSYAMG (139)	AISWNGGS (140)	AARGAYYTGSYYLGSTYDY (141)

В заключение, анализы нейтрализации вируса, проведенные с использованием очищенных конструкций мономерных sdAb, подтвердили наличие четырех различных классов sdAb; sdAb, нейтрализую-

щих вирус гриппа А группы 1, А группы 2, А группы 1 и группы 2 или вирус гриппа В. Тем не менее, исследования по связыванию показали, что многие sdAb, нейтрализующие вирусы гриппа A группы 1 или А группы 2, также могут связывать НА, принадлежащие к группе, которую они не нейтрализуют. Это дает в результате значительно большее число sdAb, связывающих вирусы гриппа A группы 1 и A группы 2. SdAb, которые могут нейтрализовать или, по меньшей мере, связывать вирусы гриппа A и B, не были обнаружены. SdAb, способные связывать и нейтрализовать в широком диапазоне, были отобраны для дополнительного определения характеристик (в том числе SD1038, SD1036, SD1083 и SD1084). Определение аффинности к НА показало положительную корреляцию между силой связывания и титром нейтрализации отобранных sdAb. С помощью картирования эпитопов посредством конкурентных анализов с использованием известных молекул, связывающих НА, было выявлено, что все из них, кроме SD1084, связываются с консервативным участком стебля НА. Концентрация, при которой происходило конкурирование, положительно коррелирует с титром нейтрализации, что означает, что более сильное связывание и конкуренция обеспечивают более низкие титры нейтрализации. С другой стороны, SD1084 связывается с участком связывания сиаловой кислоты головки НА или вблизи него, как продемонстрировано в анализе ингибирования гемагглютинации, и может обеспечивать предупреждение проникновения вируса гриппа в клетку за счет блокирования связывания с рецептором. Все остальные sdAb могут связывать НА1 и НА2 в стебле НА и предотвращать конформационное изменение НА во время процесса слияния, как показано в анализе конформационного изменения.

Пример 7. Образование и определение характеристик гомо- и гетеродимеров sdAb. Образование гомо- и гетеродимеров sdAb.

Для создания гомо- и гетеродимеров sdAb последовательности, кодирующие sdAb, либо клонировали вместе, либо непосредственно синтезировали полноразмерный ген (Genscript) и лигировали в эукариотический вектор экспрессии. В конструкциях димерных sdAb C-конец первого sdAb (передняя сторона) был связан с N-концом второго sdAb (задняя сторона). Линкерные последовательности различной длины (10, 15, 35 и 57 аминокислот) состоят из аминокислот, представляющих собой глицин (G) и серин (S). При клонировании вместе сайт рестрикции (NotI) расположен непосредственно после первого sdAb, что приводит к образованию трех дополнительных аланиновых (A) остатков. Линкерные последовательности показаны в табл. 15, а полные аминокислотные последовательности димеров sdAb показаны в табл. 16 (конструкции, нацеленные на вирус гриппа A) и в табл. 17 (конструкции, нацеленные на вирус гриппа B). Расположение sdAb (спереди или сзади) в конструкциях варьировалось с целью обеспечения наиболее оптимальной комбинации. Экспрессию и очистку осуществляли, как описано в примере 5.

Таблица 15. Линкерные последовательности для образования конструкций мультидоменных антител

Тип	Последовательность			
10GS-линкер	GGGGS GGGGS (SEQ ID NO: 142)			
15GS-линкер	GGGGS GGGGS (SEQ ID NO: 143)			
35GS-линкер	GGGGS GGGGS GGGGS GGGGS GGGGS (SEQ ID NO: 144)			
57GS-линкер	GGGGS GGGGS GGGGS GGGGS GGGGS GGGGS			
o / Go /////////	GGGGS GGGGS (SEQ ID NO: 145)			

Таблица 16. Последовательности гомо- и гетеродимеров SD103 6 и SD1038

Констру кция	Последовательность	SEQ ID
MD1213	EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTY YSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEF WGQGTQVTVSSAAAGGGGSGGGGGGGGSEVQLVESGGGLVQAGGSLKLSCAASGR TYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNL KPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSS	30
MD1209	EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTY YSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEF WGQGTQVTVSSAAAGGGGSGGGGSGGGGSGGGGGGGGGGGGGGGGG	31

MD1215	EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTY	
	YSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEF	
	WGQGTQVTVSSAAAGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGG	32
	GGGGSGGGGSGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKE	32
	REFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQG	
	QWRAAPVAVAAEYEFWGQGTQVTVSS	
	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGS	
	TNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGV	
MD1214	YWGKGALVTVSSAAAGGGGSGGGGGGGGSEVQLVESGGGLVQAGGSLKLSCAASG	33
	RTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNN	
	LKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSS	
	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGS	
	TNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGV	
MD1211	YWGKGALVTVSSAAAGGGGSGGGGSGGGGSGGGGSGGGGSGGGSEVQLVE	34
MDIZII	SGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVK	34
	GRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQ	
	VTVSS	
	EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTY	
	YSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEF	
MD1010	WGQGTQVTVSSAAAGGGGSGGGGGGGGGGGGGGGGGGGGGGGGGGG	2.5
MD1210	GGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSV	35
	KGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGAL	
	VTVSS	
	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGS	
	TNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGV	
MD1212	YWGKGALVTVSSAAAGGGGSGGGGSGGGGSGGGGSGGGGSGGGSEVQLVE	36
MDIZIZ	SGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADS	30
	VKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGA	
	LVTVSS	
	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGS	
	TNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGV	
MD1216	YWGKGALVTVSSAAAGGGGSGGGGGGGGGGGGGGGGGGGGGGGGGGG	27
MD1216	SGGGGSGGGGGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGK	37
	EREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQ	
	GQWRAAPVAVAAEYEFWGQGTQVTVSS	
	1	

Таблица 17. Последовательности гомо- и гетеродимеров SD1083 и SD1084

Констру кция	Последовательность	SEQ ID NO:
MD1221	EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGS WTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTF SRLASSWGQGTQVTVSSAAAGGGGSGGGGGGGGGGGGGGGGGGGGGGGGGGG	38
MD1222	EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGS WTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTF SRLASSWGQGTQVTVSSAAAGGGGSGGGGSGGGGSGGGGSGGGGSGGGSE VQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGT YYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVT VSS	39
MD1223	EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGG TYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQV TVSSAAAGGGGSGGGGSGGGGSGGGGGGGGGGGGGGGGGG	40
MD1224	EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGG TYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQV TVSSAAAGGGGSGGGGSGGGGGGGGGGGGGGGGGGGGGGG	41

Нейтрализация вируса гриппа гомо- и гетеродимерами sdAb.

Очищенные гомо- и гетеродимеры sdAb тестировали в анализах нейтрализации вируса гриппа, как описано в примере 6, и они показали улучшенную эффективность и спектр нейтрализации по сравнению со структурными блоками sdAb. Результаты для димеров, нейтрализующих вирус гриппа A, показаны в табл. 18, а для димеров, нейтрализующих вирус гриппа B, - в табл. 19.

Таблица 18. Титры нейтрализации вируса гриппа гомо- и гетеродимеров SD1036 и SD1038 (для сравнения также приведены титры sdAb SD1036 и SD1038, пустые ячейки означают "не тестировали")

	H1N1	H1N1	H5N1	H3N2
Конструкция	A/California/07/09	A/Puerto Rico/8/34-MA	A/Vietnam/1194/04	A/Wisconsin/67/05
SD1036	<1000	<1000	<1000	<1000
SD1038	17,5	8,8	30,1	<1000
MD1213	2,4	27 , 8	<1000	18,6
MD1209	10,1	221,2	<1000	109,1
MD1215	4,1	39,6	917,9	34,1
MD1212	3,7	11,7	14,8	49,5
SD1036+SD1038		6,8	19,3	<1000
MD1214	1,4	7 , 5	0,9	12,5
MD1211	4,0	9,9	7,6	19,3
MD1210	2,5	21,9	21,4	118,3
MD1216	1,4	9 , 7	3,4	12,1

Таблица 19. Титры нейтрализации вируса гриппа гомо- и гетеродимеров SD1083 и SD1084 (для сравнения также приведены титры sdAb SD1083 и SD1084, пустые ячейки означают "не тестировали")

	Victoria Yamagata		Old		
Конструкция	B/Brisbane/60/08	B/Malaysia/2506/04	B/Florida/04/06	B/Harbin/7/94	B/Lee/40
SD1083	178,5	293,8	219,7	258,9	216,7
SD1084	20,5	34,9	68,8	240,0	<1000
MD1221	23,4		76,4		32,5
MD1222	3,0	3,6	2,1	7,2	12,7
MD1223			2,3		18,0
MD1224	4,1	2,7	0,8	4,5	33,0

Связывание НА гомо- и гетеродимерами sdAb.

Очищенные гомо- и гетеродимеры sdAb тестировали в анализах связывания, как описано в примере 6, и они показали увеличенную силу связывания (авидность) по сравнению со структурными блоками

sdAb. Результаты для димеров, нейтрализующих вирус гриппа A, показаны в табл. 20. Таблица 20. Средние геометрические значения K_D (нM) для гомо- и гетеродимеров SD1036 и SD1038 (пустые ячейки означают "не тестировали")

	H1N1	H3N2	H3N2	H7N3
	A/New Caledonia/20/1999	A/Wisconsin/67/05	A/Brisbane/10/2007	A/NIBRG/60 (A/mallard/NL/12/00)
MD1210	0,7		1,7	1,2
MD1212	1,4	0,8	2,3	1,5
MD1211	1,7	0,9	1,8	2,1
MD1209	1,9		1,8	1,4

Пример 8. Образование и определение характеристик конструкций мультидоменных антител. Образование мультимеров sdAb.

Для создания мультимеров sdAb (тримеров, тетрамеров и пентамеров) последовательности, кодирующие sdAb, либо клонировали вместе, либо непосредственно синтезировали полноразмерный ген (Genscript) и лигировали в эукариотический вектор экспрессии. Линкерные последовательности различной длины (10 или 35) состояли из аминокислот, представляющих собой глицин (G) и серин (S). При клонировании вместе сайт рестрикции (NotI) расположен непосредственно после первого sdAb, что приводит к образованию трех дополнительных аминокислот, представляющих собой аланин (A), и при этом 2 последовательных сайта рестрикции (PacI и XhoI) расположены непосредственно после второго sdAb, что приводило к образованию пяти дополнительных аминокислот (LINLE). Линкерные последовательности показаны в табл. 15 и полные аминокислотные последовательности тримеров sdAb показаны в табл. 23, а тетрамеры и пентамеры sdAb показаны в табл. 24. Расположение sdAb в конструкциях варьировалось с целью обеспечения наиболее оптимальной комбинации. Экспрессию и очистку осуществляли, как описано в примере 5.

Таблица 23. Последовательности тримерных конструкций мультидоменных антител

Таблица 23	. Последовательности тримерных конструкций мультидоменных антител
Конструкция (SEQ ID NO:)	Последовательность
MD1301 (42)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYAD SVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTV SSAAAGGGGSGGGSGGGGSGGGGSGGGGSGGGSEVQLVESGGGLVQAGGSLKLS CAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNN LKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSLINLEGGGGSGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
MD1302 (43)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYAD SVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTV SSAAAGGGGSGGGSGGGGSGGGGSGGGGSGGGSEVQLVESGGGLVQAGGSLKLS CAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNN LKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSLINLEGGGGSGGGGSGGGS GGGGSGGGGSGGGSPAGEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLR QAPGKGLEWVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDW GGPEPTRGQGTQVTVSS
MD2301 (44)	EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYT DSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQG TQVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQ RDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLG VAGGMGVYWGKGALVTVSSGGGGSGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMG WFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYC TAQGQWRAAPVAVAAEYEFWGQGTQVTVSS
MD2302 (45)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYAD SVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTV SSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVL CISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGT TFSRLASSWGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMG WFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYC TAQGQWRAAPVAVAAEYEFWGQGTQVTVSS
MD2303 (46)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYAD SVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTV SSGGGGSGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHIN

	ALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEY EFWGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFR QTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATT TAGGGLCWDGTTFSRLASSWGQGTQVTVSS
MD2304 (47)	EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYT DSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQG TQVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQ RDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLG VAGGMGVYWGKGALVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIY AMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVY LCHVSLYRDPLGVAGGMGVYWGKGALVTVSS
MD2305 (48)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYAD SVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTV SSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVL CISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGT TFSRLASSWGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIY AMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVY LCHVSLYRDPLGVAGGMGVYWGKGALVTVSS
MD2306 (49)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYAD SVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTV SSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVA TSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGM GVYWGKGALVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWF RQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCAT TTAGGGLCWDGTTFSRLASSWGQGTQVTVSS
MD2307 (50)	EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYT DSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQG TQVTVSSGGGGSGGGSEVQLVESGGGLVQAGDSLRISCAASGRTLSIYSMGWFRQAPGKE REFVATIGWNSGRTFYPDSLKGRFTISRDNARNTLYLQMNNLRPEDTAVYYCAAAKGPLRL SSQADYWGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQAGDSLRLSCAASGPTFGMSAM GWFRQAPGKEREFVAAISGLGNPNYSDDVKGRFTISRENGRNTVYLQMNSLKPEDTAVYYC AQRKVYHVQGGDRPQAYDYWGQGTQVTVSS
MD2308 (51)	EVQLVESGGGLVQAGDSLRISCAASGRTLSIYSMGWFRQAPGKEREFVATIGWNSGRTFYP DSLKGRFTISRDNARNTLYLQMNNLRPEDTAVYYCAAAKGPLRLSSQADYWGQGTQVTVSS GGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCI SKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTF SRLASSWGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQAGDSLRLSCAASGPTFGMSAM GWFRQAPGKEREFVAAISGLGNPNYSDDVKGRFTISRENGRNTVYLQMNSLKPEDTAVYYC AQRKVYHVQGGDRPQAYDYWGQGTQVTVSS
MD2309	EVQLVESGGGLVQAGDSLRISCAASGRTLSIYSMGWFRQAPGKEREFVATIGWNSGRTFYP

(52)	DSLKGRFTISRDNARNTLYLQMNNLRPEDTAVYYCAAAKGPLRLSSQADYWGQGTQVTVSS GGGGSGGGSEVQLVESGGGLVQAGDSLRLSCAASGPTFGMSAMGWFRQAPGKEREFVAAI SGLGNPNYSDDVKGRFTISRENGRNTVYLQMNSLKPEDTAVYYCAQRKVYHVQGGDRPQAY DYWGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFR QTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATT TAGGGLCWDGTTFSRLASSWGQGTQVTVSS
MD2310 (53)	EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYT DSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQG TQVTVSSGGGGSGGGSEVQLVESGGGLVQAGDSLRLSCAASGPTFGMSAMGWFRQAPGKE REFVAAISGLGNPNYSDDVKGRFTISRENGRNTVYLQMNSLKPEDTAVYYCAQRKVYHVQG GDRPQAYDYWGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQAGDSLRISCAASGRTLSI YSMGWFRQAPGKEREFVATIGWNSGRTFYPDSLKGRFTISRDNARNTLYLQMNNLRPEDTA VYYCAAAKGPLRLSSQADYWGQGTQVTVSS
MD2311 (54)	EVQLVESGGGLVQAGDSLRLSCAASGPTFGMSAMGWFRQAPGKEREFVAAISGLGNPNYSD DVKGRFTISRENGRNTVYLQMNSLKPEDTAVYYCAQRKVYHVQGGDRPQAYDYWGQGTQVT VSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGV LCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDG TTFSRLASSWGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQAGDSLRISCAASGRTLSI YSMGWFRQAPGKEREFVATIGWNSGRTFYPDSLKGRFTISRDNARNTLYLQMNNLRPEDTA VYYCAAAKGPLRLSSQADYWGQGTQVTVSS
MD2312 (55)	EVQLVESGGGLVQAGDSLRLSCAASGPTFGMSAMGWFRQAPGKEREFVAAISGLGNPNYSD DVKGRFTISRENGRNTVYLQMNSLKPEDTAVYYCAQRKVYHVQGGDRPQAYDYWGQGTQVT VSSGGGGSGGGSEVQLVESGGGLVQAGDSLRISCAASGRTLSIYSMGWFRQAPGKEREFV ATIGWNSGRTFYPDSLKGRFTISRDNARNTLYLQMNNLRPEDTAVYYCAAAKGPLRLSSQA DYWGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFR QTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATT TAGGGLCWDGTTFSRLASSWGQGTQVTVSS
MD2313 (56)	EVQLVESGGGLVQAGDSLRISCAASGRTLSIYSMGWFRQAPGKEREFVATIGWNSGRTFYP DSLKGRFTISRDNARNTLYLQMNNLRPEDTAVYYCAAAKGPLRLSSQADYWGQGTQVTVSS GGGGSGGGSEVQLVESGGGLVQAGDSLRISCAASGRTLSIYSMGWFRQAPGKEREFVATI GWNSGRTFYPDSLKGRFTISRDNARNTLYLQMNNLRPEDTAVYYCAAAKGPLRLSSQADYW GQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTP GSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAG GGLCWDGTTFSRLASSWGQGTQVTVSS
MD2314 (57)	EVQLVESGGGLVQAGDSLRLSCAASGPTFGMSAMGWFRQAPGKEREFVAAISGLGNPNYSD DVKGRFTISRENGRNTVYLQMNSLKPEDTAVYYCAQRKVYHVQGGDRPQAYDYWGQGTQVT VSSGGGGSGGGSEVQLVESGGGLVQAGDSLRLSCAASGPTFGMSAMGWFRQAPGKEREFV AAISGLGNPNYSDDVKGRFTISRENGRNTVYLQMNSLKPEDTAVYYCAQRKVYHVQGGDRP QAYDYWGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIG WFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYC

	ATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSS
MD2317 (58)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYAD SVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTV SSGGGGSGGGSEVQLVESGGGLVQAGDSLRISCAASGRTLSIYSMGWFRQAPGKEREFVA TIGWNSGRTFYPDSLKGRFTISRDNARNTLYLQMNNLRPEDTAVYYCAAAKGPLRLSSQAD YWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQ TPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTT AGGGLCWDGTTFSRLASSWGQGTQVTVSS
MD2320 (59)	EVQLVESGGGLVQAGDSLRISCAASGRTLSIYSMGWFRQAPGKEREFVATIGWNSGRTFYP DSLKGRFTISRDNARNTLYLQMNNLRPEDTAVYYCAAAKGPLRLSSQADYWGQGTQVTVSS GGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGV YWGKGALVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQ TPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTT AGGGLCWDGTTFSRLASSWGQGTQVTVSS
MD2322 (60)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYAD SVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTV SSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVA TSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGM GVYWGKGALVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWY RQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVS LYRDPLGVAGGMGVYWGKGALVTVSS

Таблица 24. Последовательности тетрамерных и пентамерных конструкций мультидоменных антител

Конструкция (SEQ ID NO:)	Последовательность
MD2401 (61)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNY ADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGA LVTVSSAAAGGGGSGGGGSGGGGSGGGGGGGGGGGGGGGGG
MD2402 (62)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNY ADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGA LVTVSSAAAGGGGSGGGSGGGSGGGSGGGGSGGGSGGGSGGVQLVESGGGLVQAG

	GSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKN TEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSLINLEGGGGS GGGGSGGGGSGGGGSGGGGSGGGSPAGEVQLVESGGGLVQPGGSLRLSCAATG FTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDS LKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSAAAGGGGSGGGSGG GGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYW LRQAPGKGLEWVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYC AKDWGGPEPTRGQGTQVTVSS
MD2403 (63)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNY ADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGA LVTVSSAAAGGGGSGGGGGGGGGGGGGGGGGGGGGGGGGGG
MD2404 (64)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNY ADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGA LVTVSSAAAGGGGSGGGGGGGGGGGGGGGGGGGGGGGGGGG
MD2405 (65)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNY ADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGA LVTVSSAAAGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPG GSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNA KNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSLINLEGGGG SGGGGSGGGGSGGGGSGGGGSGGGSPAGEVQLVESGGGLVQPGGSLKLSCAAS GFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSS LKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSAAAGGGGSGGGGGGGGGGGGGGGGGGGGGGGGGGG

MD2406 (66)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNY ADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGA LVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGK QRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD PLGVAGGMGVYWGKGALVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAVSIS IFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLK PEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGSEVQLVESGGGL VQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTIS RDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSS
MD2407 (67)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNY ADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGA LVTVSSGGGGSGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKERE FVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAA PVAVAAEYEFWGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGFT LENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLK PEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGSEVQLVES GGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDR FTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS
MD3401 (68)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNY ADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGA LVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGK QRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD PLGVAGGMGVYWGKGALVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGF TLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSL KPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGSEVQLVE SGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKD RFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS
MD3402 (69)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNY ADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGA LVTVSSGGGGSGGGSEVQLVESGGGLVQAGDSLRISCAASGRTLSIYSMGWFRQAPGK EREFVATIGWNSGRTFYPDSLKGRFTISRDNARNTLYLQMNNLRPEDTAVYYCAAAKGP LRLSSQADYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTL ENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKP EDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEVQLVESG GGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRF TISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS
MD3403 (70)	EVQLVESGGGLVQAGDSLRLSCAASGPTFGMSAMGWFRQAPGKEREFVAAISGLGNPNY ADDVKGRFTISREDGRNTVYLQMNSLKPEDTAVYYCAQRKVYHVQGGDRPQAYDYWGQG TQVTVSSGGGGSGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKER EFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRA APVAVAAEYEFWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGF

	TLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSL KPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEVQLVE SGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKD RFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNY ADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGA LVTVSSGGGGSGGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKERE FVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGOWRAA
MD3404 (71)	PVAVAAEYEFWGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCVISGLS LDTYAVGWFRQAPGKEREGITCISSGHGMTYYADSVKGRFTVSTDNAKNTVYLQMNGLQ PEDTARYYCATESRYYCSDNWPAPQRYIYWGQGTQVTVSSGGGGSGGGSEVQLVESGG GLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFT ISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS
MD3405 (72)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNY ADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGA LVTVSSGGGGSGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKERE FVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAA PVAVAAEYEFWGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQAGGSLRLSCATSGQT FSSYAMGWFRQAPGKEREFVAAISWNGGSTYYADSVKGRFTISRESPENLVYLQMNSLK PEDTAVYYCAARGAYYTGSYYLGSTYDYWGQGTQVTVSSGGGGSGGGSEVQLVESGGG LVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFTI SRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS
MD2501 (73)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNY ADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGA LVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGK QRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD PLGVAGGMGVYWGKGALVTVSSGGGGSGGGSEVQLVESGGGLVQAGGSLKLSCAASGR TYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPE DTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSGGGSSGGGSEVQLVESGGGLV QPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTIS RDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSG GGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSV INTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQG TQVTVSS

Нейтрализация вируса гриппа мультидоменными антителами.

Очищенные мультидоменные антитела тестировали в анализах нейтрализации вируса гриппа, как описано в примере 6, и при этом они показали улучшенную эффективность и спектр нейтрализации по сравнению со структурными блоками sdAb. Результаты для тримеров, нейтрализующих вирус гриппа, показаны в табл. 25, а результаты для тетрамеров и пентамеров показаны в табл. 26.

Таблица 25. Средние титры нейтрализации (нМ) для тримерных конструкций мультидоменных антител (пустые ячейки означают "не тестировали")

конструкций мультидоменных антител (пустые ячейки означают "не тестировали")											
	H1N1		H5N1	H2N2		H3N2		H7N3	H7N7	6N/H	В
Конструкция	A/New Caledonia/20/99	A/Puerto Rico/8/34-MA	A/Vietnam/1194/04	A/Guiyang/1/57	A/WE/HK/MPU3156/05	A/Brisbane/10/07	A/Wisconsin/67/05	A/NIBRG/60 (A/mallard/NL/12/00)	A/PR8 H7N7-NY	A/Anhui/1/13	B/Florida/04/06
MD2301	14,7						34,7				412 , 3
MD2302	14,7						34,7				412 , 3
MD2303	7,2	9,1	9,1			12,8	15,0	10,2	18,2		412 , 3
MD2304	20,6						18,2				
MD2305	4,3						21,7				
MD2306	6,1		4,7			10,7	5,4	15,4			
MD2307			21,6			30,4		18,1			
MD2308			21,6			15,3		12,8			
MD2309			12,8			12,8		9,1			
MD2310			21,6			25,5		30,4			
MD2311			12,8			21,6		15,3			
MD2312			5 , 8	<100 0	21,6	18,1	-	7,7		43,2	
MD2313			>100			7,7		6,5		21,7	
MD2314			6,5			>100		>100			
MD2317							12,8	12,8	12,8		
MD2320							>100	15,3	15,3		
MD2322							7,3	6,1	14,7		

Таблица 26. Средние титры нейтрализации (нМ) для тетрамерных и пентамерных конструкций мультидоменных антител (пустые ячейки означают "не тестировали")

KU.	нструкций мультидоменн	ыхан	тите.	п (пус	стые	ячеик	ти ОЗЕ	ачак	т не	recr	ирова	<u> ши</u>)	
Тип	Штамм вируса	MD2401	MD2402	MD2404	MD2406	MD2407	MD2408	MD2409	MD2410	MD2411	MD2412	MD2413	MD2501
H1N1	A/California/07/09					3,4							3,0
H1N1	A/New Caledonia/20/99					5,7							4,8
H1N1	A/Puerto Rico/8/34- MA	14 , 7	12 , 8	12 , 2		7,3							8,5
H1N1	A/Brisbane/59/07					3,7							3,0
H1N1	A/Mississippi/03/01 274H					4,8							4,9
H1N1	A/Solomon Islands/3/2006 (IVR 145)					5,4							3,9
H1N1	A/WSN/33					4,8							2,9
H1N1	A/HK/54/98					10,							
H1N1	A/Christchurch/16/1					1,3							1,3
H1N2	A/Env/HK/MPU3156/05					25 , 6							
H5N1	A/PR8 H5N1 HK97					3,6							4,9
H5N1	A/Vietnam/1194/04	27 , 7	23 , 8	20 ,		9,2							6,5
H5N1	A/Indonesia/5/05					16 , 2							
H5N2	A/Eurasian Wigeon/MPF461/07					16 , 6							
H5N2	A/Eurasian Wigeon/HK/MPF333/07					26 , 0							
H2N2	A/Guiyang/1/57					125 ,6							19 , 9

		Ī				101							
2N2	A/AnnArbor/23/57					, 2							
						19,							
2N2	A/Env/HK/MPU3156/05					2							
H6N1	A/Eurasian					20,							16,
HONT	Wigeon/MPG1884/09					6							0
H6N1	A/Taiwan/2/2013					36 , 3							
	A/Eurasian					20,							
H6N8	Wigeon/MPD411/07					9							
H11NQ	A/Northern					34,							16,
IIIIIN	Pintail/MPC2085/07					5							0
2N2 H6N1 H6N1 H6N1 H6N8 H11N9 H9N2 H9N2 H9N2 H9N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	A/Ck/HK/SSP176/09					23,							
113112	11, 011, 1111, 851 1 7 6, 69					0							
нама	A/Great					19,							
113112	Cormorant/MP2934/04					6							
H9N2	A/HK/466419/09					53,							16,
	A/ III(/ 400415/ 05					9							0
LI O NI A	A/Eurasian					15,							16,
110114	Wigeon/MPH571/08					1							0
H8N2	A/Env/MPJ1258/09					8,8							
III ONE	7 / H /MDIZ CE 0 / 00					>10							
HIZNS	A/Env/MPK659/09					00							
пзиз	A/Brisbane/10/07					10,	6,8	13,	19,	6,8	11,	9,7	9,6
115112	A/BIISDANE/10/0/					6	0,0	6	2	0,0	5	3,1] , 0
пзиз	A/HK/1/68-MA	27,	28,	57,		25,							19,
IISNZ	A/IIII/I/OO MA	7	3	7		9							0
пзиз	A/Panama/2007/99					14,							18,
HSNZ	A/ Pallalla/ 2007/ 99					9							1
112012	7/Wiggersin/67/05				1 (19,							14,
H11N9 H9N2 H9N2 H9N2 H9N2 H8N4 H8N2 H12N5 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	A/Wisconsin/67/05				4,6	1							1
HOMEO	A/Fukui/45/04					19,							21,
H3N2	A/FURUI/45/04					2							2
нзиз	A/Aichi/2/68					9,9							12,
112117	2.7 AICHI / 2 / 00					', 9							6
пзиз	A/Hiroshima/52/05					10,							6 , 5
113112	W IIII OBIIIIII 25/02					5							0,5
H3N2	A/Johannesburg/33/9	<u> </u>				11,							11,

	4	Γ		1		6		<u> </u>					6
112210													
H3N2	A/Perth/16/09					8,1							5,7
H3N2	A/Victoria/210/09					6,5							5 , 8
H3N2	A/HK/1174/99					76,							
						0							
H3N?	A/Env/MPJ193/09					24,							
11311.	11, 1110, 1110193, 09					5							
Н4	A/WF/HK/MPA892/06					6,8							3,9
11.431.1	A/Northern					0 0							
H4N1	Pintail/MPB1368/06				ļ	8,2		,					
	A/Great												
H4N6	Cormorant/MPB1683/0					4,8							
	6												
	A/Mallard/Astrakhan					19,							15,
H14N5	/263/1982					2							6
	A/NIBRG/60												
H7N3	(A/mallard/Netherla	27,	33,		4,6	13,							13,
	nds/12/00)	7	6	3		8							8
					11,	22,	27,	19,	27.	19.	19,	16,	14,
н7N7	A/PR8 H7N7-NY				0	3	2	2				3	0
	A/Northern					36,							
н7N7	Shoveler/MPF518/08					1							
	A/Netherlands/219/2	_				33,							
н7N7	003					0							
	A/Common												
н7N7	Teal/MPF139/07					57 ,							
	Teal/MFF139/07												
H7N9	A/Anhui/1/13					64,							73,
						6							8
	A/Shanghai/1/13												
H7N9	(мутант по R292K,					87,							63,
	избежавший действия					1							0
	тамифлю)												
H7N9	A/Shanghai/2/13					54,							36,
			L		L	2							5
H10N7	A/Chick/Germany/N/4					13,							14,
111011,	9					2							9
H10N8	A/Jiangxi/346/2013					30,							
IIIONO	A/ 01allyx1/ 340/2013					4							
	L	L	I		1	l	l	l					

H10N3	A/Common				19,							
HIONS	Teal/MPH11/08				3							
H10N9	A/Northern				35,							
HIONS	Shoveler/MPE2531/08				0							
Victori	B/Brisbane/60/08				4,1	27,	64,	22,	38,	38,	19,	5 , 0
a	b) bilsballe, 00, 00				4,1	2	6	8	6	6	3	3,0
Victori	R/Malaggia/2506/04				9,2	38,	38,	38,	38,	38,	38,	8,8
a	B/Malaysia/2506/04				9,2	4	4	3	6	6	7	0,0
Yamagat	B/Florida/04/06	277	14,	2,1	7,6	64,	108	91,	38,	38,	38,	8,3
a	B/ F1011da/ 04/ 06	, 1	1	Z, 1	,,	6	,7	2	6	6	7	0,3
Yamagat	B/Harbin/7/94				6,4	27,	64,	19,	22,	38,	19,	4,3
a	B) Halbilly // 54				0,4	2	6	2	9	6	3	4,3
Yamagat	B/Massachusetts/02/				3 , 0							4,0
a	12				3,0							4,0
Old	B/Lee/40	164	35,	30,	18,	32,	38,	19,	38,	45,	38,	14,
Oid	D, Tee, 40	, 8	4	3	4	3	4	2	6	9	7	6

Связывание мультидоменного антитела с НА.

Безмаркерную интерферометрию биослоев применяли для определения равновесных констант диссоциации (значений K_D) как меры сил связывания между мультидоменными антителами и рекомбинантными молекулами НА различных штаммов вируса гриппа при рН 7,4. Значения K_D определяли с помощью аппроксимации ответов связывания MD в диапазоне концентраций в устойчивом состоянии (средний ответ связывания в последние 10 с, измеренный при достижении плато в фазе ассоциации) с получением концентрации при 50% насыщения, которая отображает значение K_D ($R=R_{max}*[sdAb]/(K_D+[sdAb])$). Измерения для серийных разбавлений проводили в двух повторах, и средние геометрические значения K_D приведены в табл. 27.

Таблица 27. Средние геометрические значения K_D (нМ) связывания конструкций мультидоменных антител с НА при рН 7,4 (пустые ячейки означают "не тестировали")

	H1N1	H3N2	H3N2	H7N3	H7N9	Victoria	Yamagata
	A/Brisbane/59/07	А/нк/1/68-ма	A/Wisconsin/67/05	A/NIBRG/60 (A/mallard/NL/12/ 00)	A/Hangzhou/1/2013	B/Brisbane/60/08	B/Florida/04/06
MD1221						1,7	1,9
MD2407	2,8	2,2	0,5	1,2	1,7	3,1	
MD3606	2,2	1,4	0,6	1,1	1,2	3,8	

Ингибирование конформационного изменения НА посредством связывания sdAb в стебле.

Для подтверждения того, что мультидоменные антитела, которые содержат структурные блоки sdAb, связывающие стебель HA, аналогично антителам, которые с ними конкурируют, предотвращают конформационное изменение HA и тем самым блокируют слияние вируса и последующее инфицирование, осуществляли анализ, описанный в примере 6. Результаты обобщены в табл. 29.

Таблица 29. Предотвращение конформационного изменения НА с помощью мультидоменных антител "++" обозначает сильное и "+" обозначает среднее ингибирование конформационного изменения НА. "-" обозначает отсутствие ингибирования. Пустые ячейки означают "не тестировали"

	H1N1	H3N2	H7N3	H7N9	Victoria
	A/Brisbane/59/07	А/нк/1/68	A/NIBRG/60 (A/mallard/NL/12/ 00)	A/Hangzhou/1/2013	B/Brisbane/60/08
MD2407	++	++	++	++	+
MD1221	-	-	-	-	++
MD3606	++	++			+

Соединение вместе 3 или более sdAb способно значительно улучшить эффективность и спектр нейтрализации по сравнению с отдельными структурными блоками. Таким образом, штаммы вируса гриппа, которые не могут быть нейтрализованы ни одним из sdAb по отдельности, могут быть надежно нейтрализованы мультимерными конструкциями этих же sdAb. Комбинация sdAb, нейтрализующих вирус гриппа A группы 1, A группы 2 или B, давала в результате мультидоменные антитела, способные нейтрализовать практически все тестируемые штаммы. Увеличение спектра нейтрализации связано с лежащим в основе охватом связывания используемых sdAb. Предполагалось, что повышение авидности к НА, в дополнение к другим возможным механизмам нейтрализации, связанным с бивалентной природой конструкций, определяло описанные улучшения. Блокирование слияния вируса, как механизм нейтрализации вируса, было подтверждено для тестируемых димеров и мультидоменных антител.

Пример 9. Образование и определение характеристик конструкций слияния, содержащих Fc. Образование конструкций слияния, содержащих Fc.

SdAb и мультимеры sdAb можно сливать с Fc-областью антител. Fc-область определяют как часть антитела, например молекулы IgG1 человека, содержащую шарнирную область, за которой расположены домены CH2- и CH3. Образовывались различные конструкции слияния, содержащие Fc, и сравнивали их с мультимерами sdAb и моноклональными антителами в отношении связывания HA, нейтрализации in vitro и эффективности in vivo.

SdAb или мультимеры sdAb были слиты с использованием дополнительных линкеров или без них, как показано в табл. 15, с С- и/или N-концом Fc-фрагментов. Конструкции слияния, содержащие Fc, были экспрессированы в клетках млекопитающих и секретировались в среду в виде димерных молекул с Fc. Полные аминокислотные последовательности конструкций слияния, содержащих Fc, показаны в табл. 30. Расположение sdAb или мультимеров sdAb в конструкциях варьировалось с целью обеспечения наиболее оптимальной комбинации. Образовывались гомодимерные, а также гетеродимерные молекулы слияния, содержащие Fc. Гетеродимерные слияния Fc образовывались путем введения точечной мутации в домен CH3, как описано Labrijn et al. (2013). Эти мутации представляли собой K409R и F405L, и Fc-цепи, содержащие эти мутации, соответственно назывались FcGa и FcGb.

Конструкции слияния, содержащие Fc, были экспрессированы в суспензионной культуре клеток Expi293. ДНК-конструкции, содержащие последовательности для гетеродимерных Fc-конструкций с мутациями K409R или F405L, трансфицировали в виде одного вектора, содержащего две последовательные открытые рамки считывания. Транзиентную трансфекцию и экспрессию осуществляли в соответствии с инструкциями производителя и они были аналогичными ранее описанным условиям для получения конструкций IgG человека (Dreyfus et al., 2012). Возможные агрегаты и примеси удаляли с помощью препаративной гель-фильтрации (колонка Superdex 75pg или Superdex 200pg, GE Healthcare). Образцы анализировали с помощью SDS-PAGE, и фракции, соответствующие ожидаемой молекулярной массе, объединяли и концентрировали с применением центрифужных фильтров Amicon Ultra 30K. В каждом цикле получали димерные молекулы слияния, содержащие Fc, которые были стабильно связаны с помощью дисульфидных мостиков в шарнирной области. В случае когда как FcGa, так и FcGb трансфицировали в одни и те же клетки, очищенный белок слияния, содержащий Fc, подвергали контролируемым восстанавливающим условиям in vitro, которые обеспечивали разделение Fc-слияния на полумолекулы и возможность повторной сборки и переокисления с образованием чистой гетеродимерной молекулы слияния,

содержащей Fc, как описано Labrijn et al. (2013). Таблица 30. Последовательности конструкций слияния, содержащих Fc

Конструкция	Последовательность	SEQ ID NO:
	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS	
	FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD	
	PLGVAGGMGVYWGKGALVTVSSAAADKTHTCPPCPAPELLGGPSVFLFPPK	
MD2605	PKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN	74
	STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV	
	YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD	
	SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS	
	FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD	
	PLGVAGGMGVYWGKGALVTVSSGGGGSGGGSAAADKTHTCPPCPAPELLG	
MD2606	GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNA	75
MD2000	KTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK	/3
	AKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN	
	NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS	
	LSLSPGK	
	EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCI	
MD2607	SKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAG	76
	GGLCWDGTTFSRLASSWGQGTQVTVSSAAADKTHTCPPCPAPELLGGPSVF	

	LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR	
	EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP	
	REPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT	
	PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP	
	GK	
	EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCI	
	SKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAG	
	GGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSAAADKTHTCPPCPA	
MD2608	PELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV	
	EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE	77
	KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN	
	GQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH	
	YTQKSLSLSPGK	
	EVOLVESGGGLVOPGGSLKLSCAASGFTFSTSWMYWLROAPGKGLEWVSVI	
	NTDGGTYYADSVKDRFTISRDNAKDTLYLOMSSLKSEDTAVYYCAKDWGGP	
	EPTRGQGTQVTVSSAAADKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS	
MD2609	RTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV	78
MDZ003	LTVLHODWLNGKEYKCKVSNKALPAPIEKTISKAKGOPREPOVYTLPPSRE	70
	EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY	
	SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
	EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVI	
	NTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGP	
	EPTRGQGTQVTVSSGGGGSGGGSAAADKTHTCPPCPAPELLGGPSVFLFP	
MD2610	PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ	79
	YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP	
	QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV	
	LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS	
	FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD	
	PLGVAGGMGVYWGKGALVTVSSAAAGGGGSGGGGSGGGGSGGGGSG	
	GGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPG	
	SEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAV	
MD2601	YYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSLINLEAAADKTHTCP	80
	PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY	
_	VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP	
	APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE	
	WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA	
	LHNHYTQKSLSLSPGK	
	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS	
MD2602	FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD	81
	PLGVAGGMGVYWGKGALVTVSSAAAGGGGSGGGGGGGGGGGGGGGGGGG	

	GGGSGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPG	
	KGLEWVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVY	
	YCAKDWGGPEPTRGQGTQVTVSSLINLEAAADKTHTCPPCPAPELLGGPSV	
	FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP	
	REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ	
	PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKT	
	TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS	
	PGK	
	EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCI	
	SKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAG	
	GGLCWDGTTFSRLASSWGQGTQVTVSSAAAGGGGSGGGGGGGGGGGGGGG	
	GGGSGGGGGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWY	
	RQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPE	
MD2603	DTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSLINLEAAADKTHTCP	82
	PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY	
	VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP	
	APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE	
	WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA	
	LHNHYTQKSLSLSPGK	
	EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVI	
	NTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGP	
	EPTRGQGTQVTVSSAAAGGGGSGGGGSGGGGSGGGGSGGGGGGGGG	
	SEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVAT	
	SFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYR	
MD2604	DPLGVAGGMGVYWGKGALVTVSSLINLEAAADKTHTCPPCPAPELLGGPSV	83
	FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP	
	REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ	
	PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKT	
	TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS	
	PGK	
	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS	
	FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD	
	PLGVAGGMGVYWGKGALVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLR	
	LSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTI	
	SRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQ	
MD2611	GTQVTVSSAAADKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT	84
	CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQ	
	DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQ	
	VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVD	
	KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
MD2612	EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCI	85

	SKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAG GGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQP GGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKG RFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGK GALVTVSSAAADKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQ DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQ VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVD KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
MD2613	EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVI NTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGP EPTRGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAVSIS IFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTL YLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAADK THTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPS DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPGK	86
MD2614	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD PLGVAGGMGVYWGKGALVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLK LSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFTIS RDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSAAADK THTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPS DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPGK	87
MD2615	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD PLGVAGGMGVYWGKGALVTVSSAAADKTHTCPPCPAPELLGGPSVFLFPPK PKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGG GSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSE REGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYY CATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSS	88
MD2616	EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCI SKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAG	89

MD2617	GGLCWDGTTFSRLASSWGQGTQVTVSSAAADKTHTCPPCPAPELLGGPSVF LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP REPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GKGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQ APGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDT AVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSS EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD PLGVAGGMGVYWGKGALVTVSSAAADKTHTCPPCPAPELLGGPSVFLFPPK PKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD	90
	SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGG GSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKG LEWVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYC AKDWGGPEPTRGQGTQVTVSS	
MD2618	EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVI NTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGP EPTRGQGTQVTVSSAAADKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS RTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGSE VQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSF RDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDP LGVAGGMGVYWGKGALVTVSS	91
MD2626	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD PLGVAGGMGVYWGKGALVTVSSAAADKTHTCPPCPAPELLGGPSVFLFPPK PKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGG GSGGGGSGGGGGGGGGGGGGGGGGGGGGGGGG	92
MD2619	EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCI SKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAG	93

	GGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQP GGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKG RFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGK GALVTVSSGGGGSGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGW FRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLK PEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSAAADKTHTCPPC PAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAP IEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWE SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH NHYTQKSLSLSPGK	
MD2620	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD PLGVAGGMGVYWGKGALVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLR LSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTI SRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQ GTQVTVSSGGGGSGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGW FRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLK PEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSAAADKTHTCPPC PAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAP IEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWE SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH NHYTQKSLSLSPGK	94
MD2621	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD PLGVAGGMGVYWGKGALVTVSSGGGGSGGGSEVQLVESGGGLVQAGGSLK LSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRD NAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTV SSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQ TPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPED TAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSAAADKTHTCPPC PAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAP IEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWE SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH NHYTQKSLSLSPGK	95
MD2628	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD PLGVAGGMGVYWGKGALVTVSSGGGGSGGGSEVQLVESGGGLVQAGGSLK LSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRD NAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTV	96

	SSAAADKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV	
	SHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHODWLNGK	
	EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCL	
	VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ	
	GNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSEVQLVESGGGLVQ	
	 PGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSM	
	RGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRL	
	ASSWGQGTQVTVSS	
	EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCI	
	SKSGSWTYYTDSMRGRFTISRDNAENTVYLOMDSLKPEDTAVYYCATTTAG	
	GGLCWDGTTFSRLASSWGOGTOVTVSSAAADKTHTCPPCPAPELLGGPSVF	
	LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR	
	EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP	
	REPOVYTLPPSREEMTKNOVSLTCLVKGFYPSDIAVEWESNGOPENNYKTT	
MD2629	PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP	97
1102 02 9	GKGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQ	<i>J</i> ,
	APGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDT	
	AVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVOLVES	
	GGGLVOAGGSLKLSCAASGRTYAMGWFROAPGKEREFVAHINALGTRTYYS	
	DSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAE	
	YEFWGOGTOVTVSS	
	~ ~	
	EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCI	
	SKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAG	
	GGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQP	
	GGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKD	
	RFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS	
	DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP	
	EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK	
MD2641	VSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY	98
	PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS	
	CSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSEVQLVESGGGLVQPGGSL	
	RLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTI	
	SRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALV	
	TVSSGGGGSGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQA	
	PGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDT	
	AVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSS	
	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS	
	FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD	
MD2642	PLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQAGGSLK	99
1102012	LSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRD	
	NAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTV	
	SSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE	

	DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYK	
	CKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKG	
	FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV	
	FSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSEVQLVESGGGLVQPGG	
	SLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGR	
	FTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASS	
	WGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFS	
	TSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQ	
	MSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS	
	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS	
	FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD	
	PLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQAGGSLK	
	LSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRD	
	NAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTV	
	SSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQ	
	TPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPED	
MD3606	TAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGSEV	100
	QLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINT	
	DGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEP	
	TRGQGTQVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV	
	TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH	
	QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKN	
	QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV	
	DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS	
	FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD	
	PLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQAGGSLK	
	LSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRD	
	NAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTV	
	SSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQ	
	TPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPED	
MD3609	TAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGSEV	101
	QLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINT	
	DGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEP	
	TRGQGTQVTVSSAAADKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRT	
	PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLT	
	VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEM	
	TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK	
	TRING VEHICLE VRGE ITED TAVE WESING STEMITRETTE V ADDED GETT HEEK	
	LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
MD2631	LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	102

	7	Ī
	LSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTIS	
	RDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVT	
	VSSGGGGSGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAP	
	GKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTA	
	VYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSDKTHTCPPCPAPELLGG	
	PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK	
	TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA	
	KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENN	
	YKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL	
	SLSPGKGGGGSGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMY	
	WLRQAPGKGLEWVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLK	
	SEDTAVYYCAKDWGGPEPTRGQGTQVTVSSGGGGSGGGGSEVQLVESGGGL	
	VQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTD	
	SMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFS	
	RLASSWGQGTQVTVSS	
	EVOLVESGGGLVOPGGSLRLSCAVSISIFDIYAMDWYROAPGKORDLVATS	
	FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD	
	PLGVAGGMGVYWGKGALVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLR	
	LSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTIS	
	RDNAKNTLYLOMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVT	
	VSSGGGGSGGGSEVOLVESGGGLVOAGGSLKLSCAASGRTYAMGWFROAP	
	GKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTA	
	VYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSDKTHTCPPCPAPELLGG	
	PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK	
MD2632	TKPREEOYNSTYRVVSVLTVLHODWLNGKEYKCKVSNKALPAPIEKTISKA	103
	KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENN	
	YKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL	
	SLSPGKGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIG	
	WFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSL	
	KPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGG	
	GSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVS	
	VINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWG	
	GPEPTRGQGTQVTVSS	
	EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINAL	
	GTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAA	
	PVAVAAEYEFWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRL	
	SCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISR	
MD2633	DNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTV	104
	SSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQ	
	APGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDT	
	AVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSDKTHTCPPCPAPELLGG	
	PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK	
	1	

	TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENN YKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL SLSPGKGGGGSGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMY WLRQAPGKGLEWVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLK SEDTAVYYCAKDWGGPEPTRGQGTQVTVSSGGGGSGGGSEVQLVESGGGL VQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTD SMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFS RLASSWGQGTQVTVSS	
MD2634	EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINAL GTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAA PVAVAAEYEFWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRL SCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISR DNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTV SSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQ APGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDT AVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSDKTHTCPPCPAPELLGG PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENN YKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL SLSPGKGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIG WFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSL KPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGG GSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVS VINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWG GPEPTRGQGTQVTVSS	105
MD2622	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD PLGVAGGMGVYWGKGALVTVSSGGGGSGGGSEVQLVESGGGLVQAGGSLK LSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRD NAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTV SSAAADKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV SHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCL VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQ GNVFSCSVMHEALHNHYTQKSLSLSPGK EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCI SKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAG GGLCWDGTTFSRLASSWGQGTQVTVSSAAADKTHTCPPCPAPELLGGPSVF	106

	REPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT PPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP	
MD2643	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD PLGVAGGMGVYWGKGALVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLR LSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTIS RDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVT VSSGGGGSGGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAP GKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTA VYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSDKTHTCPPCPAPELLGG PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENN YKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL	110
	EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCI SKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAG GGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQP GGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKD RFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK VSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGK	111
MD2644	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD PLGVAGGMGVYWGKGALVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLR LSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTIS RDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVT VSSGGGGSGGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAP GKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTA VYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSDKTHTCPPCPAPELLGG PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENN YKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL SLSPGK	112
	EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVI NTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGP	113

	EPTRGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGF TLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENT VYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSS DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK VSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGK	
MD2645	EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINAL GTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAA PVAVAAEYEFWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRL SCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISR DNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTV SSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQ APGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDT AVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSDKTHTCPPCPAPELLGG PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENN YKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL SLSPGK	114
	EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCI SKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAG GGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQP GGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKD RFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK VSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGK	115
MD2646	EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINAL GTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAA PVAVAAEYEFWGQGTQVTVSSGGGSGGGGSEVQLVESGGGLVQPGGSLRL SCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISR DNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTV SSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQ APGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDT AVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSDKTHTCPPCPAPELLGG PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENN	116

	YKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL	
	SLSPGK	
	EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVI	
	NTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGP	
	EPTRGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAATGF	
	TLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENT	
	VYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSS	117
	DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP	117
	EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK	
	VSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY	
	PSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFS	
	CSVMHEALHNHYTQKSLSLSPGK	
	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS	
	FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD	
	PLGVAGGMGVYWGKGALVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKD	
	TLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY	
	RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL	110
	PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG	118
	SFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSG	
	GGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREG	
	VLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCAT	
	TTAGGGLCWDGTTFSRLASSWGQGTQVTVSS	
MD2.647	EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINAL	
1102017	GTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAA	
	PVAVAAEYEFWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRL	
	SCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISR	
	DNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTV	
	SSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE	119
	DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYK	119
	CKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKG	
	FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNV	
	FSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSEVQLVESGGGLVQPGG	
	SLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRF	
	TISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS	
	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS	
MD2649	FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD	
	PLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQAGGSLK	
	LSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRD	120
	NAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTV	
	SSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE	

CKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKG	
FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNV	
FSCSVMHEALHNHYTQKSLSLSPGK	
EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCI	
SKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAG	
GGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQP	
GGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKD	
RFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS	121
DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP	121
EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK	
VSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY	
PSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFS	
CSVMHEALHNHYTQKSLSLSPGK	

Нейтрализация вируса гриппа мультидоменными антителами, содержащими Fc.

Очищенные конструкции, содержащие Fc, одно- и мультидоменных антител тестировали в анализах нейтрализации вируса гриппа, как описано в примере 6, и они продемонстрировали улучшенную эффективность и спектр нейтрализации по сравнению со структурными блоками sdAb. Результаты для конструкций слияния, содержащих Fc, нейтрализующих вирус гриппа, показаны в табл. 31-37.

Таблица 31. Средние титры нейтрализации (нМ) для конструкций слияния sdAb, содержащих Fc, (пустые ячейки означают "не тестировали")

	Штамм вируса	MD2605	MD2606	MD2607	MD2608	MD2609	MD2610
H1N1	A/Puerto Rico/8/34- MA			1262,6			
H5N1	A/Vietnam/1194/04	8,4	5,8				
H2N2	A/Guiyang/1/57	23,7					
H2N2	A/WF/HK/MPU3156/05	13,3					
H3N2	A/Brisbane/10/07	25,1	22,1				
H3N2	A/Wisconsin/67/05	37,8	27,7				
H7N3	A/NIBRG/60 (Λ/mallard/Netherla nds/12/00)	97 , 5	70,0				
н7и7	A/PR8 H7N7-NY	508,6	1255,6				
H7N9	A/Anhui/1/13	189,7					
Yamaga	B/Florida/04/06			252,5	248,6	1,4	1,4
ta							

Таблица 32. Средние титры нейтрализации (нМ) для димерных конструкций слияния sdAb, содержащих Fc (пустые ячейки означают "не тестировали")

		MD260	MD260	MD260	MD260	MD261	MD261	MD261	MD261
	Штамм вируса	1	2	3	4	1	2	3	4
H1N1	A/New Caledonia/20/99	23,5	20,2	78 , 9	34,0	17,3	49,0	42,2	21,1
H1N1	A/Puerto Rico/8/34-MA	9,5	22,9	53,9	51,5				
H5N1	A/Vietnam/1194/ 04	16,6				10,3			
H3N2	A/Brisbane/10/0	50 , 9	72 , 0	634,1	271,6	41,8	277 , 2	142,0	142,0
H3N2	A/HK/1/68-MA	245,5	479,7	491,0	102,8				
H3N2	A/Wisconsin/67/ 05	503,3	551,5	>1000	685,3	147,0	>1000	>1000	285,3
н7N3	A/NIBRG/60 (A/mallard/NL/1 2/00)	669,6	>1000	>1000	>1000	247,2	>1000	>1000	>1000
H7N7	A/PR8 H7N7-NY	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000
Yamag ata	B/Florida/04/06	476,2	6,4	194,5	1,1	329,7	329 , 7	0,6	11,9
Old	B/Lee/40	360,3	317,3	202,5	126,4				

Таблица 33. Средние титры нейтрализации (нМ) для димерных конструкций слияния sdAb, содержащих Fc (пустые ячейки означают "не тестировали")

		_ ` ` `			1 /		
	Штамм вируса	MD2615	MD2616	MD2617	MD2618	MD2626	
H1N1	A/California/07/09			1,8			
H1N1	A/New Caledonia/20/99	12,2	20,6	8,4			
H1N1	A/Puerto Rico/8/34- MA			6,3			
H5N1	A/Vietnam/1194/04	14,5		4,7			
H2N2	A/Guiyang/1/57			31,8			
H6N1	A/Eurasian Wigeon/MPG1884/09			25,1			
H11N9	A/Northern			21,1			

	Pintail/MPC2085/07					
H9N2	A/HK/466419/09			25,1		
H8N4	A/Eurasian Wigeon/MPH571/08			12,5		
H3N2	A/Brisbane/10/07	26,8	932,3	27,5	>1000	
H3N2	A/HK/1/68-MA			117,7		
H3N2	A/Wisconsin/67/05	39 , 5	932,3	498,7	>1000	47,8
Н4	A/WF/HK/MPA892/06			35,5		
H7N3	A/NIBRG/60 (A/mallard/Netherla nds/12/00)	83,2	932,3	72,1	>1000	95,6
H7N7	A/PR8 H7N7-NY	397,9	932,3	301,2	>1000	321,4
H7N9	A/Anhui/1/13			380,0		
H7N9	A/Shanghai/1/13 (мутант по R292K, избежавший действия тамифлю)			1900,0		
H7N9	A/Shanghai/2/13			390,8		
H10N7	A/Chick/Germany/N/4			21,1		
Victo ria	B/Brisbane/60/08			2,1		
Victo ria	B/Malaysia/2506/04			8,3		
Yamag ata	B/Florida/04/06	164,8	233,1	2,5	0,8	
Yamag ata	B/Harbin/7/94			7,5		
Old	B/Lee/40			1,4		

Таблица 34. Средние титры нейтрализации (нМ) для тримерных конструкций слияния sdAb, содержащих Fc (пустые ячейки означают "не тестировали")

	Штамм вируса	MD2619	MD2620	MD2621	MD2628	MD2629
H1N1	A/California/07/09				3,2	5,5
H1N1	A/New Caledonia/20/99	26,2	15,5	13,1		
H5N1	A/Vietnam/1194/04				6,3	13,1
H3N2	A/Brisbane/10/07	32,7	23,1	9,7	21,3	18,4

H3N2	A/HK/1/68-MA				30,1	11,0
H3N2	A/Wisconsin/67/05	45 , 9	30,0	26 , 6	22,1	22,3
H7N3	A/NIBRG/60 (A/mallard/Netherl ands/12/00)	19,4	11,5	8,2	8 , 7	10,6
H7N7	A/PR8 H7N7-NY	32,7	23,1	16,3	15,8	8,1
Victo ria	B/Brisbane/60/08				116,6	260,8
Yamag ata	B/Florida/04/06	261,3	261,3	738 , 9	213,0	73,7
Old	B/Lee/40				106,5	260,8

Таблица 35. Средние титры нейтрализации (нМ) для тетрамерных конструкций слияния sdAb, содержащих Fc (пустые ячейки означают "не тестировали")

	Штамм вируса	MD2641	MD2642	MD3606	MD3609
H1N1	A/California/07/09	2,1	3,6	1,8	5 , 5
H1N2	A/New Caledonia/20/99	9,2	6,3	2,6	13,0
H1N3	A/Puerto Rico/8/34-MA	21,9	7,9	3,3	9,2
H1N4	A/Brisbane/59/07		2,7	5,3	5,5
H1N5	A/Mississippi/03/01 274H		5,3	4,7	6 , 5
H1N6	A/Solomon Islands/3/2006 (IVR 145)		4,8	1,6	6 , 5
H1N7	A/WSN/33		4,2	2,0	5,5
H1N8	A/HK/54/98			5,0	
H1N9	A/Christchurch/16/10		2,1	1,0	
H1N2	A/Env/HK/MPU3156/05			2,6	
H5N1	A/PR8 H5N1 HK97		4,7	6 , 5	6,5
H5N2	A/Vietnam/1194/04	13,0	7,5	5,7	15 , 5
H5N3	A/Indonesia/5/05			11,5	
H5N2	A/Eurasian Wigeon/MPF461/07			9,2	
H5N3	A/Eurasian Wigeon/HK/MPF333/07			7,0	
H2N2	A/Guiyang/1/57	152,7	21,2	26,7	
H2N3	A/AnnArbor/23/57			13,2	
H2N4	A/Env/HK/MPU3156/05			9,3	
H6N1	A/Eurasian		11,5	11,6	16,3

	Wigeon/MPG1884/09				
H6N2	A/Taiwan/2/2013			14,5	
H6N8	A/Eurasian Wigeon/MPD411/07			9,7	
H11N9	A/Northern Pintail/MPC2085/07		8,2	7,2	27 , 3
H9N2	A/Ck/HK/SSP176/09			9,0	
H9N3	A/Great Cormorant/MP2934/04			9,7	
H9N4	A/HK/466419/09		7,0	5,3	14,0
H8N4	A/Eurasian Wigeon/MPH571/08		7,0	3,7	14,0
H8N2	A/Env/MPJ1258/09			3,9	
H12N5	A/Env/MPK659/09			>1000	
H3N2	A/Brisbane/10/07		13,5	4,1	14,2
нзиз	A/HK/1/68-MA	13,0	20,3	14,3	36,8
H3N4	A/Panama/2007/99		21,9	40,5	26,0
H3N5	A/Wisconsin/67/05	15,5	12,5	6,5	30,9
нзи6	A/Fukui/45/04		21,9	40,5	21,9
H3N7	A/Aichi/2/68		11,0	32,2	10,9
H3N8	A/Hiroshima/52/05		16,2	6,5	16,2
НЗИ9	A/Johannesburg/33/94		16,2	8,1	16,2
H3N10	A/Perth/16/09		11,1	5,7	12,9
H3N11	A/Victoria/210/09		9,7	6,5	8,1
H3N12	A/HK/1174/99			23,0	
H3N?	A/Env/MPJ193/09			11,8	
H4	A/WF/HK/MPA892/06	2,4	5,2	3,0	6,5
H4N1	A/Northern Pintail/MPB1368/06			2,6	
H4N6	A/Great Cormorant/MPB1683/06			3,1	
H14N5	A/Mallard/Astrakhan/263/		10,6	12,9	13,0
H7N3	A/NIBRG/60 (A/mallard/Netherlands/1 2/00)		14,2	12,9	21,9
н7n7	A/PR8 H7N7-NY	11,0	15,7	8,1	26,0

H7N8	A/Northern Shoveler/MPF518/08			18,4	
н7N9	A/Netherlands/219/2003			20,4	
H7N10	A/Common Teal/MPF139/07			26,3	
H7N9	A/Anhui/1/13	26 , 7	30,4	38,2	
H7N10	A/Shanghai/1/13 (мутант по R292K, избежавший действия тамифлю)		54,8	32,2	77,3
H7N11	A/Shanghai/2/13	17,4	24,7	22,8	
H10N7	A/Chick/Germany/N/49	6,9	11,9	10,2	30,9
H10N8	A/Jiangxi/346/2013			18,3	
H10N3	A/Common Teal/MPH11/08			11,3	
H10N9	A/Northern Shoveler/MPE2531/08			20,7	
Victoria	B/Brisbane/60/08		1,5	1,0	4,1
Victoria	B/Malaysia/2506/04	5 , 5	3,5	2,6	5,5
Yamagata	B/Florida/04/06	1,7	1,8	1,0	5,5
Yamagata	B/Harbin/7/94	1,2	1,1	1,0	1,4
Yamagata	B/Massachusetts/02/12		1,0	1,0	
Old	B/Lee/40		8,4	3,3	21,9

Таблица 36. Средние титры нейтрализации (нМ) для пентамерных конструкций слияния sdAb, содержащих Fc (пустые ячейки означают "не тестировали")

	Штамм вируса	MD2631	MD2632	MD2633	MD2634
H1N1	A/California/07/09	1,5	1,5	1,2	2,1
H1N1	A/New Caledonia/20/99	6,6	4,7	3,9	9,3
H1N1	A/Puerto Rico/8/34- MA	9,3	9,3	9,3	11,1
H5N1	A/Vietnam/1194/04	9,3	6,6	6,6	7,9
H2N2	A/Guiyang/1/57	10,5		20,9	
H6N1	A/Eurasian Wigeon/MPG1884/09	6 , 0			
H11N9	A/Northern Pintail/MPC2085/07	13,9			
H9N2	A/HK/466419/09	6,0			
H8N4	A/Eurasian	6,0			

	Wigeon/MPH571/08				
H3N2	A/HK/1/68-MA	13,2	18,7	4,7	9,3
H3N2	A/Wisconsin/67/05	11,1	11,1	15,7	22,2
H4	A/WF/HK/MPA892/06	7,0	7,0	2,5	2,5
H7N7	A/PR8 H7N7-NY	13,2	11,1	3,3	6,6
H7N9	A/Anhui/1/13	54,2		127,8	
H7N9	A/Shanghai/1/13 (мутант по R292K, избежавший действия тамифлю)	46,7			
H7N9	A/Shanghai/2/13	35 , 3		36,1	
H10N7	A/Chick/Germany/N/4	5,0	8,3	4,2	5,9
Victoria	B/Malaysia/2506/04	6,6	4,7	4,7	3,3
Yamagata	B/Florida/04/06	1,8	1,2	2,1	1,5
Yamagata	B/Harbin/7/94	2,3	2,0	1,0	1,4

Таблица 37. Средние титры нейтрализации (нМ) для гетеродимерных конструкций слияния sdAb, содержащих Fc (пустые ячейки означают "не тестировали")

		MD262	MD262	MD264	MD264	MD264	MD264	MD264
	Штамм вируса	2	3	3	4	5	6	7
H1N1	A/California/07/0 9			2,8	2,3	2,3	1,6	2,0
H1N1	A/New Caledonia/20/99			7,4	7,4	14,8	14,8	12,4
H1N1	A/Puerto Rico/8/34-MA			14,8	14,8	14,8	14,8	14,8
H5N1	A/Vietnam/1194/04			12,4	14,8	14,8	14,8	14,8
H2N2	A/Guiyang/1/57				18,2		36,1	
H6N1	A/Eurasian Wigeon/MPG1884/09				22,0			
H11N9	A/Northern Pintail/MPC2085/0 7				13,1			
H9N2	A/HK/466419/09				9,0			
H8N4	A/Eurasian Wigeon/MPH571/08				9,0			
H3N2	A/Brisbane/10/07	28,3	8,4					

H3N2	A/HK/1/68-MA			29,6	29,6	29,6	20,9	20,9
H3N2	A/Wisconsin/67/05	28,3	10,0	12,4	20,9	29,6	29,6	83,6
H4	A/WF/HK/MPA892/06			9,3	6,6	2,8	3,3	2,8
H7N3	A/NIBRG/60 (A/mallard/Nether lands/12/00)	28,3	8,4					
H7N7	A/PR8 H7N7-NY	40,0	11,9	29,6	24,9	12,4	17,6	20,9
H7N9	A/Anhui/1/13				144,2		225,5	
H7N9	A/Shanghai/1/13 (мутант по R292K, избежавший действия тамифлю)				147,8			
H7N9	A/Shanghai/2/13				60,6		61,3	
H10N7	A/Chick/Germany/N /49			22,2	15,7	6,6	5,5	11,1
Victoria	B/Malaysia/2506/0			12,4	7,4	8,8	7,4	29 , 6
Yamagata	B/Florida/04/06			2,8	2,8	2,8	3,3	22,2
Yamagata	B/Harbin/7/94			5,2	4,4	3,7	3,7	35,2

Функциональное связывание Fc-рецептора (антителозависимая клеточная цитотоксичность).

Функциональное связывание с экспрессируемым на клетках FcγRIIIa (CD16a) человека измеряли с использованием репортерного биоанализа ADCC (антителозависимая клеточная цитотоксичность) (Promega). Клетки-мишени A549 инфицировали B/Brisbane/60/2008 или B/Florida/04/2006, или трансфицировали плазмидой, кодирующей НА H3N2 A/Wisconsin/67/2005, с использованием Lipofectamine 2000 (Invitrogen) в OPTI-MEM I (Gibco). Через 24 ч клетки-мишени, экспрессирующие НА, высевали в белые 96-луночные планшеты и инкубировали в течение 30 мин с несколькими серийными разбавлениями конструкций слияния, содержащих Fc, или контрольных IgG-антител. В качестве дополнительных отрицательных контролей применяли конструкции, несущие точечные мутации LALA в Fc-фрагменте. В случае точечных мутаций LALA (L234A, L235A, как описано Hessel et al. 2007) была показана значительно сниженная степень связывания с Fcγ-рецепторами человека и индукции ADCC. Наконец, к клеткаммишеням добавляли эффекторные Т-клетки Jurkat (стабильно экспрессирующие FcγRIIIa V158 и люциферазу под контролем NFAT-RE) и инкубировали в течение 6 ч. В лунки добавляли раствор субстрата для анализа люциферазы Bio-Glo (Promega) и измеряли люминесценцию (в RLU) с применением люминесцентного планшетного ридера (Perkin Elmer). Данные в RLU аппроксимировали с применением стандартной четырехпараметрической логистической модели нелинейной регрессии в SPSS.

Все SD/MD конструкции слияния, содержащие Fc (за исключением версий с LALA), продемонстрировали стойкую индукцию ADCC, что указывает на то, что связывание с эпитопами в стебле HA вируса гриппа на поверхности клеток обеспечивает продуктивное взаимодействие с клетками, экспрессирующими рецептор FcγRIIIa. Результаты обобщены в табл. 38.

Таблица 38. Функциональное связывание Fc-рецептора (индукция ADCC). "++" обозначает EC_{50} <0,1 мкг/мл, "+" обозначает EC_{50} <0,5 мкг/мл, "-" обозначает EC_{50} >0,5 мкг/мл, пустые ячейки означают "не тестировали"

		Индукция ADCC	
Конструкция	A/Wisconsin/67/2005	B/Brisbane/60/2008	B/Florida/04/2006
MD2606		_	_
MD2608		++	++
MD2610		+	+
MD2407		_	_
MD3606	++	++	++
MD3607	+	_	-
CR9114			
(+	++	++	++
контрольные			
mAb)			
CR9114-LALA	-	-	-
CRJB			
(–	_	_	_
контрольные	_	_	
mAb)			

Слияние sdAb или мультимеров sdAb c Fc-фрагментом IgG1 человека приводило к образованию молекул, связывающих НА, которые сохраняли эффективность и спектр нейтрализации sdAb или мультидоменных структурных блоков, применяемых в отдельности. Структурные блоки в виде sdAb можно слить с N-, а также с С-концом Fc-фрагмента. В ходе экспрессии две Fc-цепи образуют молекулу, подобную бивалентному антителу. Таким образом, в одной и той же клетке можно экспрессировать также две различные конструкции с Fc-цепью, отличающиеся по их sdAb или мультидоменной части, и можно создать молекулу, подобную биспецифичному антителу. Были успешно получены гомодимерные и гетеродимерные конструкции слияния, содержащие Fc, с sdAb и/или мультидоменными антителами, присоединенными к N- и/или С-концу Fc-фрагмента, и был продемонстрирован их спектр нейтрализации, охватывающий вирусы гриппа A и B. В дополнение к непосредственной нейтрализации посредством sdAb или мультидоменной части, Fc-часть конструкции слияния при связывании с НА на поверхности инфицированных или трансфицированных клеток может содействовать продуктивному взаимодействию с рецепторами FcyRIIIa (CD16a) на поверхности эффекторных клеток. Это может приводить к активации NKклеток и последующей индукции ADCC in vivo. Наряду с индукцией эффекторных функций Fc-часть также может взаимодействовать с неонатальным Fc-рецептором, что обеспечивает продолжительное время полужизни in vivo.

Пример 10. Эффективность однодоменных и мультидоменных антитела in vivo.

Эффективность однодоменных антител к вирусу гриппа A группы 1 in vivo.

Иллюстративные однодоменные антитела SD1016, SD1038 и SD1045 к вирусу гриппа A группы 1 были выбраны для исследований нейтрализации вируса гриппа in vivo с использованием мышей Balb/C. Вкратце, самкам мышей Balb/C возрастом 6-8 недель (n=8) интраназально вводили SD1016, SD1038 или SD1045 в однократной дозе, составляющей 0,5 мг/кг. Другая группа из 8 мышей, получающая только буферный раствор, служила в качестве контрольной группы с наполнителем. Через день после введения мышей интраназально заражали штаммом вируса гриппа A/Puerto Rico/8/1934-MA (H1N1) в дозе, составляющей $25 \times \text{LD}_{50}$. За выживаемостью и весом тела наблюдали в течение 21 дня после инфицирования. Введение как SD1038, так и SD1016 приводило к статистически значимому увеличению доли выживших по сравнению с контрольной группой с наполнителем, тогда как введение одного SD1045 приводило к увеличению времени выживания (см. фиг. 2).

Эффективность однодоменных антител к вирусу гриппа A группы 2 in vivo.

Иллюстративные однодоменные антитела SD1036, SD1046 и SD1048 к вирусу гриппа А группы 2 были выбраны для исследований нейтрализации вируса гриппа in vivo с использованием мышей Balb/C. Вкратце, самкам мышей Balb/C возрастом 6-8 недель (n=8) интраназально вводили SD1046 или SD1048 в дозе 5 мг/кг или SD1036 в 2 дозах (0,5 мг/кг или 5 мг/кг). Другая группа из 8 мышей, получающая только буферный раствор, служила в качестве контрольной группы с наполнителем. Через день после введения

мышей интраназально заражали штаммом вируса гриппа A/Hong Kong/1/1968-MA (H3N2) в дозе, составляющей 25×LD50. За выживаемостью и весом тела наблюдали в течение 21 дня после инфицирования. Данное исследование показывает, что интраназальное введение SD1036, SD1046 или SD1048 обеспечивало полную защиту от летального заражения вирусом A/Hong Kong/1/1968-MA (см. фиг. 3).

Эффективность однодоменных антител к вирусу гриппа B in vivo.

Иллюстративные однодоменные антитела SD1083 и SD1084 к вирусу гриппа В были выбраны для исследований нейтрализации вируса гриппа in vivo с использованием мышей Balb/C. Вкратце, самкам мышей Balb/C возрастом 6-8 недель (n=8) интраназально вводили SD1084 в однократной, дозе составляющей 5 мг/кг, или SD1083 в 2 дозах (0,5 мг/кг или 5 мг/кг). Другая группа из 8 мышей, получающая только буферный раствор, служила в качестве контрольной группы с наполнителем. Через день после введения мышей интраназально заражали штаммом вируса гриппа B/Florida/4/2006 в дозе, составляющей 25×LD50. За выживаемостью и весом тела наблюдали в течение 21 дня после инфицирования. Данное исследование показывает, что sdAb SD1084 обеспечивало 100% защиту от летального заражения B/Florida/4/2006, тогда как одно SD1083 обеспечивало частичную защиту при наивысшей дозе, составляющей 5 мг/кг. Более низкая доза одного SD1083 приводила к увеличению времени выживания (фиг. 4).

Эффективность одно- и мультидоменных антител к вирусу гриппа A в модели с заражением H1N1 in vivo.

Иллюстративное sdAb SD1038 к вирусу гриппа A, а также иллюстративные мультидоменные антитела MD1211 и MD1212 к вирусу гриппа A были выбраны для исследований нейтрализации вируса гриппа in vivo с использованием мышей Balb/C. Вкратце, самкам мышей Balb/C возрастом 6-8 недель (n=8) интраназально вводили MD1211 или MD1212 в дозе 1 мг/кг или SD1038 либо в отдельности (0,5 мг/кг), либо в смеси с SD1036 1:1 (общая доза=1 мг/кг). Другая группа из 8 мышей, получающая только буферный раствор, служила в качестве контрольной группы с наполнителем. Через день после введения мышей интраназально заражали штаммом вируса гриппа A/Puerto Rico/8/1934-MA (H1N1) в дозе, составляющей 25×LD50. За выживаемостью и весом тела наблюдали в течение 21 дня после инфицирования. Данное исследование показывает, что интраназальное введение SD1038, MD1211, MD1212 или смеси 1:1 SD1038 и SD1036 обеспечивало полную защиту от летального заражения вирусом A/Puerto Rico/8/1934-MA. Кривые веса тела указывают на то, что эффективность MD1211 и MD1212 выше, чем таковая sdAb (смесь) (фиг. 5).

Эффективность одно- и мультидоменных антител к вирусу гриппа A в модели с заражением H3N2 in vivo.

Иллюстративное sdAb SD1036 к вирусу гриппа А и иллюстративные мультидоменные антитела MD1211 и MD1212 к вирусу гриппа А были выбраны для исследований нейтрализации вируса гриппа in vivo с использованием мышей Balb/C. Вкратце, самкам мышей Balb/C возрастом 6-8 недель (n=8) интраназально вводили MD1211 или MD1212 в дозе 5 мг/кг или SD1036 либо в отдельности (2,5 мг/кг), либо в смеси с SD1038 1:1 (общая доза=5 мг/кг). Другая группа из 8 мышей, получающая только буферный раствор, служила в качестве контрольной группы с наполнителем. Через день после введения мышей интраназально заражали штаммом вируса гриппа A/Hong Kong/1/1968-MA (H3N2) в дозе, составляющей 25×LD50. За выживаемостью и весом тела наблюдали в течение 21 дня после инфицирования. Данное исследование показывает, что интраназальное введение SD1036, MD1211, MD1212 или смеси 1:1 SD1036 и SD1038 обеспечивало полную защиту от летального заражения вирусом A/Hong Kong/1/1968-MA. Кривые веса тела указывают на то, что эффективность MD1211 и MD1212 выше, чем таковая sdAb (смесь) (фиг. 6).

Сравнение эффективности мономера и димера SD1038 in vivo в модели с заражением H3N2.

Иллюстративное однодоменное антитело SD1038 к вирусу гриппа А и иллюстративное мультидоменное антитело MD1212 к вирус гриппа А были выбраны для исследований нейтрализации вируса гриппа in vivo с использованием мышей Balb/C. Вкратце, самкам мышей Balb/C возрастом 6-8 недель (n=8) интраназально вводили SD1038 или MD1212 в 4 дозах (5 мг/кг, 1,7 мг/кг, 0,6 мг/кг или 0,2 мг/кг). Другая группа из 8 мышей, получающая только буферный раствор, служила в качестве контрольной группы с наполнителем. Через день после введения мышей интраназально заражали штаммом вируса гриппа A/Hong Kong/1/1968-MA (H3N2) в дозе, составляющей 25×LD50. За выживаемостью и весом тела наблюдали в течение 21 дня после инфицирования. Данное исследование показывает, что одно SD1038 обеспечивало частичную защиту от летального заражения вирусом A/Hong Kong/1/1968-MA и что уровень защиты зависел от дозы. В отличие от этого, димерное SD1038 (MD1212) обеспечивало 100% защиту во всех группах с 4 дозами (фиг. 7).

Эффективность мультидоменных антител к вирусу гриппа B in vivo.

Иллюстративные мультидоменные антитела MD1221, MD1222 и MD1224 к вирусу гриппа В были выбраны для исследований нейтрализации вируса гриппа in vivo с использованием мышей Balb/C. Вкратце, самкам мышей Balb/C возрастом 6-8 недель (n=8) интраназально вводили MD1221 или MD1224 в однократной дозе, составляющей 5 мг/кг, или MD1222 в 2 дозах (0,5 мг/кг или 5 мг/кг). Другая группа из 8 мышей, получающая только буферный раствор, служила в качестве контрольной группы с наполни-

телем. Через день после введения мышей интраназально заражали штаммом вируса гриппа B/Florida/4/2006 в дозе, составляющей 25×LD50. За выживаемостью и весом тела наблюдали в течение 21 дня после инфицирования. Данное исследование показывает, что все 3 мультидоменные антитела обеспечивали 100% защиту от летального заражения B/Florida/4/2006 (фиг. 8).

Эффективность мультидоменных антител к вирусам гриппа A и B в отношении H1N1 после i.v. введения in vivo.

Иллюстративные мультидоменные антитела MD1301 и MD2601 к вирусам гриппа A и B были выбраны для исследований нейтрализации вируса гриппа in vivo с использованием мышей Balb/C. Вкратце, самкам мышей Balb/C возрастом 6-8 недель (n=8) внутривенно вводили MD1301 или MD2601 в однократной дозе, составляющей 3 мг/кг. CR9114 брали в качестве положительного контроля. Другая группа из 8 мышей, получающая только буферный раствор, служила в качестве контрольной группы с наполнителем. Через день после введения мышей интраназально заражали штаммом вируса гриппа A/Puerto Rico/8/1934-MA (H1N1) в дозе, составляющей 25×LD50. За выживаемостью и весом тела наблюдали в течение 21 дня после инфицирования. Данное исследование показывает, что содержащее Fc мультидоменное антитело MD2601 обеспечивало полную защиту после i.v. введения, тогда как MD1301 без Fc не оказывало эффекта на выживаемость. Контрольное антитело CR9114 в отдельности обеспечивало частичную защиту от летального заражения A/Puerto Rico/8/1934-MA (H1N1) (фиг. 9).

Эффективность мультидоменных антител к вирусам гриппа A и B в отношении H1N1 после i.n. введения In vivo.

Иллюстративные мультидоменные антитела MD1301 и MD2601 к вирусам гриппа A и B, а также эталонное антитело CR914 были выбраны для исследований нейтрализации вируса гриппа in vivo с использованием мышей Balb/C. Вкратце, самкам мышей Balb/C возрастом 6-8 недель (n=8) интраназально вводили MD1301, MD2601 или эталонное антитело CR9114 в 3 дозах (0,2, 0,05 или 0,01 мг/кг). Другая группа из 8 мышей, получающая только буферный раствор, служила в качестве контрольной группы с наполнителем. Через день после введения мышей интраназально заражали штаммом вируса гриппа A/Puerto Rico/8/1934-MA (H1N1) в дозе, составляющей 25×LD50. За выживаемостью и весом тела наблюдали в течение 21 дня после инфицирования. Данное исследование показывает, что минимальная эффективная доза (определенная как самая низкая доза, обеспечивающая 100% защиту) составляла 0,05 мг/кг для антител MD2601 и CR9114, содержащих Fc, и 0,2 мг/кг для MD1301 без Fc. Мыши, получающие 0,05 мг/кг CR9114, продемонстрировали более значительное снижение веса тела, чем мыши, получающие аналогичную дозу MD2601 (фиг. 10).

Эффективность мультидоменного антитела MD2617 к вирусам гриппа A и B в отношении H1N1 in vivo.

Иллюстративное мультидоменное антитело MD2617 было выбрано для исследований нейтрализации вируса гриппа in vivo с использованием мышей Balb/C. Вкратце, самкам мышей Balb/C возрастом 6-8 недель (n=8) вводили MD2 617 либо интраназально в дозе, составляющей 0,2 мг/кг, 0,05 мг/кг или 0,01 мг/кг, либо внутривенно в дозе, составляющей 3, 1 или 0,3 мг/кг. Другая группа из 8 мышей, получающая только буферный раствор, служила в качестве контрольной группы с наполнителем. Через день после введения мышей интраназально заражали A/Puerto Rico/8/1934-MA (H1N1) в дозе, составляющей 25×LD50. За выживаемостью и весом тела наблюдали в течение 21 дня после инфицирования. Введение MD2617 в дозе 0,2 мг/кг і.п. или 3 мг/кг і.v. приводило к статистически значимому увеличению доли выживших по сравнению с контрольной группой с наполнителем (фиг. 11).

Эффективность мультидоменного антитела MD2617 к вирусам гриппа A и B в отношении H3N2 и B Floridain vivo.

Иллюстративное мультидоменное антитело MD2 617 было выбрано для исследований нейтрализации вируса гриппа in vivo с использованием мышей Balb/C. Вкратце, самкам мышей Balb/C возрастом 6-8 недель (n=8) вводили MD2617 либо интраназально в дозе 0,5 мг/кг, либо внутривенно в дозе 2 мг/кг. СR9114, введенное внутривенно в дозе 2 мг/кг, брали в качестве положительного контроля. Другая группа из 8 мышей, получающая только буферный раствор, служила в качестве контрольной группы с наполнителем. Через день после введения мышей интраназально заражали A/Hong Kong/1/1968-MA (H3N2) или B/Florida/4/2006 в дозе, составляющей 25×LD50. За выживаемостью и весом тела наблюдали в течение 21 дня после инфицирования. Интраназальное, а также внутривенное введение MD2617 приводили к статистически значимому увеличению доли выживших по сравнению с контрольной группой с наполнителем.

Эффективность мультидоменных антител MD2407 и MD3606 к вирусам гриппа A и B в отношении B Florida после i.n. введения in vivo.

Иллюстративные мультидоменные антитела MD2407 и MD3606, а также эталонное антитело CR9114 были выбраны для исследований нейтрализации вируса гриппа in vivo с использованием мышей Balb/C. Вкратце, самкам мышей Balb/C возрастом 6-8 недель (n=8) интраназально вводили MD2407, MD3606 или CR9114 в 3 дозах (0,02 мг/кг, 0,1 мг/кг или 0,5 мг/кг). Другая группа из 8 мышей, получающая только буферный раствор, служила в качестве контрольной группы с наполнителем. Через день после введения мышей интраназально заражали штаммом вируса гриппа B/Florida/4/2006 в дозе, состав-

ляющей 25×LD50. За выживаемостью и весом тела наблюдали в течение 21 дня после инфицирования. Введение 0,02, 0,1 и 0,5 мг/кг MD2407 и MD3606 приводило к статистически значимому увеличению доли выживших по сравнению с контрольной группой с наполнителем, тогда как введение одного CR9114 приводило к увеличению времени выживания при 0,1 и 0,5 мг/кг (фиг. 13).

Эффективность мультидоменного антитела MD3606 к вирусам гриппа A и B в отношении B Florida после i.v. введения in vivo.

Иллюстративное мультидоменное антитело MD3606 и эталонное антитело CR9114 были выбраны для исследований нейтрализации вируса гриппа in vivo с использованием мышей Balb/C. Вкратце, самкам мышей Balb/C возрастом 6-8 недель (n=8) внутривенно вводили MD3606 или CR9114 в 3 дозах (0,2, 1 или 5 мг/кг). Другая группа из 8 мышей, получающая только буферный раствор, служила в качестве контрольной группы с наполнителем. Через день после введения мышей интраназально заражали штаммом вируса гриппа B/Florida/4/2006 в дозе, составляющей 25×LD50. За выживаемостью и весом тела наблюдали в течение 21 дня после инфицирования. Данное исследование показывает, что MD3606 обеспечивало полную защиту от B/Florida/4/2006 в дозе ниже 1 мг/кг. В отличие от этого, эталонное антитело CR9114 в отдельности обеспечивало частичную защиту в наивысшей дозе 5 мг/кг (фиг. 14).

Эффективность мультидоменных антител MD2407 и MD3606 к вирусам гриппа A и B в отношении H3N2 после i.n. введения in vivo.

Иллюстративные мультидоменные антитела MD2407, MD3606 и эталонное антитело CR9114 были выбраны для исследований нейтрализации вируса гриппа in vivo с использованием мышей Balb/C. Вкратце, самкам мышей Balb/C возрастом 6-8 недель (n=8) интраназально вводили MD2407, MD3606 и CR9114 в 3 дозах (0,02, 0,1 или 0,5 мг/кг). Другая группа из 8 мышей, получающая только буферный раствор, служила в качестве контрольной группы с наполнителем. Через день после введения мышей интраназально заражали штаммом вируса гриппа A/Hong Kong/1/1968-MA (H3N2) в дозе, составляющей 25×LD50. За выживаемостью и весом тела наблюдали в течение 21 дня после инфицирования. Данное исследование показывает, что MD2407 и CR9114 обеспечивали полную защиту от A/Hong Kong/1/1968-МА в дозе ниже 0,1 и 0,5 мг/кг соответственно. MD3606 обеспечивало полную защиту даже в самой низкой дозе 0,02 мг/кг (фиг. 15).

Эффективность мультидоменного антитела MD3606 к вирусам гриппа A и B в отношении H3N2 после i.v. введения in vivo.

Иллюстративное мультидоменное антитело MD3606 и эталонное антитело CR9114 были выбраны для исследований нейтрализации вируса гриппа in vivo с использованием мышей Balb/C. Вкратце, сам-кам мышей Balb/C возрастом 6-8 недель (n=8) внутривенно вводили MD3606 или CR9114 в 3 дозах (0,6, 1,7 или 5 мг/кг). Другая группа из 8 мышей, получающая только буферный раствор, служила в качестве контрольной группы с наполнителем. Через день после введения мышей интраназально заражали штам-мом вируса гриппа A/Hong Kong/1/1968-MA (H3N2) в дозе, составляющей 25×LD50. За выживаемостью и весом тела наблюдали в течение 21 дня после инфицирования. Введение MD3606 и CR9114 в дозе ниже 1,7 мг/кг приводило к статистически значимому увеличению доли выживших по сравнению с контрольной группой с наполнителем. Мыши, которых обрабатывали 5 или 1,7 мг/кг MD3606, продемонстрировали менее значительное снижение веса тела, чем мыши, которых обрабатывали аналогичными дозами CR9114 (фиг. 16).

Эффективность мультидоменных антител MD2407 и MD3606 к вирусам гриппа A и B в отношении H1N1 после i.n. введения in vivo.

Иллюстративные мультидоменные антитела MD2407, MD3606 и эталонное антитело CR9114 были выбраны для исследований нейтрализации вируса гриппа in vivo с использованием мышей Balb/C. Вкратце, самкам мышей Balb/C возрастом 6-8 недель (n=8) интраназально вводили MD2407, MD3606 или CR9114 в 3 дозах (0,02, 0,1 или 0,5 мг/кг). Другая группа из 8 мышей, получающая только буферный раствор, служила в качестве контрольной группы с наполнителем. Через день после введения мышей интраназально заражали штаммом вируса гриппа A/Puerto Rico/8/1934-MA (H1N1) в дозе, составляющей 25×LD50. За выживаемостью и весом тела наблюдали в течение 21 дня после инфицирования. Введение 0,25 и 0,05 мг/кг MD2407 или CR9114 приводило к статистически значимому увеличению доли выживших по сравнению с контрольной группой с наполнителем, тогда как для MD3606 данное увеличение было значительным вплоть до самой низкой дозы, составляющей 0,01 мг/кг (фиг. 17).

Эффективность мультидоменного антитела MD3606 к вирусам гриппа A и B в отношении H1N1 после i.v. введения in vivo.

Иллюстративное мультидоменное антитело MD3606 и эталонное антитело CR9114 были выбраны для исследований нейтрализации вируса гриппа in vivo с использованием мышей Balb/C. Вкратце, сам-кам мышей Balb/C возрастом 6-8 недель (n=8) внутривенно вводили MD3606 или CR9114 в 3 дозах (0,6, 1,7 или 5 мг/кг). Другая группа из 8 мышей, получающая только буферный раствор, служила в качестве контрольной группы с наполнителем.

Через день после введения мышей интраназально заражали штаммом вируса гриппа A/Puerto Rico/8/1934-MA (H1N1) в дозе, составляющей 25×LD50. За выживаемостью и весом тела наблюдали в

течение 21 дня после инфицирования. Введение 1,7 и 5 мг/кг MD3606 и 5 мг/кг CR9114 приводило к статистически значимому увеличению доли выживших по сравнению с контрольной группой с наполнителем (фиг. 18).

Пример 11. Гуманизация sdAb.

Последовательности белков sdAb SD1036, SD1038, SD1046, SD1083, SD1084 и SD1087 выравнивали с помощью BLAST относительно V-генов человека из базы данных IMGT (http://www.imgt.org). Затем каждое sdAb выравнивали с наиболее гомологичными последовательностями V-генов человека. Последовательность FR4 каждого sdAb выравнивали с консенсусной последовательностью J человека WGQGTLVTVSS. Аминокислотные различия в каркасных областях sdAb (FR) относительно выровненных последовательностей V и J человека приведены в табл. 39.

Таблица 39. Аминокислотные различия в каркасных областях относительно наиболее близкой последовательности V-гена и консенсусной последовательности J человека

	FR1	CDR1	FR2	CDR2
SD1083	EVQLVESGGGLVQPGGSLRLSCAA TG	FTLENKAIG	WFRQTPGSEREGVL	CISKSGSW
3-23*01	EVQLLESGGGLVQPGGSLRLSCAA SG	FTFSSYAMS	WVRQAPGKGLEWVS	AISGSGGS
	T.	LENK.IG	.FTSER.G.L	CKSW
SD1038	EVQLVESGGGLVQPGGSLRLSCAV SI	SIFDIYAMD	WYRQAPGKQRDLVA	TSF-RDGS
NL1*01	QVQLVESGGGVVQPGGSLRLSCAA SG	FTFSSYGMH	WVRQAPGKGLEWVS	VIYSGGSS
	EV .I	SI.DI.A.D	.YQRDL.A	TSF-RDG.
SD1036	EVQLVESGGGLVQAGGSLKLSCAA SG	RTYAMG	WFRQAPGKEREFVA	HINALGTR
3-23*01	EVQLLESGGGLVQPGGSLRLSCAA SG	FTFSSYAMS	WVRQAPGKGLEWVS	AISGSGGS
	VAK	RG	.FER.F.A	H.NAL.TR
SD1046	EVQLVESGGGLVQAGDSLRISCAA SG	RTLSIYSMG	WFRQAPGKEREFVA	TIGWNSGR
3-23*04	EVQLVESGGGLVQPGGSLRLSCAA SG	FTFSSYAMS	WVRQAPGKGLEWVS	AISGSGGS
	A.DI	R.L.I.S.G	.FER.F.A	T.GWNS.R
SD1084	EVQLVESGGGLVQPGGSLKLSCAA SG	FTFSTSWMY	WLRQAPGKGLEWVS	VINTDGG
3-66*01	EVQLVESGGGLVQPGGSLRLSCAA SG	FTVSSNYMS	WVRQAPGKGLEWVS	VIYSGGS
	K	F.TSW.Y	.L	NTD.G
SD1087	EVQLVESGGGLVQPGGSLRLSCVI SG	LSLDTYAVG	WFRQAPGKEREGIT	CISSGHGM
3-23*04	EVQLVESGGGLVQPGGSLRLSCAA SG	FTFSSYAMS	WVRQAPGKGLEWVS	AISGSGGS
	VI	LSLDTVG	.FER.GIT	CSGH.M

	FR3	CDR3	FR4
SD1083	TYYTDSMRGRFTISRDNAENTVYLQMDSLKP EDTAVYYC	ATTTAGGGLCWDGTTFS RLASS	WGQGTQVTV SS
3-23*01	TYYADSVKGRFTISRDNSKNTLYLQMNSLRA EDTAVYYC		WGQGTLVTV SS
	TMRAEVDKP	ATTTAGGGLCWDGTTFS RLASS	Q
SD1038	TNYADSVKGRFTISRDNAKNTLYLQMNSLKP EDTAVYLC	HVSLYRDPLGVAGGMGV Y	WGKGALVTV SS
NL1*01	TYYADSVKGRFTISRDNSKNTLYLQMNSLRA EDTAVYYC	 -	WGQGTLVTV SS
	.NKP	HVSLYRDPLGVAGGMGV Y	K.A
SD1036	TYYSDSVKGRFTISRDNAKNTEYLEMNNLKP EDTAVYYC	TAQGQWRAAPVAVAAEY EF	WGQGTQVTV SS
3-23*01	TYYADSVKGRFTISRDNSKNTLYLQMNSLRA EDTAVYYC		WGQGTLVTV SS
	SAEEN.KP	TAQGQWRAAPVAVAAEY EF	Q
SD1046	TFYPDSLKGRFTISRDNARNTLYLQMNNLRP EDTAVYYC	AAAKGPLRLSSQADY	WGQGTQVTV SS
3-23*04	TYYADSVKGRFTISRDNSKNTLYLQMNSLRA EDTAVYYC		WGQGTLVTV SS
	.F.PLARNP	AAAKGPLRLSSQADY	Q
SD1084	TYYADSVKDRFTISRDNAKDTLYLQMSSLKS EDTAVYYC	AKDWGGPEPT	RGQGTQVTV SS
3- 66*01	TYYADSVKGRFTISRDNSKNTLYLQMNSLRA EDTAVYYC		WGQGTLVTV SS
	DA.DSKS	AKDWGGPEPT	RQ
SD1087	TYYADSVKGRFTVSTDNAKNTVYLQMNGLQP EDTARYYC	ATESRYYCSDNWPAPQR YIY	WGQGTQVTV SS
3-23*04	TYYADSVKGRFTISRDNSKNTLYLQMNSLRA EDTAVYYC		WGQGTLVTV SS
	R	ATESRYYCSDNWPAPQR YIY	Q

Затем получали несколько серий вариантов sdAb, в которых различные комбинации остатков FR, не относящихся к человеческим, были замещены их аналогами человеческого происхождения. Остатки 37, 44, 45 и 47 в FR2 и 103 в FR4 оставались во всех вариантах. Два остатка Met, один расположенный в CDR2 SD1087, а другой в CDR3 SD1038, также подвергали мутации с целью удаления возможного сайта оксидирования Met. Аминокислотные последовательности всех вариантов sdAb SD1036, SD1038, SD1046, SD1083, SD1084 и SD1087 представлены в табл. 40. Гуманизированные варианты sdAb анализировали на предмет термостабильности, уровня экспрессии (в клетках HEK293) и нейтрализующей активности in vitro. Термостабильность оценивали для выбранных sdAb путем измерения их температур плавления с помощью DSC. Нейтрализующую активность in vitro определяли в стандартном 3-дневном VNA с использованием клеток MDCK и \sim 100 TCID50 вируса гриппа. Значения IC50, температуры плавления и уровни экспрессии представлены в таблицах 41-43. Также представлены число аминокислотных различий в каркасных областях sdAb (FR) относительно выровненных последовательностей V и J человека, а также % идентичности FR.

Таблица 40. Последовательности гуманизированных связывающих молекул по настоящему изобретению

	молекул по настоящему изооретению
Гуманивированные	
варианты SD1036	
SD3023	EVQLLESGGGLVQAGGSLRLSCAASGRTYAMSWFRQAPGKEREFVSHINAL
(SEQ ID NO: 146)	GTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYYCTAQGQWRAA
(522 15 16: 110)	PVAVAAEYEFWGQGTQVTVSS
SD3024	EVQLLESGGGLVQPGGSLRLSCAASGRTYAMSWFRQAPGKEREFVSHINAL
(SEQ ID NO: 147)	GTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAA
(SEQ ID NO: 147)	PVAVAAEYEFWGQGTQVTVSS
SD3025	EVQLLESGGGLVQPGGSLRLSCAASGRTYAMSWFRQAPGKEREFVAHINAL
	GTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAA
(SEQ ID NO: 148)	PVAVAAEYEFWGQGTQVTVSS
#P0006	EVQLLESGGGLVQPGGSLRLSCAASGRTYAMSWFRQAPGKEREFVSAINAL
SD3026	GTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAA
(SEQ ID NO: 149)	PVAVAAEYEFWGQGTQVTVSS
ap 2007	EVQLLESGGGLVQAGGSLRLSCAASGRTYAMSWFRQAPGKEREFVSAINAL
SD3027	GTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYYCTAQGQWRAA
(SEQ ID NO: 150)	PVAVAAEYEFWGQGTQVTVSS
	EVOLLESGGGLVOAGGSLRLSCAASGRTYAMSWFROAPGKEREFVAHINAL
SD3028	GTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYYCTAQGQWRAA
(SEQ ID NO: 151)	PVAVAAEYEFWGQGTQVTVSS
	EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAHINAL
SD3094	GTRTYYADSVKGRFTISRDNSKNTLYLOMNSLRAEDTAVYYCTAQGQWRAA
(SEQ ID NO: 152)	PVAVAAEYEFWGOGTLVTVSS
	EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAHINAL
SD3095	GTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYYCTAQGQWRAA
(SEQ ID NO: 153)	PVAVAAEYEFWGOGTLVTVSS
	EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAHINAL
SD3096	GTRTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCTAQGQWRAA
(SEQ ID NO: 154)	PVAVAAEYEFWGQGTLVTVSS
	EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAAINAL
SD3097	GTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAA
(SEQ ID NO: 155)	PVAVAAEYEFWGQGTLVTVSS
SD3098	EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAAINAL
(SEQ ID NO: 156)	GTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYYCTAQGQWRAA
	PVAVAAEYEFWGQGTLVTVSS
Гуманизированные	
варианты SD1038	
ap2012	EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVATS
SD3013	FRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYLCHVSLYRD
(SEQ ID NO: 157)	PLGVAGGMGVYWGKGALVTVSS
	EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVS
SD3014	FRDGSTYYADSVKGRFTISRDNSKNTLYLOMNSLRAEDTAVYLCHVSLYRD
(SEQ ID NO: 158)	PLGVAGGMGVYWGKGALVTVSS
SD3015	EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVSVS
(SEQ ID NO: 159)	FRDGSTYYADSVKGRFTISRDNSKNTLYLOMNSLRAEDTAVYLCHVSLYRD
(522 15 40. 159)	TITE OF LIVE OF LIGHT TANDER OF LIGHT TO THE TANDER OF THE

	PLGVAGGMGVYWGKGALVTVSS
SD3016 (SEQ ID NO: 160)	EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVS FRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYLCHVSLYRD PLGVAGGMGVYWGKGALVTVSS
SD3017 (SEQ ID NO: 161)	EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMHWYRQAPGKQRELVATS FRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYLCHVSLYRD PLGVAGGMGVYWGKGALVTVSS
SD3018 (SEQ ID NO: 162)	EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMHWYRQAPGKQRELVAVS FRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYLCHVSLYRD PLGVAGGMGVYWGKGALVTVSS
SD3019 (SEQ ID NO: 163)	EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMHWYRQAPGKQRELVSVS FRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYLCHVSLYRD PLGVAGGMGVYWGKGALVTVSS
SD3020 (SEQ ID NO: 164)	EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMHWYRQAPGKQRELVAVS FRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYLCHVSLYRD PLGVAGGMGVYWGKGALVTVSS
SD3021 (SEQ ID NO: 165)	EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVS FRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYLCHVSLYRD PLGVAGGLGVYWGKGALVTVSS
SD3022 (SEQ ID NO: 166)	EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVS FRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYLCHVSLYRD PLGVAGGIGVYWGKGALVTVSS
SD3029 (SEQ ID NO: 176)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD PLGVAGGLGVYWGKGALVTVSS
SD3030 (SEQ ID NO: 168)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD PLGVAGGIGVYWGKGALVTVSS
SD3031 (SEQ ID NO: 169)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD PLGVAGGVGVYWGKGALVTVSS
SD3032 (SEQ ID NO: 170)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD PLGVAGGAGVYWGKGALVTVSS
SD3033 (SEQ ID NO: 171)	EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATS FRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRD PLGVAGGFGVYWGKGALVTVSS
SD3089 (SEQ ID NO: 172)	EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMHWYRQAPGKQRELVSVS FRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRD PLGVAGGLGVYWGQGTLVTVSS
SD3078 (SEQ ID NO: 173)	EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVSVS FRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRD PLGVAGGLGVYWGQGTLVTVSS
SD3080 (SEQ ID NO: 174)	EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVS FRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYYCHVSLYRD PLGVAGGLGVYWGQGTLVTVSS
SD3079 (SEQ ID NO: 175)	EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVS FRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRD PLGVAGGLGVYWGQGTLVTVSS
SD3119 (SEQ ID NO: 176)	QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVS FRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRD PLGVAGGIGVYWGQGTLVTVSS
Гуманизированные варианты SD1046	
SD3041 (SEQ ID NO: 177)	EVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMSWFRQAPGKEREFVSAI GWNSGRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGP LRLSSQADYWGQGTQVTVSS
SD3042 (SEQ ID NO: 178)	EVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMSWFRQAPGKEREFVSTI GWNSGRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGP LRLSSQADYWGQGTQVTVSS
SD3043	EVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMSWFRQAPGKEREFVATI

(SEQ ID NO: 179)	GWNSGRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGP LRLSSQADYWGQGTQVTVSS
SD3044 (SEQ ID NO: 180)	EVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMSWFRQAPGKEREFVSTI GWNSGRTYYADSVKGRFTISRDNARNTLYLQMNSLRAEDTAVYYCAAAKGP
SD3045 (SEQ ID NO: 181)	LRLSSQADYWGQGTQVTVSS EVQLVESGGGLVQAGGSLRLSCAASGRTLSIYSMSWFRQAPGKEREFVSAI GWNSGRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGP
SD3046	LRLSSQADYWGQGTQVTVSS EVQLVESGGGLVQAGGSLRLSCAASGRTLSIYSMSWFRQAPGKEREFVSTI
(SEQ ID NO: 182)	GWNSGRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGP LRLSSQADYWGQGTQVTVSS EVQLVESGGGLVQAGGSLRLSCAASGRTLSIYSMSWFRQAPGKEREFVATI
SD3047 (SEQ ID NO: 183)	GWNSGRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGP LRLSSQADYWGQGTQVTVSS
SD3048 (SEQ ID NO: 184)	EVQLVESGGGLVQAGGSLRLSCAASGRTLSIYSMSWFRQAPGKEREFVSTI GWNSGRTYYADSVKGRFTISRDNARNTLYLQMNSLRAEDTAVYYCAAAKGP LRLSSQADYWGQGTQVTVSS
SD3068 (SEQ ID NO: 185)	EVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGKEREFVSTI GWNSGRTFYPDSLKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGP LRLSSQADYWGQGTLVTVSS
SD3067 (SEQ ID NO: 186)	EVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGKEREFVATI GWNSGRTFYPDSLKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGP LRLSSQADYWGQGTLVTVSS
SD3099 (SEQ ID NO: 187)	EVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGKEREFVATI GWNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGP LRLSSQADYWGQGTLVTVSS
SEQ ID NO: 340	EVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGKEREFVATI GWNSGRTFYPDSVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCAAAKGP LRLSSQADYWGQGTLVTVSS
Гуманивированные варианты SD1083	
SD3005 (SEQ ID NO: 188)	EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAMSWFRQAPGKEREGVSCI SKSGSWTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATTTAG GGLCWDGTTFSRLASSWGQGTQVTVSS
SD3006 (SEQ ID NO: 189)	EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVSCI SKSGSWTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATTTAG GGLCWDGTTFSRLASSWGQGTQVTVSS
SD3007 (SEQ ID NO: 190)	EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVSCI SKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRAEDTAVYYCATTTAG GGLCWDGTTFSRLASSWGQGTQVTVSS
SD3008 (SEQ ID NO: 191)	EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVSCI SKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAG GGLCWDGTTFSRLASSWGQGTQVTVSS
SD3009 (SEQ ID NO: 192)	EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAMSWFRQAPGKEREGVLCI SKSGSWTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATTTAG GGLCWDGTTFSRLASSWGQGTQVTVSS
SD3010 (SEQ ID NO: 193)	EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCI SKSGSWTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATTTAG GGLCWDGTTFSRLASSWGQGTQVTVSS
SD3011 (SEQ ID NO: 194)	EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCI SKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRAEDTAVYYCATTTAG GGLCWDGTTFSRLASSWGQGTQVTVSS
SD3012 (SEQ ID NO: 195)	EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCI SKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAG GGLCWDGTTFSRLASSWGQGTQVTVSS
SD3088 (SEQ ID NO: 196)	EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCI SKSGSWTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATTTAG GGLCWDGTTFSRLASSWGQGTLVTVSS
SD3087 (SEQ ID NO: 197)	EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCI SKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAG GGLCWDGTTFSRLASSWGQGTLVTVSS
Гуманизированные	

варианты SD1084	
SD3001	EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMSWLRQAPGKGLEWVSVI
(SEQ ID NO: 198)	NTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGP
(======================================	EPTRGQGTQVTVSS
SD3002	EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVI
(SEQ ID NO: 199)	NTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGP
	EPTRGQGTQVTVSS EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMSWLRQAPGKGLEWVSVI
SD3003	NTDGGTYYADSVKGRFTISRDNSKDTLYLQMNSLRAEDTAVYYCAKDWGGP
(SEQ ID NO: 200)	EPTRGQGTQVTVSS
	EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVI
SD3004	NTDGGTYYADSVKGRFTISRDNSKDTLYLQMNSLRAEDTAVYYCAKDWGGP
(SEQ ID NO: 201)	EPTRGQGTQVTVSS
SD3086	EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWVRQAPGKGLEWVSVI
(SEQ ID NO: 202)	NTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGP
(522 15 110. 202)	EPTRGQGTLVTVSS
SD3085	EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVI
(SEQ ID NO: 203)	NTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGP
Гуманивированные	EPTRGQGTLVTVSS
гуманизированные варианты SD1087	
	EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAMSWFRQAPGKEREGVSCI
SD3049	SSGHGMTYYADSVKGRFTISRDNSKNTLYLQMNSLQPEDTARYYCATESRY
(SEQ ID NO: 204)	YCSDNWPAPQRYIYWGQGTQVTVSS
SD3050	EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAMSWFRQAPGKEREGITCI
(SEQ ID NO: 205)	SSGHGMTYYADSVKGRFTISRDNSKNTLYLQMNSLQPEDTARYYCATESRY
(SEQ 1D NO. 203)	YCSDNWPAPQRYIYWGQGTQVTVSS
SD3051	EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAMSWFRQAPGKEREGVSCI
(SEQ ID NO: 206)	SSGHGITYYADSVKGRFTISRDNSKNTLYLQMNSLQPEDTARYYCATESRY
	YCSDNWPAPQRYIYWGQGTQVTVSS
SD3052	EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAMSWFRQAPGKEREGVSCI SSGHGLTYYADSVKGRFTISRDNSKNTLYLQMNSLQPEDTARYYCATESRY
(SEQ ID NO: 207)	YCSDNWPAPQRYIYWGQGTQVTVSS
	EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAMSWFRQAPGKEREGVSCI
SD3053	SSGHGFTYYADSVKGRFTISRDNSKNTLYLQMNSLQPEDTARYYCATESRY
(SEQ ID NO: 208)	YCSDNWPAPQRYIYWGQGTQVTVSS
SD3054	EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAMSWFRQAPGKEREGITCI
(SEQ ID NO: 209)	SSGHGITYYADSVKGRFTISRDNSKNTLYLQMNSLQPEDTARYYCATESRY
(322 22 333 233)	YCSDNWPAPQRYIYWGQGTQVTVSS
SD3055	EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAMSWFRQAPGKEREGITCI
(SEQ ID NO: 210)	SSGHGLTYYADSVKGRFTISRDNSKNTLYLQMNSLQPEDTARYYCATESRY
	YCSDNWPAPQRYIYWGQGTQVTVSS EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAMSWFRQAPGKEREGITCI
SD3056	SSGHGFTYYADSVKGRFTISRDNSKNTLYLOMNSLOPEDTARYYCATESRY
(SEQ ID NO: 211)	YCSDNWPAPQRYIYWGQGTQVTVSS
SD3069	EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGITCI
(SEQ ID NO: 212)	SSGHGMTYYADSVKGRFTVSTDNSKNTLYLQMNSLRAEDTAVYYCATESRY
(522 15 115. 212)	YCSDNWPAPQRYIYWGQGTLVTVSS
SD3070	EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGITCI
(SEQ ID NO: 213)	SSGHGITYYADSVKGRFTVSTDNSKNTLYLQMNSLRAEDTAVYYCATESRY
	YCSDNWPAPQRYIYWGQGTLVTVSS EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGITCI
SD3071	SSGHGLTYYADSVKGRFTVSTDNSKNTLYLQMNSLRAEDTAVYYCATESRY
(SEQ ID NO: 214)	YCSDNWPAPQRYIYWGQGTLVTVSS
ap 2070	EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAVGWFRQAPGKEREGITCI
SD3072	SSGHGMTYYADSVKGRFTVSTDNSKNTLYLQMNSLRAEDTAVYYCATESRY
(SEQ ID NO: 215)	YCSDNWPAPQRYIYWGQGTLVTVSS
SD3073	EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCI
(SEQ ID NO: 216)	SSGHGMTYYADSVKGRFTVSTDNSKNTLYLQMNSLRAEDTAVYYCATESRY
	YCSDNWPAPQRYIYWGQGTLVTVSS
SD3074	EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGITCI
(SEQ ID NO: 217)	SSGHGMTYYADSVKGRFTISTDNSKNTLYLQMNSLRAEDTAVYYCATESRY
	YCSDNWPAPQRYIYWGQGTLVTVSS

SD3075	EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAVGWFRQAPGKEREGVSCI
(SEQ ID NO: 218)	SSGHGITYYADSVKGRFTISTDNSKNTLYLQMNSLRAEDTAVYYCATESRY
(SEQ 1D NO: 218)	YCSDNWPAPQRYIYWGQGTLVTVSS
SD3076	EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAVGWFRQAPGKEREGVSCI
(SEO ID NO: 219)	SSGHGLTYYADSVKGRFTISTDNSKNTLYLQMNSLRAEDTAVYYCATESRY
(SEQ 1D NO. 219)	YCSDNWPAPQRYIYWGQGTLVTVSS
SD3092	EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCI
(SEQ ID NO: 220)	SSGHGMTYYADSVKGRFTISTDNSKNTLYLQMNSLRAEDTAVYYCATESRY
(SEQ ID NO: 220)	YCSDNWPAPQRYIYWGQGTLVTVSS
SD3093	EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCI
(SEQ ID NO: 221)	SSGHGMTYYADSVKGRFTISTDNSKNTVYLQMNSLRAEDTAVYYCATESRY
(SEQ ID NO: 221)	YCSDNWPAPQRYIYWGQGTLVTVSS
SD3100	EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCI
	SSGHGATYYADSVKGRFTISTDNSKNTLYLQMNSLRAEDTAVYYCATESRY
(SEQ ID NO: 222)	YCSDNWPAPQRYIYWGQGTLVTVSS
SD3101	EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCI
(SEQ ID NO: 223)	SSGHGSTYYADSVKGRFTISTDNSKNTLYLQMNSLRAEDTAVYYCATESRY
(SEQ ID NO: 223)	YCSDNWPAPQRYIYWGQGTLVTVSS
SD3102	EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCI
(SEQ ID NO: 224)	SSGHGQTYYADSVKGRFTISTDNSKNTLYLQMNSLRAEDTAVYYCATESRY
(SEQ ID NO: 224)	YCSDNWPAPQRYIYWGQGTLVTVSS
SD3103	EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCI
	SSGHGDTYYADSVKGRFTISTDNSKNTLYLQMNSLRAEDTAVYYCATESRY
(SEQ ID NO: 225)	YCSDNWPAPQRYIYWGQGTLVTVSS
SD3104	EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCI
	SSGHGNTYYADSVKGRFTISTDNSKNTLYLQMNSLRAEDTAVYYCATESRY
(SEQ ID NO: 226)	YCSDNWPAPQRYIYWGQGTLVTVSS

Таблица 41. Средние титры нейтрализации (нМ), уровни экспрессии в HEK293, термостабильность и характеристики последовательностей гуманизированных sdAb к вирусу гриппа В (пустые ячейки означают "не определено")

		FJ-J	VNA IC	₅₀ (нМ)					ьно	
ID	B/Brisbane/60/08	B/Malaysia/2506/04	B/Florida/04/06	B/Harbin/7/94	B/Massachusetts/2/12	B/Lee/40	Уровень экспрессии (мг/л) культуральной среды	$\mathtt{T_m}$ начала плавления (°C)	Кол-во FR-мутаций относительно вародышевой линии	8 идентичности FR
SD1083	174	256	290	303	260	215		57 , 6	19	79%
SD3005							0		5	94%
SD3006							0		5	94%
SD3007	>100 0			>100 0		>100 0	15		6	93%
SD3008	>100 0			>100 0		>100 0	157		7	92%
SD3009	194			516		372	6		6	93%
SD3010	149			173		227	15	57 , 9	6	93%
SD3011	53			96		59	20	71,0	7	92%

SD3012	59			78		60	132	74,3	8	91%
SD3087	32	81	160	201	104	91	161	75,1	7	92%
SD3088	101					127	9	58 , 7	5	94%
SD1084	12	26	68	322	35	>100		56 , 7	10	89%
		20	00	>100		>100		30,7		
SD3001	101			0		0 >100	67		3	97%
SD3002	5			137		0	50	65 , 3	3	97%
SD3003	101			>100 0		>100 0	68		4	96%
SD3004	5			101		>100 0	71	62,2	4	96%
SD3085	12	13	64	228	32	>100 0	133	66,2	2	98%
SD3086	40					>100 0	99	62,1	1	99%
555000	40		>100	>100		0				220
SD1087	34 >100	59	0	>100	1000	22		74,7	17	81%
SD3049	0			0			32	68	8	91%
SD3050	>100			>100			53	66 , 5	10	89%
SD3051	>100			>100			62		8	91%
SD3052	>100			>100			57		8	91%
SD3053	>100 0			>100 0			29		8	91%
SD3054	>100 0			>100 0			60	65 , 7	10	89%
SD3055	>100			>100 0			48	66 , 2	10	89%
SD3056	>100			>100 0			26		10	89%
SD3069	56			>100 0		67	40	69 , 7	9	90%
SD3070	>100 0			>100 0		>100 0	26	70 , 9	9	90%
SD3071	>100 0			>100		>100 0	29	69,6	9	90%
SD3072	160			>100		318	20	65 , 2	8	91%
SD3073	28			>100 0		59	35	69,1	7	92%
SD3074	36			>100 0		42	27	66,2	8	91%
SD3075	>100 0			>100		>100	7	61,5	5	94%
SD3076	>100			>100		>100	6	61,1	5	94%
SD3092	51	40	>100	>100	>100 0	40	18	64,0	6	93%
SD3092	32	40	659	>100	795	32	21	69,4	7	92%
SD3100	>100	10	033	>100	7 7 3	>100	30	05,4	6	93%
	>100			>100		>100				
SD3101	>100			>100		>100	29		6	93%
SD3102	0		<u> </u>	0		0	36	<u> </u> 	6	93%
SD3103	>100			>100		>100	43		6	93%
SD3104	>100 0			>100 0		>100 0	31		6	93%

Таблица 42. Средние титры нейтрализации (нМ), уровни экспрессии в НЕК293, термостабильность и характеристики последовательностей гуманизированных sdAb SD1036 и SD1046 к вирусу гриппа A (пустые ячейки означают "не определено")

			VNA IC		- (11) \$111		33114 1410	110 011	ределено	,
					8)	6	среды	(၁ _°)	относительно	
ID	A/Brisbane/10/07	A/Hong Kong/1/68-ma	A/waterfowl/Hong Kong/MPA892/06	A/mallard/Netherlands/12/00	A/New York/107/03 (PR8)	A/chicken/Germany/n/49	Уровень экспрессии (мг/л) культуральной	$\mathtt{T_n}$ начала плавления	Кол-во FR-мутаций вародышевой линии	8 идентичности FR
SD1036	59	78	44	6	11	10		56,5	16	82%
SD3023	64	206		5	16		113		7	92%
SD3024	80	206		8	20	•	40	51,5	5	94%
SD3025	160	280		5	13		122	59,8	6	93%
SD3026	16 16	36 30		3 5	8 6		59	58 , 5	5 7	94% 92%
SD3027	101	280		6	26		106 114		8	91%
SD3028	8	200		<4	6		59	60,8	5	94%
SD3094 SD3095	8	26		<4	6		102	64,1	6	93%
SD3095	26	20		<4	5		121	66,2	7	92%
SD3097	17	32	6	6	8	6	79	70,5	5	94%
SD3098	4	20		<4	16		114	74,2	6	93%
SD1046	5	26	3	25	34	13		58,3	16	82%
SD3041		858		>100	>100 0		134		5	94%
SD3042		253		>100	>100		100	63,8	5	94%
SD3043		466		>100	>100		89	71,2	6	93%
SD3044		253		>100	>100		138		7	92%
SD3045		632		>100 0 >100	>100 0 >100		92		6	93%
SD3046		253		0	0		92		6	93%
SD3047		253		>100 0 >100	>100		94		7	92%
SD3048		343		>100	858		36		8	91%
SD3067	3	8		10	16		101	63,3	8	91%
SD3068	4	10		10	26		107	55,9	7	92%
SD3099	3	3	2	26	16	5	98	63,5	7	92%

Таблица 43. Средние титры нейтрализации (нМ), уровни экспрессии в НЕК293, термостабильность и характеристики последовательностей гуманизированного sdAb SD1038 к вирусу гриппа А (пустые ячейки означают "не определено")

	AU SDIC		VNA IC							
ID	A/California/07/09	A/New Caledonia/20/99	A/Puerto Rico/8/34-ma	A/Vietnam/1194/04	A/Brisbane/10/07	A/Hong Kong/1/68	Уровень экспрессии (кг/л) культуральной среды	$\mathtt{T_n}$ начала плавления (°C)	Кол-во FR-мутаций относительно вародышевой линии	8 идентичности FR
SD1038	2	7	10	15	284	251	<u> </u>	60,4	17	81%
SD3013		6	8	20	318	126	109		10	89%
SD3014		3	4	11			97	72	10	89%
SD3015		3	3	6			46	63 , 7	9	90%
SD3016		3	3	8			99	74,5	11	888
SD3017		4	6	11			150		10	89%
SD3018		6	3	8			84	69,6	10	89%
SD3019		4	6	8			49	60,3	9	90%
SD3020		4	4	15			93	72 , 6	11	888
SD3021	3	3	3	15	>100 0		80	73,4	11	88%
SD3022	3	8	6	20	632		96		11	888
SD3029	3	4	2	20	632	251	22		17	81%
SD3030	3	8	6	20	274	126	37		17	81%
SD3031		37	15	51	>100 0		19		17	81%
SD3032		>500	>500	>500			17		17	81%
SD3033		51	51	316			11		17	81%
SD3078		8	3	20	632		81	68,6	6	93%
SD3079		5	3	16	949	503	85	75 , 3	7	92%
SD3080		5	3	16	632		89	78 , 6	8	91%
SD3089		3	2	20	1188		87	66,2	6	93%
SD3119		3		6	253	101		75 , 3	6	93%

Гуманизация SD1036.

Для SD1036 получали 11 гуманизированных вариантов. Несколько из этих вариантов продемонстрировали такую же или в некоторых случаях даже лучшую нейтрализующую активность по сравнению с исходным sdAb. Никаких существенных различий в уровнях экспрессии не наблюдалось, тогда как для большинства вариантов SD1036 температура начала плавления повышалась. Вариант SD3097 был выбран в качестве конечного гуманизированного варианта, поскольку он имел наименьшее число FR-мутаций по сравнению с последовательностями зародышевой линии человека, высокое значение $T_{\rm m}$ начала плавления и кроме того продемонстрировал эффективную нейтрализацию всех тестируемых штаммов вируса гриппа группы 2.

Гуманизация SD1038.

Для SD1038 получали 21 гуманизированный вариант. Все варианты, за исключением SD3031-33, продемонстрировали такую же нейтрализующую активность в отношении 4 штаммов группы 1, что и исходное sdAb. Значения IC_{50} для штаммов H3 A/Brisbane/10/07 и A/Hong Kong/1/68 были несколько выше для большинства вариантов SD1038. Вариант SD3119 был выбран в качестве конечного гуманизированного варианта, поскольку он имел наименьшее число FR-мутаций по сравнению с последовательностями зародышевой линии человека, высокое значение $T_{\rm m}$ начала плавления и продемонстрировал эффективную нейтрализацию всех тестируемых штаммов вируса гриппа. В данном варианте Met в CDR3

замещен на Ile.

Гуманизация SD1046.

Для SD1046 получали 11 гуманизированных вариантов. Первая серия вариантов продемонстрировала сильно сниженную нейтрализующую активность по сравнению с исходным sdAb. Была получена вторая серия вариантов, которая продемонстрировала активность, очень похожую на таковую для SD1046 в VNA. Их этих вариантов SD3099 был выбран в качестве конечного гуманизированного варианта, поскольку он имел наименьшее число FR-мутаций по сравнению с последовательностями зародышевой линии человека и продемонстрировал высокую термостабильность.

Гуманизация SD1083.

Для SD1083 получали 10 гуманизированных вариантов. Несколько из этих вариантов продемонстрировали низкие уровни экспрессии в клетках HEK293 и 2 не экспрессировались вовсе. Из 3 вариантов, которые хорошо экспрессировались, SD3087 был выбран в качестве конечного гуманизированного варианта. Это sdAb являлось более эффективным, чем исходное SD1083 в VNA, и характеризовалось значительно более высоким значением T_m начала плавления.

Гуманизация SD1084.

Для SD1084 получали 6 гуманизированных вариантов. Из этих вариантов четыре продемонстрировали такую же нейтрализующую активность в VNA, что и исходное sdAb. Из этих вариантов SD3085 был выбран в качестве конечного гуманизированного варианта, поскольку он характеризовался самым высоким значением T_m начала плавления и имел только 2 FR-мутации по сравнению с последовательностями зародышевой линии человека.

Гуманизация SD1087.

Для SD1087 получали 23 гуманизированных варианта. Первая серия из 8 вариантов не продемонстрировала измеряемой активности в VNA в отношении 2 штаммов вируса гриппа В. Была получена вторая серия SDAb, которая включала число вариантов, характеризующихся значениями IC_{50} , схожими с таковыми для SD1087. Термостабильность этих вариантов была ниже, чем таковая исходной молекулы. Ни один из вариантов, содержащих замену Met в CDR2, не продемонстрировал активность в VNA. SD3093 был выбран в качестве конечного гуманизированного варианта, поскольку он продемонстрировал лишь незначительное снижение значения $T_{\rm m}$ начала плавления и его активность в VNA была такой же, что и у SD1087.

Пример 12. Образование и определение характеристик мультимерных конструкций на основе гуманизированных sdAb, содержащих Fc.

Образование конструкций слияния, содержащих Fc.

Для образования мультимерных конструкций слияния, содержащих Fc, применяли гуманизированные варианты sdAb, описанные в примере 11. Гуманизированные мультимерные связывающие молекулы, то есть мультимерные связывающие молекулы, содержащие по меньшей мере два гуманизированных sdAb, сливали непосредственно с N-концом Fc-области. Конструкции слияния, содержащие Fc, были экспрессированы в клетках млекопитающих и секретировались в среду в виде димерных молекул с Fc. Полные аминокислотные последовательности конструкций слияния, содержащих Fc, показаны в табл. 44. Образовывались гомодимерные, а также гетеродимерные молекулы слияния, содержащие Fc. Гетеродимерные слияния, содержащие Fc, образовывались путем введения точечных мутаций (К409R и F405L) в домен CH3 2 Fc-цепей, как описано Labrijn et al. (2013), или путем введения мутаций "выступы-во-впадинах", как описано в EP 0812357 B1 и EP 0979281 B1.

Генные конструкции, кодирующие мультимерные белки слияния на основе гуманизированных sdAb, содержащие Fc, были кодон-оптимизированы для экспрессии в клетках млекопитающих и введены в векторы Lonza pEE12.4. Векторы экспрессии (в которых использовался сигнальный пептид CD4 HC) амплифицировали, очищали и концентрировали до конечной концентрации >5 мг/мл в стерильной воде для трансфекции клеточных линий CHO с помощью электропорации. Гетеродимерные белки слияния, содержащие Fc, получали посредством котрансфекции равными количествами векторов, кодирующих 2 отдельные цепи. Гомодимерные Fc-слияния получали с применением одной векторной конструкции, как указано выше. Клеточные культуры выращивали с применением стандартных процедур с использованием встряхиваемых колб для культур в суспензионной фазе. Отфильтрованные супернатанты культур вносили в колонки HiTrap MabSelect SuRe, промывали PBS, элюировали 0,1 М ацетатом натрия, pH 3,5, нейтрализовали с применением 2,5 М Трис, pH 7,2, и подвергали диализу в dPBS.

Таблица 44. Аминокислотные последовательности мультимерных конструкций на основе гуманизированных sdAb, содержащих Fc

	па основе гуманизированных заго, содержащих ге			
FM1W3	QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGS	SEQ	ID	NO:
	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGV	293		
	YWGQGTLVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWF			
	RQAPGKEREFVAAINALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV			
	YYCTAQGQWRAAPVAVAAEYEFWGQGTLVTVSSGGGGSGGGGSEVQLLESGGGLVQ			
	PGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGSWTYYADSVKGRFT			
	ISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTLV			
	TVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPG			
	KGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKD			
	WGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE			
	VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWL			
	NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVK			
	GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS			
	VMHEALHNHYTQKSLSLSPGK			
FM1W4	EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGS	SEQ	ID	ио:
	WTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTF	294		
	SRLASSWGQGTLVTVSSGGGGSGGGGSQVQLVESGGGVVQPGGSLRLSCAASISIF			
	DIYAMDWYRQAPGKQRELVAVSFRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSL			
	RAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGTLVTVSSGGGGSGGGGSEVQLVES			
	GGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSV			
	KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSGGG			
	GSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAAIN			
	I .	<u> </u>		

	ALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAAPVA	
	VAAEYEFWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE	
	VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWL	
	NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVK	
	GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS	
	VMHEALHNHYTQKSLSLSPGK	
FM1W5	QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGS	SEQ ID NO:
	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGV	295
	YWGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSM	
	GWFRQAPGKEREFVATIGWNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAED	
	TAVYYCAAAKGPLRLSSQADYWGQGTLVTVSSGGGGSGGGSEVQLLESGGGLVQP	
	GGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGSWTYYADSVKGRFTI	
	SRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTLVT	
	VSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGK	
	GLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDW	
	GGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV	
	TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN	
	GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKG	
	FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV	
	MHEALHNHYTQKSLSLSPGK	
FM1W6	EVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGKEREFVATIGWNSG	SEO ID NO:
ITITWO	RTFYPDSVKGRFTISRDNSKNTLYLOMNSLRAEDTAVYYCAAAKGPLRLSSOADYW	296
	GOGTLVTVSSGGGGSGGGGSOVOLVESGGGVVOPGGSLRLSCAASISIFDIYAMDW	230
	YRQAPGKQRELVAVSFRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV	
	YYCHVSLYRDPLGVAGGIGVYWGOGTLVTVSSGGGGSGGGSEVOLVESGGGLVOP	
	GGSLRLSCAASGFTFSTSWMYWLROAPGKGLEWVSVINTDGGTYYADSVKGRFTIS	
	RDNSKNTLYLOMNSLRAEDTAVYYCAKDWGGPEPTRGOGTLVTVSSGGGGSGGGG	
	EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGS	
	WTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTF	
	SRLASSWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV	
	TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN	
	GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKG	
	FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV	
	MHEALHNHYTQKSLSLSPGK	
FM1W7	QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGS	SEQ ID NO:
	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGV	297
	YWGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSM	
	GWFRQAPGKEREFVATIGWNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAED	
	TAVYYCAAAKGPLRLSSQADYWGQGTLVTVSSGGGGSGGGSEVQLVESGGGLVQP	
	~ ~ ~	
	GGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCISSGHGMTYYADSVKGRFTI	

	STDNSKNTVYLQMNSLRAEDTAVYYCATESRYYCSDNWPAPQRYIYWGQGTLVTVS	
	SGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGL	
	EWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGG	
	PEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC	
	VVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK	
	EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY	
	PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH	
	EALHNHYTQKSLSLSPGK	
TD 61770		
FM1W8	EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCISSGHG	SEQ ID NO:
	MTYYADSVKGRFTISTDNSKNTVYLQMNSLRAEDTAVYYCATESRYYCSDNWPAPQ	298
	RYIYWGQGTLVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFST	
	SWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRA	
	EDTAVYYCAKDWGGPEPTRGQGTLVTVSSGGGGSGGGGSQVQLVESGGGVVQPGGS	
	LRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGSTYYADSVKGRFTISRDN	
	SKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGTLVTVSSGGGGS	
	GGGGSEVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGKEREFVATI	
	GWNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGPLRLSS	
	QADYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC	
	VVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK	
	EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY	
	PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH	
	EALHNHYTQKSLSLSPGK	
FM1B67	QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGS	SEQ ID NO:
,1	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGV	299
	YWGQGTLVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWF	
	RQAPGKEREFVAAINALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV	
	YYCTAQGQWRAAPVAVAAEYEFWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLF	
	PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST	
	YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR	
	EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLT	
	VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
	EVOLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGG	SEO ID NO:
	TYYADSVKGRFTISRDNSKNTLYLOMNSLRAEDTAVYYCAKDWGGPEPTRGOGTLV	300
	TVSSGGGGSGGGSEVOLLESGGGLVOPGGSLRLSCAASGFTLENKAIGWFROAPG	
	KEREGVLCISKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCAT	
	TTAGGGLCWDGTTFSRLASSWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPP	
	KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR	
	VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE	
	MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVD	
	KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
	101/44 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
L		

FM1B68	QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGS	SEQ ID NO:
,1	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGV	301
	YWGQGTLVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWF	
	RQAPGKEREFVAAINALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV	
	YYCTAQGQWRAAPVAVAAEYEFWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLF	
	PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST	
	YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR	
	EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLT	
	VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
	EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGS	SEQ ID NO:
	WTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTF	302
	SRLASSWGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTF	
	STSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSL	
	RAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPP	
	KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR	
	VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE	
	MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVD	
	KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
FM1B69	QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGS	SEQ ID NO:
,1	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGV	303
	YWGQGTLVTVSSGGGGSGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWF	
	RQAPGKEREFVAAINALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV	
	YYCTAQGQWRAAPVAVAAEYEFWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLF	
	PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST	
	YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR	
	EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLT	
	VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
	EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCISSGHG	SEQ ID NO:
	MTYYADSVKGRFTISTDNSKNTVYLQMNSLRAEDTAVYYCATESRYYCSDNWPAPQ	305
	RYIYWGQGTLVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFST	
	SWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRA	
	EDTAVYYCAKDWGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKP	
	KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV	
	SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMT	
	KNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKS	
	RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
FM1B70	QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGS	SEQ ID NO:
,1	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGV	306
	YWGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSM	
	GWFRQAPGKEREFVATIGWNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAED	

	MAYWAAAAKADI DI GGAADWAAAAMI WAXAGADWAWAAAAAAAAA	
	TAVYYCAAAKGPLRLSSQADYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFP	
	PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY	
	RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE	
	EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV	
	DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
	EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGG	SEQ ID NO:
	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEPTRGQGTLV	307
	TVSSGGGGSGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPG	
	KEREGVLCISKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCAT	
	TTAGGGLCWDGTTFSRLASSWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPP	
	KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR	
	VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE	
	 MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVD	
	KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
FM1B71	OVOLVESCANA ODCASI DI CANACICI EDIVAMBIANDA DAVODEI VAVAEDDACA	CEO ID NO:
	QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGS	SEQ ID NO:
,1	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGV	308
	YWGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSM	
	GWFRQAPGKEREFVATIGWNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAED	
	TAVYYCAAAKGPLRLSSQADYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFP	
	PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY	
	RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE	
	EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV	
	DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
	EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGS	SEQ ID NO:
	WTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTF	309
	SRLASSWGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTF	
	STSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSL	
	RAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPP	
	KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR	
	VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE	
	MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVD	
	KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
FM1B72	OVOLVESGGGVVOPGGSLRLSCAASISIFDIYAMDWYROAPGKORELVAVSFRDGS	SEO ID NO:
,1	TYYADSVKGRFTISRDNSKNTLYLOMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGV	310
, -	YWGQGTLVTVSSGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSM	
	GWFRQAPGKEREFVATIGWNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAED	
	TAVYYCAAAKGPLRLSSQADYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFP	
	PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY	
	RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE	
	EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV	

	DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
	EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCISSGHG	SEQ	ID	NO:
	MTYYADSVKGRFTISTDNSKNTVYLQMNSLRAEDTAVYYCATESRYYCSDNWPAPQ	311		
	RYIYWGQGTLVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFST			
	 SWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRA			
	 EDTAVYYCAKDWGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKP			
	KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV			
	SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMT			
	KNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKS			
	RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
FM1B73	EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAAINALGTRTY	SEQ	ID	NO:
,1	YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAAPVAVAAEYEF	312		
	WGQGTLVTVSSGGGGSGGGGQVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMD			
	WYRQAPGKQRELVAVSFRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA			
	VYYCHVSLYRDPLGVAGGIGVYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLF			
	PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST			
	YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR			
	EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLT			
	VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
	EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGG	SEQ	ID	NO:
	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEPTRGQGTLV	313		
	TVSSGGGGSGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPG			
	KEREGVLCISKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCAT			
	TTAGGGLCWDGTTFSRLASSWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPP			
	KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR			
	VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE			
	MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVD			
	KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
FM1B74	EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAAINALGTRTY	SEQ	ID	NO:
,1	YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAAPVAVAAEYEF	314		
	WGQGTLVTVSSGGGGSGGGGSQVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMD			
	WYRQAPGKQRELVAVSFRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA			
	VYYCHVSLYRDPLGVAGGIGVYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLF			
	PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST			
	YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR			
	EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLT			
	VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
	EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGS	SEQ	ID	NO:
	WTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTF	315		

	SRLASSWGQGTLVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTF			
	STSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSL			
	RAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPP			
	KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR			
	VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE			
	MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVD			
	KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
7.41.75				
FM1B75	EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAAINALGTRTY	SEQ	ID I	: OV
,1	YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAAPVAVAAEYEF	316		
	WGQGTLVTVSSGGGGSGGGGSQVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMD			
	WYRQAPGKQRELVAVSFRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA			
	VYYCHVSLYRDPLGVAGGIGVYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLF			
	PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST			
	YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR			
	EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLT			
	VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
	EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCISSGHG	SEO	ו חד	VI∩•
	MTYYADSVKGRFTISTDNSKNTVYLQMNSLRAEDTAVYYCATESRYYCSDNWPAPQ	317	10 1	
	RYIYWGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFST	317		
	SWMYWLROAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLOMNSLRA			
	EDTAVYYCAKDWGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKP			
	KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV			
	SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMT			
	KNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
	KMÖÖGNAL 2C2AMUFATUNULLÖV2F2F2LAV			
FM1B76	QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGS	SEQ	ID I	10:
,1	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGV	318		
	YWGQGTLVTVSSGGGGSGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWF			
	RQAPGKEREFVAAINALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV			
	YYCTAQGQWRAAPVAVAAEYEFWGQGTLVTVSSGGGGSGGGGSEVQLLESGGGLVQ			
	PGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGSWTYYADSVKGRFT			
	ISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTLV			
	TVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPG			
	KGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKD			
	WGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE			
	VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWL			
	NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVK			
	GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCS			
	VMHEALHNHYTQKSLSLSPGK			
	DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN	SEQ	ID I	10:

	WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI	319		
	EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE			
	NNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS			
	PGK			
FM1B67	QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGS	_ ~	ID N	10:
,2	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGV	320		
	YWGQGTLVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWF			
	RQAPGKEREFVAAINALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV			
	YYCTAQGQWRAAPVAVAAEYEFWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLF			
	PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST			
	YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR			
	EEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT			
	VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
	EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGG	SEQ	ID N	10:
	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEPTRGQGTLV	321		
	TVSSGGGGSGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPG			
	KEREGVLCISKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCAT			
	TTAGGGLCWDGTTFSRLASSWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPP			
	 KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR			
	VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE			
	 MTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVD			
	KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
FM1B68	QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGS	SEQ	ID N	10:
,2	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGV	322		
	YWGQGTLVTVSSGGGGSGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWF			
	RQAPGKEREFVAAINALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV			
	YYCTAQGQWRAAPVAVAAEYEFWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLF			
	PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST			
	YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR			
	EEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT			
	VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
	EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGS	SEQ	ID N	10:
	WTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTF	323		
	SRLASSWGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTF			
	STSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSL			
	RAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPP			
	KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR			
	VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE			
	MTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVD			

	KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
FM1B69	QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGS TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGV	SEQ 324	ID	NO:
	YWGQGTLVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWF			
	RQAPGKEREFVAAINALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV			
	YYCTAQGQWRAAPVAVAAEYEFWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLF			
	PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR			
	EEMTKNOVSLWCLVKGFYPSDIAVEWESNGOPENNYKTTPPVLDSDGSFFLYSKLT			
	VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
	ADV2KMÄÄGUAL2C2AMUFYTUNUIIÄV2F2F2F2K			
	EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCISSGHG	SEQ	ID	NO:
	MTYYADSVKGRFTISTDNSKNTVYLQMNSLRAEDTAVYYCATESRYYCSDNWPAPQ	325		
	RYIYWGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFST			
	SWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRA			
	EDTAVYYCAKDWGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKP			
	KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV			
	SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMT			
	KNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKS			
	RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
FM1B70	QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGS	SEQ	ID	NO:
,2	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGV	326		
	YWGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSM			
	GWFRQAPGKEREFVATIGWNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAED			
	TAVYYCAAAKGPLRLSSQADYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFP			
	PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY			
	RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE			
	EMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV			
	DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
	EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGG	SEQ	ID	NO:
	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEPTRGQGTLV	327		
	TVSSGGGGSGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPG			
	KEREGVLCISKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCAT			
	TTAGGGLCWDGTTFSRLASSWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPP			
	KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR			
	VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE			
	MTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVD			
	KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
FM1B71	QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGS	SEQ	ID	NO:
,2	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGV	328		

	YWGQGTLVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSM	
	GWFRQAPGKEREFVATIGWNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAED	
	TAVYYCAAAKGPLRLSSOADYWGOGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFP	
	PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY	
	RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE	
	EMTKNOVSLWCLVKGFYPSDIAVEWESNGOPENNYKTTPPVLDSDGSFFLYSKLTV	
	DKSRWOOGNVFSCSVMHEALHNHYTOKSLSLSPGK	
	Prof. W. Z.	
	EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGS	SEQ ID NO:
	WTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTF	329
	SRLASSWGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTF	
	STSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSL	
	RAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPP	
	KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR	
	VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE	
	MTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVD	
	KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
FM1B72	QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGS	SEQ ID NO:
, 2	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGV	330
	YWGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSM	
	GWFRQAPGKEREFVATIGWNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAED	
	TAVYYCAAAKGPLRLSSQADYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFP	
	PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY	
	RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE	
	EMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV	
	DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
	EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCISSGHG	SEQ ID NO:
	MTYYADSVKGRFTISTDNSKNTVYLQMNSLRAEDTAVYYCATESRYYCSDNWPAPQ	331
	RYIYWGQGTLVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFST	
	SWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRA	
	EDTAVYYCAKDWGGPEPTRGOGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKP	
	KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV	
	SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMT	
	KNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKS	
	RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK	
FM1B73	EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAAINALGTRTY	SEQ ID NO:
, 2	YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAAPVAVAAEYEF	332
	WGQGTLVTVSSGGGGSGGGSQVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMD	
	WYRQAPGKQRELVAVSFRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA	
	VYYCHVSLYRDPLGVAGGIGVYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLF	
	PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST	

	YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR			
	EEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT			
	VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
	EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGG	SEQ	ID	NO:
	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEPTRGQGTLV	333		
	TVSSGGGGSGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPG			
	KEREGVLCISKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCAT			
	TTAGGGLCWDGTTFSRLASSWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPP			
	KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR			
	VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE			
	MTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVD			
	KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
FM1B74	EVOLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAAINALGTRTY	SEO	ΙD	NO:
,2	YADSVKGRFTISRDNSKNTLYLOMNSLRAEDTAVYYCTAOGOWRAAPVAVAAEYEF	334		
'-	WGOGTLVTVSSGGGGSGGGSQVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMD			
	WYRQAPGKQRELVAVSFRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA			
	VYYCHVSLYRDPLGVAGGIGVYWGOGTLVTVSSDKTHTCPPCPAPELLGGPSVFLF			
	PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST			
	YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR			
	EEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT			
	VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKK			
	AND SAME SESSION OF SE			
	EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGS	SEQ	ID	NO:
	WTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTF	335		
	SRLASSWGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTF			
	STSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSL			
	RAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPP			
	KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR			
	VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE			
	MTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVD			
	KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
FM1B75	EVOLLESGGGLVOPGGSLRLSCAASGRTYAMGWFROAPGKEREFVAAINALGTRTY	SEO	ΤD	NO•
,2	YADSVKGRFTISRDNSKNTLYLOMNSLRAEDTAVYYCTAOGOWRAAPVAVAAEYEF	336	ıυ	110.
1 4		336		
	WGQGTLVTVSSGGGGSGGGGSQVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMD WYROAPGKORELVAVSFRDGSTYYADSVKGRFTISRDNSKNTLYLOMNSLRAEDTA			
	WYYCHVSLYRDPLGVAGGIGVYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLF			
	PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEOYNST			
	~			
	YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR			
	EEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT			
	VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			

	EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCISSGHG	SEQ	ID	NO:
	MTYYADSVKGRFTISTDNSKNTVYLQMNSLRAEDTAVYYCATESRYYCSDNWPAPQ	337		
	RYIYWGQGTLVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFST			
	SWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRA			
	EDTAVYYCAKDWGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKP			
	KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV			
	SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMT			
	KNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKS			
	RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
FM1B76	QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGS	SEQ	ID	NO:
, 2	TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGV	338		
	YWGQGTLVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWF			
	RQAPGKEREFVAAINALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV			
	YYCTAQGQWRAAPVAVAAEYEFWGQGTLVTVSSGGGGSGGGGSEVQLLESGGGLVQ			
	PGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGSWTYYADSVKGRFT			
	ISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTLV			
	TVSSGGGGSGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPG			
	KGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKD			
	WGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE			
	VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWL			
	NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVK			
	GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS			
	VMHEALHNHYTQKSLSLSPGK			
	DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN	SEQ	ID	NO:
	WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI	339		
	EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLSCAVKGFYPSDIAVEWESNGQPE			
	NNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS			
	PGK			

Нейтрализация вируса гриппа мультимерными белками слияния на основе гуманизированных sdAb, содержащими Fc.

Очищенные белки слияния, содержащие Fc, тестировали в анализах нейтрализации вируса гриппа, как описано в примере 6, и они продемонстрировали такую же эффективность и спектр нейтрализации при сравнении с соответствующими версиями дикого типа. Средние титры нейтрализации для различных штаммов вируса гриппа представлены в табл. 45.

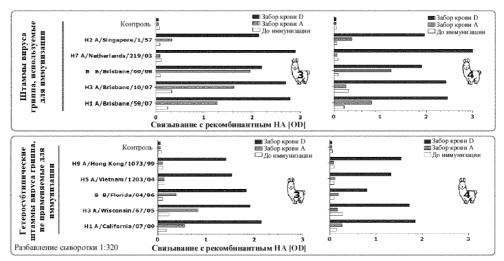
Таблица 45. Средние титры нейтрализации (нМ) мультимерных конструкций на основе гуманизированных sdAb, содержащих Fc

	H3 A/Brisbane/10/07	H7 (A/mallard/Netherlands/12/00)	B/Brisbane/60/08	∞ B/Harbin/7/94	o H1 A/New Caledonia/20/99	H5 A/Vietnam/1194/04
FM1W3	16	8	16	8	6	10
FM1W4	40	16	8	6	32	32
FM1W5	16	6	10	10	6	8
FM1W6	16	13	8	6	40	32
FM1W7	10	8	16	6	5	13
FM1W8	40	51	4	3	40	40
FM1B67,1	16	16	4	6	6	16
FM1B68,1	16	16	6	6	6	16
FM1B69,1	26	16	3	6	6	16
FM1B70,1	16	16	6	5	6	16
FM1B71,1	32	16	6	6	16	26
FM1B72,1	16	16	3	6	10	16
FM1B73,1	16	16	5	6	101	101
FM1B74,1	20	16	6	6	80	101
FM1B75,1	16	16	3	5	80	101
FM1B76,1	16	16	16	16	13	20

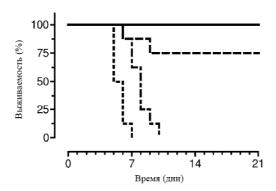
Ссылки.

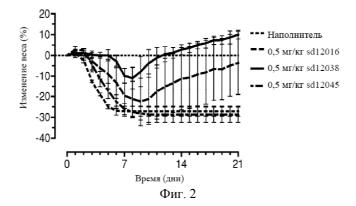
Adam et al., Clinical and Vaccine Immunology, 2014; 21(11): 1528-1533.

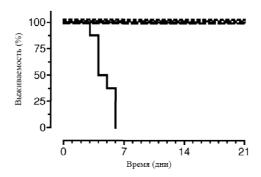
Brandenburg et al., PLoS One, 2013; 8(12):e80034. Corti et al., Science, 2011; 333:850-856. Dreyfus et al., Science, 2012; 337:1343-1348. Ekiert et al., Science, 2009; 324:246-251. Ekiert et al., Science, 2011; 333:843-850. Ekiert et al. Nature, 2012; 489:526-532. Hessell et al. Nature, 2007; 449:101-104. Hufton et al., PLoS One, 2014; 9(8):e103294. Hultberg et al., PLoS One, 2011; 6(4):e17665. Johnson et al., Nat Med, 2009; 15(8):901-906. Kashyap et al., PLoS Pathog., 2010; 6:e1000990. Klein et al., mAbs, 2012; 4(6):653-663 Krause et al., J Virol., 2012; 86:6334-6340.

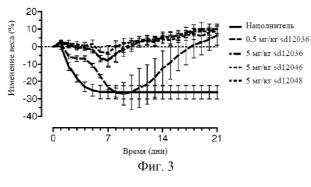

```
Kuo et al., mAbs, 2011; 3(5):422-430.
    Labrijn et al. PNAS, 2013; 110(13):5145-50.
    Lee et al., Proc Natl Acad Sci USA, 2012; 109:17040-17045.
    Limberis et al., Sci Transl Med., 2013; 5(187): 1-8.
    Strohl, Current Opinion in Biotechnology, 2009; 20:685-691.
    Sui et al., Nat Struct Mol Biol., 2009; 16:265-273.
    Suscovich M Alter, Expert Rev Vaccines, 2015; 14(2): 205-
219.
    Tan et al., J Virol., 2012; 86:6179-6188.
    Throsby et al., PLoS One, 2008; 3:e3942.
    Tillib et al., Antiviral Res., 2013; 97(3):245-54.
    Tsibane et al., PLoS Pathog., 2012; 8:e1003067.
    Vanlandschoot et al., Antiviral Research, 2011; 92(3), 389-
407.
    Wang et al., PLoS Pathog., 2010b; 6:e1000796.
    Xu et al., Science, 2010; 328(5976):357-60.
    Yoshida et al., PLoS Pathog., 2009; 5:e1000350.
```

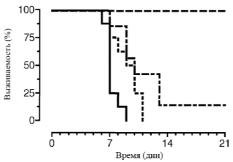
ФОРМУЛА ИЗОБРЕТЕНИЯ

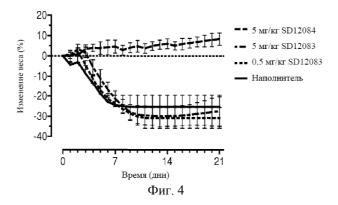

- 1. Однодоменное антитело, которое представляет собой VHH верблюдовых или гуманизированный VHH верблюдовых, способное специфично связываться с гемагглютинином (HA) по меньшей мере двух штаммов вируса гриппа A, при этом указанные штаммы содержат HA двух различных подтипов HA из филогенетической группы 2; или способное специфично связываться с гемагглютинином (HA) по меньшей мере одного вируса гриппа A из филогенетической группы 1 и по меньшей мере одного штамма вируса гриппа A из филогенетической группы 2; или способное специфично связываться с гемагглютинином (HA) по меньшей мере одного штамма вируса гриппа B, где однодоменное антитело включает аминокислотную последовательность, выбранную из SEQ ID NO: 17 и 155.
- 2. Однодоменное антитело, которое представляет собой VHH верблюдовых или гуманизированный VHH верблюдовых, способное специфично связываться с гемагглютинином (HA) по меньшей мере двух штаммов вируса гриппа A, при этом указанные штаммы содержат HA двух различных подтипов HA из филогенетической группы 2; или способное специфично связываться с гемагглютинином (HA) по меньшей мере одного вируса гриппа A из филогенетической группы 1 и по меньшей мере одного штамма вируса гриппа A из филогенетической группы 2; или способное специфично связываться с гемагглютинином (HA) по меньшей мере одного штамма вируса гриппа B, где однодоменное антитело включает аминокислотную последовательность, выбранную из SEQ ID NO: 20 и 176.
- 3. Однодоменное антитело, которое представляет собой VHH верблюдовых или гуманизированный VHH верблюдовых, способное специфично связываться с гемагглютинином (HA) по меньшей мере двух штаммов вируса гриппа A, при этом указанные штаммы содержат HA двух различных подтипов HA из филогенетической группы 2; или способное специфично связываться с гемагглютинином (HA) по меньшей мере одного вируса гриппа A из филогенетической группы 1 и по меньшей мере одного штамма вируса гриппа A из филогенетической группы 2; или способное специфично связываться с гемагглютинином (HA) по меньшей мере одного штамма вируса гриппа B, где однодоменное антитело включает аминокислотную последовательность, выбранную из SEQ ID NO: 24 и 197.
- 4. Однодоменное антитело, которое представляет собой VHH верблюдовых или гуманизированный VHH верблюдовых, способное специфично связываться с гемагглютинином (HA) по меньшей мере двух штаммов вируса гриппа A, при этом указанные штаммы содержат HA двух различных подтипов HA из филогенетической группы 2; или способное специфично связываться с гемагглютинином (HA) по меньшей мере одного вируса гриппа A из филогенетической группы 1 и по меньшей мере одного штамма вируса гриппа A из филогенетической группы 2; или способное специфично связываться с гемагглютинином (HA) по меньшей мере одного штамма вируса гриппа B, где однодоменное антитело включает аминокислотную последовательность, выбранную из SEQ ID NO: 25 и 203.
- 5. Однодоменное антитело по любому из пп.1-4, которое связывается с эпитопом в стеблевой области НА.
- 6. Однодоменное антитело по любому из пп.1-4, которое связывается с эпитопом в области, представляющей собой головку НА вируса гриппа В.
- 7. Однодоменное антитело по любому из пп.1-6, которое способно нейтрализовать по меньшей мере два штамма вируса гриппа A, при этом указанные штаммы содержат HA двух различных подтипов HA из филогенетической группы 2; или по меньшей мере один штамм вируса гриппа A из филогенетической

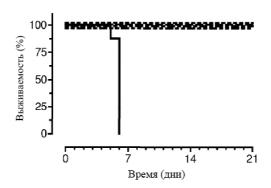

группы 1 и по меньшей мере один штамм вируса гриппа А из филогенетической группы 2; или по меньшей мере один штамм вируса гриппа В.

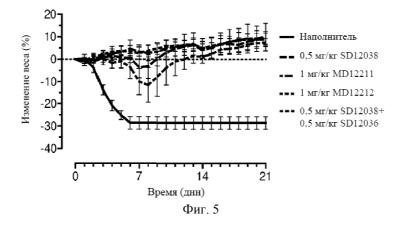

- 8. Однодоменное антитело по любому из пп.1-7, дополнительно содержащее Fc-концевую часть.
- 9. Однодоменное антитело по п.8, где Fc-концевая часть представляет собой Fc-концевую часть IgG человека.
- 10. Мультидоменное антитело, способное специфично связываться с гемагглютинином (НА) по меньшей мере двух штаммов вируса гриппа А, при этом указанные штаммы содержат НА двух различных подтипов НА из филогенетической группы 2; или способное специфично связываться с гемагглютинином (НА) по меньшей мере одного вируса гриппа А из филогенетической группы 1 и по меньшей мере одного штамма вируса гриппа А из филогенетической группы 2; или способное специфично связываться с гемагглютинином (НА) по меньшей мере одного штамма вируса гриппа В, содержащее по меньшей мере два однодоменных антитела по любому из пп.1-7.
- 11. Мультидоменное антитело по п.10, которое способно специфично связываться с гемагглютинином (НА) по меньшей мере одного штамма вируса гриппа А из филогенетической группы 1, по меньшей мере одного штамма вируса гриппа А из филогенетической группы 2 и по меньшей мере одного штамма вируса гриппа В.
- 12. Мультидоменное антитело по п.10 или 11, которое способно нейтрализовать по меньшей мере один штамм вируса гриппа А из филогенетической группы 1, по меньшей мере один штамм вируса гриппа А из филогенетической группы 2 и по меньшей мере один штамм вируса гриппа В.
- 13. Мультидоменное антитело по любому из пп.10-12, дополнительно содержащее Fc-концевую часть
- 14. Мультидоменное антитело по п.13, где Fc-концевая часть представляет собой Fc-концевую часть IgG человека.
- 15. Мультидоменное антитело по п.14, содержащее аминокислотную последовательность SEQ ID NO: 320 и 321.
- 16. Молекула нуклеиновой кислоты, кодирующая однодоменное антитело по любому из пп.1-9 или мультидоменное антитело по любому из пп.10-15.
 - 17. Вектор экспрессии, содержащий молекулу нуклеиновой кислоты по п.16.
- 18. Фармацевтическая композиция для предупреждения или лечения инфекции, вызванной вирусом гриппа, содержащая однодоменное антитело по любому из пп.1-9, мультидоменное антитело по любому из пп.10-15, молекулу нуклеиновой кислоты по п.16 и/или вектор по п.17.
- 19. Применение однодоменного антитела по любому из пп.1-9 в диагностике инфекции, вызванной вирусом гриппа.
- 20. Применение мультидоменного антитела по любому из пп.10-15 в диагностике инфекции, вызванной вирусом гриппа.
- Применение молекулы нуклеиновой кислоты по п.16 в диагностике инфекции, вызванной вирусом гриппа.
 - 22. Применение вектора по п.17 в диагностике инфекции, вызванной вирусом гриппа.
- 23. Применение однодоменного антитела по любому из пп.1-9 в изготовлении лекарственного препарата для предупреждения или лечения инфекции, вызванной вирусом гриппа.
- 24. Применение мультидоменного антитела по любому из пп.10-15 в изготовлении лекарственного препарата для предупреждения или лечения инфекции, вызванной вирусом гриппа.
- 25. Применение молекулы нуклеиновой кислоты по п.16 в изготовлении лекарственного препарата для предупреждения или лечения инфекции, вызванной вирусом гриппа.
- 26. Применение вектора по п.17 в изготовлении лекарственного препарата для предупреждения или лечения инфекции, вызванной вирусом гриппа.

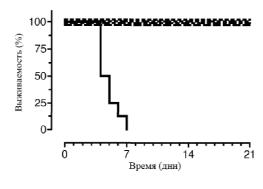


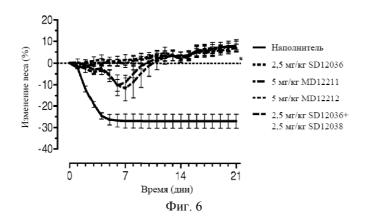

Фиг. 1

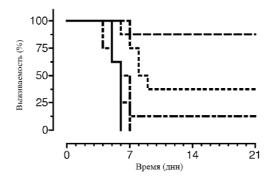


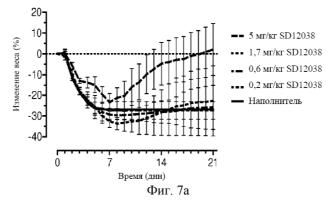


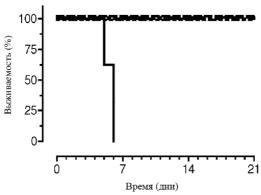


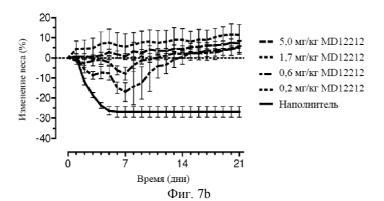


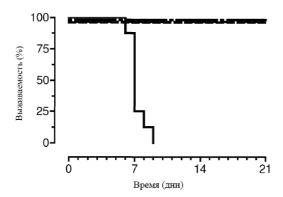


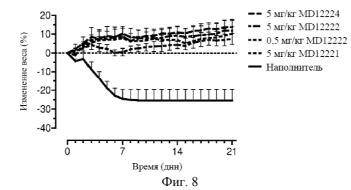


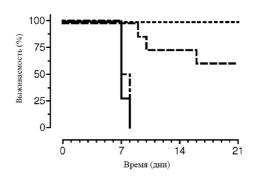


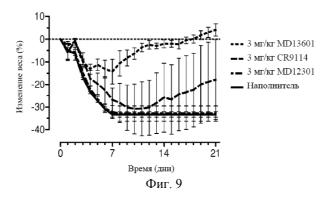


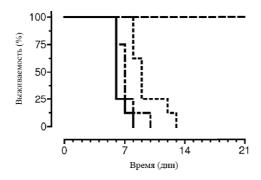


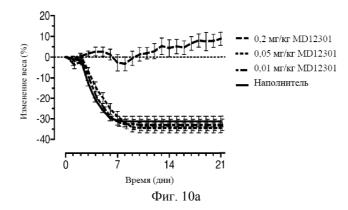


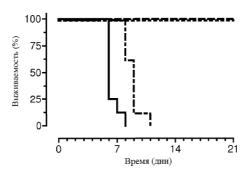


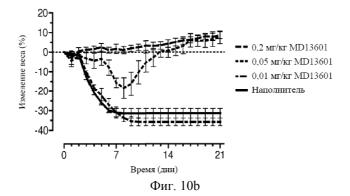


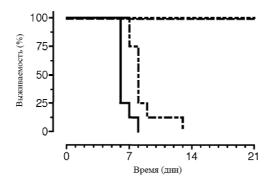


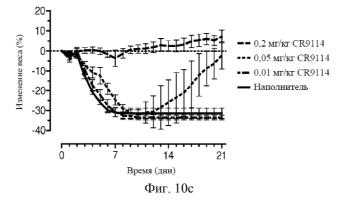


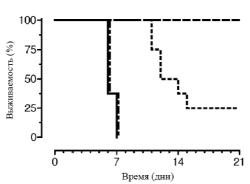


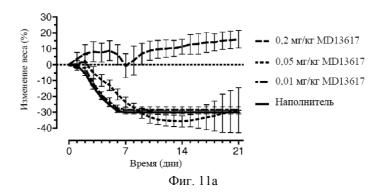


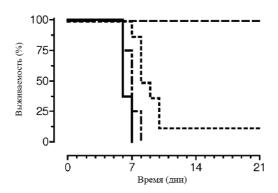


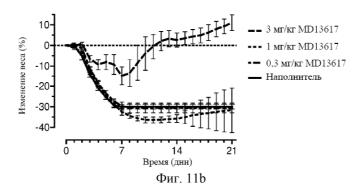


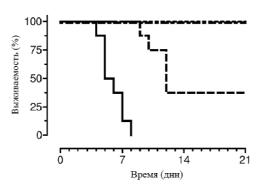


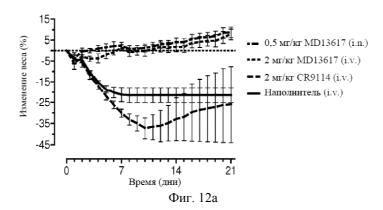


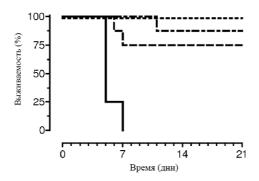


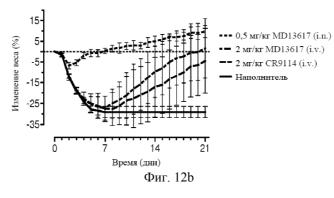


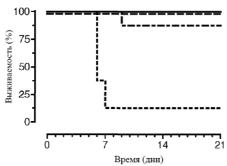


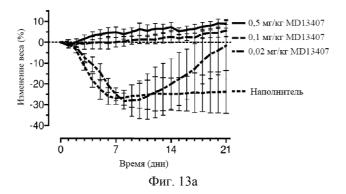


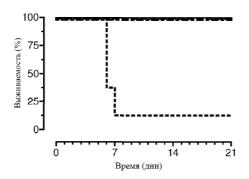


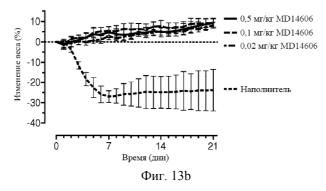


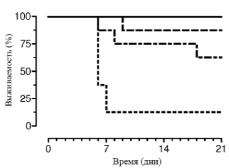


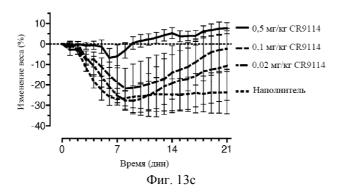


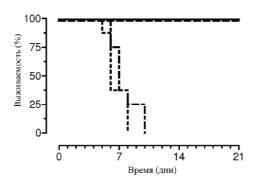


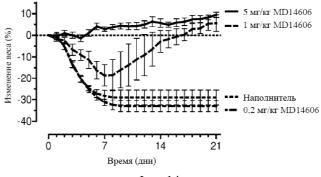


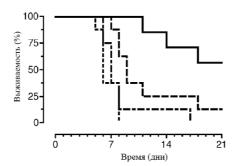


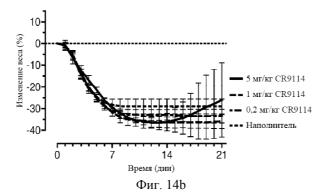


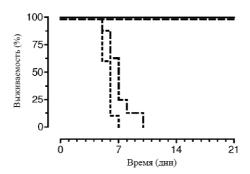


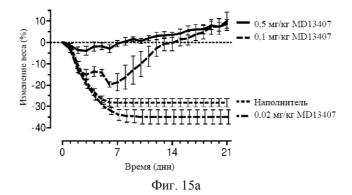


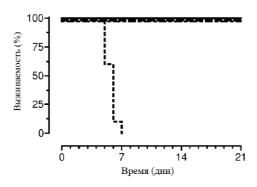


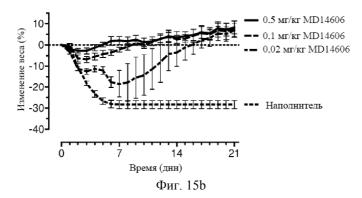


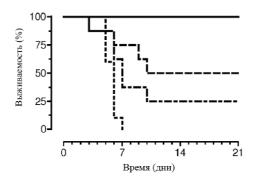


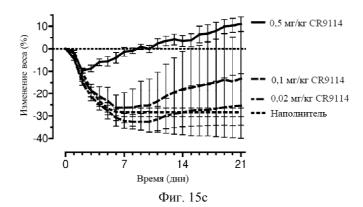


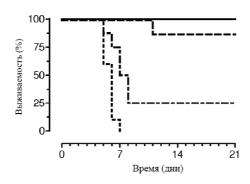


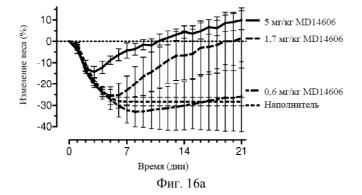

Фиг. 14а

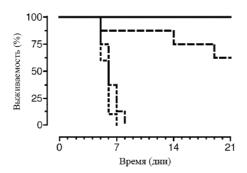


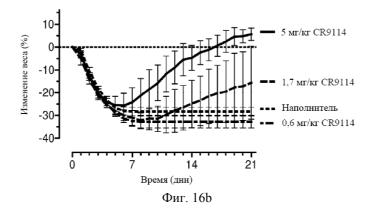


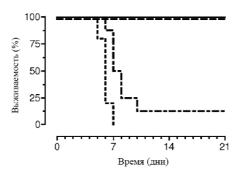


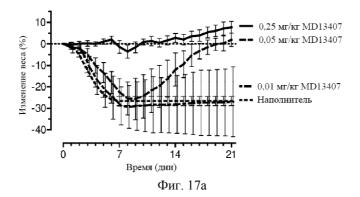


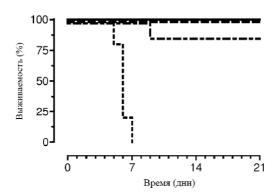


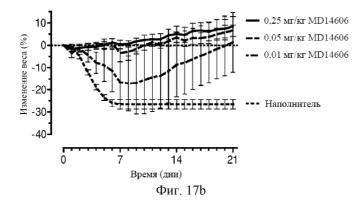


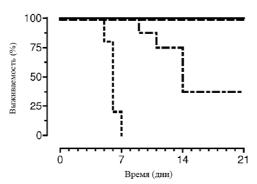


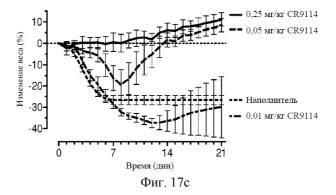


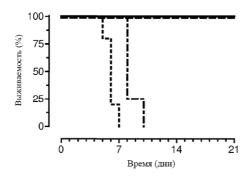


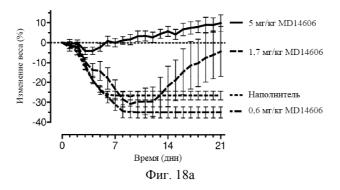


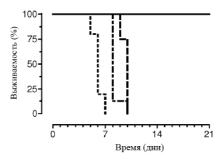


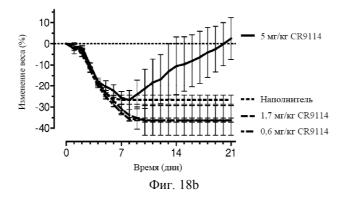












Евразийская патентная организация, ЕАПВ Россия, 109012, Москва, Малый Черкасский пер., 2