(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

2021.06.18

(21) Номер заявки

201892474

(22) Дата подачи заявки

2018.11.28

(51) Int. Cl. *H04J 11/00* (2006.01) **H04L 5/26** (2006.01) **G06F 13/00** (2006.01)

(54) МОДУЛЬ КАНАЛЬНЫХ ОКОНЧАНИЙ

(43) 2020.05.31

(96) 2018000152 (RU) 2018.11.28

(71)(73) Заявитель и патентовладелец:

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "МЕЖГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ РАЗВИТИЯ" (RU)

(72) Изобретатель:

Новиков Сергей Иванович, Афонин Григорий Викторович (RU)

(74) Представитель:

Ловцов С.В., Левчук Д.В., Вилесов А.С., Коптева Т.В., Ясинский С.Я. (RU)

(**56**) RU-U1-40557 RU-C2-2335801 RU-C2-2431922 RU-C1-2629426

Изобретение относится к устройствам многоканальной связи, а именно к каналообразующим средствам связи с временным разделением канала передачи, и может использоваться для передачи сигналов в уплотненной форме. Модуль канальных окончаний состоит из блока интерфейса ОЦК (1), блока интерфейса С1-ФЛ-БИ (2), блока интерфейса стыка биполярного (СБП) (3), кодера/декодера ОЦК (4), кодера/декодера С1-ФЛ-БИ (5), устройства временного уплотнения/разуплотнения (6), коммутатора (7), блока мультиплексора (8), блока поиска и выделения информации ТУ-ТС (9), модуля контроля и управления (10), синхронизатора тактов (11). Техническим результатом изобретения является расширение арсенала технических средств указанного назначения с обеспечением возможности передачи информации по стыку С1-ФЛ-БИ, по биполярному стыку, а также служебных и информационных сигналов по каналу ОЦК путем объединения по меньшей мере двух информационных каналов в один уплотненный канал с присоединением информации каналов ТУ-ТС и КСС при минимальном использовании физических соединений.

Изобретение относится к устройствам многоканальной связи, а именно к каналообразующим средствам связи с временным разделением канала передачи, и может использоваться для передачи сигналов в уплотненной форме.

Известно устройство (патент № 63146, опубл. 10.05.2007 г.), содержащее входной модуль, состоящий из задающего генератора, блока приема/передачи источника цифровой информации по стыку С1-ФЛ-БИ, блока выбора источника цифровой информации, блока сопряжения с ПЭВМ по стыку RS-232 и блока автоматического временного разделения информации, состоящего из делителя тактовой частоты, блока кодера/декодера биимпульсного сигнала, блока управления и индикации, блока коммутации сигналов, а также блока линейных приемо-передатчиков и блока приемопередатчика биимпульсной (речевой) информации. Устройство обеспечивает возможность одновременного подключения к нему источника речевой информации и источника цифровой информации, взаимодействие с удаленным абонентом по каналу биимпульсного кодирования, обслуживание входных информационных каналов.

В устройстве не предусмотрен режим работы по каналу ОЦК с временным уплотнением информационными каналами, а также служебными каналами ТУ-ТС и КСС, не реализована возможность передачи данных каналов по биполярному стыку.

Наиболее близким устройством к заявленному устройству по совокупности признаков является устройство (патент № 40557, опубл. 10.09.2004 г.), принятое за прототип, включающее два блока интерфейсов С1-ФЛ-БИ, блок интерфейса С2-СПЕЦ, блок мультиплексора цифровых каналов, блок демультиплексора цифровых каналов, первый и второй блок автоматического выбора режима, блок синхронизации и управления приемника, блок встроенного тестового режима, блок отображения текущего состояния. Устройство обеспечивает сопряжение с ТЧ-каналом связи и конвертором ОЦК при работе с основным цифровым каналом, реализует возможность подключения двух каналов по стыкам С1-ФЛ-БИ и одной аппаратуры спецсвязи, обеспечивает возможность подключения к нему аппаратуры биимпульсного кодирования и одной аппаратуры спецсвязи, взаимодействие с модемом, обеспечивающим сопряжение устройства с конвертором ОЦК при работе с основным цифровым каналом, возможность обслуживания входных информационных каналов.

В прототипе не обеспечена возможность уплотнения входных сигналов информационных каналов служебными каналами ТУ-ТС и КСС, а также не реализована возможность передачи данных каналов по биполярному стыку.

Техническим результатом изобретения является расширение арсенала технических средств указанного назначения с обеспечением возможности передачи информации по стыку С1-ФЛ-БИ, по биполярному стыку, а также служебных и информационных сигналов по каналу ОЦК путем объединения по меньшей мере двух информационных каналов в один уплотненный канал с присоединением информации каналов ТУ-ТС и КСС при минимальном использовании физических соединений.

Указанный технический результат достигается тем, что модуль канальных окончаний состоит из блока мультиплексора, блока интерфейса С1-ФЛ-БИ, блока интерфейса ОЦК, блока интерфейса стыка биполярного, кодера/декодера ОЦК, кодера/декодера С1-ФЛ-БИ, модуля контроля и управления, блока поиска и выделения информации ТУ-ТС, устройства временного уплотнения/разуплотнения, коммутатора, синхронизатора тактов. При этом вход-выход блока интерфейса ОЦК связан с первым входомвыходом кодера/декодера ОЦК, второй вход-выход которого связан с первым входом-выходом устройства временного уплотнения/разуплотнения, первый вход которого связан с первым выходом синхронизатора тактов, второй выход которого связан с входом кодера/декодера ОЦК, выход блока интерфейса ОЦК связан с входом синхронизатора тактов, по меньшей мере два входа-выхода устройства временного уплотнения/разуплотнения связаны по меньшей мере с двумя входами-выходами коммутатора, по меньшей мере два входа-выхода блока интерфейса С1-ФЛ-БИ связаны по меньшей мере с двумя входамивыходами кодера/декодера С1-ФЛ-БИ, по меньшей мере два входа-выхода кодера/декодера С1-ФЛ-БИ связаны по меньшей мере с двумя входами-выходами коммутатора, по меньшей мере два выхода которого связаны по меньшей мере с двумя входами блока мультиплексора, по меньшей мере два входа-выхода коммутатора связаны с двумя входами-выходами блока интерфейса стыка биполярного, по меньшей мере два выхода коммутатора связаны по меньшей мере с двумя входами блока поиска и выделения информации ТУ-ТС, выход которого связан с входом модуля контроля и управления, вход-выход которого связан с вторым входом-выходом устройства временного уплотнения/разуплотнения, выход модуля контроля и управления связан с вторым входом устройства временного уплотнения/разуплотнения, с входом коммутатора, с входом блока поиска и выделения информации ТУ-ТС.

Изобретение иллюстрируется чертежом, где показана структурная схема модуля канальных окончаний.

Модуль канальных окончаний состоит из блока интерфейса ОЦК 1, блок интерфейса С1-ФЛ-БИ 2, блока интерфейса стыка биполярного (СБП) 3, кодера/декодера ОЦК 4, кодера/декодера С1-ФЛ-БИ 5, устройства временного уплотнения/разуплотнения 6, коммутатора 7, блока мультиплексора 8, блока поиска и выделения информации ТУ-ТС 9, модуля контроля и управления 10, синхронизатора тактов 11. Вход-выход блока интерфейса ОЦК 1 связан с первым входом-выходом кодера/декодера ОЦК 4, второй

вход-выход которого связан с первым входом-выходом устройства временного уплотнения/разуплотнения 6, первый вход которого связан с первым выходом синхронизатора тактов 11, второй выход которого связан с входом кодера/декодера ОЦК 4. Выход блока интерфейса ОЦК 1 связан с входом синхронизатора тактов 11. По меньшей мере два входа-выхода устройства временного уплотнения/разуплотнения 6 связаны по меньшей мере с двумя входами-выходами коммутатора 7. По меньшей мере два входа-выхода блока интерфейса С1-ФЛ-БИ 2 связаны по меньшей мере с двумя входами-выходами кодера/декодера С1-ФЛ-БИ 5 связаны по меньшей мере с двумя входами-выходами коммутатора 7, по меньшей мере два выхода которого связаны по меньшей мере с двумя входами блока мультиплексора 8. По меньшей мере два входа-выхода коммутатора 7 связаны с двумя входами-выходами блока интерфейса СБП 3. По меньшей мере два выхода коммутатора 7 связаны по меньшей мере с двумя входами блока поиска и выделения информации ТУ-ТС 9, выход которого связан с входом модуля контроля и управления 10, вход-выход которого связан с вторым входом устройства временного уплотнения/разуплотнения 6. Выход модуля контроля и управления 10 связан с вторым входом устройства временного уплотнения/разуплотнения 6, с входом коммутатора 7, с входом блока поиска и выделения информации ТУ-ТС 9.

Блок интерфейса ОЦК 1 обеспечивает физическое согласование по стыку ОЦК.

Блок интерфейса C1-ФЛ-БИ 2 обеспечивает физическое согласование не менее двух каналов по стыку C1-ФЛ-БИ.

Блок интерфейса СБП 3 обеспечивает физическое согласование не менее двух каналов по биполярному стыку.

Кодер/декодер ОЦК 4 выполняет кодирование (декодирование) цифровой информации в соответствии с правилами кодирования стыка ОЦК.

Кодер/декодер C1-ФЛ-БИ 5 выполняют кодирование (декодирование) цифровой информации в соответствии с правилами кодирования стыка C1-ФЛ-БИ.

Устройство временного уплотнения/разуплотнения 6 уплотняет на передаче или разуплотняет на приеме групповой сигнал канала ОЦК. Формирует сигналы управления на внешнее управление для чтения и врезки информации каналов ТУ-ТС и КСС. В режиме работы с ОЦК производит асинхронное сложение сигналов с приемных устройств, дополнительно уплотняет их информацией ТУ-ТС и КСС.

Коммутатор 7 инициирует установленный режим работы ОЦК или С1-ФЛ-БИ, или СБП. Обеспечивает выполнение проверочных режимов.

Блок мультиплексора 8 формирует групповой сигнал на передающее устройство.

Модуль контроля и управления 10 обрабатывает команды, поступающие с внешнего управления по шине I^2C , устанавливает соответствующие рабочие (ОЦК, или C1-ФЛ-БИ, или $CБ\Pi$) или проверочные режимы модуля канальных окончаний, передает на внешнее управление информацию о контролируемых параметрах.

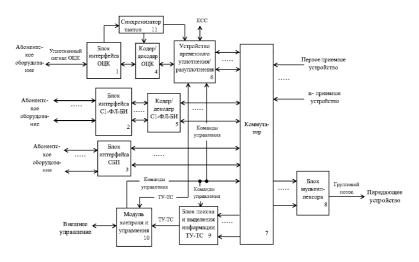
Синхронизатор тактов 11 выделяет такты из потока данных, обеспечивает тактовую синхронизацию.

Модуль канальных окончаний работает следующим образом.

С внешнего управления по шине I^2C на модуль контроля и управления 10 поступают сигналы о выбранном режиме работы. Модуль контроля и управления 10 формирует ряд управляющих команд и передает их на коммутатор 7, где происходит переключение на заданный режим работы, а также на устройство временного уплотнения/разуплотнения 6 для начала/прекращения функционирования в зависимости от заданного режима работы.

В режиме работы "ОЦК" при формировании сигнала канала ОЦК в сторону абонентского оборудования информация поступает не менее чем с двух приемных устройств на коммутатор 7, который направляет ее на блок поиска и выделения информации ТУ-ТС 9. Модуль контроля и управления 10 подает команду о начале поиска блоку поиска и выделения информации ТУ-ТС 9. После того как была выделена информация канала ТУ-ТС и через модуль контроля и управления 10 передана на внешнее управление, модуль контроля и управления 10 подает команду об окончании поиска на блок поиска и выделения информации канала ТУ-ТС 9, а также подает команду коммутатору 7 на передачу данных информационных каналов на устройство временного уплотнения/разуплотнения 6. В устройстве временного уплотнения/разуплотнения 6 данные не менее двух информационных каналов уплотняются с информацией о выравнивании скоростей, информацией КСС, а также входящей информацией канала ТУ-ТС, поступившей от внешнего управления через модуль контроля и управления 10. Уплотненный сигнал поступает на кодер/декодер ОЦК 4, где кодируется в формате ОЦК и через блок интерфейсов ОЦК 1 передается на абонентское оборудование.

При передачи сигнала канала ОЦК от абонентского оборудования в сторону передающего устройства на блок интерфейса ОЦК 1 поступают закодированные потоки в соответствии с протоколом ОЦК, где синхронизатор тактов выделяет такты для дальнейшего декодирования входного потока в кодере/декодере ОЦК 4, откуда сигнал поступает на устройство временного уплотнения/разуплотнения 6. Синхронизатор тактирует устройство временного уплотнения/разуплотнения 6, сигнал распаковывается, из группового распакованного сигнала считывается информация КСС, а также канала ТУ-ТС, которая через модуль контроля и управления 10 по шине $\rm I^2C$ поступает на внешнее управление, выделяются сиг-


налы не менее двух информационных каналов. Сигналы не менее двух информационных каналов поступают на коммутатор 7 и перенаправляются на блок мультиплексора 8, где формируется групповой поток, который поступает на передающее устройство.

В режиме работы "С1-ФЛ-БИ" информация не менее чем от двух приемных устройств поступает на коммутатор 7, откуда направляется на кодер/декодер С1-ФЛ-БИ 5, где через блок интерфейса С1-ФЛ-БИ 2 не менее чем по двум каналам поступает на абонентское оборудование. При передаче от абонентского оборудования не менее чем по двум каналам сигналы по стыку С1-ФЛ-БИ проходят через блок интерфейса С1-ФЛ-БИ 2 и кодер/декодер С1-ФЛ-БИ 5, где кодируются и поступают на коммутатор 7, откуда направляются на блок мультиплексора 8. В блоке мультиплексора 8 сигналы не менее двух каналов формируются в групповой поток и поступают на передающее устройство.

В режиме работы "СБП" " информация, поступающая не менее чем от двух приемных устройств на коммутатор 7, перенаправляется на блок интерфейса СБП 3, где преобразуется в биполярные сигналы и передается на абонентское оборудование по не менее чем двум биполярным каналам. При передаче от абонентского оборудования сигналы по не менее чем двум биполярным каналам проходят через блок интерфейса СБП 3 и поступают на коммутатор 7, откуда направляются на блок мультиплексора 8, где из не менее чем двух сигналов формируется групповой сигнал, который поступает на передающее устройство.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Модуль канальных окончаний, содержащий блок мультиплексора, блок интерфейса С1-ФЛ-БИ, отличающийся тем, что введены блок интерфейса ОЦК, блок интерфейса стыка биполярного, кодер/декодер ОЦК, кодер/декодер С1-ФЛ-БИ, модуль контроля и управления, блок поиска и выделения информации ТУ-ТС, устройство временного уплотнения/разуплотнения, коммутатор, синхронизатор тактов, при этом вход-выход блока интерфейса ОЦК связан с первым входом-выходом кодера/декодера ОЦК, второй вход-выход которого связан с первым входом-выходом устройства временного уплотнения/разуплотнения, первый вход которого связан с первым выходом синхронизатора тактов, второй выход которого связан с входом кодера/декодера ОЦК, выход блока интерфейса ОЦК связан с входом синхронизатора тактов, по меньшей мере два входа-выхода устройства временного уплотнения/разуплотнения связаны по меньшей мере с двумя входами-выходами коммутатора, по меньшей мере два входа-выхода блока интерфейса С1-ФЛ-БИ связаны по меньшей мере с двумя входами-выходами кодера/декодера С1-ФЛ-БИ, по меньшей мере два входа-выхода кодера/декодера С1-ФЛ-БИ связаны по меньшей мере с двумя входами-выходами коммутатора, по меньшей мере два выхода которого связаны по меньшей мере с двумя входами блока мультиплексора, по меньшей мере два входа-выхода коммутатора связаны с двумя входами-выходами блока интерфейса стыка биполярного, по меньшей мере два выхода коммутатора связаны по меньшей мере с двумя входами блока поиска и выделения информации ТУ-ТС, выход которого связан с входом модуля контроля и управления, вход-выход которого связан со вторым входом-выходом устройства временного уплотнения/разуплотнения, выход модуля контроля и управления связан со вторым входом устройства временного уплотнения/разуплотнения, с входом коммутатора, с входом блока поиска и выделения информации ТУ-ТС.

1

Евразийская патентная организация, ЕАПВ

Россия, 109012, Москва, Малый Черкасский пер., 2