

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- (43) Дата публикации заявки 2020.04.10
- (22) Дата подачи заявки 2018.04.17

(51) Int. Cl. C07D 209/08 (2006.01)
C07D 231/56 (2006.01)
C07D 235/06 (2006.01)
C07D 401/10 (2006.01)
C07D 403/12 (2006.01)
C07D 471/04 (2006.01)
A61P 35/00 (2006.01)
A61K 31/404 (2006.01)
A61K 31/4184 (2006.01)
A61K 31/437 (2006.01)

(54) БИЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ И ИХ ПРИМЕНЕНИЕ В ЛЕЧЕНИИ РАКА

- (31) 62/486,765
- (32) 2017.04.18
- (33) US
- (86) PCT/US2018/028034
- (87) WO 2018/195123 2018.10.25
- (71) Заявитель: ТЕМПЕСТ ТЕРАПЬЮТИКС, ИНК. (US)
- **(72)** Изобретатель:

Браво Ялда, Бёрч Джэйсон Дэвид, Чэнь Остин Чих-Ю, Нагамизо Джо Фред (US)

(74) Представитель:

Строкова О.В., Лыу Т.Н., Глухарёва А.О., Угрюмов В.М., Христофоров А.А., Гизатуллина Е.М., Гизатуллин Ш.Ф., Костюшенкова М.Ю., Лебедев В.В., Парамонова К.В. (RU)

201992418

(57) Настоящее изобретение относится к новым соединениям формулы I и их фармацевтически приемлемым солям, сольватам, сольватам соли и пролекарствам, применимым в профилактике (например, замедление возникновения или снижение риска развития) и лечении (например, контроль, облегчение или замедление прогрессирования) рака, включая в себя следующее: глиобластома, рак костей, рак головы и шеи, меланома, базальноклеточная карцинома, плоскоклеточная карцинома, аденокарцинома, рак ротовой полости, рак пищевода, рак желудка, рак кишечника, рак толстой кишки, рак мочевого пузыря, печеночноклеточная карцинома, почечноклеточная карцинома, рак поджелудочной железы, рак яичника, рак шейки матки, рак легких, рак молочной железы и рак предстательной железы. Соединения согласно настоящему раскрытию представляют собой селективные антагонисты рецептора EP4 и они являются применимыми при лечении различных заболеваний, интенсивность которых можно уменьшить путем блокады опосредованной PGE2 передачи сигналов.

БИЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ И ИХ ПРИМЕНЕНИЕ В ЛЕЧЕНИИ РАКА

ОПИСАНИЕ

Ссылка на родственную заявку

[001] Согласно настоящей заявке испрашивается преимущество в соответствии с предварительной заявкой на выдачу патента США № 62/486765, поданной 18 апреля 2017 года, которая полностью включена в настоящий документ посредством ссылки.

Уровень техники настоящего изобретения

[002] Настоящее раскрытие относится к производным гетероарилкарбоксамида, фармацевтическим композициям, содержащим такие соединения, а также к способам профилактики и лечения рака с использованием таких соединений.

[003] Простагландин E2 (PGE2) представляет собой эндогенную молекулу, которая благодаря своему агонистическому действию в отношении рецептора ЕР4 и активации полученного в результате этого сигнального каскада играет ключевую роль в разрешении воспаления (Chen et al., British J. Pharmacol. 2010, 160, р. 292) и в подавлении передачи сигналов Т-клеточным рецептором (Wiemer et al., J. Immunology 2011, 187, p. 3663). Хотя такое ослабление воспалительного ответа имеет решающее значение для предотвращения чрезмерного повреждения клеток после успешного нарастания воспалительного ответа, который был инвазией чужеродного было вызван. например, патогена. продемонстрировано, что некоторые опухоли могут также использовать это механизм в собственных целях как способ создания иммуносупрессорной микроокружения, в которой опухолевые клетки могут пролиферировать (Whiteside, Expert Opin. Bio. Th. 2010, 10, p. 1019).

[004] Действительно, одним из основных признаков иммуносупрессорного микроокружения опухоли является наличие большого количества супрессорных клеток миелоидного происхождения (MDSC) и опухоль-ассоциированных макрофагов 2-го типа (ТАМ), которые, в свою очередь, в значительной степени связаны с низкой общей выживаемостью у пациентов с раком желудка, яичников, молочной железы, мочевого пузыря, почечноклеточной карциномой (HCC), раком головы и шеи и другими типами рака (Qian et al., Cell. 2010, 141, р. 39; Gabitass et al., Cancer Immunol. Immunother. 2011, 60, р. 1419). Было продемонстрировано, что вовлечение рецепторов EP4 в незрелые моноциты с помощью PGE2, который продуцируется в значительно больших количествах опухолевыми клетками (Ochs et al., J. Neurochem. 2016, 136, р. 1142; Zelenay S. et al., Cell 2015, 162, р.

1257), искажает дифференциацию этих незрелых моноцитов в направлении иммуносупрессорных линий как MDSC, так и TAM (Mao, et al., Clin. Cancer Res. 2014, 20, p.4096; Wang et al., Trends in Molecular Medicine 2016, 22, p.1).

[005] Кроме того, недавние исследования показали, что опухолевые клетки в некоторых случаях также опосредуют положительную регуляцию активности индоламин-2,3-диоксигеназы (IDO) и/или триптофан-2,3-деоксигеназы (TDO) в микроокружении, окружающем опухоль, посредством стимуляции рецептора EP4 с помощью PGE2 (Ochs et al., J. Neurochem. 2016, 136, p. 1142; Hung et al., Breast Cancer Research, 2014, 16, p. 410). Поскольку триптофан, субстрат ферментов IDO и TDO, необходим для пролиферации и активации циототоксических клеток Teff, а кинеуренин, продукт ферментов IDO и TDO, необходим для пролиферации и активации иммуносупрессорных клеток Treg (Dounay et al., J. Med. Chem. 2015, 58, р. 8762), ингибирование активности IDO и/или TDO представляет собой многообещающий путь для лечения различных форм рака (Jochems et al., Oncotarget 2016, 7, р. 37762). Фактически, сообщалось об увеличении частоты общего положительного ответа у пациентов с распространенной меланомой IIIВ или IV стадии при использовании эпакадостата, сильнодействующего и селективного ингибитора IDO от Incyte, при использовании в комбинации с пембролизумабом. Следовательно, в свете всех этих наблюдений и исследований, антагонистическое действие в отношении ЕР4 обоснованно представляет собой рациональный и эффективный подход для лечения распространенного рака как в качестве отдельного средства, так и в комбинации с другими видами противораковой терапии.

Сущность изобретения

[006] Согласно некоторым вариантам осуществления, представленным в настоящем документе, описаны соединения согласно формуле I, которые представляют собой сильнодействующие и селективные антагонисты рецептора EP4, фармацевтически приемлемые соли формулы I, фармацевтически приемлемые композиции, содержащие такие соединения, и применение таких соединений при лечении различных заболеваний, интенсивность которых можно уменьшить с помощью блокады опосредованной PGE2 передачи сигналов, в частности, рака. Для лечения рака соединения согласно формуле I в некоторых случаях используют отдельно или в комбинации с другими видами терапии рака, например, такими: лучевая терапия, антитела к антигену 4 цитотоксических Т-лимфоцитов (т.е. средства против CTLA4, такие как ипилимумаб или тому подобное), антитела к лиганду 1 запрограммированной смерти клеток (т.е. средства против PD-L1, такие как атезолизумаб, авелумаб или тому подобное), антитела к белку 1 запрограммированной

смерти клеток (т.е. средства против PD-1, такие как ниволумаб, пембролизумаб или тому подобное) или цитотоксические средства (т.е. алкилирующие средства, такие как цисплатин, дакарбазин, хлорамбуцил или тому подобное, антиметаболиты, такие как метотрексат, флударабин, гемцитабин или тому подобное, действующие на микротрубочки средства, такие как винбластин, паклитаксел или тому подобное; ингибиторы топоизомеразы, такие как топотекан, доксорубицин или тому подобное; и другие). Согласно другим вариантам осуществления, представленным в настоящем документе, описаны способы получения соединений согласно формуле I, а также получения промежуточных соединений, используемых при синтезе соединений, описанных в настоящем документе.

[007] Согласно некоторым вариантам осуществления, представленным в настоящем документе, описаны соединения формулы I:

$$Ar \longrightarrow \begin{pmatrix} X^2 & X^3 & X^4 & R^4 \\ X^5 & X^5 & R^3 & W \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$$

или их фармацевтически приемлемая соль, сольват, сольват соли, гидрат, отдельный стереоизомер, смесь стереоизомеров, рацемическая смесь стереоизомеров или пролекарство;

где

Аг представляет собой арил или гетероарил, где каждый указанный арил и указанный гетероарил необязательно замещен 1-3 заместителями, независимо выбранными из следующего: (а) C_1 - C_6 алкил, (b) C_3 - C_7 циклоалкил, (c) гетероцикл, (d) арил, (e) гетероарил, (f) галоген, (g) CN, (h) OR b , (i) $N(R^b)C(=O)R^c$, (j) $C(=O)N(R^b)(R^c)$, (k) $S(=O)_mR^b$, (l) $S(=O)_2N(R^b)(R^c)$, (m) $N(R^b)S(=O)_2R^c$, (n) SF_5 и (o) C_1 - C_6 галогеналкил;

W выбран из следующего: (a) $C(=O)OR^5$, (b) C(=O)NHOH, (c) $S(=O)_2NHR^b$, (d) $S(=O)_2NHC(=O)R^b$, (e) $NHC(=O)NHSO_2R^b$, (f) 1H-тетразол, (g) 1,2,4-оксадиазол-5(4H)он, (h) 1,2,4-тиадиазол-5(4H)он, (i) 1,2,4-оксадиазол-5(4H)-тион, (j) 1,2,4-триазол-5(4H)-он, (k) тетразол-5(4H)-он и (l) $C(=O)NHS(=O)_2R^b$;

каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо N или CR^a , где не более 2 из X^1 , X^2 , X^3 , X^4 и X^5 представляют собой N;

Y выбран из следующего: (a) связь, (b) $(CH_2)_n$, где 1 - 4 атома водорода могут быть замещены $R^{a'}$, (c) O и (d) NR^b ;

Z представляет собой (CH_2)_n, где 1 - 4 атома водорода могут быть замещены $R^{a'}$;

 R^1 и R^2 независимо выбраны из следующего: (а) H, (b) C_1 - C_6 алкил, (c) C_3 - C_6 циклоалкил, и (d) C_1 - C_6 галогеналкил, где R^2 не представляет собой H; или

 R^1 и R^2 взятые вместе представляют -(CH₂)_n-, -(CH₂)_nO(CH₂)_p-, -(CH₂)_nNR^b(CH₂)_p- или -(CH₂)_nS(=O)_m(CH₂)_p-;

 R^3 и R^4 независимо выбраны из следующего: (a) H, (b) C_1 - C_6 алкил, (c) C_3 - C_6 циклоалкил, (d) арил, (e) гетероарил, (f) галоген, (g) C_1 - C_6 галогеналкил; или

 R^3 и R^4 взятые вместе представляют -(CH₂)_n-, -(CH₂)_nO(CH₂)_p-, -(CH₂)_nNR^b(CH₂)_p- или -(CH₂)_nS(=O)_m(CH₂)_p-;

или R^1 , R^2 , R^3 и R^4 выше выбраны следующим образом:

 R^1 выбран из H, C_1 - C_6 алкила, C_3 - C_6 циклоалкила и C_1 - C_6 галогеналкила;

 R^3 и R^2 взятые вместе представляют (CH₂)_n, (CH₂)_nO(CH₂)_p, (CH₂)_nNR^b(CH₂)_p или (CH₂)_nS(=O)_m(CH₂)_p; и

 R^4 выбран из H, C_1 - C_6 алкила, C_3 - C_6 циклоалкила, арила, гетероарила, галогена и C_1 - C_6 галогеналкила;

 R^5 выбран из следующего: (a) H, (b) C_1 - C_6 алкил, (c) арил, (d) аралкил, (e) $CH(R^7)OC(=O)R^8$, (f) $CH(R^7)OC(=O)OR^8$ и (g) (5-алкил-2-оксо-1,3-диоксолен-4-ил)метильная группа, характеризующаяся следующей формулой:

где R^6 представляет собой C_1 - C_6 алкил;

 R^7 представляет собой водород или C_1 - C_6 алкил;

 R^8 представляет собой C_1 - C_6 алкил или C_3 - C_6 -циклоалкил;

 R^a выбран из следующего: (a) H, (b) C_1 - C_6 алкил, (c) галоген, (d) арил, (e) OR^b , (f) циано, (g) гетероарил, (h) C_3 - C_6 циклоалкил и (i) C_1 - C_6 галогеналкил;

 $R^{a'}$ выбран из следующего: (a) циано, (b) C_1 - C_6 алкил, (c) галоген, (d) арил, (e) OR^b , (f) гетероарил, (g) C_3 - C_6 циклоалкил и (h) C_1 - C_6 галогеналкил;

 R^b и R^c независимо выбраны из следующего: (a) H, (b) C_1 - C_6 алкил, (c) арил, (d) гетероарил, (e) C_3 - C_6 циклоалкил, (f) C_2 - C_6 гетероцикл или (g) C_1 - C_6 галогеналкил; или

 R^b и R^c взятые вместе с N, к которому они оба прикреплены, образуют 3-6-членный гетероцикл, необязательно содержащий дополнительный гетероатом, выбранный из N, O и S;

т составляет 0, 1 или 2;

n составляет 1, 2 или 3; и

р составляет 1, 2 или 3.

[008] Согласно некоторым вариантам осуществления, представленным в настоящем документе, описаны соединения согласно формуле I:

$$Ar \longrightarrow \begin{pmatrix} X^2 & X^3 & X^4 & R^4 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

или их фармацевтически приемлемая соль, сольват, сольват соли, гидрат, отдельный стереоизомер, смесь стереоизомеров, рацемическая смесь стереоизомеров или пролекарство;

где

Аг представляет собой арил или гетероарил, где каждый указанный арил и указанный гетероарил необязательно замещен 1-3 заместителями, независимо выбранными из следующего: (а) C_1 - C_6 алкил, (b) C_3 - C_7 циклоалкил, (c) гетероцикл, (d) арил, (e) гетероарил, (f) галоген, (g) CN, (h) OR^b , (i) $N(R^b)C(=O)R^c$, (j) $C(=O)N(R^b)(R^c)$, (k) $S(=O)_mR^b$, (l) $S(=O)_2N(R^b)(R^c)$, (m) $N(R^b)S(=O)_2R^c$, (n) SF_5 и (o) C_1 - C_6 галогеналкил;

W выбран из следующего: (a) $C(=O)OR^5$, (b) C(=O)NHOH, (c) $S(=O)_2NHR^b$, (d) $S(=O)_2NHC(=O)R^b$, (e) $NHC(=O)NHSO_2R^b$, (f) 1H-тетразол, (g) 1,2,4-оксадиазол-5(4H)он, (h) 1,2,4-тиадиазол-5(4H)он, (i) 1,2,4-оксадиазол-5(4H)-тион, (j) 1,2,4-триазол-5(4H)-он, (k) тетразол-5(4H)-он и (l) $C(=O)NHS(=O)_2R^b$;

каждый из X^1 , X^2 , X^3 , X^4 и X^5 независимо представляет собой N или CR^a , где не более 2 из X^1 , X^2 , X^3 , X^4 и X^5 представляют собой N;

Y выбран из следующего: (a) связь, (b) $(CH_2)_n$, где 1 - 4 атома водорода могут быть замещены $R^{a'}$, (c) O и (d) NR^b ;

Z представляет собой $(CH_2)_n$, где 1 - 4 атома водорода могут быть замещены $R^{a^{\circ}}$;

 R^1 и R^2 независимо выбраны из следующего: (a) H, (b) C_1 - C_6 алкил, (c) C_3 - C_6 циклоалкил и (d) C_1 - C_6 галогеналкил, где R^2 не представляет собой H; или

 R^1 и R^2 взятые вместе представляют -(CH₂)_n-, -(CH₂)_nO(CH₂)_p-, -(CH₂)_nNR^b(CH₂)_p- или -(CH₂)_nS(=O)_m(CH₂)_p-;

 R^3 и R^4 независимо выбраны из следующего: (a) H, (b) C_1 - C_6 алкил, (c) C_3 - C_6 циклоалкил, (d) арил, (e) гетероарил, (f) галоген, (g) C_1 - C_6 галогеналкил; или

 R^3 и R^4 взятые вместе представляют -(CH₂)_n-, -(CH₂)_nO(CH₂)_p-, -(CH₂)_nNR^b(CH₂)_p- или -(CH₂)_nS(=O)_m(CH₂)_p-;

или R^1, R^2, R^3 и R^4 выше выбраны следующим образом:

 R^1 выбран из H, C_1 - C_6 алкила, C_3 - C_6 циклоалкила и C_1 - C_6 галогеналкила;

 R^3 и R^2 взятые вместе представляют (CH₂)_n, (CH₂)_nO(CH₂)_p, (CH₂)_nNR^b(CH₂)_p или (CH₂)_nS(=O)_m(CH₂)_p; и

 R^4 выбран из H, C_1 - C_6 алкила, C_3 - C_6 циклоалкила, арила, гетероарила, галогена и C_1 - C_6 галогеналкила;

 R^5 выбран из следующего: (a) H, (b) C_1 - C_6 алкил, (c) арил, (d) аралкил, (e) $CH(R^7)OC(=O)R^8$, (f) $CH(R^7)OC(=O)OR^8$ и (g) (5-алкил-2-оксо-1,3-диоксолен-4-ил)метильная группа, характеризующаяся следующей формулой:

где R^6 представляет собой C_1 - C_6 алкил;

 ${\bf R}^7$ представляет собой водород или ${\bf C}_1$ - ${\bf C}_6$ алкил;

 R^8 представляет собой C_1 - C_6 алкил или C_3 - C_6 -циклоалкил;

 R^a выбран из следующего: (a) H, (b) C_1 - C_6 алкил, (c) галоген, (d) арил, (e) OR^b , (f) циано, (g) гетероарил, (h) C_3 - C_6 циклоалкил и (i) C_1 - C_6 галогеналкил;

 $R^{a'}$ выбран из следующего: (a) циано, (b) C_1 - C_6 алкил, (c) галоген, (d) арил, (e) OR^b , (f) гетероарил, (g) C_3 - C_6 циклоалкил и (h) C_1 - C_6 галогеналкил;

 R^b и R^c независимо выбраны из следующего: (a) H, (b) C_1 - C_6 алкил, (c) арил, (d) гетероарил, (e) C_3 - C_6 циклоалкил или (f) C_1 - C_6 галогеналкил; или

 R^b и R^c взятые вместе с N, к которому они оба прикреплены, образуют 3-6-членный гетероцикл, необязательно содержащий дополнительный гетероатом, выбранный из N, O и S;

т составляет 0, 1 или 2;

п составляет 1, 2 или 3; и

р составляет 1, 2 или 3.

[009] Согласно некоторым вариантам осуществления Аг представляет собой арил или гетероарил, где каждый указанный арил и указанный гетероарил необязательно замещен 1-3 заместителями, независимо выбранными из группы, состоящей из следующего:

- (a) C_1 - C_6 алкил,
- (b) С3-С7 циклоалкил,
- (с) гетероцикл,
- (d) арил,
- (е) гетероарил,
- (f) галоген,

- (g) CN,
- (h) OR^b ,
- (i) $N(R^b)C(=O)R^c$,
- (j) $C(=O)N(R^b)(R^c)$,
- (k) $S(=O)_m R^b$,
- (1) $S(=O)_2N(R^b)(R^c)$,
- (m) $N(R^b)S(=O)_2R^c$,
- (n) SF₅ и
- (о) C_1 - C_6 галогеналкил.

[0010] Согласно некоторым вариантам осуществления W выбран из группы, состоящей из следующего:

- (a) CO_2H ,
- (b) C(=O)NHOH,
- (c) $S(=O)_2NHR^b$,
- (d) $S(=O)_2NHC(=O)R^b$,
- (e) $NHC(=O)NHSO_2R^b$,
- (f) 1*H*-тетразол,
- (g) 1,2,4-оксадиазол-5(4H)он,
- (h) 1,2,4-тиадиазол-5(4H)он,
- (i) 1,2,4-оксадиазол-5(4H)-тион,
- (i) 1,2,4-триазол-5(4H)-он,
- (k) тетразол-5(4H)-он и
- (1) $C(=O)NHS(=O)_2R^b$.

[0011] Согласно некоторым вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 независимо представляет собой N или CR^a , где не более 2 из X^1 , X^2 , X^3 , X^4 и X^5 представляют собой N.

[0012] Согласно некоторым вариантам осуществления Y выбран из следующего: (a) связь, (b) $(CH_2)_n$, где 1 - 4 атома водорода могут быть замещены $R^{a'}$, (c) О и (d) NR^b .

[0013] Согласно некоторым вариантам осуществления Z представляет собой $(CH_2)_n$, где 1 - 4 атома водорода могут быть замещены $R^{a'}$.

[0014] Согласно некоторым вариантам осуществления ${\bf R}^1$ и ${\bf R}^2$ независимо выбраны из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (c) C_3 - C_6 циклоалкил и

(d) C_1 - C_6 галогеналкил.

[0015] Согласно некоторым вариантам осуществления не оба ${\bf R}^1$ и ${\bf R}^2$ представляют собой H.

[0016] Согласно некоторым вариантам осуществления R^1 и R^2 взятые вместе представляют - $(CH_2)_n$ -, - $(CH_2)_nO(CH_2)_p$ -, - $(CH_2)_nNR^b(CH_2)_p$ - или - $(CH_2)_nS(=O)_m(CH_2)_p$ -.

[0017] Согласно некоторым вариантам осуществления ${\bf R}^3$ и ${\bf R}^4$ независимо выбраны из группы, состоящей из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (c) C_3 - C_6 циклоалкил,
- (d) арил,
- (е) гетероарил,
- (f) галоген и
- (g) C_1 - C_6 галогеналкил.

[0018] Согласно некоторым вариантам осуществления R^3 и R^4 взятые вместе представляют -(CH_2)_n-, -(CH_2)_nO(CH_2)_p-, -(CH_2)_nNR^b(CH_2)_p- или -(CH_2)_nS(=O)_m(CH_2)_p-.

[0019] Согласно некоторым вариантам осуществления R^3 и R^2 взятые вместе представляют $(CH_2)_n$, $(CH_2)_nO(CH_2)_p$, $(CH_2)_nNR^b(CH_2)_p$ или $(CH_2)_nS(=O)_m(CH_2)_p$.

[0020] Согласно некоторым вариантам осуществления R^a выбран из группы, состоящей из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (с) галоген,
- (d) арил,
- (e) OR^b,
- (f) циано,
- (g) гетероарил,
- (h) C_3 - C_6 циклоалкил и
- (i) C_1 - C_6 галогеналкил.

[0021] Согласно некоторым вариантам осуществления $R^{a'}$ выбран из группы, состоящей из следующего:

- (а) циано,
- (b) C_1 - C_6 алкил,
- (с) галоген,
- (d) арил,

- (e) OR^b,
- (f) гетероарил,
- (g) C_3 - C_6 циклоалкил и
- (h) C_1 - C_6 галогеналкил.

[0022] Согласно некоторым вариантам осуществления R^b и R^c независимо выбраны из группы, состоящей из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (с) арил,
- (d) гетероарил,
- (e) C_3 - C_6 циклоалкил и
- (f) C_1 - C_6 галогеналкил.

[0023] Согласно некоторым вариантам осуществления R^b и R^c взятые вместе с N, к которому они оба прикреплены, образуют 3-6-членный гетероцикл, необязательно содержащий дополнительный гетероатом, выбранный из N, O и S.

[0024] Согласно некоторым вариантам осуществления т составляет 0, 1 или 2.

[0025] Согласно некоторым вариантам осуществления п составляет 1, 2 или 3.

[0026] Согласно некоторым вариантам осуществления р составляет 1, 2 или 3.

[0027] Согласно некоторым вариантам осуществления Аг представляет собой фенил, необязательно замещенный 1-3 заместителями, независимо выбранными из следующего:

- (а) галоген,
- (b) циано,
- (c) C_1 - C_6 алкил,
- (d) SF_5 ,
- (e) C_1 - C_6 галогеналкил,
- (f) OR^b , где R^b представляет собой C_1 - C_6 алкил, арил, гетероарил, C_3 - C_6 циклоалкил или C_1 - C_6 галогеналкил,
 - (g) гетероцикл,
 - (h) арил и
 - (і) гетероарил.

[0028] Согласно некоторым вариантам осуществления Ar представляет собой фенил, необязательно замещенный 1-3 заместителями, независимо выбранными из следующего:

(а) галоген,

- (b) циано,
- (c) C_1 - C_6 алкил,
- (d) SF₅ и
- (e) C_1 - C_6 галогеналкил.

[0029] Согласно некоторым вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо C- R^a . Согласно некоторым вариантам осуществления один из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой N, а каждый из остальных независимо представляет собой C- R^a . Согласно некоторым вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо C- R^a . Согласно некоторым вариантам осуществления R^a представляет собой H или атом галогена.

[0030] Согласно некоторым вариантам осуществления W выбран из группы, состоящей из следующего: (a) CO_2H и (b) 1H-тетразол.

[0031] Согласно некоторым вариантам осуществления Z представляет собой -СН2-.

[0032] Согласно некоторым вариантам осуществления Y представляет собой связь или -CH₂-.

[0033] Согласно некоторым вариантам осуществления R^1 и R^2 взятые вместе представляют -CH2- или -CH2CH2-.

[0034] Согласно некоторым вариантам осуществления Y представляет собой -CH₂-, и ${\bf R}^3$ и ${\bf R}^2$ взятые вместе представляют -CH₂- или -CH₂CH₂-.

[0035] Согласно некоторым вариантам осуществления, представленным в настоящем документе, описано соединение согласно формуле I, характеризующееся структурой согласно формуле Ia:

$$X_1$$
 X_2
 X_3
 X_4
 X_5
 X_5

или его фармацевтически приемлемая соль, сольват, сольват соли, гидрат, отдельный стереоизомер, смесь стереоизомеров, рацемическая смесь стереоизомеров или пролекарство.

[0036] Согласно некоторым вариантам осуществления Ar представляет собой фенил, необязательно замещенный 1-3 заместителями, независимо выбранными из следующего:

- (а) галоген,
- (b) циано,

- (c) C_1 - C_6 алкил,
- (d) SF_5 ,
- (e) C_1 - C_6 галогеналкил,
- (f) OR^b , где R^b представляет собой C_1 - C_6 алкил, арил, гетероарил, C_3 - C_6 циклоалкил или C_1 - C_6 галогеналкил,
 - (g) гетероцикл,
 - (h) арил и
 - (і) гетероарил.

[0037] Согласно некоторым вариантам осуществления Ar представляет собой фенил, необязательно замещенный 1-3 заместителями, независимо выбранными из следующего:

- (а) галоген,
- (b) циано,
- (c) C_1 - C_6 алкил,
- (d) SF₅ и
- (e) C_1 - C_6 галогеналкил.

[0038] Согласно некоторым вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо C- R^a . Согласно некоторым вариантам осуществления один из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой N, а каждый из остальных независимо представляет собой C- R^a .

[0039] Согласно некоторым вариантам осуществления W выбран из группы, состоящей из следующего: (а) CO_2H и (b) 1H-тетразол.

[0040] Согласно некоторым вариантам осуществления Y представляет собой связь или -CH₂-.

[0041] Согласно некоторым вариантам осуществления п составляет 1 или 2.

[0042] Согласно некоторым вариантам осуществления R^3 и R^4 независимо выбраны из группы, состоящей из следующего: (a) H, (b) C_1 - C_3 алкил и (c) C_1 - C_3 галогеналкил.

[0043] Согласно некоторым вариантам осуществления R^a выбран из группы, состоящей из H и галогена.

[0044] Согласно некоторым вариантам осуществления У представляет собой связь, и п составляет 1.

[0045] Согласно некоторым вариантам осуществления, представленным в настоящем документе, описано соединение согласно формуле I, характеризующееся структурой согласно формуле Ib:

$$X_1$$
 X_2
 X_3
 X_4
 X_5
 X_5

или его фармацевтически приемлемая соль, сольват, сольват соли, гидрат, отдельный стереоизомер, смесь стереоизомеров, рацемическая смесь стереоизомеров или пролекарство.

[0046] Согласно некоторым вариантам осуществления Ar представляет собой фенил, необязательно замещенный 1-3 заместителями, независимо выбранными из следующего:

- (а) галоген,
- (b) циано,
- (c) C_1 - C_6 алкил,
- (d) SF_5 ,
- (e) C_1 - C_6 галогеналкил,
- (f) OR^b , где R^b представляет собой C_1 - C_6 алкил, арил, гетероарил, C_3 - C_6 циклоалкил или C_1 - C_6 галогеналкил,
 - (g) гетероцикл,
 - (h) арил и
 - (і) гетероарил.

[0047] Согласно некоторым вариантам осуществления Ar представляет собой фенил, необязательно замещенный 1-3 заместителями, независимо выбранными из следующего:

- (а) галоген,
- (b) циано,
- (c) C_1 - C_6 алкил,
- (d) SF₅ и
- (e) C_1 - C_6 галогеналкил.

[0048] Согласно некоторым вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо C- R^a , или один из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой N, а каждый из остальных независимо представляет собой C- R^a .

[0049] Согласно некоторым вариантам осуществления W выбран из группы, состоящей из следующего: (а) CO_2H и (b) 1H-тетразол.

[0050] Согласно некоторым вариантам осуществления п составляет 1 или 2.

[0051] Согласно некоторым вариантам осуществления R^4 выбран из группы, состоящей из следующего: (a) H, (b) C_1 - C_3 и (c) C_1 - C_3 галогеналкил.

[0052] Согласно некоторым вариантам осуществления R^a выбран из группы, состоящей из H и галогена.

[0053] Согласно некоторым вариантам осуществления п составляет 1.

[0054] Согласно некоторым вариантам осуществления, представленным в настоящем документе, описано соединение согласно формуле I, характеризующееся формулой Ic или Id:

или его фармацевтически приемлемая соль, сольват, сольват соли, гидрат, отдельный стереоизомер, смесь стереоизомеров, рацемическая смесь стереоизомеров или пролекарство.

[0055] Согласно некоторым вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо C- R^a .

[0056] Согласно некоторым вариантам осуществления один из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой N, а каждый из остальных независимо представляет собой C-R^a.

[0057] Согласно некоторым вариантам осуществления R^a выбран из группы, состоящей из H и галогена.

[0058] Согласно некоторым вариантам осуществления R^d выбран из следующего:

- (a) CN,
- (b) C_1 - C_3 алкил,
- (c) SF_5 ,
- (d) C_1 - C_3 галогеналкил,
- (e) OR^b , где R^b представляет собой C_1 - C_6 алкил, арил, гетероарил, C_3 - C_6 циклоалкил или C_1 - C_6 галогеналкил,
 - (f) гетероцикл,
 - (g) арил и
 - (h) гетероарил.

[0059] Согласно некоторым вариантам осуществления R^d выбран из группы, состоящей из следующего: (a) CN, (b) C_1 - C_3 алкил, (c) SF_5 и (d) C_1 - C_3 галогеналкил.

[0060] Согласно некоторым вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой CH; или один из X^1 , X^2 , X^3 , X^4 и X^5 представляют собой CH, и R^a представляет собой галоген.

[0061] Согласно некоторым вариантам осуществления соединение выбрано из следующего:

2-(3-(1-(4-цианобензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-b]пиридин-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-c]пиридин-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-(4-(трифторметил)бензил)-1H-пирроло[2,3-c] пиридин-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-(4-(трифторметил)бензил)-1H-индазол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-((4-(трифторметил)фенил)метил- d_2)-1H-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

6-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(1-(4-(трифторметил)бензил)-1<math>H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(S)-6-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

6-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-b]пиридин-7-

карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(1-(4-(трифторметил)бензил)-1<math>H-пирроло[3,2-b]пиридин-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(S)-6-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-b]пиридин-7-

карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

6-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-c]пиридин-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(R)-6-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-c]пиридин-7-

карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(S)-6-(1-(4-(трифторметил)бензил)-1<math>H-пирроло[3,2-c]пиридин-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

6-(1-(4-(трифторметил)бензил)-1H-пирроло[2,3-c]пиридин-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(1-(4-(трифторметил)бензил)-1H-пирроло[2,3-c]пиридин-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(S)-6-(1-(4-(трифторметил)бензил)-1<math>H-пирроло[2,3-c]пиридин-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

6-(1-(4-(трифторметил)бензил)-1H-индазол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(1-(4-(трифторметил)бензил)-1H-индазол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(S)-6-(1-(4-(трифторметил)бензил)-1H-индазол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

6-(1-(4-(трифторметил)бензил)-1H-бензо[d]имидазол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(R)-6-(1-(4-(трифторметил)бензил)-1<math>H-бензо[d]имидазол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(S)-6-(1-(4-(трифторметил)бензил)-1<math>H-бензо[d]имидазол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

3-(3-(1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)пропановая кислота;

3-(3-метил-3-(1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)циклобутил)пропановая кислота;

 μuc -3-(3-метил-3-(1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)циклобутил)пропановая кислота;

N-(3-(2-оксо-2-(фенилсульфонамидо)этил)бицикло[1.1.1]пентан-1-ил)-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамид;

N-(3-((3-(фенилсульфонил)уреидо)метил)бицикло[1.1.1]пентан-1-ил)-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамид;

N-(3-((1H-тетразол-5-ил)метил)бицикло[1.1.1]пентан-1-ил)-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамид;

2-(4-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)бицикло[2.1.1]гексан-1-ил)уксусная кислота;

6-(4-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(4-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(S)-6-(4-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

6-(5-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(5-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(S)-6-(5-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

6-(5-хлор-1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(5-хлор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(S)-6-(5-хлор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

6-(6-фтор-1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(6-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(S)-6-(6-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

6-(1-(4-цианобензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(1-(4-цианобензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(S)-6-(1-(4-цианобензил)-1*H*-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота:

6-(1-(4-(дифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(1-(4-(дифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

2-(3-(4-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

1-ил)уксусная кислота;

2-(4-(4-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)бицикло[2.1.1] гексан-1-ил) уксусная кислота;

2-(4-(1-((4-(пентафтортиол)фенил)метил)-1H-индол-7-

карбоксамидо)бицикло[2.1.1] гексан-1-ил) уксусная кислота;

6-(1-((4-(пентафтортиол)фенил)метил)-1<math>H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(R)-6-(1-((4-(пентафтортиол)фенил)метил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(S)-6-(1-((4-(пентафтортиол)фенил)метил)-1<math>H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

6-(1-(4-(дифторметил)бензил)-4-фтор-1*H*-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(1-(4-(дифторметил)бензил)-4-фтор-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(S)-6-(1-(4-(дифторметил)бензил)-4-фтор-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

2-(3-(1-(4-(дифторметил)бензил)-4-фтор-1*H*-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(5-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-([1,1]-6ифенил]-4-илметил)-1H-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-([1,1'-бифенил]-4-илметил)-4-фтор-1*H*-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-([1,1'-бифенил]-4-илметил)-1*H*-индазол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-(4-(трифторметокси)бензил)-1H-индазол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(4-фтор-1-(4-йодбензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(4-фтор-1-(4-(пиридин-4-ил)бензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота; и

2-(3-(4-фтор-1-(4-морфолинобензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

или их фармацевтически приемлемая соль, сольват, сольват соли, гидрат, отдельный стереоизомер, смесь стереоизомеров, рацемическая смесь стереоизомеров или пролекарство.

[0062] Согласно некоторым вариантам осуществления, представленным в настоящем документе, описаны фармацевтические композиции, содержащие соединение согласно любой из формул I, Ia, Ib, Ic или Id, или фармацевтически приемлемую соль, сольват, сольват соли, гидрат, отдельный стереоизомер, смесь стереоизомеров, рацемическую смесь стереоизомеров или пролекарство любого из вышеперечисленного, и фармацевтически приемлемый носитель.

[0063] Согласно некоторым вариантам осуществления, представленным описаны способы лечения рака, настоящем документе, включающие введение нуждающемуся в этом пациенту соединения согласно любой из формул I, Ia, Ib, Ic или Id, или фармацевтически приемлемую соль, сольват, сольват соли, гидрат, отдельный стереоизомер, смесь стереоизомеров, рацемическую смесь стереоизомеров пролекарство любого из вышеперечисленного, или фармацевтической композиции, содержащей любую из формул I, Ia, Ib, Ic или Id, или фармацевтически приемлемую соль любого из вышеперечисленного.

[0064] Согласно некоторым вариантам осуществления рак выбран из группы, состоящей из следующего: глиобластома, рак костей, рак головы и шеи, меланома, базальноклеточная карцинома, плоскоклеточная карцинома, аденокарцинома, рак ротовой полости, рак пищевода, рак желудка, рак кишечника, рак толстой кишки, рак мочевого пузыря, печеночноклеточная карцинома, почечноклеточная карцинома, рак поджелудочной железы, рак яичника, рак шейки матки, рак легких, рак молочной железы и рак предстательной железы.

[0065] Согласно некоторым вариантам осуществления лечение дополнительно включает в себя дополнительное средство, выбранное из антитела к PD-1 и антитела к PD-L1.

Краткое описание графических материалов

[0066] На фигурах 1A и 1B проиллюстрирован эффект соединения A на объем опухоли в модели рака толстой кишки у мышей.

Подробное раскрытие настоящего изобретения

[0067] Согласно некоторым вариантам осуществления в настоящем документе предусмотрены селективные антагонисты рецептора EP4 и композиции, содержащие указанные соединения (т.е. селективные антагонисты рецептора EP4). Соединения и композиции являются применимыми для лечения рака.

[0068] Согласно некоторым вариантам осуществления, представленным в настоящем документе, описаны соединения согласно формуле I:

$$Ar = \begin{pmatrix} X^2 & X^3 & X^4 & R^4 \\ X^5 & X^5 & R^2 & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & &$$

или их фармацевтически приемлемая соль, сольват, сольват соли или пролекарство.

[0069] Согласно определенным вариантам осуществления в настоящем документе предусмотрены соединения согласно формуле I:

$$A_{1} = \begin{pmatrix} X^{2} & X^{3} & X^{4} & R^{1} & R^{1} \\ X^{3} & X^{4} & R^{2} & R^{2} & R^{2} \\ X^{5} & X^{5} & R^{2} & R^{2} \\ X^{5} & X^{5} & R^{2} & R^{2} \\ X^{5} & X^$$

или их фармацевтически приемлемая соль, сольват, сольват соли или пролекарство, где:

Аг представляет собой арил или гетероарил, где каждый указанный арил и указанный гетероарил необязательно замещен 1-3 заместителями, независимо выбранными из группы, состоящей из следующего:

- (a) C_1 - C_6 алкил,
- (b) С3-С7 циклоалкил,
- (с) гетероцикл,
- (d) арил,
- (е) гетероарил,

- (f) галоген,
- (g) CN,
- (h) OR^b ,
- (i) $N(R^b)C(=O)R^c$,
- (j) $C(=O)N(R^b)(R^c)$,
- (k) $S(=O)_m R^b$,
- (1) $S(=O)_2N(R^b)(R^c)$,
- (m) $N(R^b)S(=O)_2R^c$,
- (n) SF₅, и
- (о) C_1 - C_6 галогеналкил.

W выбран из группы, состоящей из следующего:

- (a) CO_2H ,
- (b) C(=O)NHOH,
- (c) $S(=O)_2NHR^b$,
- (d) $S(=O)_2NHC(=O)R^b$,
- (e) $NHC(=O)NHSO_2R^b$,
- (f) 1*H*-тетразол,
- (g) 1,2,4-оксадиазол-5(4*H*)он,
- (h) 1,2,4-тиадиазол-5(4H)он,
- (i) 1,2,4-оксадиазол-5(4*H*)-тион,
- (j) 1,2,4-триазол-5(4*H*)-он,
- (k) тетразол-5(4*H*)-он, и
- (1) $C(=O)NHS(=O)_2R^b$;

каждый из X^1 , X^2 , X^3 , X^4 и X^5 независимо представляет собой N или CR^a , где не более 2 из X^1 , X^2 , X^3 , X^4 и X^5 представляют собой N;

Ү выбран из следующего:

- (а) связь,
- (b) $(CH_2)_n$, где 1 4 атома водорода могут быть замещены $R^{a'}$,
- (с) О, и
- (d) NR^b ;

Z представляет собой (CH_2) $_n$, где 1 - 4 атома водорода могут быть замещены $R^{a'}$;

 ${\bf R}^1$ и ${\bf R}^2$ независимо выбраны из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (c) C_3 - C_6 циклоалкил, и

(d) C_1 - C_6 галогеналкил; где не оба R^1 и R^2 представляют собой H; или

 R^1 и R^2 взятые вместе представляют -(CH₂)_n-, -(CH₂)_nO(CH₂)_p-, -(CH₂)_nNR^b(CH₂)_p- или -(CH₂)_nS(=O)_m(CH₂)_p-;

 ${\bf R}^3$ и ${\bf R}^4$ независимо выбраны из группы, состоящей из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (c) C_3 - C_6 циклоалкил,
- (d) арил,
- (е) гетероарил,
- (f) галоген,
- (g) C_1 - C_6 галогеналкил; или

 R^3 и R^4 взятые вместе представляют -(CH₂)_n-, -(CH₂)_nO(CH₂)_p-, -(CH₂)_nNR^b(CH₂)_p- или -(CH₂)_nS(=O)_m(CH₂)_p-; или

 R^3 и R^2 взятые вместе представляют (CH₂)_n, (CH₂)_nO(CH₂)_p, (CH₂)_nNR^b(CH₂)_p или (CH₂)_nS(=O)_m(CH₂)_p;

R^а выбран из группы, состоящей из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (с) галоген,
- (d) арил,
- (e) OR^b ,
- (f) циано,
- (g) гетероарил,
- (h) C_3 - C_6 циклоалкил,
- (i) C_1 - C_6 галогеналкил;

R^{a'} выбран из группы, состоящей из следующего:

- (а) циано,
- (b) C_1 - C_6 алкил,
- (с) галоген,
- (d) арил,
- (e) OR^b ,
- (f) гетероарил,
- (g) C_3 - C_6 циклоалкил, и
- (h) C_1 - C_6 галогеналкил;

 R^{b} и R^{c} независимо выбраны из группы, состоящей из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (с) арил,
- (d) гетероарил,
- (e) C_3 - C_6 циклоалкил,
- (f) C_2 - C_6 гетероцикл, и
- (g) C_1 - C_6 галогеналкил; или

 R^b и R^c взятые вместе с N, к которому они оба прикреплены, образуют 3-6-членный гетероцикл, необязательно содержащий дополнительный гетероатом, выбранный из N, O и S;

m составляет 0, 1 или 2; n составляет 1, 2 или 3; и p составляет 1, 2 или 3.

[0070] Согласно определенным вариантам осуществления в настоящем документе предусмотрены соединения согласно формуле I:

$$\begin{array}{c|c}
X^{2} & X^{3} & X^{4} \\
X & X^{5} & R^{4} \\
X & X^{5} & R^{4}
\end{array}$$

или их фармацевтически приемлемая соль, сольват, сольват соли или пролекарство, где:

Аг представляет собой арил или гетероарил, где каждый указанный арил и указанный гетероарил необязательно замещен 1-3 заместителями, независимо выбранными из группы, состоящей из следующего:

- (a) C_1 - C_6 алкил,
- (b) С3-С7 циклоалкил,
- (с) гетероцикл,
- (d) арил,
- (е) гетероарил,
- (f) галоген,
- (g) CN,
- (h) OR^b ,
- (i) $N(R^b)C(=O)R^c$,

- (j) $C(=O)N(R^b)(R^c)$,
- (k) $S(=O)_m R^b$,
- (1) $S(=O)_2N(R^b)(R^c)$,
- (m) $N(R^b)S(=O)_2R^c$,
- (n) SF₅, и
- (о) C_1 - C_6 галогеналкил.

W выбран из группы, состоящей из следующего:

- (a) CO_2H ,
- (b) C(=O)NHOH,
- (c) $S(=O)_2NHR^b$,
- (d) $S(=O)_2NHC(=O)R^b$,
- (e) $NHC(=O)NHSO_2R^b$,
- (f) 1*H*-тетразол,
- (g) 1,2,4-оксадиазол-5(4*H*)он,
- (h) 1,2,4-тиадиазол-5(4H)он,
- (i) 1,2,4-оксадиазол-5(4*H*)-тион,
- (j) 1,2,4-триазол-5(4*H*)-он,
- (k) тетразол-5(4H)-он, и
- (1) $C(=O)NHS(=O)_2R^b$;

каждый из X^1 , X^2 , X^3 , X^4 и X^5 независимо представляет собой N или CR^a , где не более 2 из X^1 , X^2 , X^3 , X^4 и X^5 представляют собой N;

Ү выбран из следующего:

- (а) связь,
- (b) $(CH_2)_n$, где 1 4 атома водорода могут быть замещены $R^{a'}$,
- (с) Ои
- (d) NR^b ;

Z представляет собой (CH2) $_{n}$, где 1 - 4 атома водорода могут быть замещены R^{a} ;

 R^1 и R^2 независимо выбраны из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (c) C_3 - C_6 циклоалкил, и
- (d) C_1 - C_6 галогеналкил; где не оба R^1 и R^2 представляют собой H; или

 R^1 и R^2 взятые вместе представляют -(CH₂)_n-, -(CH₂)_nO(CH₂)_p-, -(CH₂)_nNR^b(CH₂)_p- или -(CH₂)_nS(=O)_m(CH₂)_p-;

 ${\bf R}^3$ и ${\bf R}^4$ независимо выбраны из группы, состоящей из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (c) C_3 - C_6 циклоалкил,
- (d) арил,
- (е) гетероарил,
- (f) галоген,
- (g) C_1 - C_6 галогеналкил; или

 R^3 и R^4 взятые вместе представляют -(CH₂)_n-, -(CH₂)_nO(CH₂)_p-, -(CH₂)_nNR^b(CH₂)_p- или -(CH₂)_nS(=O)_m(CH₂)_p-; или

 R^3 и R^2 взятые вместе представляют (CH₂)_n, (CH₂)_nO(CH₂)_p, (CH₂)_nNR^b(CH₂)_p или (CH₂)_nS(=O)_m(CH₂)_p;

R^а выбран из группы, состоящей из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (с) галоген,
- (d) арил,
- (e) OR^b ,
- (f) циано,
- (g) гетероарил,
- (h) C_3 - C_6 циклоалкил,
- (i) C_1 - C_6 галогеналкил;

R^{a'} выбран из группы, состоящей из следующего:

- (а) циано,
- (b) C_1 - C_6 алкил,
- (с) галоген,
- (d) арил,
- (e) OR^b,
- (f) гетероарил,
- (g) C_3 - C_6 циклоалкил, и
- (h) C_1 - C_6 галогеналкил;

R^b и R^c независимо выбраны из группы, состоящей из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (с) арил,

- (d) гетероарил,
- (e) C_3 - C_6 циклоалкил, и
- (f) C_1 - C_6 галогеналкил; или

 R^b и R^c взятые вместе с N, к которому они оба прикреплены, образуют 3-6-членный гетероцикл, необязательно содержащий дополнительный гетероатом, выбранный из N, O и S;

```
m составляет 0, 1 или 2;
n составляет 1, 2 или 3; и
p составляет 1, 2 или 3.
```

[0071] Согласно некоторым вариантам осуществления Аг представляет собой арил или гетероарил, где каждый указанный арил и указанный гетероарил необязательно замещен 1-3 заместителями, независимо выбранными из группы, состоящей из следующего:

- (a) C_1 - C_6 алкил,
- (b) C₃-C₇ циклоалкил,
- (с) гетероцикл,
- (d) арил,
- (е) гетероарил,
- (f) галоген,
- (g) CN,
- (h) OR^b ,
- (i) $N(R^b)C(=O)R^c$,
- (j) $C(=O)N(R^b)(R^c)$,
- (k) $S(=O)_m R^b$,
- (1) $S(=O)_2N(R^b)(R^c)$,
- (m) $N(R^b)S(=O)_2R^c$,
- (n) SF₅, и
- (о) C_1 - C_6 галогеналкил.

[0072] Согласно некоторым вариантам осуществления Аг представляет собой монозамещенную фенильную группу. Согласно некоторым вариантам осуществления Аг представляет собой дизамещенную фенильную группу. Согласно некоторым вариантам осуществления Аг представляет собой тризамещенную фенильную группу. Согласно некоторым вариантам осуществления Аг представляет собой монозамещенную пиридильную группу. Согласно некоторым вариантам осуществления Аг представляет собой монозамещенную пиримидинильную группу. Согласно некоторым вариантам

осуществления Аг представляет собой дизамещенную пиридильную группу. Согласно собой некоторым вариантам осуществления Ar представляет дизамещенную пиримидинильную группу. Согласно некоторым вариантам осуществления монозамещенная группа замещена CN (циано), галогеном, CF₃, CF₂H, SF₅ или незамещенным C_1 - C_6 алкилом. Согласно некоторым вариантам осуществления монозамещенная группа замещена CN (циано), галогеном, галогеналкилом, арилом, гетероарилом, галогеналкокси, гетероциклом или алкилом. Согласно некоторым вариантам осуществления монозамещенная группа замещена СN (циано), галогеном, галогеналкилом, фенилом, пиридилом, галогеналкокси или гетероциклом. Согласно некоторым вариантам осуществления Аг представляет собой фенил, замещенный одним - тремя заместителями, выбранными из арила, гетероарила, циклоалкила, гетероцикла, СN (циано), галогена, галогеналкила, SF_5 , $-OR^b$ и алкила; и каждый R^b представляет собой независимо H, C_1 - C_6 алкил, C_3 - C_6 циклоалкил, гетероциклил или C_1 - C_6 галогеналкил.

[0073] Согласно некоторым вариантам осуществления W выбран из группы, состоящей из следующего:

- (a) CO_2H ,
- (b) C(=O)NHOH,
- (c) $S(=O)_2NHR^b$,
- (d) $S(=O)_2NHC(=O)R^b$,
- (e) $NHC(=O)NHSO_2R^b$,
- (f) 1H-тетразол,
- (g) 1,2,4-оксадиазол-5(4H)он,
- (h) 1,2,4-тиадиазол-5(4H)он,
- (i) 1,2,4-оксадиазол-5(4H)-тион,
- (j) 1,2,4-триазол-5(4H)-он,
- (k) тетразол-5(4H)-он, и
- (1) $C(=O)NHS(=O)_2R^b$.

[0074] Согласно некоторым вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 независимо представляет собой N или CR^a , при условии, что не более 2 из X^1 , X^2 , X^3 , X^4 и X^5 представляют собой N.

[0075] Согласно некоторым вариантам осуществления У выбран из следующего:

- (а) связь,
- (b) $(CH_2)_n$, где 1 4 атома водорода могут быть замещены $R^{a'}$,
- (с) О, и
- (d) NR^b .

[0076] Согласно некоторым вариантам осуществления Z представляет собой $(CH_2)_n$, где 1 - 4 атома водорода могут быть замещены $R^{a'}$.

[0077] Согласно некоторым вариантам осуществления ${\bf R}^1$ и ${\bf R}^2$ независимо выбраны из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (c) C_3 - C_6 циклоалкил, и
- (d) C_1 - C_6 галогеналкил.

[0078] Согласно некоторым вариантам осуществления не оба ${\bf R}^1$ и ${\bf R}^2$ представляют собой ${\bf H}$.

[0079] Согласно некоторым вариантам осуществления R^1 и R^2 взятые вместе представляют - $(CH_2)_n$ -, - $(CH_2)_nO(CH_2)_p$ -, - $(CH_2)_nNR^b(CH_2)_p$ - или - $(CH_2)_nS(=O)_m(CH_2)_p$ -.

[0080] Согласно некоторым вариантам осуществления ${\bf R}^3$ и ${\bf R}^4$ независимо выбраны из группы, состоящей из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (c) C_3 - C_6 циклоалкил,
- (d) арил,
- (е) гетероарил,
- (f) галоген, и
- (g) C_1 - C_6 галогеналкил.

[0081] Согласно некоторым вариантам осуществления R^3 и R^4 взятые вместе представляют -(CH_2) $_n$ -, -(CH_2) $_nO(CH_2)_p$ -, -(CH_2) $_nNR^b(CH_2)_p$ - или -(CH_2) $_nS(=O)_m(CH_2)_p$ -.

[0082] Согласно некоторым вариантам осуществления R^3 и R^2 взятые вместе представляют (CH₂)_n, (CH₂)_nO(CH₂)_p, (CH₂)_nNR^b(CH₂)_p или (CH₂)_nS(=O)_m(CH₂)_p.

[0083] Согласно некоторым вариантам осуществления R^a выбран из группы, состоящей из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (с) галоген,
- (d) арил,
- (e) OR^b ,
- (f) циано,
- (g) гетероарил,
- (h) C_3 - C_6 циклоалкил, и

(i) C_1 - C_6 галогеналкил.

[0084] Согласно некоторым вариантам осуществления $R^{a'}$ выбран из группы, состоящей из следующего:

- (а) циано,
- (b) C_1 - C_6 алкил,
- (с) галоген,
- (d) арил,
- (e) OR^b ,
- (f) гетероарил,
- (g) C_3 - C_6 циклоалкил, и
- (h) C_1 - C_6 галогеналкил.

[0085] Согласно некоторым вариантам осуществления R^b и R^c независимо выбраны из группы, состоящей из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (с) арил,
- (d) гетероарил,
- (e) C_3 - C_6 циклоалкил, и
- (f) C_1 - C_6 галогеналкил.

[0086] Согласно некоторым вариантам осуществления R^b и R^c взятые вместе с N, к которому они оба прикреплены, образуют 3-6-членный гетероцикл, необязательно содержащий дополнительный гетероатом, выбранный из N, O и S.

[0087] Согласно некоторым вариантам осуществления т составляет 0, 1 или 2.

[0088] Согласно некоторым вариантам осуществления п составляет 1, 2 или 3.

[0089] Согласно некоторым вариантам осуществления р составляет 1, 2 или 3.

[0090] Согласно некоторым вариантам осуществления Ar представляет собой фенил, необязательно замещенный 1-3 заместителями, независимо выбранными из следующего:

- (а) галоген,
- (b) циано,
- (c) C_1 - C_6 алкил,
- (d) SF_5 ,
- (e) C_1 - C_6 галогеналкил,
- (f) OR^b , где R^b представляет собой C_1 - C_6 алкил, арил, гетероарил, C_3 - C_6 циклоалкил или C_1 - C_6 галогеналкил;

- (g) гетероцикл,
- (h) арил, и
- (і) гетероарил.

[0091] Согласно некоторым вариантам осуществления Ar представляет собой фенил, необязательно замещенный 1-3 заместителями, независимо выбранными из следующего:

- (а) галоген,
- (b) циано,
- (c) C_1 - C_6 алкил,
- (d) SF₅, и
- (e) C_1 - C_6 галогеналкил.

[0092] Согласно некоторым вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо C- R^a , или один из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой N, а каждый из остальных независимо представляет собой C- R^a .

[0093] Согласно некоторым вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо C- R^a .

[0094] Согласно некоторым вариантам осуществления ${\bf R}^a$ представляет собой H или атом галогена.

[0095] Согласно некоторым вариантам осуществления W выбран из группы, состоящей из следующего:

- (a) CO₂H, и
- (b) 1H-тетразол.

[0096] Согласно некоторым вариантам осуществления Z представляет собой -СН2-.

[0097] Согласно некоторым вариантам осуществления Y представляет собой связь или -CH₂-.

[0098] Согласно некоторым вариантам осуществления R^1 и R^2 взятые вместе представляют -CH₂-, -CH₂CH₂- или -CH₂CH₂-. Согласно некоторым вариантам осуществления R^1 и R^2 взятые вместе представляют -CH₂- или -CH₂CH₂-.

[0099] Согласно некоторым вариантам осуществления Y представляет собой прямую связь или -CH₂-, и R^3 и R^2 взятые вместе представляют -CH₂-, -CH₂CH₂- или -CH₂CH₂-.

[00100] Согласно некоторым вариантам осуществления Y представляет собой -CH₂-, и \mathbb{R}^3 и \mathbb{R}^2 взятые вместе представляют -CH₂-, -CH₂CH₂- или -CH₂CH₂-.

[00101] Согласно некоторым вариантам осуществления Y представляет собой -CH₂-, и R^3 и R^2 взятые вместе представляют -CH₂- или -CH₂CH₂-.

[00102] Согласно некоторым вариантам осуществления предусмотрены соединения, характеризующиеся формулой Ia:

$$Ar \longrightarrow \begin{pmatrix} X_2 & X_3 & X_4 & R^4 \\ X_5 & X_6 & R^2 & M \end{pmatrix}$$
Ia

или их фармацевтически приемлемая соль, сольват, сольват соли или пролекарство.

[00103] Согласно некоторым вариантам осуществления Аг представляет собой арил или гетероарил, необязательно замещенный 1-3 заместителями, независимо выбранными из следующего:

- (а) галоген,
- (b) циано,
- (c) C_1 - C_6 алкил,
- (d) SF_5 ,
- (e) C_1 - C_6 галогеналкил,
- (f) OR^b , где R^b представляет собой C_1 - C_6 алкил, арил, гетероарил, C_3 - C_6 циклоалкил или C_1 - C_6 галогеналкил,
 - (g) гетероцикл,
 - (h) арил, и
 - (і) гетероарил.

[00104] Согласно некоторым вариантам осуществления Аг представляет собой фенил, необязательно замещенный 1-3 заместителями, независимо выбранными из следующего:

- (а) галоген,
- (b) циано,
- (c) C_1 - C_6 алкил,
- (d) SF_5 ,
- (e) C_1 - C_6 галогеналкил,
- (f) OR^b , где R^b представляет собой C_1 - C_6 алкил, арил, гетероарил, C_3 - C_6 циклоалкил или C_1 - C_6 галогеналкил;
 - (g) гетероцикл,
 - (h) арил, и
 - (і) гетероарил.

[00105] Согласно некоторым вариантам осуществления Аг представляет собой фенил, необязательно замещенный 1-3 заместителями, независимо выбранными из следующего:

- (а) галоген,
- (b) циано,
- (c) C_1 - C_6 алкил,
- (d) SF₅, и
- (e) C_1 - C_6 галогеналкил.

[00106] Согласно некоторым вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо C-R^a, или один из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой N, а каждый из остальных независимо представляет собой C-R^a.

[00107] Согласно некоторым вариантам осуществления W выбран из группы, состоящей из следующего: (а) ${\rm CO_2H}$ и (b) 1H-тетразол.

[00108] Согласно некоторым вариантам осуществления У представляет собой связь или -СН₂-.

[00109] Согласно некоторым вариантам осуществления п составляет 1 или 2.

[00110] Согласно некоторым вариантам осуществления R^3 и R^4 независимо выбраны из группы, состоящей из следующего: (а) H, (b) C_1 - C_3 алкил, (c) C_1 - C_3 галогеналкил.

[00111] Согласно некоторым вариантам осуществления R^a выбран из группы, состоящей из следующего: (a) H и (b) галоген.

[00112] Согласно некоторым вариантам осуществления У представляет собой связь, и п составляет 1.

[00113] Согласно некоторым вариантам осуществления предусмотрены соединения, характеризующиеся формулой Ib:

$$X_1$$
 X_2
 X_3
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_8
 X_8
 X_8
 X_8
 X_8
 X_8
 X_8
 X_8
 X_9
 X_9

или их фармацевтически приемлемая соль, сольват, сольват соли или пролекарство.

[00114] Согласно некоторым вариантам осуществления Аг представляет собой арил или гетероарил, необязательно замещенный 1-3 заместителями, независимо выбранными из следующего:

(а) галоген,

- (b) циано,
- (c) C_1 - C_6 алкил;
- (d) SF_5 ,
- (e) C_1 - C_6 галогеналкил,
- (f) OR^b , где R^b представляет собой C_1 - C_6 алкил, арил, гетероарил, C_3 - C_6 циклоалкил или C_1 - C_6 галогеналкил,
 - (g) гетероцикл,
 - (h) арил, и
 - (і) гетероарил.

[00115] Согласно некоторым вариантам осуществления Аг представляет собой фенил, необязательно замещенный 1-3 заместителями, независимо выбранными из следующего:

- (а) галоген,
- (b) циано,
- (c) C_1 - C_6 алкил,
- (d) SF_5 ,
- (e) C_1 - C_6 галогеналкил,
- (f) OR^b , где R^b представляет собой C_1 - C_6 алкил, арил, гетероарил, C_3 - C_6 циклоалкил или C_1 - C_6 галогеналкил,
 - (g) гетероцикл,
 - (h) арил, и
 - (і) гетероарил.

[00116] Согласно некоторым вариантам осуществления Аг представляет собой фенил, необязательно замещенный 1-3 заместителями, независимо выбранными из следующего:

- (а) галоген,
- (b) циано,
- (c) C_1 - C_6 алкил,
- (d) SF₅, и
- (e) C_1 - C_6 галогеналкил.

[00117] Согласно некоторым вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо C-R^a, или один из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой N, а каждый из остальных независимо представляет собой C-R^a.

[00118] Согласно некоторым вариантам осуществления W выбран из группы, состоящей из следующего: (а) CO_2H и (b) 1H-тетразол.

[00119] Согласно некоторым вариантам осуществления п составляет 1 или 2.

[00120] Согласно некоторым вариантам осуществления R^4 выбран из группы, состоящей из следующего: (a) H, (b) C_1 - C_3 алкил и (c) C_1 - C_3 галогеналкил.

[00121] Согласно некоторым вариантам осуществления п составляет 1, и R^a выбран из группы, состоящей из следующего: (a) H и (b) галоген.

[00122] Согласно некоторым вариантам осуществления, представленным в настоящем документе, описаны соединения согласно формуле I, характеризующиеся структурой согласно формуле Ic или Id:

или их фармацевтически приемлемая соль, сольват, сольват соли или пролекарство.

[00123] Согласно некоторым вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо C- R^a , или один из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой N, а каждый из остальных независимо представляет собой C- R^a .

[00124] Согласно некоторым вариантам осуществления R^a выбран из группы, состоящей из следующего: (a) H и (b) галоген.

[00125] Согласно некоторым вариантам осуществления R^d выбран из группы, состоящей из следующего:

- (a) CN,
- (b) C_1 - C_3 алкил,
- (c) SF₅ и
- (d) C_1 - C_3 галогеналкил,
- (e) OR^b , где R^b представляет собой C_1 - C_6 алкил, арил, гетероарил, C_3 - C_6 циклоалкил или C_1 - C_6 галогеналкил,
 - (f) гетероцикл,
 - (g) арил, и
 - (h) гетероарил.

[00126] Согласно некоторым вариантам осуществления R^d выбран из группы, состоящей из следующего:

- (a) CN,
- (b) C₁-C₃ алкил,
- (c) SF₅, и

(d) C_1 - C_3 галогеналкил.

[00127] Согласно некоторым вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой CH; или один из X^1 , X^2 , X^3 , X^4 и X^5 представляют собой CH, и R^a представляет собой галоген.

Согласно некоторым вариантам осуществления R^1 и R^2 , взятые вместе, [00128]представляют СН2, Аг представляет собой монозамещенную арильную группу, и У представляет собой связь. Согласно некоторым вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой CH, R^1 и R^2 , взятые вместе, представляют CH₂, Ar представляет собой монозамещенную арильную группу, и У представляет собой связь. Согласно некоторым вариантам осуществления один из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой $C-R^a$, а другие представляют собой CH, R^a представляет собой галоген, R^1 и R^2 , взятые вместе, представляют СН₂, Аг представляет собой монозамещенную арильную группу, и У представляет собой связь. Согласно некоторым вариантам осуществления один из X¹, X², X^3 , X^4 и X^5 представляет собой N, а другие представляют собой CH, R^1 и R^2 , взятые вместе, представляют СН₂, Аг представляет собой монозамещенную арильную группу, и У представляет собой связь. Согласно некоторым вариантам осуществления два из X¹, X², X³, X^4 и X^5 представляют собой N, а другие представляют собой CH, R^1 и R^2 , взятые вместе, представляют СН2, Аг представляет собой монозамещенную арильную группу, и У представляет собой связь.

[00129] Согласно определенным вариантам осуществления монозамещенная арильная группа замещена фенилом, пиридилом, гетероциклом, CN (циано), галогеном, C_1 - C_6 галогеналкилом, SF_5 или галогеналкокси.

[00130] Согласно определенным вариантам осуществления в настоящем документе предусмотрены соединения согласно формуле I:

$$A_{I} \xrightarrow{X^{2}} X^{3} X^{4} \qquad R^{3} \xrightarrow{R^{4}} W$$

$$A_{I} \xrightarrow{X^{2}} X^{3} \times A^{4} \qquad R^{3} \xrightarrow{R^{4}} W$$

$$A_{I} \xrightarrow{X^{2}} X^{3} \times A^{4} \qquad R^{3} \xrightarrow{R^{4}} W$$

или их фармацевтически приемлемая соль, сольват, сольват соли, гидрат, отдельный стереоизомер, смесь стереоизомеров, рацемическая смесь стереоизомеров или пролекарство, где:

Аг представляет собой арил или гетероарил, где каждый указанный арил и указанный гетероарил необязательно замещен 1-3 заместителями, независимо выбранными из следующего:

- (a) C_1 - C_6 алкил,
- (b) C_3 - C_7 циклоалкил,
- (с) гетероцикл,
- (d) арил,
- (е) гетероарил,
- (f) галоген,
- (g) CN,
- (h) OR^b ,
- (i) $N(R^b)C(=O)R^c$,
- (j) $C(=O)N(R^b)(R^c)$,
- (k) $S(=O)_m R^b$,
- (1) $S(=O)_2N(R^b)(R^c)$,
- (m) $N(R^b)S(=O)_2R^c$,
- (n) SF₅, и
- (о) C_1 - C_6 галогеналкил;

W выбран из следующего:

- (a) $C(=O)OR^5$,
- (b) C(=O)NHOH,
- (c) $S(=O)_2NHR^b$,
- (d) $S(=O)_2NHC(=O)R^b$,
- (e) $NHC(=O)NHSO_2R^b$,
- (f) 1H-тетразол,
- (g) 1,2,4-оксадиазол-5(4H)он,
- (h) 1,2,4-тиадиазол-5(4H)он,
- (i) 1,2,4-оксадиазол-5(4*H*)-тион,
- (j) 1,2,4-триазол-5(4*H*)-он,
- (k) тетразол-5(4H)-он, и
- (1) $C(=O)NHS(=O)_2R^b$;

каждый из X^1 , X^2 , X^3 , X^4 и X^5 независимо представляет собой N или CR^a , где не более 2 из X^1 , X^2 , X^3 , X^4 и X^5 представляют собой N;

Ү выбран из следующего:

- (а) связь,
- (b) (CH₂)_n, где 1 4 атома водорода могут быть замещены $R^{a'}$,
- (с) О, и
- (d) NR^b ;

Z представляет собой (CH_2) $_n$, где 1 - 4 атома водорода могут быть замещены $R^{a\dot{}}$;

 R^{1} и R^{2} независимо выбраны из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (c) C_3 - C_6 циклоалкил, и
- (d) C_1 - C_6 галогеналкил; где R^2 не представляет собой H; или

 R^1 и R^2 взятые вместе представляют -(CH₂)_n-, -(CH₂)_nO(CH₂)_p-, -(CH₂)_nNR^b(CH₂)_p- или -(CH₂)_nS(=O)_m(CH₂)_p-;

 ${\bf R}^3$ и ${\bf R}^4$ независимо выбраны из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (c) C_3 - C_6 циклоалкил,
- (d) арил,
- (е) гетероарил,
- (f) галоген, и
- (g) C_1 - C_6 галогеналкил; или

 R^3 и R^4 взятые вместе представляют -(CH₂)_n-, -(CH₂)_nO(CH₂)_p-, -(CH₂)_nNR^b(CH₂)_p- или -(CH₂)_nS(=O)_m(CH₂)_p-;

или R^1, R^2, R^3 и R^4 выше выбраны следующим образом:

 R^1 выбран из H, C_1 - C_6 алкила, C_3 - C_6 циклоалкила и C_1 - C_6 галогеналкила;

 R^3 и R^2 взятые вместе представляют (CH₂)_n, (CH₂)_nO(CH₂)_p, (CH₂)_nNR^b(CH₂)_p или (CH₂)_nS(=O)_m(CH₂)_p; и

 R^4 выбран из H, C_1 - C_6 алкила, C_3 - C_6 циклоалкила, арила, гетероарила, галогена и C_1 - C_6 галогеналкила;

R⁵ выбран из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (с) арил,
- (d) аралкил,
- (e) $CH(R^7)OC(=O)R^8$,
- (f) $CH(R^7)OC(=O)OR^8$, и
- (g) (5-алкил-2-оксо-1,3-диоксолен-4-ил)метильная группа, характеризующаяся следующей формулой:

где R^6 представляет собой C_1 - C_6 алкил;

 R^7 представляет собой водород или C_1 - C_6 алкил;

 R^8 представляет собой C_1 - C_6 алкил или C_3 - C_6 -циклоалкил;

каждый R^a независимо выбран из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (с) галоген,
- (d) арил,
- (e) OR^b ,
- (f) циано,
- (g) гетероарил,
- (h) C_3 - C_6 циклоалкил, и
- (i) C_1 - C_6 галогеналкил;

каждый Ra' независимо выбран из следующего:

- (а) циано,
- (b) C_1 - C_6 алкил,
- (с) галоген,
- (d) арил,
- (e) OR^b ,
- (f) гетероарил,
- (g) C_3 - C_6 циклоалкил,
- (h) C_1 - C_6 галогеналкил;

R^b и R^c независимо выбраны из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (с) арил,
- (d) гетероарил,
- (e) C_3 - C_6 циклоалкил, и
- (f) C_1 - C_6 галогеналкил; или

 R^b и R^c взятые вместе с N, к которому они оба прикреплены, образуют 3-6-членный гетероцикл, необязательно содержащий дополнительный гетероатом, выбранный из N, O и S;

т составляет 0, 1 или 2;

n составляет 1, 2 или 3; и

р составляет 1, 2 или 3.

[00131] Согласно определенным вариантам осуществления в настоящем документе предусмотрены соединения согласно формуле I:

$$Ar \xrightarrow{X^2} X^3 X^4 \xrightarrow{\mathbb{R}^2} \mathbb{R}^2$$

$$Ar \xrightarrow{Q} M \xrightarrow{\mathbb{R}^2} \mathbb{R}^2$$

$$I$$

или их фармацевтически приемлемая соль, сольват, сольват соли, гидрат, отдельный стереоизомер, смесь стереоизомеров, рацемическая смесь стереоизомеров или пролекарство, где:

Аг представляет собой арил или гетероарил, где каждый указанный арил и указанный гетероарил необязательно замещен 1-3 заместителями, независимо выбранными из следующего:

- (a) C_1 - C_6 алкил,
- (b) С3-С7 циклоалкил,
- (с) гетероцикл,
- (d) арил,
- (е) гетероарил,
- (f) галоген,
- (g) CN,
- (h) OR^b ,
- (i) $N(R^b)C(=O)R^c$,
- (j) $C(=O)N(R^b)(R^c)$,
- (k) $S(=O)_m R^b$,
- (1) $S(=O)_2N(R^b)(R^c)$,
- (m) $N(R^b)S(=O)_2R^c$,
- (n) SF₅, и
- (о) C_1 - C_6 галогеналкил.

W выбран из следующего:

- (a) $C(=O)OR^5$,
- (b) C(=O)NHOH,
- (c) $S(=O)_2NHR^b$,
- (d) $S(=O)_2NHC(=O)R^b$,

- (e) $NHC(=O)NHSO_2R^b$,
- (f) 1H-тетразол,
- (g) 1,2,4-оксадиазол-5(4*H*)он,
- (h) 1,2,4-тиадиазол-5(4H)он,
- (i) 1,2,4-оксадиазол-5(4*H*)-тион,
- (j) 1,2,4-триазол-5(4H)-он,
- (k) тетразол-5(4H)-он, и
- (1) $C(=O)NHS(=O)_2R^b$;

каждый из X^1 , X^2 , X^3 , X^4 и X^5 независимо представляет собой N или CR^a , где не более 2 из X^1 , X^2 , X^3 , X^4 и X^5 представляют собой N;

Ү выбран из следующего:

- (а) связь,
- (b) $(CH_2)_n$, где 1 4 атома водорода могут быть замещены $R^{a'}$,
- (с) О, и
- (d) NR^b ;

Z представляет собой $(CH_2)_n$, где 1 - 4 атома водорода могут быть замещены $R^{a^{\circ}}$;

 ${\bf R}^1$ и ${\bf R}^2$ независимо выбраны из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (c) C_3 - C_6 циклоалкил, и
- (d) C_1 - C_6 галогеналкил; где R^2 не представляет собой H; или

 R^1 и R^2 взятые вместе представляют -(CH₂)_n-, -(CH₂)_nO(CH₂)_p-, -(CH₂)_nNR^b(CH₂)_p- или -(CH₂)_nS(=O)_m(CH₂)_p-;

 R^3 и R^4 независимо выбраны из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (c) C_3 - C_6 циклоалкил,
- (d) арил,
- (е) гетероарил,
- (f) галоген,
- (g) C_1 - C_6 галогеналкил; или

 R^3 и R^4 взятые вместе представляют -(CH₂)_n-, -(CH₂)_nO(CH₂)_p-, -(CH₂)_nNR^b(CH₂)_p- или -(CH₂)_nS(=O)_m(CH₂)_p-;

или R^1 , R^2 , R^3 и R^4 выше выбраны следующим образом:

 R^1 выбран из H, C_1 - C_6 алкила, C_3 - C_6 циклоалкила и C_1 - C_6 галогеналкила;

 R^3 и R^2 взятые вместе представляют (CH₂)_n, (CH₂)_nO(CH₂)_p, (CH₂)_nNR^b(CH₂)_p или (CH₂)_nS(=O)_m(CH₂)_p; и

 R^4 выбран из H, C_1 - C_6 алкила, C_3 - C_6 циклоалкила, арила, гетероарила, галогена и C_1 - C_6 галогеналкила;

R⁵ выбран из следующего:

- (a) H,
- (b) C₁-C₆ алкил,
- (с) арил,
- (d) аралкил,
- (e) $CH(R^7)OC(=O)R^8$,
- (f) $CH(R^7)OC(=O)OR^8$, и
- (g) (5-алкил-2-оксо-1,3-диоксолен-4-ил)метильная группа, характеризующаяся следующей формулой:

где R^6 представляет собой C_1 - C_6 алкил;

 ${\bf R}^7$ представляет собой водород или ${\bf C}_1$ - ${\bf C}_6$ алкил;

 R^8 представляет собой C_1 - C_6 алкил или C_3 - C_6 -циклоалкил;

каждый R^a независимо выбран из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (с) галоген,
- (d) OR^b ,
- (е) циано,
- (f) C_3 - C_6 циклоалкил, и
- (g) C_1 - C_6 галогеналкил;

каждый R^{a'} независимо выбран из следующего:

- (a) C_1 - C_6 алкил,
- (b) галоген, и
- (c) C_1 - C_6 галогеналкил;

R^b и R^c независимо выбраны из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (с) арил,

- (d) гетероарил,
- (e) C_3 - C_6 циклоалкил, и
- (f) C_1 - C_6 галогеналкил; или

 R^b и R^c взятые вместе с N, к которому они оба прикреплены, образуют 3-6-членный гетероцикл, необязательно содержащий дополнительный гетероатом, выбранный из N, O и S;

m составляет 0, 1 или 2; n составляет 1, 2 или 3; и p составляет 1, 2 или 3.

[00132] Согласно определенным вариантам осуществления X^2 представляет собой C- R^a ; каждый из X^1 , X^3 , X^4 и X^5 независимо представляет собой N или CR^a ; и R^a выбран из H, C_1 - C_6 алкила, галогена, арила, OR^b , циано, гетероарила, C_3 - C_6 циклоалкила и C_1 - C_6 галогеналкила.

[00133] Согласно определенным вариантам осуществления X^2 и X^3 представляют собой C- R^a ; каждый из X^1 , X^4 и X^5 независимо представляет собой N или CR^a , где не более 2 из X^1 , X^4 и X^5 представляют собой N; и R^a выбран из H, C_1 - C_6 алкила, галогена, арила, OR^b , циано, гетероарила, C_3 - C_6 циклоалкила и C_1 - C_6 галогеналкила.

[00134] Согласно определенным вариантам осуществления X^2 представляет собой CH; и X^3 представляет собой CH или C-(галоген); каждый из X^1 , X^4 и X^5 независимо представляет собой N или CR a , где не более 2 из X^1 , X^4 и X^5 представляют собой N; и R^a выбран из H, C_1 - C_6 алкила, галогена, арила, OR^b , циано, гетероарила, C_3 - C_6 циклоалкила и C_1 - C_6 галогеналкила. Согласно определенным вариантам осуществления X^2 представляет собой CH; и X^3 представляет собой CH или C-(галоген); каждый из X^1 , X^4 и X^5 независимо представляет собой N или CH, где не более 2 из X^1 , X^4 и X^5 представляют собой N.

[00135] Согласно определенным вариантам осуществления X^1 представляет собой N или C-R^a; X^2 , X^3 , X^4 и X^5 представляют собой C-R^a; и R^a выбран из H, C₁-C₆ алкила, галогена, арила, OR^b, циано, гетероарила, C₃-C₆ циклоалкила и C₁-C₆ галогеналкила. Согласно определенным вариантам осуществления X^1 представляет собой N или CH; X^2 представляет собой CH или C-(галоген), и X^3 , X^4 и X^5 представляют собой CH.

[00136] Согласно определенным вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо C-Ra, или один из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой N, а каждый из остальных независимо представляет собой C-Ra.

[00137] Согласно определенным вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо C-R a . Согласно определенным вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо CH.

[00138] Согласно определенным вариантам осуществления R^a представляет собой H или атом галогена.

[00139] Согласно определенным вариантам осуществления Z представляет собой -CH₂-.

[00140] Согласно определенным вариантам осуществления Y представляет собой связь или -CH₂-.

[00141] Согласно определенным вариантам осуществления R^1 и R^2 взятые вместе представляют -CH₂-, -CH₂CH₂- или -CH₂CH₂CH₂.

[00142] Согласно определенным вариантам осуществления Y представляет собой -CH₂-, и R^3 и R^2 взятые вместе представляют -CH₂-, -CH₂CH₂- или -CH₂CH₂-.

[00143] Согласно определенным вариантам осуществления Z представляет собой -CH₂-; Y представляет собой связь или -CH₂-; R^1 и R^2 взятые вместе представляют -CH₂-, -CH₂CH₂- или -CH₂CH₂CH₂. Согласно определенным вариантам осуществления Z представляет собой -CH₂-; Y представляет собой связь; и R^1 и R^2 взятые вместе представляют -CH₂-, -CH₂CH₂- или -CH₂CH₂CH₂.

[00144] Согласно определенным вариантам осуществления Z представляет собой -CH₂-; Y представляет собой связь или -CH₂-; и R^3 и R^2 взятые вместе представляют -CH₂-, -CH₂CH₂- или -CH₂CH₂-. Согласно определенным вариантам осуществления Z представляет собой -CH₂-; Y представляет собой связь; и R^3 и R^2 взятые вместе представляют -CH₂-, -CH₂CH₂- или -CH₂CH₂-. Согласно определенным вариантам осуществления Z представляет собой -CH₂-; Y представляет собой связь; и R^3 и R^2 взятые вместе представляют -CH₂-, -CH₂CH₂- или -CH₂CH₂-; R^1 представляет собой H; и R^4 выбран из H, C₁-C₆ алкила, C₃-C₆ циклоалкила, арила, гетероарила, галогена и C₁-C₆ галогеналкила.

[00145] Согласно некоторым вариантам осуществления Аг представляет собой арил или гетероарил, необязательно замещенный 1-3 заместителями, независимо выбранными из следующего:

- (а) галоген,
- (b) циано,
- (c) C_1 - C_6 алкил,
- (d) SF_5 ,
- (e) C_1 - C_6 галогеналкил,
- (f) OR^b , где R^b представляет собой C_1 - C_6 алкил, арил, гетероарил, C_3 - C_6 циклоалкил или C_1 - C_6 галогеналкил,
 - (g) гетероцикл,

- (h) арил, и
- (і) гетероарил.

[00146] Согласно определенным вариантам осуществления W выбран из следующего:

- (a) $C(=O)OR^5$,
- (b) C(=O)NHOH,
- (c) $S(=O)_2NHR^b$,
- (d) $S(=O)_2NHC(=O)R^b$,
- (e) $NHC(=O)NHSO_2R^b$,
- (f) 1*H*-тетразол,
- (g) 1,2,4-оксадиазол-5(4*H*)он,
- (h) 1,2,4-тиадиазол-5(4H)он,
- (i) 1,2,4-оксадиазол-5(4*H*)-тион,
- (j) 1,2,4-триазол-5(4*H*)-он,
- (k) тетразол-5(4H)-он, и
- (1) $C(=O)NHS(=O)_2R^b$,

R⁵ выбран из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (с) арил,
- (d) аралкил,
- (e) $CH(R^7)OC(=O)R^8$,
- (f) $CH(R^7)OC(=O)OR^8$, и
- (g) (5-алкил-2-оксо-1,3-диоксолен-4-ил)метильная группа, характеризующаяся следующей формулой:

где R^6 представляет собой C_1 - C_6 алкил; и

R^b выбран из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (с) арил,
- (d) гетероарил,
- (e) C_3 - C_6 циклоалкил, и

(f) C_1 - C_6 галогеналкил.

[00147] Согласно определенным вариантам осуществления W представляет собой ${\rm CO_2H}$ или 1H-тетразол.

[00148] Согласно некоторым вариантам осуществления соединение выбрано из группы, состоящей из следующего:

2-(3-(1-(4-цианобензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-b]пиридин-7-

карбоксамидо)бицикло[1.1.1]-пентан-1-ил)-уксусная кислота;

2-(3-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-c]пиридин-7-

карбоксамидо)бицикло[1.1.1]-пентан-1-ил)уксусная кислота;

2-(3-(1-(4-(трифторметил)бензил)-1H-пирроло[2,3-c]пиридин-7-

карбоксамидо)бицикло[1.1.1]-пентан-1-ил)уксусная кислота;

2-(3-(1-(4-(трифторметил)бензил)-1H-индазол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

 $2-(3-(1-((4-(трифторметил)фенил)метил-<math>d_2$)-1H-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

6-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(S)-6-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

pay-6-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-b]пиридин-7-

карбоксамидо)спиро[3.3]-гептан-2-карбоновая кислота;

(R)-6-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-b]пиридин-7-

карбоксамидо)спиро[3.3]-гептан-2-карбоновая кислота;

(S)-6-(1-(4-(трифторметил)бензил)-1<math>H-пирроло[3,2-b]пиридин-7-

карбоксамидо)спиро[3.3]-гептан-2-карбоновая кислота;

6-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-c]пиридин-7-

карбоксамидо)спиро[3.3]-гептан-2-карбоновая кислота;

(R)-6-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-c]пиридин-7-

карбоксамидо)спиро[3.3]-гептан-2-карбоновая кислота;

(S)-6-(1-(4-(трифторметил)бензил)-1<math>H-пирроло[3,2-c]пиридин-7-карбоксамидо)спиро[3,3]-гептан-2-карбоновая кислота;

pay-6-(1-(4-(трифторметил)бензил)-1H-пирроло[2,3-c]пиридин-7-карбоксамидо)спиро[3.3]-гептан-2-карбоновая кислота;

(R)-6-(1-(4-(трифторметил)бензил)-1H-пирроло[2,3-c]пиридин-7-карбоксамидо)спиро[3.3]-гептан-2-карбоновая кислота;

(S)-6-(1-(4-(трифторметил)бензил)-1H-пирроло[2,3-c]пиридин-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

pay-6-(1-(4-(трифторметил)бензил)-1H-индазол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(1-(4-(трифторметил)бензил)-1H-индазол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(S)-6-(1-(4-(трифторметил)бензил)-1H-индазол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

pay-6-(1-(4-(трифторметил)бензил)-1H-бензо[d]имидазол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(R)-6-(1-(4-(трифторметил)бензил)-1<math>H-бензо[d]имидазол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(R)-6-(1-(4-(трифторметил)бензил)-1H-бензо[d]имидазол-7-

карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

3-(3-(1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)пропановая кислота;

3-(3-метил-3-(1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамидо)циклобутил)-пропановая кислота;

 μuc -3-(3-метил-3-(1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)циклобутил)-пропановая кислота;

N-(3-(2-оксо-2-(фенилсульфонамидо)этил)бицикло[1.1.1]пентан-1-ил)-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамид;

N-(3-((3-(фенилсульфонил)уреидо)метил)бицикло[1.1.1]пентан-1-ил)-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамид;

N-(3-((1H-тетразол-5-ил)метил)бицикло[1.1.1]пентан-1-ил)-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамид;

2-(4-(1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамидо)бицикло[2.1.1]гексан-1-ил)уксусная кислота;

6-(4-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(4-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(S)-6-(4-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

рау-6-(5-фтор-1-(4-(трифторметил)бензил)-1Н-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(R)-6-(5-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(S)-6-(5-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

pay-6-(5-хлор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(R)-6-(5-хлор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(S)-6-(5-хлор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

pay-6-(6-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(R)-6-(6-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(S)-6-(6-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

pay-6-(1-(4-цианобензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(1-(4-цианобензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(S)-6-(1-(4-цианобензил)-1*H*-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота:

pay-6-(1-(4-(дифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(1-(4-(дифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(S)-6-(1-(4-(дифторметил)бензил)-1<math>H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

2-(4-(1-(4-(дифторметил)бензил)-1H-индол-7-карбоксамидо)бицикло[2.1.1]гексан-1-ил)уксусная кислота;

2-(3-(4-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(4-(4-фтор-1-(4-(трифторметил)бензил)-1*H*-индол-7-

карбоксамидо)бицикло[2.1.1] гексан-1-ил) уксусная кислота;

2-(4-(1-((4-(пентафтортиол)фенил)метил)-1H-индол-7-

карбоксамидо)бицикло[2.1.1] гексан-1-ил) уксусная кислота;

pay-6-(1-((4-(пентафтортиол)фенил)метил)-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

*рац-*6-(1-(4-(дифторметил)бензил)-4-фтор-1*H*-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

2-(3-(1-(4-(дифторметил)бензил)-4-фтор-1*H*-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(5-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-([1,1'-бифенил]-4-илметил)-1*H*-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-([1,1'-бифенил]-4-илметил)-4-фтор-1*H*-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-([1,1]-6ифенил]-4-илметил)-1H-индазол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-(4-(трифторметокси)бензил)-1H-индазол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(4-фтор-1-(4-йодбензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(4-фтор-1-(4-(пиридин-4-ил)бензил)-1*H*-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота; и

2-(3-(4-фтор-1-(4-морфолинобензил)-1*H*-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

или их фармацевтически приемлемая соль, сольват, сольват соли или пролекарство.

[00149] Согласно некоторым вариантам осуществления, представленным в настоящем документе, описаны фармацевтические композиции, содержащие соединение

согласно любому из предыдущих вариантов осуществления и фармацевтически приемлемый носитель. Согласно некоторым вариантам осуществления фармацевтическая композиция содержит соединение согласно формуле I, формуле Ia, формуле Ib, формуле Ic или формуле Id или его фармацевтически приемлемую соль, сольват, сольват соли или пролекарство и фармацевтически приемлемый носитель.

[00150] Согласно некоторым вариантам осуществления, представленным в настоящем документе, описаны способы лечения рака, включающие введение нуждающемуся в этом пациенту соединения или фармацевтической композиции согласно любому из предыдущих вариантов осуществления. Согласно некоторым вариантам осуществления соединение представляет собой соединение согласно формуле I, формуле Ia, формуле Ic или формуле Id. Согласно некоторым вариантам осуществления композиция содержит фармацевтически приемлемый носитель и соединение согласно формуле I, формуле Ia, формуле Ib, формуле Ic или формуле Id или его фармацевтически приемлемую соль, сольват, сольват соли или пролекарство.

[00151] Согласно некоторым вариантам осуществления рак выбран из группы, состоящей из следующего: глиобластома, рак костей, рак головы и шеи, меланома, базальноклеточная карцинома, плоскоклеточная карцинома, аденокарцинома, рак ротовой полости, рак пищевода, рак желудка, рак кишечника, рак толстой кишки, рак мочевого пузыря, печеночноклеточная карцинома, почечноклеточная карцинома, рак поджелудочной железы, рак яичника, рак шейки матки, рак легких, рак молочной железы и рак предстательной железы.

[00152] Согласно некоторым вариантам осуществления лечение дополнительно включает в себя дополнительное средство, выбранное из антитела к PD-1 и антитела к PD-L1.

[00153] В некоторых случаях в пределах любого из предыдущих вариантов осуществления для соединений согласно формулам I, Ia и Ib, Ar представляет собой замещенный фенил. Примеры заместителей для фенила включают в себя CN, галогенметил (такой как CF₃ и CHF₂) и SF₅. Согласно некоторым вариантам осуществления заместители для фенила представляют собой CN (циано), галоген, галогеналкил, фенил, пиридил, галогеналкокси, гетероцикл или SF₅.

[00154] Согласно некоторым вариантам осуществления каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо C- R^a , или один из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой N, а каждый из остальных независимо представляет собой C- R^a ; и R^a выбран из H и галогена (такого как хлор и фтор). Таким образом, каждый R^a может являться одинаковым или отличным от других R^a . В одном случае каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет

собой СН. В другом случае один из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой -C(F)- или -C(Cl)-, а каждый из остальных представляет собой СН.

[00155] В некоторых случаях в пределах любого из предыдущих вариантов осуществления для соединений согласно формулам I, Ia и Ib R^1 и R^2 вместе представляет собой - CH_2 -.

[00156] В некоторых случаях в пределах любого из предыдущих вариантов осуществления для соединений согласно формулам I, Ia и Ib R^3 и R^2 вместе представляет собой -CH₂-.

[00157] В некоторых случаях в пределах любого из предыдущих вариантов осуществления для соединений согласно формулам I, Ia и Ib W представляет собой -CO₂H, -CONHSO₂-фенил, -NHCONHSO₂-фенил и тетразолил. В одном случае W представляет собой -CO₂H. В другом случае W представляет собой тетразолил.

[00158] Любой из признаков варианта осуществления применим ко всем вариантам осуществления, указанным в настоящем документе. Кроме того, любой из признаков варианта осуществления независимо комбинируется, частично или полностью, с другими вариантами осуществления, описанными в настоящем документе, любым способом, например, один, два или три или более вариантов осуществления могут комбинироваться полностью или частично. Кроме того, можно сделать так, чтобы любой из признаков варианта осуществления являлся необязательным для других вариантов осуществления. Любой вариант осуществления способа может содержать другой вариант осуществления соединения может быть сконфигурирован для выполнения способа согласно другому варианту осуществления.

Определения

[00159] Если не указано иное, все технические и научные термины, используемые в настоящем документе, имеют то же значение, которое обычно понимают специалисты в настоящей области техники. Все патенты, заявки, опубликованные заявки и другие публикации, на которые есть ссылки в настоящем документе, полностью включены посредством ссылки, если не указано иное. В том случае, если для данного термина существует множество определений, определения в этом разделе имеют преимущественную силу, если не указано иное.

[00160] Используемые в настоящем описании и прилагаемой формуле изобретения формы единственного числа включают в себя формы множественного числа, если контекст явно не предписывает иное. Если не указано иное, используют общепринятые способы масс-спектроскопии, ЯМР, ВЭЖХ, белковой химии, биохимии, техники рекомбинантной ДНК и фармакологии. Использование "или" или "и" означает "и/или",

если не указано иное. Кроме того, использование термина "включая в себя", а также других форм, таких как "включают в себя", "включает в себя" и "включенный", не является ограничивающим. Используемые в настоящем описании, будь то в переходной фразе или в отличительной части формулы изобретения, термины "содержит(ат)" и "содержащий" следует интерпретировать как имеющие открытое значение. Иными словами, термины должны интерпретироваться как синоним фраз "содержащий по меньшей мере" или "включая с себя по меньшей мере". При использовании в контексте способа термин "содержащий" означает, что способ включает в себя по меньшей мере перечисленные стадии, но может включать в себя дополнительные стадии. При использовании в контексте соединения, композиции или устройства термин "содержащий" означает, что соединение, композиция или устройство включает в себя по меньшей мере перечисленные признаки или компоненты, но может также включать в себя дополнительные признаки или компоненты.

[00161] Термин "пациент" включает в себя млекопитающих, таких как мыши, крысы, коровы, овцы, свиньи, кролики, козы, лошади, обезьяны, собаки, кошки и люди. Согласно некоторым вариантам осуществления пациент представляет собой человека.

[00162] Термин "галоген" относится к любому радикалу фтора, хлора, брома или йода.

[00163] Термин "алкил" относится к относится к насыщенной углеводородной цепи, которая может являться неразветвленной или разветвленной цепью, содержащей указанное число атомов углерода. Например, C_1 - C_6 -алкил указывает, что группа может содержать в себе от 1 до 6 (включительно) атомов углерода. Согласно некоторым вариантам осуществления алкил представляет собой C_1 - C_6 -алкил, который представляет собой насыщенный углеводородный радикал с неразветвленной или разветвленной цепью, содержащий от 1 до 6 атомов углерода. Примеры алкила включают в себя без ограничения метил, этил, н-пропил, изопропил, н-бутил, изобутил, втор-бутил и трет-бутил.

[00164] Термин "циклоалкил" относится к полностью насыщенной моноциклической, бициклической, трициклической или другой полициклической углеводородной группе, содержащей указанное число атомов углерода в кольце. Мультициклический циклоалкил может являться конденсированной, мостиковой или спирокольцевой системами. Циклоалкильные группы включают в себя без ограничения циклопропил, циклобутил, циклопентил, циклогексил, циклогептил, циклооктил и норборнил. Согласно некоторым вариантам осуществления циклоалкил представляет собой моноциклический С₃-С₈ циклоалкил.

[00165] Термин "галогеналкил" относится к алкильной группе, в которой по меньшей мере один атом водорода замещен галогеном. Согласно некоторым вариантам

осуществления более одного атома водорода (например, 2, 3, 4, 5 или 6) замещены галогеном. Согласно этим вариантам осуществления каждый атом водорода может быть замещен одним и тем же галогеном (например, фтором), или атомы водорода могут быть замещены комбинацией различных галогенов (например, фтором и хлором). "Галогеналкил" также включает в себя алкильные фрагменты, в которых все атомы водорода замещены галогеном (иногда в настоящем документе он называется пергалогеналкил, например перфторалкил, такой как трифторметил).

[00166] Используемый в настоящем документе термин "алкокси" относится к группе согласно формуле -О-(алкил). Алкокси может представлять собой, например, метокси, этокси, пропокси, изопропокси, бутокси, изо-бутокси, втор-бутокси, пентокси, 2-пентокси, 3-пентокси или гексилокси. Аналогично, термин "тиоалкокси" относится к группе согласно формуле -S-(алкил). Термины "галогеналкокси" и "тиогалогеналкокси" относятся к -О-(галогеналкилу) и -S-(галогеналкилу) соответственно.

[00167] Термин "аралкил" относится к алкильному фрагменту, в котором атом водорода алкила замещен арильной группой. Один из атомов углерода алкильного фрагмента служит точкой прикрепления аралкильной группы к другому фрагменту. Неограничивающие примеры "аралкила" включают в себя бензильную, 2-фенилэтильную и 3-фенилпропильную группы.

[00168] Термин "алкенил" относится к неразветвленной или разветвленной углеводородной цепи, содержащей указанное число атомов углерода и содержащей одну или несколько углерод-углеродных двойных связей. Алкенильные группы могут включать в себя, например, винил, аллил, 1-бутенил и 2-гексенил. Согласно некоторым вариантам осуществления алкенил представляет собой C₂-C₆ алкенил.

[00169] Термин "алкинил" относится к неразветвленной или разветвленной углеводородной цепи, содержащей указанное число атомов углерода и содержащей одну или несколько углерод-углеродных тройных связей. Алкинильные группы могут включать в себя, например, этинил, пропаргил, 1-бутинил и 2-гексинил. Согласно некоторым вариантам осуществления алкинил представляет собой C_2 - C_6 алкинил.

[00170] Используемый в настоящем документе термин "гетероцикл", "гетероциклил" или "гетероциклический" за исключением случаев, где указано иное, представляет стабильную 4-, 5-, 6- или 7-членную моноциклическую или стабильную 6-, 7-, 8-, 9-, 10-, 11- или 12-членную бициклическую гетероциклическую кольцевую систему, которая содержит по меньшей мере одно неароматическое (т.е. насыщенное или частично ненасыщенное) кольцо, которое состоит из атомов углерода и от одного до четырех, предпочтительно вплоть до трех гетероатомов, выбранных из группы, состоящей из N, O и

S, где атомы азота и серы могут быть необязательно окислены в виде N-оксида, сульфоксида или сульфона, и где атом азота может быть необязательно кватернизован. Гетероцикл может быть связан через атом углерода кольца или, если возможно, через атом азота кольца. Бициклические гетероциклические кольцевые системы могут являться конденсированными, мостиковыми или спиробициклическими гетероциклическими кольцевыми системами. Согласно некоторым вариантам осуществления гетероциклил является моноциклическим, содержащим от 4 до 7, предпочтительно от 4 до 6 атомов кольца, из которых 1 или 2 представляют собой гетероатомы, независимо выбранные из группы, состоящей из N, O и S. Согласно некоторым вариантам осуществления гетероциклильная группа является бициклической, и в этом случае второе кольцо может являться ароматическим или неароматическим кольцом, которое состоит из атомов углерода и от одного до четырех, предпочтительно вплоть до трех, гетероатомов, независимо выбранных из группы состоящий из N, O и S, или второе кольцо может представлять собой бензольное кольцо, или "циклоалкил", или "циклоалкенил", как определено в настоящем документе. Примеры таких гетероциклических групп включают в себя без ограничения азетидин, хроман, дигидрофуран, дигидропиран, диоксан, диоксолан, гексагидроазепин, имидазолидин, имидазолин, индолин, изохроман, изоиндолин, изотиазолин, изотиазолидин, изоксазолин, изоксазолидин, морфолин, оксазолин, оксазолидин, оксетан, пиперазин, пиперидин, дигидропиридин, тетрагидропиридин, дигидропиридазин, пиран, пиразолидин, пиразолин, пирролидин, пирролин, тетрагидрофуран, тетрагидропиран, тиаморфолин, тетрагидротиофен, тиазолин, тиазолидин, тиоморфолин, тиетан, тиолан, сульфолан, 1,3-диоксолан, 1,3-оксазолидин, 1,3тиазолидин, тетрагидротиопиран, тетрагидротриазин, 1,3-диоксан, 1,4-диоксан, гексагидротриазин, тетрагидрооксазин, тетрагидропиримидин, пергидроазепин, пергидропергидро-1,4-оксазепин, **7-**азабицикло[2.2.1] гептан, 3-1,4-диазепин, азабицикло[3.2.0] гептан, 7-азабицикло[4.1.0] гептан, 2,5-диазабицикло[2.2.1] гептан, 2-окса-5-азабицикло[2.2.1] гептан, тропан, 2-окса-6-азаспиро[3.3] гептан, дигидробензофуран, диидробензимидазолил, дигидробензоксазол и дигидробензотиазолил и их N-оксиды или сульфоны или сульфоксиды.

[00171] Используемый в настоящем документе термин "арил" предназначен для обозначения любого стабильного моноциклического или бициклического углеродного кольца, содержащего вплоть до 6 членов в каждом кольце (т.е. от 6 до 10 атомов кольца), где по меньшей мере одно кольцо является ароматическим. Например, С₆-С₁₀ арильная группа, такая как фенил, нафтил, тетрагидронафтил, инданил или 1Н-инденил. Если в описании специально не указано иное, подразумевается, что термин "арил" включает в себя

арильные радикалы, необязательно замещенные одним или несколькими заместителями, независимо выбранными из CN (циано), галогена, галогеналкила, $-OR^x$, $-N(R^x)_2$ - или алкила; где каждый R^x независимо представляет собой H, алкил, галогеналкил, циклоалкил или гетероциклил.

[00172] Используемый в настоящем документе термин "гетероарил", за исключением случаев, где указано иное, представляет стабильную 5-, 6- или 7-членную моноциклическую или стабильную 9- или 10-членную конденсированную бициклическую кольцевую систему, которая содержит по меньшей мере одно ароматическое кольцо, которое состоит из атомов углерода и от одного до четырех, предпочтительно вплоть до трех, гетероатомов, выбранных из группы, состоящей из N, O и S, где гетероатомы азота и серы могут быть необязательно окислены, а гетероатом азота может быть необязательно кватернизован. В случае "гетероарила", который представляет собой бициклическую группу, второе кольцо не обязательно должно являться ароматическим и не должно содержать гетероатом. Соответственно, бициклический "гетероарил" включает в себя, например, стабильное 5- или 6-членное моноциклическое ароматическое кольцо, состоящее из атомов углерода и от одного до четырех, предпочтительно вплоть до трех, гетероатомов, как определено непосредственно выше, конденсированное с бензольным кольцом, или вторым моноциклическим "гетероарилом" или "гетероциклилом", "циклоалкилом" или "циклоалкенилом", как определено выше. Примеры гетероарильных групп включают в себя без ограничения бензимидазол, бензопиразол, бензизотиазол, бензизоксазол, бензофуран, изобензофуран, бензотиазол, бензотиофен, бензотриазол, бензоксазол, циннолин, фуран, фуразан, имидазол, индазол, индол, индолизин, изохинолин, изотиазол, изоксазол, нафтиридин, оксадиазол, оксазол, фталазин, птеридин, пурин, пиразин, пиразол, пиридазин, пиридин, пиримидин, пиррол, хиназолин, хинолин, хиноксалин, тетразол, тиадиазол, тиазол, тиофен, триазин, триазол, бензимидазол, бензотиадиазол, изоиндол, пирролопиридины, имидазопиридины, такие как имидазо[1,2-а]пиридин пиразолопиридин, пирролопиримидин и их N-оксиды. Если в описании специально не указано иное, подразумевается, что термин "гетероарил" включает в себя гетероарильные радикалы, необязательно замещенные одним или несколькими заместителями, независимо выбранными из CN (циано), галогена, галогеналкила, $-OR^x$, $-N(R^x)_2$ - или алкила; где каждый R^{x} независимо представляет собой H, алкил, галогеналкил, циклоалкил или гетероциклил.

[00173] Термин "осуществление лечения", "лечить" или "лечение", как правило, относится к контролю, облегчению, уменьшению интенсивности, замедлению прогрессирования или устранению названного состояния после того, как состояние развилось. В дополнение к своему обычному значению, термин "предотвращение",

"предотвратить" или "профилактика" также относится к задержке наступления или снижению риска развития названного состояния или процесса, который может привести к состоянию, или рецидива симптомов состояния.

[00174] Термин "терапевтически эффективное количество" или "эффективное количество" представляет собой количество, достаточное для достижения положительных или требуемых клинических результатов. Эффективное количество можно вводить за одно или несколько введений. Эффективного количества, как правило, достаточно, чтобы смягчить, улучшить, стабилизировать, вызвать обратное развитие, замедлить или задержать прогрессирование болезненного состояния.

[00175] Используемые в настоящем документе сокращения для любых защитных групп, аминокислот и других соединений, если не указано иное, находятся в соответствии с их обычным использованием, принятыми сокращениями или Комиссии IUPAC-IUB по биохимической номенклатуре (см., *Biochem*. 11:942-944 (1972)).

Формы и соли соединений

[00176] Согласно некоторым вариантам осуществления соединения, описанные в настоящем документе, содержат один или несколько асимметричных центров и, таким образом, встречаются в виде рацематов и рацемических смесей, энантиомерно обогащенных смесей, отдельных энантиомеров, отдельных диастереомеров диастереомерных смесей. Согласно некоторым вариантам осуществления соединения, описанные в настоящем документе, либо по природе асимметрических центров, либо за счет ограниченного вращения, присутствуют в форме изомеров (например, энантиомеров, диастереомеров).

[00177] Также следует понимать, что когда два или более асимметричных центра присутствуют в соединениях согласно настоящему раскрытию, часто возможны несколько диастереомеров и энантиомеров структур, представленных в качестве примера, и что чистые диастереомеры и чистые энантиомеры представляют предпочтительные варианты осуществления. Предполагается, что чистые стереоизомеры, диастереомеры, чистые энантиомеры и их смеси входят в объем настоящего раскрытия. Когда соединения содержат стереохимию, соединения обозначаются как "(рацемический)" или "рац", если стереоизомеры не были разделены, и "(R) или (S)", если стереоизомеры были разделены. Согласно определенным вариантам осуществления соединения, раскрытые в настоящем документе, содержат осевую хиральность, особенно в случае содержащих спироциклический[3.3] гептан соединений. Они также были обозначены как "(R) или (S)", когда имеется один стереоизомер, а не в соответствии с соглашением IUPAC "(aR) или (aS)", где "a" обозначает осевую хиральность.

[00178] Все изомеры, будь то отдельные, чистые, частично чистые или находящиеся в рацемической смеси, соединений согласно настоящему раскрытию, включены в объем настоящего раскрытия. Очистку указанных изомеров и разделение указанных изомерных смесей можно выполнить с помощью стандартных техник, известных в настоящей области техники. Например, диастереомерные смеси можно разделить на отдельные изомеры хроматографическими способами или кристаллизацией, а рацематы можно разделить на соответствующие энантиомеры либо хроматографическими способами на хиральных фазах, либо путем разделения.

[00179] Соединения согласно настоящему раскрытию включают в себя все цис-, транс-, син-, анти-, *E*- и *Z*- изомеры, а также их смеси. Согласно некоторым вариантам осуществления соединения, описанные в настоящем документе, существуют в нескольких таутомерных формах. В таких случаях настоящее раскрытие явным образом включает все таутомерные формы соединений, описанных в настоящем документе, даже если может быть представлена только одна таутомерная форма. Кроме того, если термин, используемый в настоящем раскрытии, охватывает группу, которая может таутомеризоваться, все таутомерные формы явным образом включены в него. Например, гидроксизамещенный гетероарил включает в себя 2-гидроксипиридин, а также 2-пиридон, 1-гидроксиизохинолин, а также 1-оксо-1,2-дигироизохинолин и тому подобное. Все такие изомерные формы таких соединений явным образом включены в настоящее раскрытие.

[00180] Соединения согласно настоящему раскрытию включают в себя сами соединения, а также их соли, сольват, сольват соли и пролекарства, если это применимо. Соли для целей настоящего раскрытия предпочтительно представляют собой фармацевтически приемлемые соли соединений согласно настоящему раскрытию. Соли, которые сами по себе не подходят для фармацевтического применения, можно использовать, например, для выделения или очистки соединений в соответствии с настоящим изобретением. Например, соль может образовываться между анионом и положительно заряженным заместителем (например, амино) в соединении, описанном в настоящем документе. Подходящие анионы включают в себя хлорид, бромид, йодид, сульфат, нитрат, фосфат, цитрат, метансульфонат, трифторацетат и ацетат. Аналогично, соль может также образовываться между катионом и отрицательно заряженным заместителем (например, карбоксилатом) в соединении, описанном в настоящем документе. Подходящие катионы включают в себя ион натрия, ион калия, ион магния, ион кальция и катион аммония, такой как ион тетраметиламмония.

[00181] Используемый в настоящем документе термин "фармацевтически приемлемые соли" относится к производным, в которых исходное соединение

модифицировано путем получения его кислых или основных солей. Примеры фармацевтически приемлемых солей включают в себя без ограничения соли неорганических или органических кислот основных остатков, таких как амины; щелочные или органические соли кислотных остатков, таких как карбоновые кислоты; и тому подобное. Когда соединение согласно настоящему изобретению является основным, фармацевтически приемлемые соли включают в себя общепринятые нетоксичные соли или четвертичные аммониевые соли исходного соединения, образованные, например, из нетоксичных неорганических или органических кислот. Например, такие общепринятые нетоксичные соли включают в себя соли, полученные из неорганических кислот, таких как соляная, бромистоводородная, сульфоновая, серная, сульфаминовая, фосфорная, азотная и тому подобное; и соли, полученные из органических кислот, таких как уксусная, пропионовая, янтарная, гликолевая, стеариновая, молочная, яблочная, винная, лимонная, аскорбиновая, памовая, малеиновая, гидроксималеиновая, фенилуксусная, глутаминовая, бензойная, салициловая, сульфаниловая, 2-ацетоксибензойная, фумаровая, бензолсульфоновая, толуолсульфоновая, нафталиндисульфоновая, метансульфоновая, этансульфоновая, этандисульфоновая, камфорсульфоновая, глюконовая, миндальная, слизевая, пантотеновая, щавелевая, изэтионовая и тому подобное.

[00182] Когда соединение согласно настоящему раскрытию является кислотным, соли можно получить из фармацевтически приемлемых нетоксичных оснований, включая в себя неорганические и органические основания. Согласно некоторым вариантам осуществления фармацевтически приемлемая соль представляет собой соль лития, соль натрия, соль калия, соль магния, соль кальция, соль дициклогексиламина, соль *N*-метил-D-глюкамина, соль трис(гидроксиметил)метиламина, соль аргинина, соль лизина и тому подобное.

[00183] Перечень подходящих солей можно найти в Remington's Pharmaceutical Sciences, 17 ed., Mack Publishing Company, Easton, Pa., 1985, p. 1418; S. M. Berge *et al.*, "Pharmaceutical Salts", J. Pharm. Sci. 1977, 66, 1-19; и "Pharmaceutical Salts: Properties, Selection, and Use. A Handbook"; Wermuth, C. G. and Stahl, P. H. (eds.) Verlag Helvetica Chimica Acta, Zurich, 2002 [ISBN 3-906390-26-8]; каждый из которых полностью включен в настоящий документ посредством ссылки.

[00184] Сольваты в контексте настоящего раскрытия обозначаются как те формы соединений согласно настоящему раскрытию, которые образуют комплекс в твердом или жидком состоянии посредством стехиометрической координации с молекулами растворителя. Гидраты представляют собой особую форму сольватов, в которой координация происходит с водой. Гидраты являются предпочтительными

сольватами в контексте настоящего раскрытия. Образование сольватов более подробно описано в разделе "Solvents and Solvent Effects in Organic Chemistry"; Reichardt, C. and Welton T.; John Wiley & Sons, 2011 [ISBN: 978-3-527-32473-6], содержание которого полностью включено в настоящий документ посредством ссылки. Специалист в настоящей области техники сможет установить сольваты согласно настоящему раскрытию.

[00185] Настоящее раскрытие также охватывает все подходящие изотопные варианты соединений согласно настоящему раскрытию, независимо от того, радиоактивны они или нет. Под изотопным вариантом соединения в соответствии с настоящим раскрытием понимают соединение, в котором по меньшей мере один атом в соединении в соответствии с настоящим раскрытием замещен другим атомом с таким же атомным числом, но с другой атомной массой, чем атомная масса, которая обычно или преимущественно встречается в природе. Примерами изотопов, которые могут быть включены в соединение согласно настоящему раскрытию, являются изотопы водорода, углерода, азота, кислорода, фтора, хлора, брома и йода, такие как 2 H (дейтерий), 3 H (тритий), 13 С, 14 С, 15 N, 17 О, 18 О, 18 F, 36 Сl, 82 Br, 123 I, 124 I, 125 I, 129 I и 131 I. Конкретные изотопные варианты соединения согласно настоящему раскрытию, особенно те, в которые включены один или несколько радиоактивных изотопов, могут быть применимыми, например, для изучения механизма действия или распределения активного соединения в организме. Из-за сравнительно легкого получения и обнаружения особенно подходят для этой цели соединения, меченные изотопами 3 H, 14 С и/или 18 F. Кроме того, включение изотопов, например дейтерия, может привести к определенным терапевтическим преимуществам как следствие большей метаболической стабильности соединения, например, продлению периода полураспада в организме или уменьшению требуемой активной дозы. Следовательно, такие модификации соединений согласно настоящему раскрытию могут в некоторых случаях также составлять предпочтительный вариант осуществления настоящего раскрытия. Согласно некоторым вариантам осуществления атомы водорода соединений, описанных в настоящем документе, могут быть замещены атомами дейтерия. Изотопные варианты соединений согласно настоящему раскрытию можно получить способами, известными специалистам в настоящей области техники, например, способами, описанными ниже, и способами, описанными в рабочих примерах, с использованием соответствующих изотопных модификаций конкретных реагентов и/или исходных соединений в них.

[00186] Настоящее раскрытие включает в свой объем пролекарства соединений согласно формуле I и формулам Ia, Ib, Ic и Id. Пролекарства, как правило, являются предшественниками лекарственных средств, которые после введения субъекту

превращаются в активный или более активный вид посредством какого-либо процесса, такого как превращение химическим гидролизом или метаболическим путем. Таким образом, в способах лечения согласно настоящему раскрытию термины "введение" или "осуществление введения" соединения должны охватывать лечение различных описанных состояний конкретно раскрытым соединением или соединением, которое может не быть конкретно раскрыто, но которое превращается в указанное соединение *in vivo* после введения пациенту. Общепринятые процедуры выбора и получения подходящих пролекарственных производных описаны, например, в "Design of Prodrugs," ed. H. Bundgaard, Elsevier, 1985 (Amsterdam, NL), содержание которого полностью включено в настоящее описание посредством ссылки. Примеры пролекарств включают в себя C₁-C₆ алкиловые сложные эфиры группы карбоновой кислоты, которые при введении субъекту способны давать активные соединения.

Фармацевтические композиции

[00187] Подразумевается, что используемый в настоящем документе термин "фармацевтическая композиция" включает в себя продукт, содержащий активный(е) ингредиент(ы) и инертный(е) ингредиент(ы), который(е) составляет(ют) носитель, а также любой продукт, которые получается, прямо или косвенно, за счет комбинации, комплексообразования или агрегации любых двух или более ингредиентов, или за счет диссоциации одного или нескольких ингредиентов, или за счет других типов реакций или взаимодействий одного или нескольких ингредиентов. Соответственно, фармацевтические композиции согласно настоящему раскрытию охватывают любую композицию, полученную смешиванием соединения согласно настоящему раскрытию, или его фармацевтически приемлемой соли, или сольвата, или сольвата соли, и фармацевтически приемлемого носителя.

[00188] Термин "фармацевтически приемлемый носитель" относится к носителю или адъюванту, который можно вводить пациенту, вместе с соединением согласно настоящему раскрытию, или его фармацевтически приемлемой солью, сольватом, солью сольвата или пролекарством, и который не нарушает их фармакологическую активность и является нетоксическим при введении в дозах, достаточных для доставки терапевтического количества соединения.

[00189] Согласно некоторым вариантам осуществления соединения согласно настоящей заявке вводят в дозе, составляющей приблизительно 1 мг - 1000 мг, приблизительно 2 мг - 900 мг, приблизительно 3 мг - 800 мг, приблизительно 4 мг - 700 мг, приблизительно 5 мг - 600 мг, приблизительно 10 мг - 500 мг, приблизительно 50 мг - 400 мг, приблизительно 100 мг - 300 мг, приблизительно 150 мг - 250 мг или любое значение

между указанными значениями. Согласно некоторым вариантам осуществления общую суточную дозировку можно разделить и вводить порциями в течение дня, например, один раз в день, два раза в день, три раза в день или четыре раза в день. Согласно некоторым вариантам осуществления общую дозировку можно вводить один раз в неделю, два раза в неделю, три раза в неделю, четыре раза в неделю, пять раз в неделю или шесть раз в неделю.

[00190] Согласно некоторым вариантам осуществления фармацевтические композиции для инъекции согласно настоящему раскрытию содержат фармацевтически приемлемые стерильные водные или неводные растворы, дисперсии, суспензии или эмульсии, а также стерильные порошки для разведения с получением стерильных инъекционных растворов или дисперсий непосредственно перед применением. Примеры подходящих водных и неводных носителей, разбавителей, растворителей или несущий сред включают в себя воду, этанол, многоатомные спирты (такие как глицерин, пропиленгликоль, полиэтиленгликоль и тому подобное) и их подходящие смеси, растительные масла (такие как оливковое масло) и инъекционные органические сложные эфиры, такие как этилолеат. Надлежащую текучесть можно поддерживать, например, путем использования материалов для нанесения покрытия, таких как лецитин, путем поддержания требуемого размера частиц в случае дисперсий и путем использования поверхностно-активных веществ.

[00191] Согласно некоторым вариантам осуществления фармацевтические композиции также могут содержать адъюванты, такие как консерванты, смачивающие средства, эмульгирующие средства и диспергирующие средства. Предотвращение действия микроорганизмов может быть обеспечено включением различных антибактериальных и противогрибковых средств, например, парабена, хлорбутанола, фенолсорбиновой кислоты и тому подобного. Также может быть желательно включить изотонические средства, такие как сахара, хлорид натрия и тому подобное. Пролонгированная абсорбция инъекционной фармацевтической формы может быть достигнута включением средств, которые замедляют абсорбцию, таких как моностеарат алюминия и желатин. При желании и для более эффективного распределения соединения можно включить в системы медленного высвобождения или адресной доставки, такие как полимерные матрицы, липосомы и микросферы.

[00192] Согласно некоторым вариантам осуществления фармацевтические композиции, которые представляют собой инъекционные составы, можно стерилизовать, например, путем фильтрации через удерживающий бактерии фильтр или путем включения стерилизующих средств в форме стерильных твердых фармацевтических композиций,

которые можно растворить или диспергировать в стерильной воде или другой стерильной инъекционной среде непосредственно перед использованием.

[00193] Согласно некоторым вариантам осуществления предусмотрены лекарственные формы настоящих фармацевтических перорального введения. Согласно некоторым вариантам осуществления пероральные лекарственные формы включают в себя капсулы, таблетки, пилюли, порошки и гранулы. В таких твердых лекарственных формах активное соединение смешивают по меньшей мере с одним инертным фармацевтически приемлемым вспомогательным веществом или носителем, таким как цитрат натрия или дикальцийфосфат, и/или следующим: а) наполнители или сухие разбавители, такие как крахмалы, лактоза, сахароза, глюкоза, маннит и кремниевая кислота, b) связующие средства, такие как, например, карбоксиметилцеллюлоза, альгинаты, желатин, поливинилпирролидон, сахароза и аравийская камедь, с) увлажнители, такие как глицерин, d) средства для улучшения распадаемости таблеток, такие как агар-агар, карбонат кальция, картофельный или тапиоковый крахмал, альгиновая кислота, некоторые силикаты и карбонат натрия, е) замедляющие растворение средства, такие как парафин, f) ускорители абсорбции, такие как соединения четвертичного аммония, д) смачивающие средства, такие как, например, цетиловый спирт и моностеарат глицерина, h) абсорбенты, такие как каолин и бентонитовая глина и і) смазывающие средства, такие как тальк, стеарат кальция, стеарат магния, твердые полиэтиленгликоли, лаурилсульфат натрия и их смеси. В случае капсул, таблеток и пилюль лекарственная форма также может содержать буферные средства.

[00194] Твердые фармацевтические композиции аналогичного типа также можно использовать в качестве наполнителей в мягких и твердых желатиновых капсулах с использованием таких вспомогательных веществ, как лактоза или молочный сахар, а также полиэтиленгликоли с высокой молекулярной массой и тому подобное.

[00195] Можно получить твердые лекарственные формы настоящих фармацевтических композиций таблеток, драже, капсул, пилюль и гранул с покрытиями и оболочками, такими как кишечнорастворимые покрытия и другие покрытия, хорошо известные в области получения фармацевтических препаратов. Они могут необязательно содержать средства, придающие непрозрачность, а также могут представлять собой составы, в которых они высвобождают активный(ые) ингредиент(ы) только, или предпочтительно, в определенной части кишечного тракта, необязательно, с задержкой. Примеры заливочных фармацевтических композиций, которые можно использовать, включают в себя полимерные вещества и воски.

[00196] Активные соединения также могут находиться в микрокапсулированной форме, в соответствующем случае, с одним или несколькими вышеупомянутыми вспомогательными веществами.

[00197] Согласно некоторым вариантам осуществления предусмотрены жидкие лекарственные формы настоящих фармацевтических композиций для перорального введения. Согласно некоторым вариантам осуществления жидкие лекарственные формы включают в себя фармацевтически приемлемые эмульсии, растворы, суспензии, сиропы и эликсиры. В дополнение к активным соединениям жидкие лекарственные формы могут содержать инертные разбавители, обычно используемые в настоящей области техники, такие как, например, вода или другие растворители, солюбилизирующие средства и эмульгаторы, такие как этиловый спирт, изопропиловый спирт, этилкарбонат, этилацетат, бензиловый бензилбензоат, пропиленгликоль, спирт, 1,3-бутиленгликоль, диметилформамид, масла (в частности, хлопковое, арахисовое, кукурузное масло, масло зерновых, оливковое, касторовое и кунжутное масла), зародышей тетрагидрофурфуриловый спирт, полиэтиленгликоли и сложные эфиры жирных кислот и сорбита и их смеси.

[00198] Помимо инертных разбавителей, пероральные фармацевтические композиции также могут включать в себя такие вспомогательные вещества, как смачивающие средства, эмульгирующие и суспендирующие средства, подсластители, ароматизаторы и отдушки.

[00199] Суспензии настоящих соединений, помимо активных соединений, могут содержать суспендирующие средства, такие как, например, этоксилированные изостеариловые спирты, сложные эфиры полиоксиэтиленсорбитола и сорбита, микрокристаллическая целлюлоза, метагидроксид алюминия, бентонит, агар-агар и трагакант, а также их смеси.

[00200] Фармацевтические композиции для ректального или вагинального введения предпочтительно представляют собой суппозитории, которые можно получить путем смешивания соединений с подходящими нераздражающими вспомогательными веществами или носителями, такими как масло какао, полиэтиленгликоль или воск для суппозиториев, которые являются твердыми при комнатной температуре, но жидкими при температуре тела и, следовательно, тают в прямой кишке или полости влагалища и выделяют активное соединение.

[00201] Лекарственные формы для местного введения соединения или фармацевтической композиции согласно настоящему раскрытию включают в себя порошки, пластыри, спреи, мази и ингаляторы. Активное соединение смешивают в

стерильных условиях с фармацевтически приемлемым носителем и любыми необходимыми консервантами, буферами или пропеллентами, которые могут потребоваться.

Применения

[00202]Согласно некоторым вариантам осуществления предусмотрены способы лечения рака, включающие введение нуждающемуся в этом пациенту терапевтически эффективного количества соединения согласно формуле І, или его фармацевтически приемлемой соли, сольвата, сольвата соли или пролекарства. Согласно некоторым вариантам осуществления формы рака включают в себя без ограничения следующее: глиобластома, рак костей, рак головы и шеи, меланома, базальноклеточная карцинома, плоскоклеточная карцинома, аденокарцинома, рак ротовой полости, рак пищевода, рак желудка, рак кишечника, рак толстой кишки, рак мочевого пузыря, печеночноклеточная карцинома, почечноклеточная карцинома, рак поджелудочной железы, рак яичника, рак шейки матки, рак легких, рак молочной железы и рак предстательной железы. Согласно некоторым вариантам осуществления рак представляет собой глиобластому. Согласно некоторым вариантам осуществления рак представляет собой меланому, базальноклеточную карциному или плоскоклеточную карциному. Согласно некоторым вариантам осуществления рак представляет собой рак головы и шеи, рак ротовой полости или рак пищевода. Согласно некоторым вариантам осуществления рак представляет собой рак костей. Согласно некоторым вариантам осуществления рак представляет собой аденокарциному. Согласно некоторым вариантам осуществления рак представляет собой рак желудка, рак кишечника, рак толстой кишки или рак мочевого пузыря. Согласно некоторым вариантам осуществления рак представляет собой печеночноклеточную карциному или почечноклеточную карциному. Согласно некоторым вариантам осуществления рак представляет собой рак поджелудочной железы. Согласно некоторым вариантам осуществления рак представляет собой рак легких. Согласно некоторым вариантам осуществления рак представляет собой немелкоклеточный рак легких. Согласно некоторым вариантам осуществления рак представляет собой рак предстательной железы. Согласно некоторым вариантам осуществления рак представляет собой рак яичника или рак шейки матки. Согласно некоторым вариантам осуществления рак представляет собой рак молочной железы. Согласно некоторым вариантам осуществления соединение согласно формуле І, или его фармацевтически приемлемая соль, представляет собой соединение согласно формулам Ia, Ib, Ic, Id, или фармацевтически приемлемую соль любого из вышеперечисленного.

[00203] Согласно некоторым вариантам осуществления предусмотрены способы профилактики возникновения и/или рецидива рака, включающие введение нуждающемуся в этом пациенту терапевтически эффективного количества соединения согласно формуле I, или его фармацевтически приемлемой соли, сольвата, сольвата соли или пролекарства.

[00204] Согласно некоторым вариантам осуществления предусмотрены способы лечения рака, включающие введение нуждающемуся в этом пациенту терапевтически эффективного количества композиции, содержащей соединение согласно формуле І, или его фармацевтически приемлемой соли, сольвата, сольвата соли или пролекарства. Согласно некоторым вариантам осуществления формы рака включают в себя без ограничения следующее: глиобластома, рак костей, рак головы и шеи, меланома, базальноклеточная карцинома, плоскоклеточная карцинома, аденокарцинома, рак ротовой полости, рак пищевода, рак желудка, рак кишечника, рак толстой кишки, рак мочевого пузыря, печеночноклеточная карцинома, почечноклеточная карцинома, поджелудочной железы, рак яичника, рак шейки матки, рак легких, рак молочной железы и рак предстательной железы. Согласно некоторым вариантам осуществления рак представляет собой глиобластому. Согласно некоторым вариантам осуществления рак представляет собой меланому, базальноклеточную карциному или плоскоклеточную карциному. Согласно некоторым вариантам осуществления рак представляет собой рак головы и шеи, рак ротовой полости или рак пищевода. Согласно некоторым вариантам осуществления рак представляет собой рак костей. Согласно некоторым вариантам осуществления рак представляет собой аденокарциному. Согласно некоторым вариантам осуществления рак представляет собой рак желудка, рак кишечника, рак толстой кишки или рак мочевого пузыря. Согласно некоторым вариантам осуществления рак представляет собой печеночноклеточную карциному или почечноклеточную карциному. Согласно некоторым вариантам осуществления рак представляет собой рак поджелудочной железы. Согласно некоторым вариантам осуществления рак представляет собой рак легких. Согласно некоторым вариантам осуществления рак представляет собой немелкоклеточный рак легких. Согласно некоторым вариантам осуществления рак представляет собой рак предстательной железы. Согласно некоторым вариантам осуществления рак представляет собой рак яичника или рак шейки матки. Согласно некоторым вариантам осуществления рак представляет собой рак молочной железы. Согласно некоторым вариантам осуществления соединение согласно формуле І, или его фармацевтически приемлемая соль, представляет собой соединение согласно формулам Ia, Ib, Ic, Id, или фармацевтически приемлемую соль любого из вышеперечисленного.

[00205] Согласно некоторым вариантам осуществления предусмотрены способы профилактики возникновения и/или рецидива рака, включающие введение нуждающемуся в этом пациенту терапевтически эффективного количества соединения согласно формуле I, или его фармацевтически приемлемой соли, сольвата, сольвата соли или пролекарства.

[00206] Согласно некоторым вариантам осуществления предусмотрено соединение согласно формуле І для применения при лечении рака. Согласно некоторым вариантам осуществления формы рака включают в себя без ограничения следующее: глиобластома, рак костей, рак головы и шеи, меланома, базальноклеточная карцинома, плоскоклеточная карцинома, аденокарцинома, рак ротовой полости, рак пищевода, рак желудка, рак кишечника, рак толстой кишки, рак мочевого пузыря, печеночноклеточная карцинома, почечноклеточная карцинома, рак поджелудочной железы, рак яичника, рак шейки матки, рак легких, рак молочной железы и рак предстательной железы. Согласно некоторым вариантам осуществления рак представляет собой глиобластому. Согласно некоторым вариантам осуществления рак представляет собой меланому, базальноклеточную карциному или плоскоклеточную карциному. Согласно некоторым вариантам осуществления рак представляет собой рак головы и шеи, рак ротовой полости или рак пищевода. Согласно некоторым вариантам осуществления рак представляет собой рак костей. Согласно некоторым вариантам осуществления рак представляет собой аденокарциному. Согласно некоторым вариантам осуществления рак представляет собой рак желудка, рак кишечника, рак толстой кишки или рак мочевого пузыря. Согласно некоторым вариантам осуществления рак представляет собой печеночноклеточную или почечноклеточную карциному. Согласно карциному некоторым вариантам осуществления рак представляет собой рак поджелудочной железы. Согласно некоторым вариантам осуществления рак представляет собой рак легких. Согласно некоторым вариантам осуществления рак представляет собой немелкоклеточный рак легких. Согласно некоторым вариантам осуществления рак представляет собой рак предстательной железы. Согласно некоторым вариантам осуществления рак представляет собой рак яичника или рак шейки матки. Согласно некоторым вариантам осуществления рак представляет собой рак молочной железы.

[00207] Согласно некоторым вариантам осуществления предусмотрено соединение согласно формуле I для применения в профилактике возникновения и/или рецидива рака.

[00208] Согласно некоторым вариантам осуществления предусмотрено соединение согласно формуле I для получения лекарственного средства для лечения рака.

Согласно некоторым вариантам осуществления формы рака включают в себя без ограничения следующее: глиобластома, рак костей, рак головы и шеи, меланома, базальноклеточная карцинома, плоскоклеточная карцинома, аденокарцинома, рак ротовой полости, рак пищевода, рак желудка, рак кишечника, рак толстой кишки, рак мочевого пузыря, печеночноклеточная карцинома, почечноклеточная карцинома, рак поджелудочной железы, рак яичника, рак шейки матки, рак легких, рак молочной железы и рак предстательной железы. Согласно некоторым вариантам осуществления рак представляет собой глиобластому. Согласно некоторым вариантам осуществления рак представляет собой меланому, базальноклеточную карциному или плоскоклеточную карциному. Согласно некоторым вариантам осуществления рак представляет собой рак головы и шеи, рак ротовой полости или рак пищевода. Согласно некоторым вариантам осуществления рак представляет собой рак костей. Согласно некоторым вариантам осуществления рак представляет собой аденокарциному. Согласно некоторым вариантам осуществления рак представляет собой рак желудка, рак кишечника, рак толстой кишки или рак мочевого пузыря. Согласно некоторым вариантам осуществления рак представляет собой печеночноклеточную карциному или почечноклеточную карциному. Согласно некоторым вариантам осуществления рак представляет собой рак поджелудочной железы. Согласно некоторым вариантам осуществления рак представляет собой рак легких. Согласно некоторым вариантам осуществления рак представляет собой немелкоклеточный рак легких. Согласно некоторым вариантам осуществления рак представляет собой рак предстательной железы. Согласно некоторым вариантам осуществления рак представляет собой рак яичника или рак шейки матки. Согласно некоторым вариантам осуществления рак представляет собой рак молочной железы.

[00209] Согласно некоторым вариантам осуществления предусмотрено соединение согласно формуле I для получения лекарственного средства для применения в профилактике возникновения и/или рецидива рака.

Введение

[00210] Соединения и композиции, описанные в настоящем документе, можно вводить, например, перорально, парентерально (например, подкожно, внутрикожно, внутривенно, внутримышечно, внутрисуставно, внутриартериально, внутрисиновиально, интрастернально, интратекально, в очаг поражения и с помощью техник внутричерепной инъекции или инфузии), с помощью ингаляционного спрея, местно, ректально, назально, трансбуккально, вагинально, посредством имплантированного резервуара, путем инъекции, подкожно, внутрибрюшинно, трансмукозально или в офтальмологическом препарате, с дозировкой в диапазоне, составляющем от приблизительно 0,01 мг/кг до

приблизительно 1000 мг/кг, или составляющей любое значение в пределах этого диапазона (например, от приблизительно 0,01 мг/кг до приблизительно 100 мг/кг, от приблизительно 0,1 мг/кг до приблизительно 100 мг/кг, от приблизительно 1 мг/кг до приблизительно 100 мг/кг, от приблизительно 1 мг/кг до приблизительно 10 мг/кг, или любое значение между ними) каждые 4 - 120 часов (или любое значение между ними). Взаимосвязь дозировок для животных и людей (в расчете на миллиграммы на квадратный метр поверхности тела) описана Freireich et al., Cancer Chemother. Rep. 50, 219-244 (1966) и понятна специалистам в настоящей области техники. Специалист в настоящей области техники может приблизительно определить площадь поверхности тела по росту и массе тела пациента. См., например, Scientific Tables, Geigy Pharmaceuticals, Ardsley, N.Y., 537 (1970). Согласно определенным вариантам осуществления композиции вводят с помощью перорального введения или инъекции. Способы, описанные в настоящем документе, включают введение эффективного количества соединения или композиции соединения для достижения требуемого или заявленного эффекта. Как правило, фармацевтические композиции согласно настоящему раскрытию будут вводить от приблизительно 1 до приблизительно 6 раз в день или, альтернативно, в виде непрерывной инфузии. Такое введение можно использовать в качестве длительной или краткосрочной терапии.

[00211] Могут потребоваться более низкие или более высокие дозы, чем указанные выше. Конкретные дозировки и схемы лечения для любого конкретного пациента будут зависеть от множества факторов, включая в себя активность конкретного используемого соединения, возраст, массу тела, общее состояние здоровья, пол, диету, время введения, скорость выведения, комбинацию лекарственных средств, тяжесть и течение заболевания, состояние или симптомы, склонность пациента к заболеванию и мнение лечащего врача.

[00212] Согласно некоторым вариантам осуществления лекарственные формы включают в себя от приблизительно 0,001 мг до приблизительно 2000 мг или любое значение между ними (включая в себя от приблизительно 0,001 мг до приблизительно 1000 мг, от приблизительно 0,001 мг до приблизительно 0,01 мг до приблизительно 250 мг, от приблизительно 0,01 мг до приблизительно 100 мг, от приблизительно 0,05 мг до приблизительно 50 мг и от приблизительно 0,1 мг до приблизительно 25 мг, или любое другое значение между ними) соединения согласно формуле I (и/или соединения согласно любой из других формул, описанных в настоящем документе) или их соли (например, фармацевтически приемлемой соли), как определено где-либо в настоящем документе. Лекарственные формы могут дополнительно включать в

себя фармацевтически приемлемый носитель и/или дополнительное терапевтическое средство.

[00213] Подходящие уровни дозировки можно определить любым подходящим способом, известным специалисту в области лечения рака. Предпочтительно активное вещество вводят с частотой от 1 до 4 раз в день для местного применения или реже, если используют систему доставки лекарственного средства.

[00214] Тем не менее, фактические уровни дозировки и время введения активных ингредиентов в фармацевтических композициях согласно настоящему раскрытию могут варьироваться для получения количества активного ингредиента, которое является эффективным для достижения требуемого терапевтического ответа для конкретного пациента, композиции и способа введения, без токсичности для пациента. Следовательно, при необходимости может потребоваться отклонение от заявленных количеств, в частности, в зависимости от возраста, пола, массы тела, диеты и общего состояния здоровья пациента, пути введения, индивидуальной реакции на активный ингредиент, природы препарата, а также времени или интервала, в течение которого осуществляют введение. Таким образом, в некоторых случаях удовлетворительным может быть использование меньшего количества, чем вышеупомянутое минимальное количество, тогда как в других случаях указанный верхний предел должен быть превышен. В случае введения больших количеств может быть целесообразно разделить их на несколько отдельных доз, распределенных в течение дня.

Согласно некоторым вариантам осуществления соединения согласно [00215] настоящему раскрытию можно вводить совместно с одним или несколькими дополнительными средствами, используемыми для лечения рака. Согласно некоторым вариантам осуществления дополнительные средства включают в себя без ограничения следующее: алкилирующие средства, такие как циклофосфамид, хлорамбуцил, меклоретамин, ифосфамид или мелфалан; антиметаболиты, такие как метотрексат, цитарабин, гемцитабин, флударабин, 6-меркаптопурин, азатиопрен или 5-фторурацил; антимитотические средства, такие как винкристин, винбластин, виндезин, винорелбин, паклитаксел или доцетаксел; производные платины, такие как цисплатин, карбоплатин или оксалиплатин; гормонотерапевтические средства, такие как тамоксифен; ингибиторы ароматазы, такие как бикалутамид, анастрозол, эксеместан или летрозол; ингибиторы передачи сигналов, такие как иматиниб (ингибитор тирозинкиназы; Gleevac), гефитиниб (ингибитор EGFR; Iressa) или эрлотиниб (ингибитор рецепторной тирозинкиназы, который действует на EGFR; Tarceva); моноклональные антитела, такие как трастузумаб, пертузумаб, инотузумаб или их озогамицины, а также другие конъюгаты антитела с

лекарственным средством, такие как адотрастузумаб эмтанзин; антиангиогенные средства, такие как бевацизумаб, сорафениб (тирозинпротеинкиназа), пазопаниб или сунитиниб (ингибитор рецепторной тирозинкиназы); тивозаниб, акситиниб и седираниб; -тиниб (ингибиторы тирозинкиназы), такие как лапатиниб; модификаторы биологического ответа, такие как интерферон-альфа; ингибиторы топоизомеразы, такие как камптотецины (включая в себя иринотекан и топотекан), амсакрин, этопозид, этопозид фосфат или тенипозид; антрациклины, такие как доксорубицин, даунорубицин, эпирубицин, идарубицин, сабарубицин, акларубицин, карубицин и валрубицин; другие цитотоксические средства, такие как актиномицин, блеомицин, пликамицин или митомицин; ингибиторы mTOR, такие как рапамицин, темсиролимус и эверолимус; и терапия антителами, такая как терапия антителами к CTLA4, терапия антителами к PDL1 и терапия антителами к PD1.

[00216] Термины "антитело к СТLА4" и "анти-СТLА4" относятся к антителу или антителам, направленным на антиген 4 цитотоксических Т-лимфоцитов (СТLА4). Типичные антитела включают в себя без ограничения антитела, которые являются антагонистами СТLА4, или антитела к СТLА4, представленные в патентах США №№ 8685394 и 8709417. Некоторые варианты осуществления антитела включают в себя ипилимумаб (YERVOY®, Bristol-Myers Squibb) и СР-675206 (тремелимумаб, Pfizer). Согласно конкретному варианту осуществления антитело представляет собой ипилимумаб.

[00217] "Антитело к PDL1" или "анти-PDL1" относится к антителу, направленному против лиганда 1 запрограммированной смерти клеток (PDL1). Типичные антитела включают в себя без ограничения антитела, представленные в патентах США №№ 8217149, 8383796, 8552154 и 8617546. Некоторые варианты осуществления антитела включают в себя авелумаб (Merck KGA/Pfizer), дурвалумаб (AstraZeneca) и атезолизумаб (TECENTRIQ®, Roche). Согласно конкретному варианту осуществления антитело представляет собой атезолизумаб.

[00218] Термины "антитело к PD1" и "анти-PD1" относятся к антителу, направленному против белка 1 запрограммированной смерти клеток (PDI). Типичные антитела включают в себя без ограничения антитела, представленные в патентах США №№ 7029674, 7488802, 7521501, 8008449, 8354509, 8617546 и 8709417. Конкретные варианты осуществления антитела включают в себя BGB-A317, ниволумаб (OPDIVO®, Bristol-Myers Squibb), лабролизумаб (Merck) и пембролизумаб (KEYTRUDA®, Merck).

[00219] Согласно некоторым вариантам осуществления антитело, например, антитело к CTLA4, антитело к PDL1 или антитело к PD1, перед введением смешивают с нетоксичным, фармацевтически приемлемым веществом-носителем (например, физиологическим раствором или физиологическим раствором с фосфатным буфером) и его

можно вводить с использованием любой подходящей с медицинской точки зрения процедуры, например, включая в себя без ограничения внутривенное или внутриартериальное введение и инъекцию в спинномозговую жидкость. В определенных случаях интраперитонеальное внутрикожное, внутриполостное, интратекальное или прямое введение в опухоль или в артерию, снабжающую опухоль, может являться благоприятным.

[00220] Используемые в настоящем документе термины "антитело" и "антитела" включают все типы иммуноглобулинов, включая в себя IgG, IgM, IgA, IgD и IgE, или их фрагменты, которые могут подходить для медицинских применений, раскрытых в настоящем документе. Антитела могут являться моноклональными или поликлональными и могут происходить из любых видов, включая в себя, например, мышь, крысу, кролика, лошадь или человека. Фрагменты антител, которые сохраняют специфическое связывание с белком или эпитопом, например, СТLA4, PDL1 или PD1, связанным антителом, используемым в настоящем раскрытии, включены в объем термина "антитело". Такие фрагменты можно получить с помощью известных техник. Антитела могут являться химерными или гуманизированными, особенно когда их используют в терапевтических целях. Антитело можно получить или приготовить с использованием способов, известных в настоящей области техники.

[00221] Согласно некоторым вариантам осуществления другие иммунотерапевтические мишени, такие как ингибиторы IDO, например, эпакадостат, можно также использовать в комбинации с соединениями согласно настоящему раскрытию.

[00222] Согласно некоторым вариантам осуществления дополнительные средства можно вводить отдельно от соединений согласно настоящему раскрытию как часть режима многократных доз (например, последовательно или по разным перекрывающимся схемам с введением одного или нескольких соединений согласно формуле I). Согласно другим вариантам осуществления эти средства могут являться частью одной лекарственной формы, будучи смешанными вместе с соединениями согласно настоящему раскрытию в одной композиции. Согласно некоторым вариантам осуществления эти средства можно вводить в виде отдельной дозы, которую вводят приблизительно в то же время, что и одно или несколько соединений согласно формуле I (например, одновременно с введением одного или нескольких соединений согласно формуле (I) (и/или соединения согласно любой из других формул, включая в себя любые подроды или их конкретные соединения)). Согласно некоторым вариантам осуществления по меньшей мере одно из терапевтических средств в комбинированной терапии вводят с использованием той же схемы введения доз (той же дозы, частоты и продолжительности

лечения), которую, как правило, используют, когда средство используют в качестве монотерапии для лечения той же формы рака. Согласно некоторым вариантам осуществления пациент получает меньшее общее количество по меньшей мере одного из терапевтических средств в комбинированной терапии, чем когда средство используют в качестве монотерапии, например, меньшие дозы, менее частые дозы и/или более короткая продолжительность лечения.

[00223] Когда композиции согласно настоящему раскрытию включают в себя комбинацию соединения согласно формулам, описанным в настоящем документе, и одного или нескольких дополнительных средств, как соединение, так и дополнительное средство могут присутствовать на уровнях дозировки, составляющих от приблизительно 1 до 100% и более предпочтительно от приблизительно 5 до 95% дозировки, обычно вводимой в режиме монотерапии.

Биологическая функция

[00224] Применимость настоящего раскрытия можно продемонстрировать одним или несколькими следующими способами или другими способами, известными в настоящей области техники.

Анализ in vitro

[00225] Соединения согласно настоящему раскрытию испытывали в функциональном анализе потока кальция с использованием стабильно трансфицированных клеток НЕК293. Клетки, трансфицированные EP1, EP2, EP3 и EP4, приобретали у Eurofins Discovery Services (Сент-Чарльз, Миссури). Каждый подтип рецептора содержит дополнительный универсальный белок G, добавляемый для того, чтобы соединиться с сигнальным путем кальция. Используемая исходная клеточная линия также экспрессирует новый вариант клитина, активируемого кальцием фотопротеина, для обеспечения чувствительного люминесцентного обнаружения.

[00226] Клетки высевали с плотностью 50000 клеток на лунку в черные 96-луночные планшеты с прозрачным дном. Помещенные на планшет клетки оставляли при комнатной температуре на 30 минут перед переносом в увлажненный инкубатор с 5% СО2 при 37°С в течение 18-24 часов. Буфер для анализа (HBSS с 20 мМ HEPES) и загрузочный буфер (буфер для анализа вместе с 10 мкМ коэлентеразина) получали в день анализа. Анализы выполняли путем аспирации среды из планшета для анализа и промывания один раз буфером для анализа, затем заменяли загрузочным буфером и клетки инкубировали в течение 1,5 ч при комнатной температуре. Соединения получали в буфере для анализа в 3-кратной конечной концентрации в планшетах, в которых связывание отсутствовало. Соединения добавляли к планшетам с клетками и инкубировали в течение 30 минут при

комнатной температуре. Лиганд рецептора простаноида PGE2 получали при 4-кратном разбавлении до конечной концентрации, составляющей 10 нМ. Планшеты исследовали на Flexstation^{тм} с использованием протокола люминесценции с 100 мс интеграцией в течение 60 с всего с добавлением лиганда через 15 с. Данные получали из относительных световых единиц, измеренных с помощью площади под кривой.

Таблица 1

Пример		MS (ESI ⁻)	IC ₅₀ (нМ), анализ Са ²⁺ - потока ЕР ₄
	MS (ESI ⁺)		
1	400	398	13
2	443	441	1,5
3	444	442	160
5	444	442	930
6	444	442	19
7	445	443	2,0
8, первый элюирующий	457	455	520
8, второй элюирующий	457	455	0,19
9	458	456	6,0
10, первый элюирующий	458	456	20
10, второй элюирующий	458	456	0,13
11	458	456	24
12	458	456	2,7
13	458	456	32
14	459	457	9,0
15	459	457	400
16	582	580	140
17	597	595	130
18	467	465	1,5
19	457	455	9,1
20, первый элюирующий	475	473	24
20, второй элюирующий	475	473	0,31
21	475	473	0,31

23	475	473	0,3
24	414	412	10
25	439	437	0,4
26	439	437	3,8
27	461	459	0,5
28	475	473	0,6
29	515	513	1,2
30	515	513	0,2
31	457	455	0,03
32	443	441	0,1
33	461	459	0,1
34	451	449	0,22
35	469	467	0,28
36	452	450	0,32
37	460	458	75
38	519	517	-
39	470	468	-
40	478	476	-

Модель опухоли in vivo

[00227] Самкам мышей Balb/C имплантировали 1×10⁶ клеток рака толстой кишки CT26 (ATCC® CRL-2638TM) в дозе 2×10⁶ клеток/мл раствора ++PBS. Клетки вводили подкожно в левую заднюю боковую область. Опухоли измеряли с помощью штангенциркуля, а объемы опухолей рассчитывали по формуле: объем опухоли = (длина × ширина²)/2. Когда объемы опухоли составляли ~ 150 мм³, мышей рандомизировали в группы (по 10 животных в группе) и лечили либо носителем (0,5% Methocel перорально, дважды в день в течение 11 дней), либо исследуемым соединением (30 мг/кг перорально, дважды в день в течение 11 дней). Объемы опухолей определяли 3 раза в неделю до окончания исследования. Результаты для соединения А представлены на фигурах 1А и 1В.

Получение соединений

[00228] Исходные материалы, используемые для синтеза, либо синтезируют, либо получают из коммерческих источников, таких как без ограничения Sigma-Aldrich, Fluka, Acros Organics, Alfa Aesar, Enamine, PharmaBlock, VWR Scientific и тому подобное. Хроматографические колонки с обращенной фазой и нормальной фазой приобретали у Teledyne ISCO, Inc. (NE). Анализ ядерного магнитного резонанса (ЯМР) проводили с использованием спектрометра Bruker Fourier 300 МГц с подходящим дейтерированным

растворителем. Спектры ЖХ/МС получали на масс-спектрометре Shimazu LCMS-2020 Series с использованием электрораспылительной ионизации (ESI) и колонки Luna C18 5 мкМ, $2,0 \times 50$ мм, путем элюирования с помощью смеси от 95:5 до 0:100 $H_2O:MeCN + 0,1\%$ муравьиной кислоты при скорость потока 0,7 мл/мин в течение 3,5 минут. Общие способы получения соединений можно модифицировать путем использования соответствующих реагентов и условий для введения различных фрагментов, обнаруженных в структурах, как предусмотрено в настоящем документе.

Сокращения

Водн.	водный	
BrettPhos	2-(дициклогексилфосфино)3,6-диметокси-2',4',6'-триизопропил-1,1'-	
	бифенил	
CDI	карбонилдиимидазол	
DABCO	1,4-диазабицикло[2.2.2]октан	
DCC	N,N'-дициклогексилкарбодиимид	
DMAP	4-диметиламинопиридин	
DMF	диметилформамид	
e.e.	энантиомерный избыток	
EDCI	1-этил-3-(3-диметиламинопропил)карбодиимид	
экв.	Эквивалент(ы)	
EtOAc	этилацетат	
Ч	час(ы)	
HATU	1-[бис(диметиламино)метилен]- 1 <i>H</i> - 1 , 2 , 3 -триазоло[4 , 5 - b]пиридиний- 3 -	
	оксид-гексафторфосфат	
Hex	гексаны	
ЖХ/МС	жидкостная хроматография/масс-спектрометрия (Shimazu, модель №	
	LCMS-2020)	
M	молярный	
MeCN	ацетонитрил	
Me-THF	2-метилтетрагидрофуран	
мин	минута(ы)	
H.	нормальный	
NMP	<i>N</i> -метил-2-пирролидон	
O/N	в течение ночи	

++PBS	физиологический раствор с фосфатным буфером с добавлением кальция (II) и магния (II)	
PMHS	полиметилгидросилоксан	
RBF	круглодонная колба	
K.T.	комнатная температура	
RuPhos	2-дициклогексилфосфино-2',6'-диизопропоксибифенил	
SFC	сверхкритическая жидкостная хроматография	
T3P	пропилфосфоновый ангидрид	
TFA	трифторуксусная кислота	
THF	тетрагидрофуран	
TMSI	триметилсилилйодид	
об.	объем	
XPhos	2-дициклогексилфосфино-2',4',6'-три- <i>изо</i> -пропилбифенил	

Общая схема синтеза

[00229] Соединения согласно формуле I согласно настоящему раскрытию можно получить, например, из амина (1), или его соответствующей аммониевой соли, и карбоновой кислоты (2) в присутствии подходящего реагента для реакции сочетания, такого как НАТU, CDI или тому подобное, и подходящего основания, такого как триэтиламин, этилдиизопропиламин или тому подобное. Альтернативно, кислоту можно предварительно активировать путем ее превращения в соответствующий хлорангидрид с использованием такого средства, как тионилхлорид, оксалилхлорид или тому подобное. Полученный амид 3 превращают в целевое соединение I с использованием методик синтеза, подходящих для идентичности функциональной группы "G" в 3 и требуемой идентичности функциональной группы "W" в I. Примеры таких превращений включают в себя без ограничения следующее:

(а) сложноэфирный гидролиз (т.е. "G" = CO₂R, где R может представлять собой метил, этил, бензил, *таких* или тому подобное; и "W" = CO₂H) с использованием хорошо известных условий, таких как опосредованный кислотой (т.е. HCl, TFA, H₂SO₄ или тому подобным) гидролиз, опосредованный основанием (т.е. NaOH, LiOH, Bu₄NOH или тому подобным) гидролиз, опосредованный нуклеофилом (т.е. LiI, TMSI, Me₃SnOH или тому подобным) гидролиз, опосредованный ферментом (эстеразой печени свиньи, липазой *candida antarctica*, липазой *candida rugosa* или тому подобным) гидролиз, опосредованный металлом (Pd/C и H₂, Pd(PPh₃)₄ и PMHS или тому подобным) гидрогенолиз и другие.

[00230] Альтернативно, вышеупомянутую сложноэфирную группу можно сначала дериватизировать (т.е. моно- или бис-алкилирование или арилирование на са-атоме углерода посредством соответствующего енолата, если это является доступным, или тому подобное) перед гидролизом.

(b) реакция нитрила (т.е. "G" = CN) –

(i) с образованием тетразола (т.е. "W" =
$$\overset{N-N}{H}$$
) путем нагревания **3** с подходящим источником азида (т.е. NaN₃, Bu₃SnN₃, Bu₄NN₃ или тому подобным), чаще всего в присутствии подходящего ускорителя реакции (т.е. ZnBr₂, Bu₂Sn=O, NH₄Cl или тому подобного);

- (ii) с образованием оксадиазалона (т.е. "W" = $\stackrel{N-O}{\square}$) путем нагревания **3** с гидроксиламином и затем обработки полученного N-гидроксиамидина с помощью CDI или тому подобного; и
- (iii) с образованием карбоновой кислоты (т.е. "W" = CO_2H) путем нагревания **3** с водным КОН и этиленгликолем или тому подобным.
 - (c) обработка карбоновой кислоты (т.е. "G" = CO_2H) –
- (i) с использованием реакции гомологизации Арндта-Эйстерта или тому подобного, в случаях, где Y представляет собой связь, с получением соответствующего соединения, где Y представляет собой CH₂;
- (ii) в ацилсульфонамид путем сочетания **3** с сульфонамидом в присутствии средства для реакции сочетания, такого как DCC или тому подобного;
- (iii) в гидроксамовую кислоту путем сочетания **3** с гидроксиламином в присутствии средства для реакции сочетания, такого как T_3P или тому подобного.

[00231] Карбоновую кислоту 2, используемую для сочетания, описанного на схеме 1, можно получить из сложного эфира 5 посредством его первоначального N-алкилирования с помощью Ar-CH₂-LG (т.е. 6), где LG представляет собой уходящую группу, такую как галогенид, мезилат, тозилат или тому подобное, в присутствии

подходящего основания (т.е. NaH, Cs_2CO_3 , KO'Bu или тому подобное). Последующий гидролиз сложного эфира 7 с использованием процедур, известных специалистам в настоящей области техники, включая в себя те, которые описаны выше, дает в результате карбоновую кислоту 2.

$$\begin{array}{c}
\underline{\text{Cxema 2}} \\
& \times \\$$

[00232] Соединение 6 является коммерчески доступным, или его можно легко получить из сложного эфира 8, например, путем первоначального восстановления 8 с использованием таких реагентов, как DIBAL-H, LiBH4, LiAlH4 или тому подобного (схема 3), до соответствующего спирта 9. Обработка спирта 9 с помощью мезилхлорида, тозилангидрида, PBr3 или тому подобного, в присутствии подходящего основания, такого как NEt3, пиридин, DABCO или тому подобное, дает в результате соответствующее соединение 6. Более того, восстановление 8 с использованием дейтерированных восстановителей, таких как LiAlD4, обеспечивает доступ к аналогам, содержащим стабильные изотопы дейтерия на бензильном углероде 9.

[00233] Альтернативно, доступ к сложноэфирному промежуточному соединению 7 можно получить посредством первоначального арилирования амина 10 с сложным эфиром 11 с получением сложного эфира анилина 12 с последующей подходящей последовательностью аннелирования (схема 4). Арилирование 10 можно осуществить посредством прямого смещения S_NAr соответствующим образом функционализированного арилфторида (т.е. 11, где Hal = F) или посредством катализированного металлом сочетания соответствующим образом функционализированного арилйодида (т.е. 11, где Hal = I). Последовательность аннелирования может повлечь за собой катализируемую металлом гетероциклизацию азота анилина на сложном эфире 12 на боковом алкине (т.е. 12, где FG = алкин) для доставки конденсированного биарилового сложного эфира 7а, или стимулируемую кислотой конденсацию промежуточного соединения - сложного эфира 12

с муравьиной кислотой или тому подобным, в присутствии металла-восстановителя (т.е. 12, где $FG = NO_2$) для доставки конденсированного биарилового сложного эфира 7b.

Схема 4

[00234] Амин 1, используемый для сочетания, описанного на схеме 1, можно получить из карбоновой кислоты 13 (схема 5) посредством перегруппировки Курциуса (т.е. путем ацилазида: 14, где $FG = N_3$), перегруппировки Γ офмана (т.е. путем первичного амида: 14, где FG = NH₂), перегруппировки Лоссена (т.е. путем гидроксамовой кислоты: 14, где FG NHOH) или тому подобного. Получение предшественников для реакций перегруппировки (т.е. 14), а также реагенты и условия для реакций перегруппировки хорошо известны специалистам в настоящей области техники и описаны в стандартных учебниках, таких как March's Advanced Organic Chemistry, 7-е изд., John Wiley & Sons, 2013. Полученный продукт, карбамат 15, можно напрямую подвергнуть снятию защитной группы для получения требуемого амина 1 с использованием условий, известных специалистам в настоящей области техники (т.е. путем обработки с помощью HCl, TFA или тому подобного, когда R представляет собой *трет*-бутил; или путем гидрирования в присутствии катализаторов, таких как Pd/C, Pt/C или тому подобного, когда R представляет собой бензил). Альтернативно, удаление защитной группы карбамата можно отложить до тех пор, пока не будут завершены все требуемые химические манипуляции с функциональной(ыми) группы(ами), удаленной(ыми) от атома азота.

[00235] В случаях, где Ar амида 16 (схема 6) замещен галогеном, таким как Br или I, может рассматриваться желательным осуществить его преобразование, например, в (гетеро)ариламид 17 или гетероциклический амид 18. Такое превращение функциональной группы можно легко осуществить с использованием катализируемых металлом реакций,

известных специалистам в настоящей области техники. Примеры таких превращений могут включать в себя без ограничения следующее: (а) реакция Сузуки с использованием (гетеро)арилбороновой кислоты или (гетеро)арилборонатного сложного эфира в качестве партнера по сочетанию, палладоцикла XPhos, Pd(dppf)Cl₂ или любых других подходящих палладиевых лигандных комплексов в качестве катализатора, и водного фосфата калия, карбоната натрия или тому подобного в качестве основания; (b) реакция Бухвальда-Хартвига с использованием первичного или вторичного амина в качестве партнера по сочетанию, палладоцикла RuPhos, палладоцикла BrettPhos или любых других подходящих палладиевых лигандных комплексов в качестве катлизатора, и *трет*-пентоксида натрия, *трет*-бутоксида калия или тому подобного в качестве основания.

Схема 6

$$R^1$$
 R^2 R^3 R^4 R^4 R^1 R^2 R^3 R^4 R^4 R^1 R^2 R^3 R^4 R^4 R^4 R^4 R^5 R^5 R^5 R^4 R^4 R^5 R^5 R^5 R^4 R^4 R^5 R^5 R^5 R^5 R^4 R^5 R^5

Получение промежуточных соединений

<u>Промежуточное соединение - кислота 1: 1-(4-цианобензил)-1Н-индол-7-карбоновая кислота</u>

[00236] К раствору метил-1*H*-индол-7-карбоксилата (1 экв.) в DMF (0,29 M), охлажденному до 0°C, добавляли *трет*-бутоксид калия (1,2 экв.) так, чтобы температура реакции не превышала 5°C. Полученную суспензию перемешивали при 0°C в течение 30 мин и затем при комнатной температуре в течение 30 мин. Раствор снова охлаждали до 0°C и 4-(бромметил)бензонитрил (1,2 экв.) в DMF (0,69M) добавляли по каплям. Реакционную смесь оставляли медленно нагреваться до комнатной температуры в течение 16 ч и затем гасили с помощью добавления ледяной воды и экстрагировали с помощью ЕtOAc. Объединенные органические экстракты промывали дополнительно водой, 10% водн. NaHCO₃ и рассолом, сушили над MgSO₄ и фильтровали. Концентрирование фильтрата *in vacuo* давало сырой продукт реакции в виде желтого густого масла, которое очищали с помощью колоночной хроматографии (SiO₂, градиентное элюирование, от 9:1

гексан/EtOAc до EtOAc) с получением продукта в виде бесцветного масла, которое затвердевало при отстаивании (75% - выход).

[00237] 1-(4-цианобензил)-1*H*-индол-7-карбоновую кислоту (1 экв.) растворяли в 2:1 (об./об.) растворе (0,1 M) ТНГ и метанола. Добавляли LiOH (5 экв., 2 н. водн. раствор) и раствор нагревали при 50°C в течение 3 ч. Реакционную смесь охлаждали до комнатной температуры и затем нейтрализовали с помощью HCl (5 экв., 1 н. водн. раствор). Суспензию экстрагировали с помощью EtOAc. Объединенные органические экстракты промывали дополнительно водой и рассолом, сушили над MgSO₄ и фильтровали. Концентрирование фильтрата *in vacuo* давало сырой продукт реакции в виде желтого густого масла, которое затвердевало при отстаивании. Растирание в толуоле давало продукт в виде белого, кристаллического твердого вещества (67% - выход).

<u>Промежуточное соединение - кислота 2: 1-(4-(трифторметил)бензил)-1Н-индол-7-карбоновая кислота</u>

[00238] Получали аналогично промежуточному соединению - кислоте 1, но с использованием 1-(бромметил)-4-(трифторметил)бензола (1,2 экв.) вместо 4-(бромметил)бензонитрила.

<u>Промежуточное соединение - кислота 3: 1-(4-(трифторметил)бензил)-1Н-пирроло[3,2-b]пиридин-7-карбоновая кислота</u>

[00239] Получали аналогично промежуточному соединению - кислоте 1, но с использованием метил-1H-пирроло[3,2-b] пиридин-7-карбоксилата (1 экв.) вместо метил-1H-индол-7-карбоксилата; и 1-(бромметил)-4-(трифторметил)бензола (1,2 экв.) вместо 4-(бромметил)бензонитрила.

<u>Промежуточное соединение - кислота 4: 1-(4-(трифторметил)бензил)-1Н-пирроло[3,2-с]пиридин-7-карбоновая кислота</u>

[00240] Получали аналогично промежуточному соединению - кислоте 1, но с использованием метил-1H-пирроло[3,2-c]пиридин-7-карбоксилата (1 экв.) вместо метил-

1*H*-индол-7-карбоксилата; и 1-(бромметил)-4-(трифторметил)бензола (1,2 экв.) вместо 4- (бромметил)бензонитрила.

<u>Промежуточное соединение - кислота 5: 1-(4-(трифторметил)бензил)-1Н-</u> пирроло[2,3-с]пиридин-7-карбоновая кислота

[00241] Получали аналогично промежуточному соединению - кислоте 1, но с использованием метил-1H-пирроло[2,3-c]пиридин-7-карбоксилат (1 экв.) вместо метил-1H-индол-7-карбоксилата; и 1-(бромметил)-4-(трифторметил)бензола (1,2 экв.) вместо 4-(бромметил)бензонитрила.

<u>Промежуточное соединение - кислота 6: 1-(4-(трифторметил)бензил)-1Н-индазол-7-карбоновая кислота</u>

[00242] Суспензию метил-1*H*-индазол-7-карбоксилата (1 экв.) и карбоната цезия (3 экв.) в DMF (0,74 M) охлаждали до 0°C и по каплям добавляли 1-(бромметил)-4-(трифторметил)бензол (1,2 экв., 0,89M в DMF). Реакционную смесь оставляли медленно нагреваться до комнатной температуры в течение 16 ч и затем гасили с помощью ледяной воды и экстрагировали с помощью ТВМЕ. Объединенные органические экстракты промывали дополнительно водой и рассолом, сушили над MgSO₄ и фильтровали. Концентрирование фильтрата *in vacuo* давало сырой продукт реакции в виде золотистожелтого масла, которое очищали с помощью колоночной хроматографии (SiO₂, от 9:1 (об./об.) Нех:ЕtOAc до EtOAc) с получением продукта в виде бесцветного масла (76% - выход).

[00243] Продукт из предыдущей стадии (1 экв.) растворяли в 3:2 (об./об.) растворе (0,11 М) ТНГ и метанола и добавляли LiOH (3 экв., 2 н. водн. раствор). Полученный раствор перемешивали при комнатной температуре в течение 16 ч и нейтрализовали с помощью HCl (3 экв., 1 н. водн. раствор). Полученную суспензию экстрагировали с помощью EtOAc и объединенные органические экстракты промывали дополнительно водой и рассолом, сушили над MgSO₄ и фильтровали. Концентрирование фильтрата *in vacuo* давало сырой продукт реакции в виде густого масла. Перекристаллизация из ТВМЕ и гексанов давала продукт в виде белого, кристаллического твердого вещества (60% - выход).

<u>Промежуточное соединение - кислота 7: 1-(4-(трифторметил)бензил)-1Н-бензо[d]имидазол-7-карбоновая кислота</u>

[00244] Метил-2-фтор-3-нитробензоат (1 экв.), (4-(трифторметил)фенил)метанамин (1.5 экв.) и карбонат калия (2 экв.) объединяли в DMF (0,24 M) и суспензию нагревали при 80°C в течение 2 ч. Реакционную смесь охлаждали до комнатной температуры, разбавляли с помощью EtOAc и промывали последовательно 10% водн. NH4Cl, водой и рассолом. Органический слой затем сушили над MgSO4 и фильтровали. Концентрирование фильтрата *in vacuo* давало сырой продукт реакции в виде желтого полутвердого вещества. Очистка с помощью колоночной хроматографии (SiO₂, от 9:1 (об./об.) Нех:EtOAc до 3:7 (об./об.) Нех:EtOAc) давала метил-3-нитро-2-((4-(трифторметил)бензил)амино)бензоат в виде золотисто-желтого масла (56% - выход).

[00245] Метил-3-нитро-2-((4-(трифторметил)бензил)амино)бензоат (1 экв.), железный порошок (10 экв.) и хлорид аммония (10 экв.) растворяли в 1:1 (об./об.) растворе (0,05 М) 2-пропанола и муравьиной кислоты. Сосуд плотно закрывали и нагревали при 80°С в течение 3 ч. Суспензию охлаждали до комнатной температуры, разбавляли с помощью 2-пропанола и фильтровали через целит. Фильтрат концентрировали *in vacuo* и полученный остаток растворяли в DCM. Раствор затем промывали последовательно 1 н. водн. NaOH, водой и рассолом, сушили над MgSO4 и фильтровали. Концентрирование фильтрата *in vacuo* давало сырой продукт реакции в виде оранжевого масла. Очистка с помощью колоночной хроматографии (SiO₂, от 9:1 (об./об.) Hex:EtOAc до EtOAc) давала метил-1-(4-(трифторметил)бензил)-1*H*-бензо[*d*]имидазол-7-карбоксилат в виде оранжевого масла (31% - выход).

[00246] Метил-1-(4-(трифторметил)бензил)-1*H*-бензо[*d*]имидазол-7-карбоксилат (1 экв.) растворяли в 2:1 (об./об.) растворе (0,04 М) ТНГ и метанола и добавляли LiOH (3 экв., 2 н. водн. раствор). Раствор перемешивали при комнатной температуре в течение 16 ч и затем нейтрализовали с помощью HCl (3 экв., 1 н. водн. раствор). Летучие вещества удаляли *in vacuo* и твердый остаток растирали в воде с получением 1-(4-(трифторметил)бензил)-1*H*-бензо[*d*]имидазол-7-карбоновой кислоты в виде белого, кристаллического твердого вещества (58% - выход).

<u>Промежуточное соединение - кислота 8: 1-((4-(трифторметил)фенил)-метил- d_2)-1H-индол-7-карбоновая кислота</u>

[00247] Метил-4-(трифторметил)бензоат (1 экв.) растворяли в ТНГ (0,3 М) и охлаждали до 0° С. Добавляли литийалюминийдейтерид (1 экв.) и полученную суспензию нагревали медленно до комнатной температуры в течение 16 ч. Реакционную смесь охлаждали до 0° С и гасили с помощью 1 н. водн. НСІ и затем экстрагировали с помощью DCM. Объединенные органические экстракты затем промывали дополнительно водой и рассолом, сушили над MgSO₄ и фильтровали. Концентрирование фильтрата *in vacuo* давало сырой продукт реакции в виде бесцветного масла. Очистка с помощью колоночной хроматографии (SiO₂, от Hex до 3:7 (об./об.) Hex:EtOAc) давала (4-(трифторметил)фенил)-метан- d_2 -ол в виде бесцветного масла (61% - выход).

[00248] (4-(трифторметил)фенил)-метан- d_2 -ол (1 экв.) и триэтиламин (1.5 экв.) объединяли в DCM (0,39 M), охлаждали до 0°C и по каплям добавляли метансульфонилхлорид (1,2 экв.). Полученный раствор перемешивали при 0°C в течение 30 мин и затем при комнатной температуре в течение 1,5 ч. Реакционную смесь затем разбавляли с помощью ТВМЕ и промывали последовательно водой, 1 н. водн. NaOH, 1 н. водн. HCl, водой и в конце концов рассолом. Органический экстракт затем сушили над MgSO₄ и фильтровали. Концентрирование фильтрата *in vacuo* давало требуемый сырой ((4-(трифторметил)фенил)-метил- d_2)-метансульфонат в виде бесцветного масла (>99% - выход).

[00249] Метил-1H-индол-7-карбоксилат (1 экв.) растворяли в DMF (0,32 M) и охлаждали до 0°C. *трет*-Бутоксид калия (1,2 экв.) добавляли в течение 20 мин так, чтобы внутренняя температура реакции не превышала 5°C. Полученную суспензию перемешивали при 0°C в течение 30 мин, при комнатной температуре в течение 30 мин, затем охлаждали обратно до 0°C. ((4-(трифторметил)фенил)-метил- d_2)-метансульфонат (1,2 экв.) из предыдущей стадии добавляли по каплям в виде раствора DMF (0,2 M). Полученную реакционную смесь нагревали медленно до комнатной температуры в течение 16 ч и затем гасили с помощью оксида дейтерия и экстрагировали с помощью EtOAc. Объединенные органические экстракты промывали дополнительно водой, 10% водн. NaHCO₃ и рассолом, сушили над MgSO₄ и фильтровали. Концентрирование фильтрата im *vасио* давало сырой продукт реакции в виде густого масла. Очистка с помощью колоночной хроматографии (SiO₂, от 9:1 (об./об.) Нех:EtOAc до EtOAc) давала метил-1-((4-(трифторметил)фенил)-метил- d_2)-1H-индол-7-карбоксилат в виде бесцветного масла (59% - выход).

[00250] Метил-1-((4-(трифторметил)фенил)-метил- d_2)-1H-индол-7-карбоксилат (1 экв.) растворяли в 2:1 (об./об.) растворе (0,1 M) ТНF и метанола и добавляли LiOH (3 экв., 2 н. водн. раствор). Полученный раствор нагревали при 50°C в течение 3 ч, охлаждали до комнатной температуры и затем нейтрализовали с помощью HCl (3 экв., 1 н. водн. раствор). Полученную суспензию фильтровали и твердый осадок промывали холодным 1:1 (об./об.) раствором метанола и воды. Продукт 1-((4-(трифторметил)фенил)-метил- d_2)-1H-индол-7-карбоновую кислоту сушили *in vacuo* в течение 16 ч с получением кристаллического твердого вещества (61% - выход).

<u>Промежуточное соединение - кислота 9: 4-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-карбоновая кислота</u>

[00251] Получали аналогично промежуточному соединению - кислоте **1**, но с использованием метил-4-фтор-1H-индол-7-карбоксилата (1 экв.) вместо метил-1H-индол-7-карбоксилата; и 1-(бромметил)-4-(трифторметил)бензола (1,2 экв.) вместо 4-(бромметил)бензонитрила.

<u>Промежуточное соединение - кислота 10: 5-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-карбоновая кислота</u>

[00252] Получали аналогично промежуточному соединению - кислоте 1, но с использованием метил-5-фтор-1H-индол-7-карбоксилата (1 экв.) вместо метил-1H-индол-7-карбоксилата; и 1-(бромметил)-4-(трифторметил)бензола (1,2 экв.) вместо 4-(бромметил)бензонитрила.

<u>Промежуточное соединение - кислота 11: 5-хлор-1-(4-(трифторметил)бензил)-1Н-индол-7-карбоновая кислота</u>

[00253] Получали аналогично промежуточному соединению - кислоте 1, но с использованием метил-5-хлор-1H-индол-7-карбоксилата (1 экв.) вместо метил-1H-индол-7-

карбоксилата; и 1-(бромметил)-4-(трифторметил)бензола (1,2 экв.) вместо 4- (бромметил)бензонитрила.

<u>Промежуточное соединение - кислота 12: 6-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-карбоновая кислота</u>

[00254] Получали аналогично промежуточному соединению - кислоте 1, но с использованием метил-6-фтор-1H-индол-7-карбоксилата (1 экв.) вместо метил-1H-индол-7-карбоксилата; и 1-(бромметил)-4-(трифторметил)бензола (1,2 экв.) вместо 4-(бромметил)бензонитрила.

<u>Промежуточное соединение - кислота 13: 1-(4-(дифторметил)бензил)-1*H*-индол-7-карбоновая кислота</u>

[00255] Получали аналогично промежуточному соединению - кислоте 1, но с использованием 1-(хлорметил)-4-(дифторметил)бензола (1,2 экв.) вместо 4- (бромметил)бензонитрила.

<u>Промежуточное соединение - кислота 14: 1-(4-(дифторметил)бензил)-4-фтор-1H-индол-7-карбоновая кислота</u>

[00256] Получали аналогично промежуточному соединению - кислоте 1, но с использованием метил-4-фтор-1H-индол-7-карбоксилата (1 экв.) вместо метил-1H-индол-7-карбоксилата; и 1-(хлорметил)-4-(дифторметил)бензола (1,2 экв.) вместо 4-(бромметил)бензонитрила.

<u>Промежуточное соединение - кислота 15: 1-(4-(пентафтор- λ^6 -сульфанил)бензил)-1*H*-индол-7-карбоновая кислота</u>

[00257] Получали аналогично промежуточному соединению - кислоте 1, но с использованием 4-(пентафтортио)бензилбромида (1,2 экв.) вместо 4- (бромметил)бензонитрила.

<u>Промежуточное соединение - кислота 16: 1-([1,1'-бифенил]-4-илметил)-1H-индол-7-карбоновая кислота</u>

[00258] Получали аналогично промежуточному соединению - кислоте 1, но с использованием 4-(бромметил)-1,1'-бифенила (1,2 экв.) вместо 4- (бромметил)бензонитрила.

<u>Промежуточное соединение - кислота 17: 1-([1,1'-бифенил]-4-илметил)-4-фтор-1H-индол-7-карбоновая кислота</u>

[00259] Получали аналогично промежуточному соединению - кислоте 1, но с использованием метил-4-фтор-1H-индол-7-карбоксилата (1 экв.) вместо метил-1H-индол-7-карбоксилата; и 4-(бромметил)-1,1'-бифенила (1,2 экв.) вместо 4-(бромметил)бензонитрила.

<u>Промежуточное соединение - кислота 18: 1-([1,1'-бифенил]-4-илметил)-1H-индазол-7-карбоновая кислота</u>

[00260] Получали аналогично промежуточному соединению - кислоте 6, но с использованием 4-(бромметил)-1,1'-бифенила (1,2 экв.) вместо 1-(бромметил)-4-(трифторметил)бензола.

<u>Промежуточное соединение - кислота 19: 1-(4-(трифторметокси)бензил)-1*H*-индазол-7-карбоновая кислота</u>

[00261] Получали аналогично промежуточному соединению - кислоте 6, но с использованием 1-(бромметил)-4-(трифторметокси)бензола (1,2 экв.) вместо 1- (бромметил)-4-(трифторметил)бензола.

<u>Промежуточное соединение - кислота 20: 4-фтор-1-(4-йодбензил)-1*H*-индол-7-карбоновая кислота</u>

[00262] Получали аналогично промежуточному соединению - кислоте 1, но с использованием метил-4-фтор-1*H*-индол-7-карбоксилата (1 экв.) вместо метил-1*H*-индол-7-карбоксилата; и 1-(бромметил)-4-йодбензола (1,2 экв.) вместо 4-(бромметил)бензонитрила.

<u>Промежуточное соединение - амин 1: этил-2-(3-аминобицикло[1.1.1]пентан-1-ил)ацетат гидрохлорид</u>

3-(метоксикарбонил)бицикло[1.1.1]пентан-1-карбоновую кислоту (1 [00263] экв.) растворяли в трет-бутаноле (0,25 М) и последовательно добавляли триэтиламин (1 экв.) и дифенилфосфорилазид (1,5 экв.). Полученный раствор перемешивали при комнатной температуре в течение 1 ч и затем нагревали при 80°C в течение 22 ч. Летучие вещества затем удаляли *in vacuo* и полученный остаток переносили в EtOAc. Органический слой затем промывали последовательно водой и рассолом, сушили над MgSO₄ и фильтровали. Концентрирование фильтрата іп уасио давало сырой продукт реакции в виде густого масла. Очистка с помощью колоночной хроматографии (SiO₂, от 9:1 (об./об.) Hex:EtOAc до 1:1 (об./об.) Hex:EtOAc) давала метил-3-((третбутоксикарбонил)амино)бицикло[1.1.1]пентан-1-карбоксилат белого, В виде кристаллического твердого вещества (79% - выход).

[00264] Метил-3-((*трет*-бутоксикарбонил)амино)бицикло[1.1.1]пентан-1-карбоксилат (1 экв.) растворяли в ТНГ (0,13 М), раствор охлаждали до 0°С и по каплям добавляли LiBH₄ (10 экв., 1 М ТНГ раствор). Полученную смесь нагревали медленно до комнатной температуры в течение 18 ч, гасили с помощью 10% водн. NH₄Cl и летучие вещества удаляли *in vacuo*. Полученный водный остаток затем разбавляли дополнительно водой и экстрагировали с помощью EtOAc и Me-THF. Объединенные органические экстракты затем промывали дополнительно водой и рассолом, сушили над MgSO₄ фильтровали и фильтрат концентрировали *in vacuo*. Очистка с помощью колоночной хроматографии (SiO₂, от 9:1 (об./об.) Hex:EtOAc до 3:7 (об./об.) Hex:EtOAc) давала *трет*-

бутил(3-(гидроксиметил)бицикло[1.1.1]пентан-1-ил)карбамат в виде белого, кристаллического твердого вещества (78% - выход).

тем—Бутил(3-(гидроксиметил)бицикло[1.1.1]пентан-1-ил)карбамат [00265] (1 экв.) и триэтиламин (1,5 экв.) объединяли в DCM (0,21 M), охлаждали до 0° C и по каплям добавляли метансульфонилхлорид (1,2 экв.). Полученный раствор перемешивали при 0°C в течение 30 мин и затем при комнатной температуре в течение 18 ч. Реакционную смесь затем разбавляли с помощью EtOAc и промывали последовательно водой и рассолом. Органический экстракт затем сушили над MgSO₄ и фильтровали. Концентрирование фильтрата in требуемый (3-((mpemvacuo давало сырой бутоксикарбонил)амино)бицикло[1.1.1]пентан-1-ил)метилметансульфонат в виде белого кристаллического твердого вещества (99% - выход).

[00266] (3-((*трет*-Бутоксикарбонил)амино)бицикло[1.1.1]пентан-1-ил)метилметансульфонат (1 экв.) и КСN (2 экв.) объединяли в DMF (0,075 M) и нагревали при 70°С в течение 24 ч. Сырую реакционную смесь охлаждали до комнатной температуры, разбавляли с помощью ТВМЕ и промывали последовательно водой и рассолом. Органический экстракт затем сушили над MgSO₄ и фильтровали. Концентрирование фильтрата *in vacuo* давало сырой *трет*-бутил(3-(цианометил)бицикло[1.1.1]пентан-1-ил)карбамат в виде бледно-желтого масла (92% - выход).

[00267] *трет*-Бутил(3-(цианометил)бицикло[1.1.1]пентан-1-ил)карбамат (1 экв.) растворяли в этаноле (0,14 M) и барботировали газообразной HCl (с охлаждением) в течение 10 мин. Реакционный сосуд затем плотно закрывали и нагревали при 75°C в течение 48 ч и затем охлаждали до комнатной температуры и аккуратно вентилировали. Добавляли воду (10 экв.) и реакционную смесь перемешивали при комнатной температуре в течение 3 ч. Летучие вещества удаляли *in vacuo* и полученный остаток растирали в этаноле и DCM в течение 30 мин, фильтровали и фильтрат затем концентрировали *in vacuo* с получением требуемого, сырого этил-2-(3-аминобицикло[1.1.1]пентан-1-ил)ацетатгидрохлорида в виде гигроскопичного твердого вещества (93% - выход).

<u>Промежуточное соединение - амин 2: 2-(3-(хлор- λ^5 -азанил)бицикло[1.1.1]пентан-1-ил)ацетонитрил</u>

[00268] *мрет*-Бутил(3-(цианометил)бицикло[1.1.1]пентан-1-ил)карбамат (1 экв., промежуточное соединение - амин 1, стадия 4) растворяли в DCM (0,071 M), охлаждали до 0°С и по каплям добавляли HCl (30 экв., 4 M раствор диоксана). Полученный раствор перемешивали при 0°С в течение 30 мин и затем при комнатной температуре в

течение 2 ч. Летучие вещества удаляли *in vacuo* с получением указанного в заголовке соединения в виде бледно-желтой пены (99% - выход).

<u>Промежуточное соединение - амин 3: этил-2-(4-аминобицикло[2.1.1]гексан-1-ил)ацетат гидрохлорид</u>

[00269] 4-((трет-Бутоксикарбонил)амино)бицикло[2.1.1] гексан-1карбоновую кислоту (1 экв.) и триэтиламин (1,5 экв.) растворяли в ТНГ (0,22 М), охлаждали до -15°C и этилхлорформиат (1,5 экв.) добавляли по каплям. Полученную смесь перемешивали при -15°C в течение 3 ч, разбавляли с помощью ТВМЕ и промывали последовательно водой и рассолом. Органический экстракт затем сушили над MgSO₄, фильтровали и фильтрат концентрировали іп vacuo. Сырое смешанное ангидридное промежуточное соединение растворяли в метаноле (0,22 M), охлаждали до 0°C и LiBH₄ (6 экв.) добавляли порциями в течение периода времени, составляющего 30 мин. Полученную смесь медленно нагревали до комнатной температуры в течение 16 ч и гасили с помощью 10% водн. NH₄Cl. Летучие вещества удаляли *in vacuo* и полученный водный остаток разбавляли дополнительно водой и экстрагировали с помощью EtOAc. Объединенные органические экстракты затем промывали дополнительно водой и рассолом, сушили над MgSO₄, фильтровали и фильтрат концентрировали *in vacuo*. Очистка с помощью колоночной хроматографии (SiO₂, от 9:1 (об./об.) Hex:EtOAc до 3:7 (об./об.) Hex:EtOAc) давала трет-бутил(4-(гидроксиметил)бицикло[2.1.1] гексан-1-ил) карбамат в виде белого, кристаллического твердого вещества (88% - выход).

[00270] *трет*-Бутил(4-(гидроксиметил)бицикло[2.1.1]гексан-1-ил)карбамат (1 экв.) и триэтиламин (1,5 экв.) объединяли в DCM (0,13 M), охлаждали до 0°C и по каплям добавляли метансульфонилхлорид (1,2 экв.). Полученный раствор перемешивали при 0°C в течение 30 мин и при комнатной температуре в течение 18 ч, разбавляли с помощью EtOAc и промывали последовательно водой и рассолом. Органический экстракт сушили над MgSO₄ и фильтровали. Концентрирование фильтрата *in vacuo* давало сырой 4-(((*трет*бутоксикарбонил)амино)бицикло[2.1.1]гексан-1-ил)метилметансульфонат в виде белого, кристаллического твердого вещества (99% - выход).

[00271] (4-((*трет*-Бутоксикарбонил)амино)бицикло[2.1.1]гексан-1-ил)метилметансульфонат (1 экв.) и КСN (2 экв.) объединяли в DMF (0,055 M) и нагревали при 80°С в течение 24 ч. Сырую реакционную смесь охлаждали до комнатной температуры, разбавляли с помощью ТВМЕ и промывали последовательно водой и рассолом. Органический экстракт затем сушили над MgSO₄ и фильтровали. Концентрирование

фильтрата *in vacuo* давало сырой *mpem*-бутил(4-(цианометил)бицикло[2.1.1] гексан-1-ил)карбамат в виде бледно-желтого масла (99% - выход).

[00272] *трет*-Бутил(4-(цианометил)бицикло[2.1.1]гексан-1-ил)карбамат (1 экв.) растворяли в этаноле (0,05 M) и барботировали газообразной HCl с охлаждением в течение 10 мин. Реакционный сосуд плотно закрывали и нагревали при 80°C в течение 48 ч, охлаждали до комнатной температуры и аккуратно вентилировали. Добавляли воду (10 экв.) и смесь перемешивали при комнатной температуре в течение 2 ч. Летучие вещества удаляли *in vacuo* и полученный остаток растирали в этаноле и DCM в течение 30 мин, фильтровали и фильтрат концентрировали *in vacuo* с получением требуемого сырого продукта в виде гигроскопичного твердого вещества (96% - выход).

ПРИМЕРЫ

[00273] Наряду с тем, что в настоящем документе были показаны и описаны предпочтительные варианты осуществления настоящего раскрытия, для специалистов в настоящей области техники будет очевидно, что такие варианты осуществления представлены только в качестве примера. Многочисленные вариации, изменения и замены теперь будут осуществлены специалистами в настоящей области техники, не отклоняясь настоящего раскрытия. Следует понимать, что различные альтернативы вариантам осуществления настоящего раскрытия, описанным в настоящем документе, можно использовать при практическом применении настоящего раскрытия. Подразумевается, что приведенная ниже формула изобретения определяет объем настоящего раскрытия, и что таким образом охвачены способы и структуры в пределах объема этой формулы изобретения и ее эквивалентов.

<u>Пример</u> 1: <u>2-(3-(1-(4-цианобензил)-1*H*-индол-7-</u> карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота

[00274] Стадия 1: этил-2-(3-(1-(4-цианобензил)-1*H*-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)ацетат: промежуточное соединение - кислоту 1 (1 экв.), промежуточное соединение - амин 1 (1,5 экв.) и НАТИ (1,5 экв.) растворяли в DMF (0,09 M). К полученному затем добавляли этилдиизопропиламин (3 экв.) и полученный желтый раствор перемешивали при комнатной температуре в течение 18 ч. Сырую реакционную смесь разбавляли с помощью EtOAc и промывали последовательно водой,

10% водн. NaHCO₃, 10% водн. NH₄Cl, водой и рассолом. Органический экстракт сушили над MgSO₄, фильтровали и фильтрат концентрировали *in vacuo*. Дополнительная очистка с помощью колоночной хроматографии (SiO₂, от 1:1 (об./об.) Hex:EtOAc до EtOAc) давала продукт в виде бледно-желтого твердого вещества (54% - выход).

2-(3-(1-(4-цианобензил)-1*H*-индол-7-[00275] Стадия 2: карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота: этил-2-(3-(1-(4-цианобензил)-1*H*-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)ацетат (1 экв.) из предыдущей стадии растворяли в 2:1 (об./об.) растворе (0,02 М) ТНГ и метанола, добавляли LiOH (5 экв., 2 н. водн. раствор) и полученный раствор нагревали при 50°C в течение 4 ч. Реакционную смесь охлаждали до комнатной температуры и затем нейтрализовали с помощью HCl (5 экв., 1 н. водн. раствор). Летучие вещества затем удаляли *in vacuo* и полученный остаток непосредственно подвергали колоночной хроматографии с обращенной фазой (С18, от 9:1 $(oб./oб.) H_2O:MeCN + 0.1\%$ муравьиной кислоты до MeCN + 0.1% муравьиной кислоты). Фракции с продуктом объединяли и концентрировали *in vacuo*. Полученную водную суспензию затем нейтрализовали с помощью насыщ. водн. NaHCO₃ и экстрагировали с помощью EtOAc. Объединенные органические экстракты промывали дополнительно водой и рассолом, сушили над MgSO₄ и фильтровали. Концентрирование фильтрата *in vacuo* после дополнительного растирания давало в толуоле продукт в виде белого, кристаллического твердого вещества (77% - выход). ESI⁺: M+1: 400, ESI⁻: M-1: 398.

<u>Пример</u> 2: 2-(3-(1-(4-(трифторметил)бензил)-1*H*-индол-7- карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота

[00276] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 2 (1 экв.) вместо промежуточного соединения - кислоты 1 на стадии 1. ESI^+ : M+1: 443. ESI^- : M-1: 441.

<u>Пример 3: 2-(3-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-b]пиридин-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота</u>

[00277] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 3 (1 экв.) вместо промежуточного соединения - кислоты 1 на стадии 1. ESI^+ : M+1: 444. ESI^- : M-1: 442.

<u>Пример 4: 2-(3-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-c]пиридин-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота</u>

[00278] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 4 (1 экв.) вместо промежуточного соединения - кислоты 1 на стадии 1. ESI^+ : M+1: 444. ESI^- : M-1: 442.

<u>Пример</u> 5: 2-(3-(1-(4-(трифторметил)бензил)-1*H*-пирроло[2,3-*c*]пиридин-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота

[00279] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 5 (1 экв.) вместо промежуточного соединения - кислоты 1 на стадии 1. ESI^+ : M+1: 444. ESI^- : M-1: 442.

<u>Пример</u> 6: 2-(3-(1-(4-(трифторметил)бензил)-1*H*-индазол-7карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота

[00280] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 6 (1 экв.) вместо промежуточного соединения - кислоты 1 на стадии 1. ESI^+ : M+1: 444. ESI^- : M-1: 442.

<u>Пример</u> 7: 2-(3-(1-((4-(трифторметил)фенил)метил- d_2)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота

[00281] Получали аналогично примеру **1**, но с использованием промежуточного соединения - кислоты **8** (1 экв.) вместо промежуточного соединения - кислоты **1** на стадии 1. ESI^+ : M+1: 445. ESI^- : M-1: 443.

<u>Пример</u> 8: (*R*)-6-(1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота и (*S*)-6-(1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота (энантиомер 8а и энантиомер 8b)

[00282] Получали аналогично примеру 1, но c использованием промежуточного соединения - кислоты 2 (1 экв.) вместо промежуточного соединения кислоты 1 и рац-метил-6-аминоспиро[3.3] гептан-2-карбоксилатгидрохлорида (1,5 экв.) вместо промежуточного соединения - амина 1 на стадии 1. Рацемический продукт из стадии 2 дополнительно разделяли с помощью хиральной SFC (неподвижная фаза: AD 10×250 мм, 5 мкм; подвижная фаза: 25% метанол, 100 бар CO₂; температура колонки: 35°C; скорость потока: 10 мл/мин) в его два энантиомерно обогащенных (>99% е.е.) антипода. Первый элюирующий энантиомер; RT (время удерживания): 3,16 мин, ESI⁺: M+1: 457. ESI⁻ : M-1: 455. Второй элюирующий энантиомер; RT: 5,32 мин, ESI⁺: M+1: 457. ESI⁻: M-1: 455.

<u>Пример</u> 9: *рац*-6-(1-(4-(трифторметил)бензил)-1*H*-пирроло[3,2-*b*]пиридин-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота

[00283] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 3 (1 экв.) вместо промежуточного соединения - кислоты 1 и *рац*-метил-6-аминоспиро[3.3] гептан-2-карбоксилатгидрохлорида (1,5 экв.) вместо промежуточного соединения - амина 1 на стадии 1. ESI⁺: M+1: 458. ESI⁻: M-1: 456.

Пример 10: (R)-6-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-c]пиридин-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота и (S)-6-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-c]пиридин-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота (энантиомер 10а и энантиомер 10b)

[00284] Получали аналогично примеру 1, но c использованием промежуточного соединения - кислоты 4 (1 экв.) вместо промежуточного соединения кислоты 1 и рац-метил-6-аминоспиро[3.3] гептан-2-карбоксилатгидрохлорида (1,5 экв.) вместо промежуточного соединения - амина 1 на стадии 1. ESI+: M+1: 458. ESI-: M-1: 456. Рацемический продукт из стадии 2 дополнительно разделяли с помощью хиральной SFC (неподвижная фаза: OJ 10×250 мм, 5 мкм; подвижная фаза: 25% метанол, 100 бар CO_2 ; температура колонки: 35°C; скорость потока: 10 мл/мин) в его два энантиомерно обогащенных (>99% e.e.) антипода. Первый элюирующий энантиомер; RT: 3,10 мин, ESI⁺: M+1: 458. ESI: M-1: 456. Второй элюирующий энантиомер; RT: 4,60 мин, ESI: M+1: 458. ESI: M-1: 456.

<u>Пример 11: раи-6-(1-(4-(трифторметил)бензил)-1*H*-пирроло[2,3-*c*]пиридин-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота</u>

[00285] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 5 (1 экв.) вместо промежуточного соединения - кислоты 1 и *рац*-метил-6-аминоспиро[3.3] гептан-2-карбоксилатгидрохлорида (1,5 экв.) вместо промежуточного соединения - амина 1 на стадии 1. ESI⁺: M+1: 458. ESI⁻: M-1: 456.

<u>Пример</u> 12: *рац*-6-(1-(4-(трифторметил)бензил)-1*H*-индазол-7карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота

[00286] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 6 (1 экв.) вместо промежуточного соединения - кислоты 1 и *рац*-метил-6-аминоспиро[3.3] гептан-2-карбоксилатгидрохлорида (1,5 экв.) вместо промежуточного соединения - амина 1 на стадии 1. ESI⁺: M+1: 458. ESI⁻: M-1: 456.

<u>Пример</u> 13: pau-6-(1-(4-(трифторметил)бензил)-1H-бензо[d]имидазол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота

[00287] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 7 (1 экв.) вместо промежуточного соединения - кислоты 1 и *рац*-метил-6-аминоспиро[3.3] гептан-2-карбоксилатгидрохлорида (1,5 экв.) вместо промежуточного соединения - амина 1 на стадии 1. ESI⁺: M+1: 458. ESI⁻: M-1: 456.

<u>Пример</u> 14: 3-(3-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)пропановая кислота

<u>Пример</u> 15: *уис-*3-(3-метил-3-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)циклобутил)пропановая кислота

$$CF_3$$
 Me_H
 CO_2H
 CF_3
 CF_3

Пример 14

Пример 15

[00288] Стадия 1: *трет*-бутил(3-формилбицикло[1.1.1]пентан-1-ил)карбамат: *трет*-бутил(3-(гидроксиметил)бицикло[1.1.1]пентан-1-ил)карбамат (1 экв., промежуточное соединение - амин 1, стадия 2) и бикарбонат натрия (1,5 экв.) суспендировали в DCM (0,034 M). Перйодинан Десса-Мартина (1,2 экв.) добавляли к реакционной смеси и перемешивали при комнатной температуре в течение 1,5 ч. Реакционную смесь затем разбавляли с помощью ТВМЕ и промывали последовательно 10% водн. Na₂S₂O₃, 1 н. водн. NaOH, водой и рассолом. Органический экстракт затем сушили над MgSO₄ и фильтровали. Концентрирование фильтрата *in vacuo* давало требуемый сырой продукт в виде белого, кристаллического твердого вещества (68% - выход).

[00289] 2: (E)-метил-3-(3-((mpem-Стадия бутоксикарбонил)амино)бицикло[1.1.1]пентан-1-ил)акрилат: трет-бутил(3формилбицикло[1.1.1]пентан-1-ил)карбамат (1 экв.) из предыдущей стадии растворяли в ТНГ (0,034 М) и добавляли метил-2-(трифенилфосфоранилиден)ацетат (1 экв.). Полученный раствор перемешивали при комнатной температуре в течение 18 ч и затем разбавляли с помощью ТВМЕ и промывали последовательно 1 н. водн. НСІ, водой и рассолом. Органический экстракт затем сушили над MgSO₄ и фильтровали. Концентрирование фильтрата іп уасио давало сырой продукт реакции в виде густого масла. Дополнительная очистка с помощью колоночной хроматографии (SiO₂, от 9:1 (об./об.) Hex:EtOAc до 3:7 (об./об.) Hex:EtOAc) давала продукт в виде бесцветного масла (94% выход).

[00290] 3: Стадия метил-3-(3-((третбутоксикарбонил)амино)бицикло[1.1.1]пентан-1-ил)пропаноат и иис-метил-3-(3-((третбутоксикарбонил)амино)-3-метилциклобутил)пропаноат: (E)-метил-3-(3-((mpemбутоксикарбонил)амино)бицикло[1.1.1]пентан-1-ил)акрилат (1 экв.) из предыдущей стадии и палладий (0,06 экв., 10% (масс./масс.) на углероде, сухой) смешивали в 1:1 (об./об.) растворе (0,032 M) метанола и EtOAc. Из полученной суспензии затем удаляли кислород с помощью азота в течение 10 мин и из реакционного сосуда откачивали воздух и снова наполняли водородом и перемешивали при комнатной температуре под действием баллона с водородом в течение 2 ч. Реакцию затем гасили с помощью DCM и полученную суспензию фильтровали через целит. Концентрирование фильтрата *in vacuo* давало 1,7:1 смесь метил-3-(3-((трет-бутоксикарбонил)амино)бицикло[1.1.1]пентан-1-ил)пропаноата и *цис*-метил-3-(3-((*трет*-бутоксикарбонил)амино)-3-метилциклобутил)пропаноата в виде белой пены (81% - выход).

[00291] метил-3-(3-аминобицикло[1.1.1]пентан-1-Стадия 4: ил)пропаноатгидрохлорид *иис*-метил-3-(3-амино-3-И метилциклобутил)пропаноатгидрохлорид: метил-3-(3-((третсмесь бутоксикарбонил)амино)бицикло[1.1.1]пентан-1-ил)пропаноата и иис-метил-3-(3-((третбутоксикарбонил)амино)-3-метилциклобутил)пропаноата (1 экв.) из предыдущей стадии растворяли в DCM (0,051 M) и HCl (10 экв., 4 M раствор диоксана) добавляли по каплям при 0°C. Полученный раствор перемешивали при 0°C в течение 30 мин и затем при комнатной температуре в течение 4 ч. Летучие вещества затем испаряли іп vacuo с получением 1,7:1смеси метил-3-(3-аминобицикло[1.1.1]пентан-1ил)пропаноатгидрохлорида *иис*-метил-3-(3-амино-3-И метилциклобутил)пропаноатгидрохлорида в виде белой пены (99% - выход).

метил-3-(3-(1-(4-(трифторметил)бензил)-1*H*-индол-7-[00292] 5: Стадия карбоксамидо)бицикло[1.1.1]пентан-1-ил)пропаноат И *иис*-метил-3-(3-метил-3-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)циклобутил)пропаноат: промежуточное соединение - кислоту 2 (1 экв.), смесь метил-3-(3-аминобицикло[1.1.1]пентан-1*чис*-метил-3-(3-амино-3ил)пропаноатгидрохлорида метилциклобутил)пропаноатгидрохлорида (1,5 экв.) из предыдущей стадии и НАТИ (1,5 экв.) растворяли в DMF (0,13 М). Добавляли этилдиизопропиламин (3 экв.) и полученный раствор перемешивали при комнатной температуре в течение 18 ч. Сырую реакционную смесь разбавляли с помощью ЕtOAc и промывали последовательно водой, 10% водн. NaHCO₃, 10% водн. NH₄Cl, водой и рассолом. Органический экстракт затем сушили над MgSO₄, фильтровали и фильтрат концентрировали *in vacuo*. Очистка с помощью колоночной хроматографии (SiO₂, от 1:1 (об./об.) Hex:EtOAc до EtOAc) давала 1,7:1 смесь метил-3-(3-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)пропаноата И μuc -метил-3-(3-метил-3-(1-(4-(трифторметил)бензил)-1H-индол-7карбоксамидо) циклобутил)пропаноата в виде бледно-желтой пены (67% - выход).

[00293] Стадия 6: 3-(3-(1-(4-(трифторметил)бензил)-1H-индол-7карбоксамидо)бицикло[1.1.1]пентан-1-ил)пропановая кислота и уис-3-(3-метил-3-(1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамидо)циклобутил)пропановая кислота: смесь метил-3-(3-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)пропаноата uuc-метил-3-(3-метил-3-(1-(4-(трифторметил)бензил)-1H-индол-7карбоксамидо)циклобутил)пропаноата (1 экв.) из предыдущей стадии растворяли в 2:1 (об./об.) растворе (0,057 M) ТНГ и метанола и добавляли LiOH (3 экв., 2 н. водн. раствор). Полученный раствор перемешивали при комнатной температуре в течение 16 ч и нейтрализовали с помощью HCl (3 экв., 1 н. водн. раствор). Летучие вещества затем удаляли іп уасио и полученный остаток непосредственно подвергали очистке с помощью хиральной SFC (неподвижная фаза: AD 10×250 мм, 5 мкм; подвижная фаза: 25% метанол, 100 бар CO₂; температура колонки: 35°C; скорость потока: 10 мл/мин). Второй элюирующий пик: 3-(3-(1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1ил)пропановая кислота, пример **14**, ESI⁺: M+1: 459. ESI⁻: M-1: 457. Первый элюирующий пик: uuc-3-(3-метил-3-(1-(4-(трифторметил)бензил)-1H-индол-7карбоксамидо)циклобутил)пропановая кислота, пример 15, ESI⁺: M+1: 459. ESI⁻: M-1: 457.

<u>Пример 16: N-(3-(2-оксо-2-(фенилсульфонамидо)этил)бицикло[1.1.1]пентан-1-ил)-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамид</u>

[00294] 2-(3-(1-(4-(трифторметил)бензил)-1*H*-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусную кислоту (1 экв., пример 2), EDCI (1,4 экв.), бензолсульфонамид (1,4 экв.) и DMAP (1,4 экв.) объединяли в DCM (0,019 М). Добавляли этилдиизопропиламин (1,4 экв.) и полученный раствор перемешивали при комнатной температуре в течение 18 ч. Реакционную смесь затем разбавляли с помощью EtOAc и промывали последовательно 1 н. водн. HCl, водой и рассолом. Органический экстракт затем сушили над MgSO₄ и фильтровали. Концентрирование фильтрата *in vacuo* давало сырой продукт реакции в виде грязно-белого твердого вещества. Дополнительная очистка с помощью колоночной хроматографии (SiO₂, от 9:1 (об./об.) Hex:EtOAc до EtOAc до 10:1 (об./об.) EtOAc:MeOH) давала указанное в заголовке соединение в виде белого порошка (30% - выход). ESI⁺: M+1: 582. ESI⁻: M-1: 580.

<u>Пример 17: N-(3-((3-(фенилсульфонил)уреидо)метил)бицикло[1.1.1]пентан-1-ил)-1-</u> (4-(трифторметил)бензил)-1H-индол-7-карбоксамид

[00295] Стадия 1: метил-3-(1-(4-(трифторметил)бензил)-1*Н*-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-карбоксилат: промежуточное соединение - кислоту 2 (1 экв.), метил-3-аминобицикло[1.1.1]пентан-1-карбоксилатгидрохлорид (1,5 экв.) и НАТИ (1,5 экв.) растворяли в DMF (0,09 M) и добавляли этилдиизопропиламин (3 экв.). Полученный раствор перемешивали при комнатной температуре в течение 18 ч, разбавляли с помощью EtOAc и промывали последовательно водой, 10% водн. NaHCO₃, 10% водн. NH₄Cl, водой и рассолом. Органический экстракт затем сушили над MgSO₄, фильтровали и фильтрат концентрировали *in vacuo*. Очистка с помощью колоночной хроматографии (SiO₂, от 1:1 (об./об.) Нех:EtOAc до EtOAc) давало продукт в виде бледно-желтого твердого вещества (71% - выход).

[00296] Стадия 2: 3-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-карбоновая кислота: метил-3-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-карбоксилат (1 экв.) из предыдущей стадии растворяли в 2:1 (об./об.) растворе (0,03 M) ТНF и метанола и

добавляли LiOH (5 экв., 2 н. водн. раствор). Полученный раствор перемешивали при 50°С в течение 18 ч, охлаждали до комнатной температуры и нейтрализовали с помощью HCl (5 экв., 1 н. водн. раствор). Летучие вещества затем удаляли *in vacuo* и полученный остаток непосредственно подвергали колоночной хроматографии с обращенной фазой (С₁₈, от 9:1 (об./об.) H₂O:MeCN + 0,1% муравьиной кислоты до MeCN + 0,1% муравьиной кислоты). Фракции с продуктом объединяли и концентрировали *in vacuo*. Полученную водную суспензию затем нейтрализовали с помощью добавления насыщ. водн. NaHCO₃ и экстрагировали с помощью EtOAc. Объединенные органические экстракты промывали дополнительно водой и рассолом, сушили над MgSO₄ и фильтровали. Концентрирование фильтрата *in vacuo* давало продукт в виде белого, кристаллического твердого вещества (55% - выход).

[00297] N-(3-(гидроксиметил)бицикло[1.1.1]пентан-1-ил)-1-(4-Сталия 3: (трифторметил)бензил)-1H-индол-7-карбоксамид: 3-(1-(4-(трифторметил)бензил)-1*H*индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-карбоновую кислоту (1 экв.) предыдущей стадии и триэтиламин (1,5 экв.) растворяли в ТНF (0,12 М), раствор охлаждали до -15°C и этилхлорформиат (1,5 экв.) добавляли по каплям. Реакционную смесь перемешивали при -15°C в течение 3 ч, разбавляли с помощью ТВМЕ и промывали последовательно водой и рассолом. Органический экстракт затем сушили над MgSO₄, фильтровали и фильтрат концентрировали іп vacuo. Сырое смешанное ангидридное промежуточное соединение растворяли в метаноле (0,12 М) и добавляли LiBH₄ (6 экв.) при 0°С. Полученную смесь затем медленно нагревали до комнатной температуры в течение 16 ч, гасили с помощью 10% водн. NH₄Cl и летучие вещества удаляли *in vacuo*. Полученный водный остаток затем разбавляли дополнительно водой и экстрагировали с помощью EtOAc. Объединенные органические экстракты промывали дополнительно водой и рассолом, сушили над MgSO₄, фильтровали и фильтрат концентрировали *in vacuo*. Очистка с помощью колоночной хроматографии (SiO₂, от 4:1 (об./об.) Hex:EtOAc до EtOAc) давала продукт в виде белой пены (60% - выход).

[00298] Стадия 4: (3-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)метилметансульфонат: N-(3-(гидроксиметил)бицикло[1.1.1]пентан-1-ил)-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамид (1 экв.) из предыдущей стадии и триэтиламин (1,5 экв.) растворяли в DCM (0,087 M) и метансульфонилхлорид (1,2 экв.) добавляли по каплям при 0°С. Полученный раствор перемешивали при 0°С в течение 30 мин и затем при комнатной температуре в течение 18 ч. Реакционную смесь затем разбавляли с помощью EtOAc и промывали последовательно водой и рассолом. Органический экстракт затем сушили над MgSO4 и

фильтровали. Концентрирование фильтрата *in vacuo* давало требуемый сырой продукт в виде бледно-желтой пены (89% - выход).

[00299] N-(3-(азидометил)бицикло[1.1.1]пентан-1-ил)-1-(4-Стадия 5: (трифторметил) 6 нзил) - 1H - индол - 7 - карбоксамид: (3-(1-(4-(трифторметил)бензил)-1Hиндол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)метилметансульфонат предыдущей стадии и азид натрия (2 экв.) объединяли в DMF (0,12 M) и нагревали при 80°C в течение 24 ч. Сырую реакционную смесь затем охлажденного до комнатной температуры, разбавляли с помощью EtOAc и промывали последовательно водой и рассолом. Органический экстракт затем сушили над MgSO₄, фильтровали и фильтрат концентрировали *in vacuo*. Очистка с помощью колоночной хроматографии (SiO₂, от 4:1 (об./об.) Hex:EtOAc до EtOAc) давала продукт в виде белого, кристаллического твердого вещества (47% - выход).

[00300] Стадия 6: *N*-(3-(аминометил)бицикло[1.1.1]пентан-1-ил)-1-(4- (трифторметил)бензил)-1*H*-индол-7-карбоксамид: *N*-(3-(азидометил)бицикло[1.1.1]пентан-1-ил)-1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамид (1 экв.) из предыдущей стадии и трифенилфосфин (1,5 экв.) объединяли в 3:1 (об./об.) растворе (0,028 М) ТНГ и воды. Полученную смесь нагревали при 45°С в течение 48 ч, охлаждали до комнатной температуры и напрямую подврегали очистке с помощью препаративной ВЭЖХ (С₁₈, от 9:1 (об./об.) H₂O: MeCN + 0,1% муравьиной кислоты до MeCN + 0,1% муравьиной кислоты). Фракции с продуктом объединяли и концентрировали *in vacuo*. Полученную водную суспензию затем нейтрализовали с помощью 1 н. водн. NaOH и экстрагировали с помощью DCM. Объединенные органические экстракты промывали дополнительно водой и рассолом, сушили над MgSO₄ и фильтровали. Концентрирование фильтрата *in vacuo* давало продукт в виде бесцветного масла (77% - выход).

[00301] Стадия 7: N-(3-((3-(фенилсульфонил)уреидо)метил)бицикло[1.1.1]пентан-1-ил)-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамид: N-(3-(аминометил)бицикло[1.1.1]пентан-1-ил)-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамид (1 экв.) из предыдущей стадии растворяли в DCM (0,042 M) и добавляли бензолсульфонилизоцианат (1.1 экв.). Полученную смесь перемешивали при комнатной температуре в течение 18 ч, летучие вещества удаляли $in\ vacuo\ u$ полученный остаток непосредственно подвергали очистке с помощью препаративной ВЭЖХ (C_{18} , от 9:1 (об./об.) H_2O : MeCN + 0,1% муравьиной кислоты до MeCN + 0,1% муравьиной кислоты). Фракции с продуктом объединяли и концентрировали $in\ vacuo\ c$ получением указанного в заголовке соединения в виде белой пены (52% - выход). ESI $^+$: M+1: 597. ESI $^-$: M-1: 595.

<u>Пример 18: N-(3-((1H-тетразол-5-ил)метил)бицикло[1.1.1]пентан-1-ил)-1-(4- (трифтор метил)бензил)-1H-индол-7-карбоксамид</u>

[00302] Стадия 1: N-(3-(цианометил)бицикло[1.1.1]пентан-1-ил)-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамид: промежуточное соединение - кислоту 2 (1 экв.), промежуточное соединение - амин 2 (1,5 экв.) и НАТU (1,5 экв.) растворяли в DMF (0,55 M) и добавляли этилдиизопропиламин (3 экв.). Полученный раствор перемешивали при комнатной температуре в течение 18 ч, разбавляли с помощью ТВМЕ и промывали последовательно водой, 1 н. водн. NaOH, водой и рассолом. Органический экстракт затем сушили над MgSO₄, фильтровали и фильтрат концентрировали *in vacuo*. Очистка с помощью колоночной хроматографии (SiO₂, от 9:1 (об./об.) Hex:EtOAc до EtOAc) давала продукт в виде белого, кристаллического твердого вещества (62% - выход).

[00303] Стадия 2: N-(3-((1H-тетразол-5-ил)метил)бицикло[1.1.1]пентан-1-ил)-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамид: N-(3-(цианометил)бицикло[1.1.1]пентан-1-ил)-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамид (1 экв.) из предыдущей стадии, азид натрия (2 экв.) и оксид дибутилтина (IV) (0,1 экв.) объединяли в 1:1 (об./об.) растворе (0,052 M) NMP и воды. Реакционный сосуд плотно закрывали и нагревали за взрывозащитным экраном при 110° C в течение 1 недели. Полученную смесь охлаждали до комнатной температуры и затем непосредственно подвергали препаративной ВЭЖХ (C_{18} , от 9:1 (об./об.) H_2O : MeCN + 0,1% муравьиной кислоты до MeCN + 0,1% муравьиной кислоты). Фракции с продуктом объединяли и концентрировали $in\ vacuo\ c$ получением указанного в заголовке соединения в виде белой пены (45% - выход). ESI $^+$: M+1: 467. ESI $^-$: M-1: 465.

<u>Пример</u> 19: 2-(4-(1-(4-(трифторметил)бензил)-1*H*-индол-7карбоксамидо)бицикло[2.1.1] гексан-1-ил)уксусная кислота

[00304] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 2 (1 экв.) вместо промежуточного соединения -

кислоты 1 и промежуточного соединения - амина 3 (1,5 экв.) вместо промежуточного соединения - амина 1 на стадии 1. ESI $^+$: M+1: 457. ESI $^-$: M-1: 455.

Пример 20: (R)-6-(4-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота и (S)-6-(4-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота (энантиомер 20а и энантиомер 20b)

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ &$$

[00305] Получали 1, аналогично примеру но c использованием промежуточного соединения - кислоты 9 (1 экв.) вместо промежуточного соединения кислоты 1 и рау-метил-6-аминоспиро[3.3] гептан-2-карбоксилатгидрохлорида (1,5 экв.) вместо промежуточного соединения - амина 1 на стадии 1. ESI⁺: M+1: 475. ESI⁻: M-1: 473. Рацемический продукт из стадии 2 дополнительно разделяли с помощью хиральной SFC (неподвижная фаза: AD 10×250 мм, 5 мкм; подвижная фаза: 20% метанол, 100 бар CO_2 ; температура колонки: 35°C; скорость потока: 10 мл/мин) в его два энантиомерно обогащенных (>99% e.e.) антипода. Первый элюирующий энантиомер; RT: 3,96 мин, ESI⁺: M+1: 475. ESI: M-1: 473. Второй элюирующий энантиомер; RT: 7,66 мин, ESI: M+1: 475. ESI⁻: M-1: 473.

<u>Пример 21: раи-6-(5-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота</u>

[00306] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 10 (1 экв.) вместо промежуточного соединения - кислоты 1 и *рац*-метил-6-аминоспиро[3.3]гептан-2-карбоксилатгидрохлорида (1,5 экв.) вместо промежуточного соединения - амина 1 на стадии 1. ESI⁺: M+1: 475. ESI⁻: M-1: 473.

<u>Пример</u> 22: *рац*-6-(5-хлор-1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота

[00307] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 11 (1 экв.) вместо промежуточного соединения - кислоты 1 и *рац*-метил-6-аминоспиро[3.3]гептан-2-карбоксилатгидрохлорида (1,5 экв.) вместо промежуточного соединения - амина 1 на стадии 1. ESI⁺: M+1: 491. ESI⁻: M-1: 489.

<u>Пример 23: рац-6-(6-фтор-1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота</u>

[00308] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 12 (1 экв.) вместо промежуточного соединения - кислоты 1 и *рац*-метил-6-аминоспиро[3.3]гептан-2-карбоксилатгидрохлорида (1,5 экв.) вместо промежуточного соединения - амина 1 на стадии 1. ESI⁺: M+1: 475. ESI⁻: M-1: 473.

<u>Пример 24: pau-6-(1-(4-цианобензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-</u> 2-карбоновая кислота

[00309] Получали аналогично примеру 1, но с использованием *рац*-метил-6-аминоспиро[3.3] гептан-2-карбоксилатгидрохлорида (1,5 экв.) вместо промежуточного соединения - амина 1 на стадии 1. ESI $^+$: M+1: 414. ESI $^-$: M-1: 412.

<u>Пример 25: pay-6-(1-(4-(дифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]</u> гептан-2-карбоновая кислота

[00310] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 13 (1 экв.) вместо промежуточного соединения -

кислоты 1 и *рац*-метил-6-аминоспиро[3.3] гептан-2-карбоксилатгидрохлорида (1,5 экв.) вместо промежуточного соединения - амина 1 на стадии 1. ESI^+ : M+1: 439. ESI^- : M-1: 437.

<u>Пример</u> 26: 2-(4-(1-(4-(дифторметил)бензил)-1*H*-индол-7- карбоксамидо)бицикло[2.1.1] гексан-1-ил)уксусная кислота

[00311] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 13 (1 экв.) вместо промежуточного соединения - кислоты 1 и промежуточного соединения - амина 3 (1,5 экв.) вместо промежуточного соединения - амина 1 на стадии 1. ESI^+ : M+1: 439. ESI^- : M-1: 437.

<u>Пример</u> 27: 2-(3-(4-фтор-1-(4-(трифторметил)бензил)-1*H*-индол-7- карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота

[00312] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 9 (1 экв.) вместо промежуточного соединения - кислоты 1 на стадии 1. ESI^+ : M+1: 461. ESI^- : M-1: 459.

<u>Пример</u> 28: 2-(4-(4-фтор-1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамидо)бицикло[2.1.1] гексан-1-ил)уксусная кислота

[00313] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 9 (1 экв.) вместо промежуточного соединения - кислоты 1 и промежуточного соединения - амина 3 (1,5 экв.) вместо промежуточного соединения - амина 1 на стадии 1. ESI^+ : M+1: 475. ESI^- : M-1: 473.

<u>Пример</u> 29: 2-(4-(1-((4-(пентафтортиол)фенил)метил)-1*H*-индол-7карбоксамидо)бицикло[2.1.1] гексан-1-ил)уксусная кислота

[00314] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 15 (1 экв.) вместо промежуточного соединения - кислоты 1 и промежуточного соединения - амина 3 (1,5 экв.) вместо промежуточного соединения - амина 1 на стадии 1. ESI^+ : M+1: 515. ESI^- : M-1: 513.

<u>Пример</u> 30: pau-6-(1-((4-(пентафтортиол)фенил)метил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота

[00315] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 15 (1 экв.) вместо промежуточного соединения - кислоты 1 и pay-метил-6-аминоспиро[3.3] гептан-2-карбоксилатгидрохлорида (1,5 экв.) вместо промежуточного соединения - амина 1 на стадии 1. ESI $^+$: M+1: 515. ESI $^-$: M-1: 513.

<u>Пример</u> 31: pau-6-(1-(4-(дифторметил)бензил)-4-фтор-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота

[00316] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 14 (1 экв.) вместо промежуточного соединения - кислоты 1 и *рац*-метил-6-аминоспиро[3.3] гептан-2-карбоксилатгидрохлорида (1,5 экв.) вместо промежуточного соединения - амина 1 на стадии 1. ESI⁺: M+1: 457. ESI⁻: M-1: 455.

<u>Пример</u> 32: 2-(3-(1-(4-(дифторметил)бензил)-4-фтор-1*H*-индол-7карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота

[00317] Получали аналогично примеру **1**, но с использованием промежуточного соединения - кислоты **14** (1 экв.) вместо промежуточного соединения - кислоты **1** на стадии 1. ESI⁺: M+1: 443. ESI⁻: M-1: 441.

<u>Пример</u> 33: 2-(3-(5-фтор-1-(4-(трифторметил)бензил)-1*H*-индол-7- карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота

[00318] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 9 (1 экв.) вместо промежуточного соединения - кислоты 1 на стадии 1. ESI $^+$: M+1: 461. ESI $^-$: M-1: 459.

<u>Пример</u> 34: 2-(3-(1-([1,1'-бифенил]-4-илметил)-1*H*-индол-7- карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота

[00319] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 16 (1 экв.) вместо промежуточного соединения - кислоты 1 на стадии 1. ESI^+ : M+1: 451. ESI^- : M-1: 449.

<u>Пример</u> 35: 2-(3-(1-([1,1'-бифенил]-4-илметил)-4-фтор-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота

[00320] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 17 (1 экв.) вместо промежуточного соединения - кислоты 1 на стадии 1. ESI^+ : M+1: 469. ESI^- : M-1: 467.

<u>Пример</u> 36: 2-(3-(1-([1,1'-бифенил]-4-илметил)-1*H*-индазол-7- карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота

[00321] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 18 (1 экв.) вместо промежуточного соединения - кислоты 1 на стадии 1. ESI^+ : M+1: 452. ESI^- : M-1: 450.

<u>Пример</u> 37: 2-(3-(1-(4-(трифторметокси)бензил)-1*H*-индазол-7- карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота

[00322] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 19 (1 экв.) вместо промежуточного соединения - кислоты 1 на стадии 1. ESI^+ : M+1: 460, ESI^- : M-1: 458.

<u>Пример</u> 38: 2-(3-(4-фтор-1-(4-йодбензил)-1*H*-индол-7карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота

[00323] Получали аналогично примеру 1, но с использованием промежуточного соединения - кислоты 20 (1 экв.) вместо промежуточного соединения - кислоты 1 на стадии 1. ESI^+ : M+1: 519. ESI^- : M-1: 517.

Пример 39: 2-(3-(4-фтор-1-(4-(пиридин-4-ил)бензил)-1*H*-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота

[00324] 2-(3-(4-Фтор-1-(4-йодбензил)-1*H*-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусную кислоту (1 экв., пример **38**), 4-пиридинилбороновую кислоту (3 экв.), и комплекс-предкатализатор 3 поколения XPhos-палладий (0,1 экв.) объединяли в диоксане (0,14 М). Полученный желтый раствор дезоксигенировали посредством подповерхностной продувки потоком азота в течение 15 мин. Фосфат калия (3 экв. 2 н. водн. раствор) затем добавляли к реакционной смеси и полученный двухфазный раствор дополнительно дезоксигенировали посредством подповерхностной продувки потоком азота в течение еще 15 мин. Реакционный сосуд затем плотно закрывали и нагревали при 80°С в течение 12 ч. Полученную смесь охлаждали до комнатной температуры и затем непосредственно подвергали препаративной ВЭЖХ (С₁₈, от 9:1 (об./об.) H₂O: MeCN + 0,1% муравьиной кислоты до MeCN + 0,1% муравьиной кислоты). Фракции с продуктом объединяли и концентрировали *in vacuo* с получением указанного в заголовке соединения в виде грязно-белого твердого вещества (53% - выход). ESI⁺: M+1: 470, ESI⁻: M-1: 468.

<u>Пример</u> 40: 2-(3-(4-фтор-1-(4-морфолинобензил)-1*H*-индол-7карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота

[00325] 2-(3-(4-Фтор-1-(4-йодбензил)-1*H*-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусную кислоту (1 экв., пример **38**), морфолин (2 экв.), комплекс-предкатализатор 2 поколения RuPhos-палладий (0,05 экв.) и *трем*-пентоксид натрия (2.5 экв.) объединяли в диоксане (0,055 М). Полученную оранжевокрасную суспензию дезоксигенировали посредством подповерхностной продувки потоком азота в течение 15 мин. Реакционный сосуд затем плотно закрывали и нагревали при 80°C в течение 12 ч. Полученную смесь охлаждали до комнатной температуры и затем

непосредственно подвергали препаративной ВЭЖХ (C_{18} , от 9:1 (об./об.) H_2O : MeCN + 0,1% муравьиной кислоты до MeCN + 0,1% муравьиной кислоты). Фракции с продуктом объединяли и концентрировали *in vacuo* с получением указанного в заголовке соединения в виде грязно-белого твердого вещества (53% - выход). ESI $^+$: M+1: 478. ESI $^-$: M-1:476.

[00326] Подразумевается, что описанные выше варианты осуществления являются только иллюстративными, и специалисты в настоящей области техники распознают или смогут установить, используя не более чем обычные эксперименты, многочисленные эквиваленты конкретных соединений, материалов и процедур. Считается, что все такие эквиваленты находятся в пределах объема заявленного объекта изобретения и охватываются прилагаемой формулой изобретения.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Соединение формулы І:

или его фармацевтически приемлемая соль, сольват, сольват соли, гидрат, отдельный стереоизомер, смесь стереоизомеров, рацемическая смесь стереоизомеров или пролекарство, где:

Аг представляет собой арил или гетероарил, где каждый указанный арил и указанный гетероарил необязательно замещен 1-3 заместителями, независимо выбранными из следующего:

- (a) C_1 - C_6 алкил,
- (b) С3-С7 циклоалкил,
- (с) гетероцикл,
- (d) арил,
- (е) гетероарил,
- (f) галоген,
- (g) CN,
- (h) OR^b ,
- (i) $N(R^b)C(=O)R^c$,
- (j) $C(=O)N(R^b)(R^c)$,
- (k) $S(=O)_m R^b$,
- (1) $S(=O)_2N(R^b)(R^c)$,
- (m) $N(R^b)S(=O)_2R^c$,
- (n) SF₅, и
- (о) C_1 - C_6 галогеналкил;

W выбран из следующего:

- (a) $C(=O)OR^5$,
- (b) C(=O)NHOH,
- (c) $S(=O)_2NHR^b$,
- (d) $S(=O)_2NHC(=O)R^b$,
- (e) $NHC(=O)NHSO_2R^b$,

- (f) 1*H*-тетразол,
- (g) 1,2,4-оксадиазол-5(4H)он,
- (h) 1,2,4-тиадиазол-5(4H)он,
- (i) 1,2,4-оксадиазол-5(4*H*)-тион,
- (j) 1,2,4-триазол-5(4*H*)-он,
- (k) тетразол-5(4H)-он, и
- (1) $C(=O)NHS(=O)_2R^b$;

каждый из X^1 , X^2 , X^3 , X^4 и X^5 независимо представляет собой N или CR^a , где не более 2 из X^1 , X^2 , X^3 , X^4 и X^5 представляют собой N;

Ү выбран из следующего:

- (а) связь,
- (b) $(CH_2)_n$, где 1 4 атома водорода могут быть замещены $R^{a'}$,
- (с) О, и
- (d) NR^b ;

Z представляет собой (CH_2) $_n$, где 1 - 4 атома водорода могут быть замещены $R^{a^{\circ}}$;

 R^1 и R^2 независимо выбраны из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (c) C_3 - C_6 циклоалкил, и
- (d) C_1 - C_6 галогеналкил; где R^2 не представляет собой H; или

 R^1 и R^2 взятые вместе представляют -(CH₂)_n-, -(CH₂)_nO(CH₂)_p-, -(CH₂)_nNR^b(CH₂)_p- или -(CH₂)_nS(=O)_m(CH₂)_p-;

 ${\bf R}^3$ и ${\bf R}^4$ независимо выбраны из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (c) C_3 - C_6 циклоалкил,
- (d) арил,
- (е) гетероарил,
- (f) галоген,
- (g) C_1 - C_6 галогеналкил; или

 R^3 и R^4 взятые вместе представляют -(CH₂)_n-, -(CH₂)_nO(CH₂)_p-, -(CH₂)_nNR^b(CH₂)_p- или -(CH₂)_nS(=O)_m(CH₂)_p-;

или ${\bf R}^1, {\bf R}^2, {\bf R}^3$ и ${\bf R}^4$ выше выбраны следующим образом:

 R^1 выбран из H, C_1 - C_6 алкила, C_3 - C_6 циклоалкила и C_1 - C_6 галогеналкила;

 R^3 и R^2 взятые вместе представляют (CH₂)_n, (CH₂)_nO(CH₂)_p, (CH₂)_nNR^b(CH₂)_p или (CH₂)_nS(=O)_m(CH₂)_p; и

 R^4 выбран из H, C_1 - C_6 алкила, C_3 - C_6 циклоалкила, арила, гетероарила, галогена и C_1 - C_6 галогеналкила;

R⁵ выбран из следующего:

- (a) H,
- (b) C_1 - C_6 алкил,
- (с) арил,
- (d) аралкил,
- (e) $CH(R^7)OC(=O)R^8$,
- (f) $CH(R^7)OC(=O)OR^8$, и
- (g) (5-алкил-2-оксо-1,3-диоксолен-4-ил)метильная группа, характеризующаяся следующей формулой:

где R^6 представляет собой C_1 - C_6 алкил;

 R^7 представляет собой водород или C_1 - C_6 алкил;

 R^8 представляет собой C_1 - C_6 алкил или C_3 - C_6 -циклоалкил;

R^а выбран из следующего:

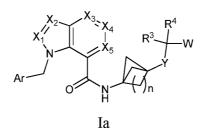
- (a) H,
- (b) C_1 - C_6 алкил,
- (с) галоген,
- (d) арил,
- (e) OR^b,
- (f) циано,
- (g) гетероарил,
- (h) C_3 - C_6 циклоалкил; и
- (i) C_1 - C_6 галогеналкил;

Ra' выбран из следующего:

- (а) циано,
- (b) C_1 - C_6 алкил,
- (с) галоген,
- (d) арил,
- (e) OR^b,
- (f) гетероарил,

- (g) C_3 - C_6 циклоалкил, и
- (h) C_1 - C_6 галогеналкил;

R^b и R^c независимо выбраны из следующего:


- (a) H,
- (b) C_1 - C_6 алкил,
- (с) арил,
- (d) гетероарил,
- (e) C_3 - C_6 циклоалкил, и
- (f) C_1 - C_6 галогеналкил; или

 R^b и R^c взятые вместе с N, к которому они оба прикреплены, образуют 3-6-членный гетероцикл, необязательно содержащий дополнительный гетероатом, выбранный из N, O и S;

```
m составляет 0, 1 или 2;
n составляет 1, 2 или 3; и
p составляет 1, 2 или 3.
```

- 2. Соединение по п. 1, где Ar представляет собой арил или гетероарил, необязательно замещенный 1-3 заместителями, независимо выбранными из следующего:
 - (а) галоген,
 - (b) циано,
 - (c) C_1 - C_6 алкил,
 - (d) SF_5 ,
 - (e) C_1 - C_6 галогеналкил,
- (f) OR^b , где R^b представляет собой C_1 - C_6 алкил, арил, гетероарил, C_3 - C_6 циклоалкил или C_1 - C_6 галогеналкил;
 - (g) гетероцикл,
 - (h) арил, и
 - (і) гетероарил.
 - 3. Соединение по п. 1 или п. 2, где Аг представляет собой фенил.
- 4. Соединение по любому из пп. 1-3, где каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо C- R^a , или один из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой N, а каждый из остальных независимо представляет собой C- R^a .

- 5. Соединение по п. 4, где каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо C- R^a .
 - 6. Соединение по любому из пп. 1-5, где R^а представляет собой H или атом галогена.
- 7. Соединение по любому из пп. 1-6, где W выбран из группы, состоящей из следующего:
 - (a) CO₂H, и
 - (b) 1H-тетразол.
 - 8. Соединение по любому из пп. 1-7, где Z представляет собой - CH_2 -.
 - 9. Соединение по любому из пп. 1-8, где Y представляет собой связь или -СН2-.
- 10. Соединение по любому из пп. 1-9, где R^1 и R^2 взятые вместе представляют - CH_2 -, - CH_2CH_2 или - CH_2CH_2 -.
- 11. Соединение по любому из пп. 1-8, где Y представляет собой -CH₂-, и \mathbb{R}^3 и \mathbb{R}^2 взятые вместе представляют -CH₂-, -CH₂CH₂- или -CH₂CH₂-СH₂-.
 - 12. Соединение по п. 1, характеризующееся формулой Іа:

или его фармацевтически приемлемая соль, сольват, сольват соли, гидрат, отдельный стереоизомер, смесь стереоизомеров, рацемическая смесь стереоизомеров или пролекарство, где

Ar представляет собой фенил, необязательно замещенный 1-3 заместителями, независимо выбранными из следующего:

- (а) галоген,
- (b) циано,
- (c) C_1 - C_6 алкил,
- (d) SF_5 ,

- (e) C_1 - C_6 галогеналкил,
- (f) OR^b , где R^b представляет собой C_1 - C_6 алкил, арил, гетероарил, C_3 - C_6 циклоалкил или C_1 - C_6 галогеналкил,
 - (g) гетероцикл,
 - (h) арил, и
 - (і) гетероарил;

каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо C- R^a , или один из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой N, а каждый из остальных независимо представляет собой C- R^a ;

W выбран из следующего:

- (a) CO₂H, и
- (b) 1H-тетразол;

Y представляет собой связь или -CH₂-;

п составляет 1 или 2;

 ${\bf R}^3$ и ${\bf R}^4$ независимо выбраны из следующего:

- (a) H,
- (b) C_1 - C_3 алкил, и
- (c) C_1 - C_3 галогеналкил;

R^а выбран из следующего:

- (а) Н, и
- (b) галоген.
- 13. Соединение по любому из пп. 1-12, где Y представляет собой связь, и n составляет 1.
 - 14. Соединение по п. 1, характеризующееся формулой Іb:

$$X_1$$
 X_2
 X_3
 X_4
 X_5
 X_5

или его фармацевтически приемлемая соль, сольват, сольват соли, гидрат, отдельный стереоизомер, смесь стереоизомеров, рацемическая смесь стереоизомеров или пролекарство, где

Аг представляет собой фенил, необязательно замещенный 1-3 заместителями, независимо выбранными из следующего:

- (а) галоген,
- (b) циано,
- (c) C_1 - C_6 алкил,
- (d) SF_5 ,
- (e) C_1 - C_6 галогеналкил,
- (f) OR^b , где R^b представляет собой C_1 - C_6 алкил, арил, гетероарил, C_3 - C_6 циклоалкил или C_1 - C_6 галогеналкил,
 - (g) гетероцикл,
 - (h) арил, и
 - (і) гетероарил;

каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо C- R^a , или один из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой N, а каждый из остальных независимо представляет собой C- R^a ;

W выбран из следующего:

- (a) CO₂H, и
- (b) 1H-тетразол;

п составляет 1 или 2;

R⁴ выбран из следующего:

- (a) H,
- (b) C_1 - C_3 алкил, и
- (c) C_1 - C_3 галогеналкил;

R^а выбран из следующего:

- (a) H, и
- (b) галоген.
- 15. Соединение по п. 14, где п составляет 1.

lc

16. Соединение по п. 1, характеризующееся формулой Iс или Id:

$$X_1$$
 X_2
 X_3
 X_4
 X_5
 X_5

ld

или его фармацевтически приемлемая соль, сольват, сольват соли, гидрат, отдельный стереоизомер, смесь стереоизомеров, рацемическая смесь стереоизомеров или пролекарство, где

каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой независимо C- R^a , или один из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой N, а каждый из остальных независимо представляет собой C- R^a ;

R^а выбран из следующего:

- (a) H, и
- (b) галоген;

R^d выбран из следующего:

- (a) CN,
- (b) C_1 - C_3 алкил,
- (c) SF_5 ,
- (d) C_1 - C_3 галогеналкил,
- (e) OR^b , где R^b представляет собой C_1 - C_6 алкил, арил, гетероарил, C_3 - C_6 циклоалкил или C_1 - C_6 галогеналкил,
 - (f) гетероцикл,
 - (g) арил, и
 - (h) гетероарил.
- 17. Соединение по любому из пп. 1-16, где каждый из X^1 , X^2 , X^3 , X^4 и X^5 представляет собой CH; или один из X^1 , X^2 , X^3 , X^4 и X^5 представляют собой CH, и R^a представляет собой галоген.
 - 18. Соединение по п. 1, выбранное из следующего:
- 2-(3-(1-(4-цианобензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;
- 2-(3-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;
- 2-(3-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-b]пиридин-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;
- 2-(3-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-c]пиридин-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;
- 2-(3-(1-(4-(трифторметил)бензил)-1H-пирроло[2,3-c]пиридин-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

```
2-(3-(1-(4-(трифторметил)бензил)-1H-индазол-7-
```

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-((4-(трифторметил)фенил)метил- d_2)-1H-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

6-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(S)-6-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

6-(1-(4-(трифторметил)бензил)-1*H*-пирроло[3,2-*b*]пиридин-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(R)-6-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-b]пиридин-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(S)-6-(1-(4-(трифторметил)бензил)-1<math>H-пирроло[3,2-b]пиридин-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

6-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-c]пиридин-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(R)-6-(1-(4-(трифторметил)бензил)-1H-пирроло[3,2-c]пиридин-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(S)-6-(1-(4-(трифторметил)бензил)-1<math>H-пирроло[3,2-c]пиридин-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

6-(1-(4-(трифторметил)бензил)-1*H*-пирроло[2,3-*c*]пиридин-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(R)-6-(1-(4-(трифторметил)бензил)-1<math>H-пирроло[2,3-c]пиридин-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

(S)-6-(1-(4-(трифторметил)бензил)-1<math>H-пирроло[2,3-c]пиридин-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

6-(1-(4-(трифторметил)бензил)-1H-индазол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(1-(4-(трифторметил)бензил)-1H-индазол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(S)-6-(1-(4-(трифторметил)бензил)-1H-индазол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

6-(1-(4-(трифторметил)бензил)-1H-бензо[d]имидазол-7карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота; (R)-6-(1-(4-(трифторметил)бензил)-1H-бензо[d]имидазол-7карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота; (S)-6-(1-(4-(трифторметил)бензил)-1<math>H-бензо[d]имидазол-7карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота; 3-(3-(1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)пропановая кислота; 3-(3-метил-3-(1-(4-(трифторметил)бензил)-1H-индол-7карбоксамидо)циклобутил)пропановая кислота; μuc -3-(3-метил-3-(1-(4-(трифторметил)бензил)-1H-индол-7карбоксамидо)циклобутил)пропановая кислота; N-(3-(2-оксо-2-(фенилсульфонамидо)этил)бицикло[1.1.1]пентан-1-ил)-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамид; N-(3-((3-(фенилсульфонил)уреидо)метил)бицикло[1.1.1]пентан-1-ил)-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамид; N-(3-((1H-тетразол-5-ил)метил)бицикло[1.1.1]пентан-1-ил)-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамид; 2-(4-(1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамидо)бицикло[2.1.1]гексан-1-ил)уксусная кислота; 6-(4-фтор-1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота; (R)-6-(4-фтор-1-(4-(трифторметил)бензил)-1H-индол-7карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота; (S)-6-(4-фтор-1-(4-(трифторметил)бензил)-1H-индол-7карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота; 6-(5-фтор-1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота; (R)-6-(5-фтор-1-(4-(трифторметил)бензил)-1H-индол-7карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота; (S)-6-(5-фтор-1-(4-(трифторметил)бензил)-1H-индол-7карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

6-(5-хлор-1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамидо)спиро[3.3]гептан-

2-карбоновая кислота;

- (R)-6-(5-хлор-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;
- (S)-6-(5-хлор-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;
- 6-(6-фтор-1-(4-(трифторметил)бензил)-1*H*-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;
- (R)-6-(6-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;
- (S)-6-(6-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;
- 6-(1-(4-цианобензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;
- (R)-6-(1-(4-цианобензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;
- (S)-6-(1-(4-цианобензил)-1*H*-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;
- 6-(1-(4-(дифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;
- (R)-6-(1-(4-(дифторметил)бензил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;
- (S)-6-(1-(4-(дифторметил)бензил)-1<math>H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;
- 2-(4-(1-(4-(дифторметил)бензил)-1H-индол-7-карбоксамидо)бицикло[2.1.1]гексан-1-ил)уксусная кислота;
 - 2-(3-(4-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-
- карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;
 - 2-(4-(4-фтор-1-(4-(трифторметил)бензил)-1H-индол-7-
- карбоксамидо)бицикло[2.1.1] гексан-1-ил) уксусная кислота;
 - 2-(4-(1-((4-(пентафтортиол)фенил)метил)-1H-индол-7-
- карбоксамидо)бицикло[2.1.1] гексан-1-ил) уксусная кислота;
 - 6-(1-((4-(пентафтортиол)фенил)метил)-1H-индол-7-
- карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;
- (R)-6-(1-((4-(пентафтортиол)фенил)метил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(S)-6-(1-((4-(пентафтортиол)фенил)метил)-1H-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

6-(1-(4-(дифторметил)бензил)-4-фтор-1*H*-индол-7-карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(R)-6-(1-(4-(дифторметил)бензил)-4-фтор-1H-индол-7-

карбоксамидо)спиро[3.3]гептан-2-карбоновая кислота;

(S)-6-(1-(4-(дифторметил)бензил)-4- ϕ тор-1H-индол-7-

карбоксамидо)спиро[3.3] гептан-2-карбоновая кислота;

2-(3-(1-(4-(дифторметил)бензил)-4-фтор-1*H*-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(5-фтор-1-(4-(трифторметил)бензил)-1*H*-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-([1,1'-бифенил]-4-илметил)-1*H*-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-([1,1'-бифенил]-4-илметил)-4-фтор-1*H*-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(1-([1,1'-бифенил]-4-илметил)-1H-индазол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

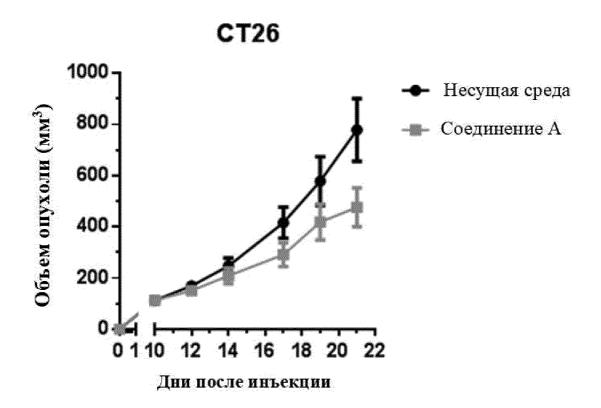
2-(3-(1-(4-(трифторметокси)бензил)-1H-индазол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

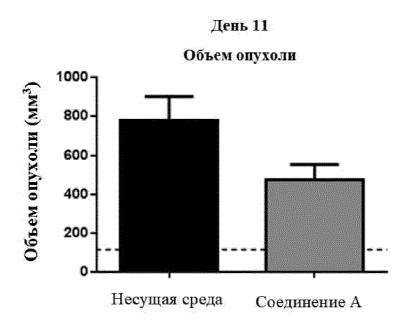
2-(3-(4-фтор-1-(4-йодбензил)-1H-индол-7-карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;

2-(3-(4-фтор-1-(4-(пиридин-4-ил)бензил)-1*H*-индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота; и


 $2-(3-(4-\phi тор-1-(4-морфолинобензил)-1<math>H$ -индол-7-

карбоксамидо)бицикло[1.1.1]пентан-1-ил)уксусная кислота;


или его фармацевтически приемлемая соль, сольват, сольват соли или пролекарство.

- 19. Фармацевтическая композиция, содержащая соединение по любому из пп. 1-18, или его фармацевтически приемлемую соль, сольват, сольват соли, гидрат, отдельный стереоизомер, смесь стереоизомеров, рацемическую смесь стереоизомеров или пролекарство, и фармацевтически приемлемый носитель.
- 20. Способ лечения рака, включающий введение нуждающемуся в этом пациенту соединения по любому из пп. 1-18 или фармацевтической композиции по п. 19.

- 21. Способ по п. 20, в котором указанный рак выбран из глиобластомы, рака костей, рака головы и шеи, меланомы, базальноклеточной карциномы, плоскоклеточной карциномы, аденокарциномы, рака ротовой полости, рака пищевода, рака желудка, рака кишечника, рака толстой кишки, рака мочевого пузыря, печеночноклеточной карциномы, почечноклеточной карциномы, рака поджелудочной железы, рака яичника, рака шейки матки, рака легких, рака молочной железы и рака предстательной железы.
- 22. Способ по п. 20 или п. 21, в котором указанный рак выбран из рака толстой кишки, рака мочевого пузыря, печеночноклеточной карциномы, рака поджелудочной железы, рака яичника, рака шейки матки, рака легких, рака молочной железы и рака предстательной железы.
- 23. Способ по любому из пп. 20-22, в котором указанное лечение дополнительно включает дополнительное средство, выбранное из антитела к PD-1 и антитела к PD-L1.

ФИГУРА 1А

Введение доз начинали в 0 день, когда средний объем опухоли в группах составлял $113~{\rm Mm}^3$

ФИГУРА 1В