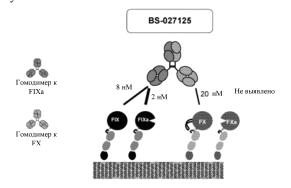
Евразийское патентное ведомство

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ


- (43) Дата публикации заявки 2020.01.09
- (22) Дата подачи заявки 2017.11.22

(51) Int. Cl. *C07K 16/36* (2006.01)

(54) МОНО- И БИСПЕЦИФИЧЕСКИЕ АНТИТЕЛА, СВЯЗЫВАЮЩИЕСЯ С ФАКТОРОМ КОАГУЛЯЦИИ IX И ФАКТОРОМ КОАГУЛЯЦИИ X

- (31) 62/425,921; 62/452,809; 62/529,805; 62/587,284
- (32) 2016.11.23; 2017.01.31; 2017.07.07; 2017.11.16
- (33) US
- (86) PCT/US2017/063135
- (87) WO 2018/098363 2018.05.31
- (88) 2018.09.20
- (71) Заявитель: БАЙОВЕРЕТИВ ТЕРАПЬЮТИКС ИНК. (US)
- (72) Изобретатель:
 Питерс Роберт Т., Лекса Нина, Пирс
 Бредли Р., Кульман Джон, Алеман
 Мария, Гудман Эллисон (US)
- (74) Представитель:Медведев В.Н. (RU)

(57) В настоящем изобретении предусмотрены антитела, которые селективно связываются с конкретными формами факторов свертывания крови, в частности антитела, которые специфически связываются с активированным фактором IX (FIXa), где антитело к FIXa или его антигенсвязывающая часть предпочтительно связываются с FIXa в присутствии FIXa и зимогена фактора IX (FIXz), и антитела, которые специфически связываются с зимогеном фактора X (FXz), где антитело к FXz или его антигенсвязывающая часть предпочтительно связываются с FXz в присутствии FXz и активированного фактора X (FXa). Также предусмотрены биспецифические молекулы (например, антитела), содержащие, например, антитело к FIXa или его антигенсвязывающую часть и/или антитело к FXz или его антигенсвязывающую часть. В настоящем изобретении также предусмотрены композиции, кодирующие раскрытые антитела и биспецифические молекулы, векторы, клетки, фармацевтические и диагностические композиции, наборы, способы изготовления, способы применения и иммуноконъюгаты.

A1

МОНО- И БИСПЕЦИФИЧЕСКИЕ АНТИТЕЛА, СВЯЗЫВАЮЩИЕСЯ С ФАКТОРОМ КОАГУЛЯЦИИ IX И ФАКТОРОМ КОАГУЛЯЦИИ X

ССЫЛКА НА ПОДАННЫЕ РАНЕЕ ЗАЯВКИ

[1] Настоящая заявка испрашивает приоритет согласно предварительной заявке на патент США № 62/425921, поданной 23 ноября 2016 года, предварительной заявке на патент США № 62/452809, поданной 31 января 2017 года, предварительной заявке на патент США № 62/529805, поданной 7 июля 2017 года, и предварительной заявке на патент США № 62/587284, поданной 16 ноября 2017 года, которые включены в данный документ посредством ссылки во всей своей полноте.

ССЫЛКА НА ПЕРЕЧЕНЬ ПОСЛЕДОВАТЕЛЬНОСТЕЙ, ПОДАННЫЙ В ЭЛЕКТРОННОМ ВИДЕ ПОСРЕДСТВОМ EFS-WEB

[2] Содержание предоставленного в электронном виде перечня последовательностей (название: 4159.485PC04_Sequence_listing_ST25.txt; размер: 1053370 байтов и дата создания: 21 ноября 2017 года), поданного с настоящей заявкой, включен в данный документ посредством ссылки во всей своей полноте.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Область техники

[3] Настоящая заявка относится, среди прочего, к антителам, которые предпочтительно связываются с активированным фактором коагуляции ІХ или зимогеном фактора коагуляции Х, а также к биспецифическим молекулам, имеющим оба вида специфичности, которые имитируют кофактор, представляющий собой активированный фактор VIII.

Уровень техники

[4] Гемофилия А является тяжелым рецессивным нарушением, сцепленным с X-хромосомой, которое вызывают мутации в гене фактора VIII (FVIII). FVIII участвует во внутреннем пути свертывания крови, и дефицит FVIII приводит к тому, что кровь либо плохо сворачивается, либо почти не сворачивается. Дефицит FVIII, альтернативно известный как гемофилия А, является одним

наиболее распространенных геморрагических нарушений ИЗ поражает одного из примерно 10000 мужчин (Stonebraker et al. (2012) Haemophilia 18(3):e91-4). Гемофилия А имеет три степени тяжести, определяемые уровнями фактора FVIII в плазме крови: 1% или меньше ("тяжелая"), от 2 до 5% ("умеренная") и от 6 до 30% ("легкая") (White et al. (2001) Thromb. Haemost. 85:560). При тяжелых формах нарушения первые кровотечения обычно возникают в возрасте от 5 до 6 месяцев, тогда как при умеренной форме первые кровотечения наступают позже, в возрасте приблизительно 1-2 лет. может возникать спонтанно после или травмы. Приблизительно половина всех пациентов с гемофилией А относится к имеющим тяжелую форму заболевания. Эти пациенты испытывают сильное кровотечение, начиная с раннего детства, эпизоды спонтанного ИЛИ чрезмерного кровотечения дальнейшей жизни. Кровотечение обычно происходит в суставах и соответствующего лечения мышцах, И без рецидивирующее необратимой гемофилической кровотечение тэжом привести K артропатии (Manco-Johnson et al. (2007) N. Engl. J. 357(6):535-44).

- гемофилии [5] Важной целью при лечении Α является поддержание содержания FVIII в плазме крови на уровнях \geq 1%, что снижает риск кровотечения. Для достижения этого рекомбинантный или полученный из плазмы крови FVIII часто вводят внутривенно в профилактической терапии. Однако этот существующий стандарт лечения гемофилии А является сложным, имеет несколько недостатков И несет значительную физическую и психическую нагрузку на пациентов и их семьи.
- [6] Наиболее распространенным препятствием в лечении с помощью FVIII является выработка аллоантител к FVIII, которые действуют как ингибиторы FVIII. Примерно у 30% пациентов с тяжелой формой поражения появляются такие аллоантитела, и после их появления эффективность применения FVIII для лечения текущих кровотечений ограничивается (Kempton & White (2009) Blood 113(1):11-7). В таких случаях используют альтернативные средства шунтирующего действия для контроля кровотечения. Однако эти средства обычно имеют более короткие периоды полувыведения и не

всегда эффективны. Кроме того, частое введение фактора VIII требуется из-за его короткого периода полувыведения из плазмы крови (в среднем приблизительно 12 часов у взрослых, а у детей еще быстрее). Такой режим может быть затруднительным, особенно детей. Поскольку доступные средства лечения маленьких ДЛЯ связаны с осложнениями и побочными эффектами, не существует единого средства лечения, обеспечивающего оптимальное эффективное лечение гемофилии. Таким образом, остается неудовлетворенная потребность в новых и эффективных средствах лечения, которые устраняли бы недостатки лечения гемофилии А с помощью FVIII.

КРАТКОЕ ОПИСАНИЕ

[7] В настоящем изобретении предусмотрены выделенное антитело или его антигенсвязывающая часть, которые специфически связываются с активированным фактором IX (FIXa) ("антитело к FIXa или его антигенсвязывающая часть"), где антитело к FIXa или его антигенсвязывающая часть предпочтительно связываются с FIXa в присутствии FIXa и зимогена фактора IX (FIXz). В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с FIXa с более высокой аффинностью связывания, чем аффинность связывания антитела к FIXa или его антигенсвязывающей части с FIXz. В настоящем изобретении также предусмотрены выделенное антитело к FIXa или его антигенсвязывающая часть, связываются с FIXa с более высокой аффинностью связывания, чем аффинность связывания антитела к FIXa или его антигенсвязывающей части с FIXz. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с FIXa с K_D , составляющей приблизительно 100 нМ или меньше, приблизительно 90 нМ или меньше, приблизительно 80 нМ или меньше, приблизительно 70 меньше, приблизительно 60 ΗМ ИЛИ Мн или меньше, приблизительно 50 нМ или меньше, приблизительно 40 Мн меньше, приблизительно 30 нМ или меньше, приблизительно 20 нМ или меньше, приблизительно 10 нМ или меньше, приблизительно 8 нМ или меньше, приблизительно 6 нМ или меньше, приблизительно 4 нМ или меньше, приблизительно 2 нМ или меньше, приблизительно 1 нМ или меньше, как определено с помощью анализа, основанного на

интерферометрии биослоя (BLI). В некоторых аспектах FIXa представляет собой свободный FIXa, FIXa в теназном комплексе или ковалентно связанный с EGR-CMK (FIXa-SM). В аспектах FIXz предусматривает неактивируемый фактор IX (FIXn). В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть перекрестно конкурируют с эталонным антителом, выбранным из группы, состоящей из антител, представленных на фиг. ЗА, фиг. **3В** и фиг. **3С.** В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. 3A, фиг. 3B и фиг. 3С. В некоторых аспектах такое эталонное антитело выбрано из BIIB-9-484, BIIB-9-440, BIIB-9-882, BIIB-9-460, BIIB-9-433 и любой их комбинации. В некоторых аспектах антитело к FIXa или его антигенсвязывающая предпочтительно связываются C FIXa-SM свободного FIXa или FIXz и/или связываются с FIXa-SM с более высокой аффинностью связывания, чем аффинность связывания антитела к FIXa или его антигенсвязывающей части со свободным FIXa или FIXz. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть перекрестно конкурируют с эталонным группы, состоящей выбранным ИЗ ИЗ представленных на фиг. 3A. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. ЗА. В некоторых аспектах такое эталонное антитело выбрано из BIIB-9-484, BIIB-9-440, BIIB-9-460 и любой их комбинации. В некоторых аспектах антитело к FIXa или антигенсвязывающая часть предпочтительно связываются свободным FIXa в отличие от FIXa-SM или FIXz и/или связываются со свободным FIXa с более высокой аффинностью связывания, чем аффинность связывания антитела к FIXa или его антигенсвязывающей части с FIXa-SM или FIXz. В некоторых аспектах антитело к FIXa антигенсвязывающая часть перекрестно конкурируют эталонным антителом, выбранным из группы, состоящей из антител, представленных на фиг. 3B. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с тем же эпитопом,

что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. 3В. В некоторых антитело к FIXa или его антигенсвязывающая часть предпочтительно связываются со свободным FIXa или FIXa-SM в отличие от FIXz и/или связываются со свободным FIXa или FIXa-SM с более высокой аффинностью связывания, чем аффинность связывания антитела FIXa или его антигенсвязывающей части с FIXz. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть перекрестно конкурируют с эталонным антителом, выбранным группы, состоящей из антител, представленных на фиг. некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. 3С. В некоторых аспектах такое эталонное антитело выбрано из BIIB-9-882, BIIB-9-433 и их комбинации. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3, где CDR3 предусматривает CDR3 VH, выбранную из группы, состоящей из CDR3 VH, представленных на фиг. ЗА, фиг. ЗВ и фиг. 3C, или CDR3 VH с одной или двумя мутациями. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть CDR3, CDR1, CDR2 И CDR3 содержат где $ARDX_1X_2X_3X_4X_5X_6YYX_7MDV$ (SEQ ID NO: 753), где X_1 представляет собой V или G, X_2 представляет собой G или V, X_3 представляет собой Gили R, X_4 представляет собой Y или V, X_5 представляет собой A или S, X_6 представляет собой G или D, X_7 представляет собой G или отсутствует. В некоторых аспектах CDR3 содержит ARDVGGYAGYYGMDV (SEQ ID NO: 905, BIIB-9-484, 1335, 1336), ARDISTDGESSLYYYMDV (SEQ ID NO: 901, BIIB-9-460), ARGPTDSSGYLDMDV (SEQ ID NO: 1186, BIIB-9-882) или ARDGPRVSDYY MDV (SEQ ID NO: 912, BIIB-9-619). В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3, где CDR1 предусматривает CDR1 VH, выбранную из группы, состоящей из CDR1 VH, представленных на фиг. 3A, фиг. 3B и фиг. 3C, или CDR1 VH с одной или двумя мутациями. В некоторых аспектах антитело к FIXa антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH, где CDR2 предусматривает CDR2 VH, выбранную из группы, состоящей из CDR2

VH, представленных на фиг. ЗА, фиг. ЗВ и фиг. ЗС, или CDR2 VH с одной или двумя мутациями. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VL, где CDR1 предусматривает CDR1 VL, выбранную из группы, состоящей из CDR1 VL, представленных на фиг. ЗА, фиг. ЗВ и фиг. ЗС, или CDR1 VL с одной или двумя мутациями. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VL, где CDR2 предусматривает CDR2 VL, выбранную из группы, состоящей из CDR2 VL, представленных на фиг. ЗА, фиг. ЗВ и фиг. ЗС, или CDR2 VL с одной или двумя мутациями. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VL, где CDR3 предусматривает CDR3 VL, выбранную из группы, состоящей из CDR3 VL, представленных на фиг. ЗА, фиг. ЗВ и фиг. ЗС, или CDR3 VL с одной или двумя мутациями.

[8] В настоящем изобретении также предусмотрены выделенное K FIXa или его антигенсвязывающая часть, специфически связываются с FIXa, содержащие CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL предусматривают CDR1 VH, CDR2 VH и CDR3 VH и CDR1, CDR2 и CDR3 VL, представленные соответственно на фиг. 3A, фиг. 3B и некоторых аспектах антитело K FIXa антигенсвязывающая часть содержат последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 815, 860 CDR2 и/или последовательности CDR1, предусматривающие соответственно SEQ ID NO: 950, 995 И (BIIB-9-484). В некоторых аспектах антитело к FIXa или антигенсвязывающая часть содержат последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 809, SEQ ID NO: 854 и SEQ ID NO: 899, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 944, SEQ ID NO: 989 и SEQ ID NO: 1034 (BIIB-9-440). В некоторых аспектах антитело к FIXa или его антигенсвязывающая последовательности CDR1, CDR2 CDR3 содержат И VH, предусматривающие соответственно SEQ ID NO: 1102, SEQ ID NO: 1144 и SEQ ID NO: 1186, и/или последовательности CDR1 VL, CDR2

VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1228, SEQ ID NO: 1270 и SEQ ID NO: 1312 (ВІІВ-9-882). В некоторых антитело к FIXa или его антигенсвязывающая содержат последовательности CDR1, CDR2 И CDR3 VH, предусматривающие соответственно SEQ ID NO: 811, SEQ ID NO: 856 и SEQ ID NO: 901, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 946, SEQ ID NO: 991 и SEQ ID NO: 1036 (BIIB-9-460). В некоторых аспектах FIXa антитело K или его антигенсвязывающая часть последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1108, SEQ ID NO: 1150 и SEQ ID NO: и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1234, SEO ID NO: ID NO: 1318 (BIIB-9-433). SEO В некоторых аспектах антитело K FIXa или его антигенсвязывающая часть содержат последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 822, SEQ ID NO: 867 и SEQ ID NO: 912, последовательности CDR1 VL, CDR2 VLпредусматривающие соответственно SEQ ID NO: 957, SEQ ID NO: 1002 и SEQ ID NO: 1047 (BIIB-9-619). В некоторых аспектах антитело к антигенсвязывающая часть FIXa его последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 843, SEQ ID NO: 888 и SEQ ID NO: 933, последовательности CDR1 VL, CDR2 VLИ CDR3 предусматривающие соответственно SEQ ID NO: 950, SEQ ID NO: 995 и SEQ ID NO: 1040, или соответственно (ii) антитело к FIXa или его антигенсвязывающая часть содержат последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 844, SEQ ID NO: 889 и SEQ ID NO: 934, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 950, SEQ ID NO: 995 и SEQ ID NO: 1040 (BIIB-9-1335 и BIIB-9-1336). Антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, где VH содержит аминокислотную последовательность, которая на по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно меньшей мере приблизительно 95%, по меньшей мере приблизительно

96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 99% или приблизительно 100% идентична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, и 181. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, где VL содержит аминокислотную последовательность, которая на по меньшей мере приблизительно меньшей мере приблизительно 85%, по меньшей приблизительно 90%, по меньшей мере приблизительно 95%, меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по меньшей мере 99% ИЛИ приблизительно 100% приблизительно идентична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NOs: 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323, 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351, 353, 355, 357, 359, 361, 363, 365, и 367. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, где VH получена из последовательности зародышевого типа VH1-46,0, VH1-46,4, VH1-46,5, VH1-46,7, VH1-46,9, VH1-69,9, VH3-07,0, VH3-21,0, VH3-21,2, VH3-23,0, VH3-23,1, VH4-31,0, VH4-34,0, VH4-39,0, VH4-39,2, VH4-39,3, VH4-39,5, VH4-39,6, VH4-39,8, VH4-59,6, VH4-0B.4, или VH4-0B.6. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, где VL получена из последовательности зародышевого типа VK1-05,0, VK1-05,6, VK1-05,9, VK1-05,21, VK1-12,0, VK1-12,3, VK1-33,0, VK1-33,1, VK1-

33,2, VK1-33,8, VK1-33,10, VK1-39,0, VK1-39,6, VK2-28,0, VK2-28,1, VK3-11,0, VK3-11,2, VK3-11,6, VK3-11,10, VK3-11,14, VK3-15,0, VK3-15,6, VK3-15,8, VK3-15,11, VK3-15,20, VK3-15,26, VK3-20,0, VK3-20,4, VK3-20,5, VK3-20,8, или VK4-01,0. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, где (a1) VH и VL содержат соответственно SEQ (BIIB-9-484); и 221 (a2) VH и VLсодержат соответственно SEQ ID NO: 19 и 209 (BIIB-9-440); (a3) VH и VL содержат соответственно SEQ ID NO: 115 и 301 (BIIB-9-882); (a4) VH и VL содержат соответственно SEQ ID NO: 23 и 213 (ВІІВ-9-460); (a5) VH и VL содержат соответственно SEQ ID NO: 127 и 313 (BIIB-9-433); (a6) VH и VL содержат соответственно SEQ ID NO: 45 и 235 (BIIB-9-619); (a7) VH и VL содержат соответственно SEQ ID NO: 185 и 371 (BIIB-9-578); (a8) VH и VL содержат соответственно SEQ ID NO: 87 и 221 (BIIB-9-1335); или (а9) VH и VL содержат соответственно SEQ ID NO: 89 и 221 (BIIB-9-1336).

[9] В настоящем изобретении также предусмотрены выделенное антитело или его антигенсвязывающая часть, которые специфически связываются с FIXz ("антитело к FIXz или его антигенсвязывающая часть"), где антитело к FIXz или его антигенсвязывающая часть предпочтительно связываются с FIXz в присутствии свободного FIXa или FIXa-SM, и/или антитело к FIXz или его антигенсвязывающая часть связываются с FIXz с более высокой аффинностью связывания, аффинность связывания антитела K FIXzили его со свободным FIXa антигенсвязывающей части или FIXa-SM. некоторых аспектах антитело к FIXz или его антигенсвязывающая часть перекрестно конкурируют с эталонным антителом, выбранным из группы, состоящей из антител, представленных на фиг. 3D. В некоторых аспектах антитело к FIXz или его антигенсвязывающая часть связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. 3D. В некоторых аспектах таким эталонным антителом является ВІІВ-9-578. В некоторых аспектах антитело ĸ FIXz или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3, где CDR3 предусматривает CDR3 VH, выбранную из группы, состоящей из CDR3 VH, представленных на фиг. 3D, или CDR3 VH с одной или двумя

мутациями. В некоторых аспектах CDR3 содержит ARDKYQDYSFDI (SEQ ID NO: 1355, BIIB-9-578). B HEROTOPHX ACTION A HTMTEJO K FIXZ или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3, где CDR1 предусматривает CDR1 VH, выбранную из группы, состоящей из CDR1 VH, представленных на фиг. 3D, или CDR1 VH с одной или двумя мутациями. В некоторых аспектах антитело к FIXz или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH, где CDR2 предусматривает CDR2 VH, выбранную из группы, состоящей из CDR2 VH, представленных на фиг. 3D, или CDR2 VH с одной или двумя некоторых аспектах антитело к В FIXz антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VL, где CDR1 предусматривает CDR1 VL, выбранную из группы, состоящей из CDR1 VL, представленных на фиг. 3D, или CDR1 VL с одной или двумя аспектах некоторых антитело K FIXz антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VL, где CDR2 предусматривает CDR2 VL, выбранную из группы, состоящей из CDR2 VL, представленных на фиг. 3D, или CDR2 VL с одной или двумя некоторых аспектах мутациями. В антитело к FIXz или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VL, где CDR3 предусматривает CDR3 VL, выбранную из группы, состоящей из CDR3 VL, представленных на фиг. 3D, или CDR3 VL с одной или двумя мутациями. В некоторых аспектах антитело к FIX выбрано из группы, состоящей из IgG1, IgG2, IgG3, IgG4 или их варианта. В некоторых аспектах антитело к FIX представляет собой антитело IqG4. В некоторых аспектах антитело к FIX содержит не имеющий эффекторных функций Fc IgG4. В некоторых аспектах антитело к FIX или его антигенсвязывающая часть содержат константную область тяжелой цепи. В некоторых аспектах антитело к FIX представляет собой человеческое антитело, сконструированное антитело гуманизированное антитело. В некоторых аспектах антигенсвязывающая часть антитела к FIX предусматривает Fab, Fab', F(ab')2, Fv или одноцепочечный Fv (scFv).

[10] В настоящем изобретении также предусмотрена биспецифическая молекула, содержащая антитело к FIX или его антигенсвязывающую часть, раскрытые в данном документе, связанные с молекулой, обладающей второй специфичностью

связывания. Также предусмотрена нуклеиновая кислота, кодирующая вариабельную область тяжелой и/или легкой цепи антитела к FIX или его антигенсвязывающей части, раскрытых в данном документе, или биспецифическую молекулу, содержащую антитело к FIX или его антигенсвязывающую часть, раскрытые в данном документе. Также предусмотрен вектор экспрессии, содержащий кодирующую молекулу нуклеиновой кислоты, раскрытую В данном документе. предусмотрена клетка, трансформированная вектором экспрессии, раскрытым в данном документе. В настоящем изобретении также предусмотрен иммуноконъюгат, содержащий любое антитело или его антигенсвязывающую часть, раскрытые в данном документе, биспецифическую молекулу, раскрытую В данном документе, средством. В настоящем изобретении связанные CO предусмотрена композиция, содержащая (і) антитело, раскрытое в данном документе, ИЛИ его антигенсвязывающую биспецифическую молекулу, раскрытую в данном документе, иммуноконъюгат, раскрытый в данном документе, и (ii) носитель. Также предусмотрен набор, содержащий (і) антитело, раскрытое в данном документе, ИЛИ его антигенсвязывающую биспецифическую молекулу, раскрытую в данном документе, иммуноконъюгат, раскрытый в данном документе, и (ii) инструкции по применению.

- [11] настоящем изобретении также предусмотрен способ получения антитела к FIX или его антигенсвязывающей части, включающий обеспечение экспрессии антитела антигенсвязывающей части в клетке и выделение антитела или его антигенсвязывающей части из клетки. Также предусмотрен способ измерения уровня активированного FIX у субъекта, нуждающегося в включающий приведение В контакт антитела FIXa, раскрытого в данном документе, или его антигенсвязывающей части с образцом, полученным от субъекта, в подходящих условиях измерение связывания антитела к FIXa или его антигенсвязывающей части с FIXa в образце. В некоторых аспектах образцом является кровь или сыворотка крови.
- [12] В настоящем изобретении предусмотрены выделенное антитело или его антигенсвязывающая часть, которые специфически

связываются с зимогеном фактора X (FXz) ("антитело к FXz или его антигенсвязывающая часть"), где антитело K FXz ИЛИ антигенсвязывающая часть предпочтительно связываются с FXz присутствии FXz и активированного фактора X (FXa). В некоторых аспектах антитело к FXz или антигенсвязывающая часть его связываются с FXz с более высокой аффинностью связывания, чем аффинность связывания антитела или его антигенсвязывающей части с FXa. Также предусмотрены выделенное антитело к FXz или его антигенсвязывающая часть, которые связываются с FXz с более аффинностью связывания, чем аффинность связывания антитела или его антигенсвязывающей части с FXa. В некоторых K FXz ИЛИ его аспектах антитело антигенсвязывающая связываются с FXz с K_D , составляющей приблизительно 100 нМ или приблизительно 90 нМ или меньше, приблизительно 80 нМ или меньше, приблизительно 70 нМ или меньше, приблизительно 60 нМ или меньше, приблизительно 50 нМ или меньше, приблизительно 40 ΗМ ИЛИ меньше, приблизительно 30 Мн ИЛИ приблизительно 20 нМ или меньше, приблизительно 10 нМ или меньше, приблизительно 9 нМ или меньше, приблизительно 8 нМ или меньше, приблизительно 7 нМ или меньше, приблизительно 6 нМ или меньше, приблизительно 5 нМ или меньше, приблизительно 4 нМ или меньше, приблизительно 3 нМ или меньше, приблизительно 2 нМ или меньше, приблизительно 1 нМ или меньше, как измерено с помощью BLI. В некоторых аспектах FXa представляет собой свободный FXa или FXa, ковалентно связанный с EGR-CMK (FIXa-SM). В некоторых аспектах FXz предусматривает неактивируемый фактор X некоторых аспектах антитело к FXz или его антигенсвязывающая часть перекрестно конкурируют с эталонным антителом, выбранным из группы, состоящей из антител, представленных на фиг. 12А и фиг. **12B.** B некоторых аспектах антитело к FXz или антигенсвязывающая часть связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. 12А и фиг. 12В. В некоторых аспектах антитело к FXz или его антигенсвязывающая часть связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из BIIB-12-915, BIIB-12-917, BIIB-12-932 и любой их

комбинации. В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3, где CDR3 предусматривает CDR3 VH, выбранную из группы, состоящей из CDR3 VH, представленных на фиг. 12A и фиг. 12B, или CDR3 VH с одной или двумя мутациями. В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3, где CDR3 $ARX_1X_2X_3RX_4X_5X_6X_7FDX_8$ (SEQ. ID NO: 766), содержит где представляет собой G или L, X_2 представляет собой R или G, X_3 представляет собой F или Y, X_4 представляет собой P или G, X_5 представляет собой R или A, X_6 представляет собой G или S, представляет собой R или A, и X_8 представляет собой Y или I. В некоторых аспектах антитело к FXz или его антигенсвязывающая CDR3, содержат CDR1, CDR2 И где CDR3 ARGRFRPRGRFDY (SEQ ID NO: 1575, BIIB-12-917), ARLGYRGASAFDI (SEQ ID NO: 1589, BIIB-12-932) или ARVGGGYANP (SEQ ID NO: 1573, BIIB-12-915). В антитело FXzнекоторых аспектах К и.пи антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH, где CDR1 предусматривает CDR1 VH, выбранную из группы, состоящей из CDR1 VH, представленных на фиг. 12A и фиг. 12B, или CDR1 VH с одной или двумя мутациями. В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH, где CDR2 предусматривает CDR2 VH, выбранную из группы, состоящей из CDR2 VH, представленных на фиг. 12A и фиг. 12B, или CDR2 VH с одной или двумя мутациями. В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VL, где CDR1 предусматривает CDR1 VL, выбранную из группы, состоящей из CDR1 VL, представленных на фиг. 12A и фиг. 12B, или CDR1 VL с одной или двумя мутациями. В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VL, где CDR2 предусматривает CDR2 VL, выбранную из группы, состоящей из CDR2 VL, представленных на фиг. 12A и фиг. 12B, или CDR2 VL с одной или двумя мутациями. В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VL, где CDR3 предусматривает CDR3 VL, выбранную из группы, состоящей из CDR3 VL, представленных на фиг. 12A и фиг. 12B, или CDR3 VL с одной или двумя мутациями.

[13] В настоящем изобретении также предусмотрены выделенное антитело или его антигенсвязывающая часть, которые специфически связываются с FXz, содержащие CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL предусматривают CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, соответственно на фиг. 12A И фиг. 12B. представленные В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат последовательности CDR1, CDR2 и CDR3 предусматривающие соответственно SEQ ID NO: 1393, 1483 или 1573, последовательности CDR1 VL, CDR2 VLпредусматривающие соответственно SEQ ID NO: 1663, 1753 или 1843 (BIIB-12-915). В некоторых аспектах антитело к FXz или антигенсвязывающая часть содержат последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1395, 1485 или 1575, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1665, 1755 или 1845 (BIIB-12-917). В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1409, 1499 или 1589, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1679, 1769 или 1859 (BIIB-12-932). В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат VH и VL, где VH содержит аминокислотную последовательность, которая на по меньшей мере приблизительно 80%, меньшей мере приблизительно ПО меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по 99% или меньшей мере приблизительно приблизительно аминокислотной последовательности, идентична выбранной ИЗ группы, состоящей из SEQ ID NOs: 377, 379, 381, 383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405, 407, 409, 411, 413, 415, 417, 419, 421, 423, 425, 427, 429, 431, 433, 435, 437, 439, 441, 443, 445, 447, 449, 451, 453, 455, 457, 459, 461, 463, 465, 467, 469, 471, 473, 475, 477, 479, 481, 483, 485, 487, 489, 491, 493, 495, 497, 499, 501, 503, 505, 507, 509, 511, 513, 515, 517,

519, 521, 523, 525, 527, 529, 531, 533, 535, 537, 539, 541, 543, 545, 547, 549, 551, 553, и 555. В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат VH и VL, где VL содержит аминокислотную последовательность, которая на ПО меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 99% или приблизительно 100% аминокислотной последовательности, выбранной группы, состоящей из SEQ ID NOs: 565, 567, 569, 571, 573, 575, 579, 581, 583, 585, 587, 589, 591, 593, 595, 597, 599, 601, 603, 605, 607, 609, 611, 613, 615, 617, 619, 621, 623, 625, 627, 629, 631, 633, 635, 637, 639, 641, 643, 645, 647, 649, 651, 653, 655, 657, 659, 661, 663, 665, 667, 669, 671, 673, 675, 677, 679, 681, 683, 685, 687, 689, 691, 693, 695, 697, 699, 701, 703, 705, 707, 709, 711, 713, 715, 717, 719, 721, 723, 725, 727, 729, 731, 733, 735, 737, 739, 741, и 743. В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат VH и VL, где VH получена из последовательности зародышевого типа VH1-18,0, VH1-18,1, VH1-18,8, VH1-46,0, VH1-46,4, VH1-46,5, VH1-46,6, VH1-46,7, VH1-46,8, VH1-46,9, VH3-21,0, VH3-23,0, VH3-23,2, 23,6, VH3-30,0, VH4-31,5, VH4-39,0, VH4-39,5. VH4-0B.4, или VH5некоторых аспектах антитело к FXz его антигенсвязывающая часть содержат VH и VL, где VL получена из последовательности зародышевого типа VK1-05,6, VK1-05,12, VK1-12,0, VK1-12,4, VK1-12,7, VK1-12,10, VK1-12,15, VK1-39,0, VK1-39,3, VK1-39,15, VK2-28,0, VK2-28,1, VK2-28,5, VK3-11,0, VK3-11,2, VK3-11,6, VK3-11,14, VK3-15,0, VK3-15,8, VK3-15,10, VK3-20,0, VK3-20,1, VK3-20,4, VK3-20,5, VK4-01,0, VK4-01,4, VK4-01,20. В некоторых аспектах антитело к FΧ или его антигенсвязывающая часть содержат VH и VL, где (b1) VH и VL содержат соответственно SEQ ID NO: 423 и 611 (BIIB-12-915); (b2) VH и VL содержат соответственно SEQ ID NO: 427 и 615 (BIIB-12-917); или

(b3) VH и VL содержат соответственно SEQ ID NO: 455 и 643

(BIIB-12-932).

[14] В настоящем изобретении также предусмотрены выделенное антитело или его антигенсвязывающая часть, которые специфически связываются с активированным фактором X (FXa) ("антитело к FXa или его антигенсвязывающая часть"), где антитело к FXa или его антигенсвязывающая часть предпочтительно связываются с FXa присутствии FXz и FXa и/или связываются с FXa с более высокой аффинностью связывания, чем аффинность связывания антитела или антигенсвязывающей части В С FXz. некоторых к FXa или его антигенсвязывающая часть перекрестно конкурируют С эталонным антителом, выбранным ИЗ состоящей из антител, представленных на фиг. 12С. В некоторых к FXa ИЛИ его антитело антигенсвязывающая С тем же MOULDING , ЧТО И эталонное выбранное из группы, состоящей из антител, представленных FXa 12C. В некоторых аспектах антитело K и.пи eroантигенсвязывающая часть связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из BIIB-12некоторых аспектах антитело K FXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3, где CDR3 предусматривает CDR3 VH, выбранную из группы, состоящей из CDR3 VH, представленных на фиг. 12C, или CDR3 VH с одной или двумя В некоторых аспектах антитело K FXa мутациями. или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3, где CDR3 NO: 1919, AKGPRYYWYSWYFDL (SEQ ID BIIB-12-925). некоторых аспектах антитело к FXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH, где CDR1 предусматривает CDR1 выбранную ИЗ группы, состоящей ИЗ CDR1 VH, представленных на фиг. 12C, или CDR1 VH с одной или двумя мутациями. В некоторых аспектах антитело K FXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH, где CDR2 предусматривает CDR2 VH, выбранную из группы, состоящей из CDR2 VH, представленных на фиг. 12C, или CDR2 VH с одной или двумя В некоторых аспектах антитело K FXa мутациями. его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VL, где CDR1 предусматривает CDR1 VL, выбранную из группы, состоящей из CDR1

VL, представленных на фиг. 12C, или CDR1 VL с одной или двумя некоторых аспектах антитело к мутациями. В FXa антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VL, где CDR2 предусматривает CDR2 VL, выбранную из группы, состоящей из CDR2 VL, представленных на фиг. 12C, или CDR2 VL с одной или двумя некоторых аспектах антитело K FXa В или антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VL, где CDR3 предусматривает CDR3 VL, выбранную из группы, состоящей из CDR3 VL, представленных на фиг. 12C, или CDR3 VL с одной или двумя мутациями.

[15] В настоящем изобретении также предусмотрены выделенное антитело или его антигенсвязывающая часть, которые специфически связываются с FXa, содержащие CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL предусматривают CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, представленные соответственно на фиг. 12С. В некоторых аспектах антитело FXa или его антигенсвязывающая часть последовательности CDR1, CDR2 и CDR3 VH, предусматривающие NO: 1911, 1915 или 1919, соответственно SEQ ID последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1923, 1927 или 1931 (BIIB-12-925). В некоторых аспектах антитело к FXa или его антигенсвязывающая часть содержат VH и VL, где VH и VL содержат соответственно SEQ ID NO: 559 и 747 (BIIB-12-925). В некоторых аспектах антитело к FX или его антигенсвязывающая часть выбраны из группы, состоящей из IgG1, IgG2, IgG3, IgG4 или их варианта. В некоторых аспектах антитело к FX или его антигенсвязывающая часть представляют собой антитело IgG4. В некоторых аспектах антитело к FX или его антигенсвязывающая часть содержат не имеющий эффекторных функций IqG4. В некоторых аспектах антитело к FΧ и.пи его антигенсвязывающая часть содержат константную область тяжелой цепи. В некоторых аспектах антитело к FX представляет собой человеческое антитело, сконструированное антитело или антитело. В некоторых гуманизированное аспектах его антигенсвязывающая часть предусматривает Fab, Fab', F(ab')2, Fv или одноцепочечный Fv (scFv). В настоящем изобретении также

предусмотрена биспецифическая молекула, содержащая антитело к документе, связанное с молекулой, раскрытое в данном обладающей второй специфичностью связывания. Также предусмотрена кодирующая вариабельную область нуклеиновая кислота, и/или легкой цепи антитела к FX, раскрытого в данном документе, или его антигенсвязывающей части, или биспецифическую молекулу, содержащую антитело к FX или его антигенсвязывающую часть, раскрытые в данном документе. Также предусмотрен вектор экспрессии, содержащий молекулу нуклеиновой кислоты. Также предусмотрена клетка, трансформированная вектором экспрессии. Также предусмотрен иммуноконъюгат, содержащий антитело или его антигенсвязывающую часть или биспецифическую молекулу, связанные со средством. Также предусмотрена композиция, содержащая (і) антитело или его антигенсвязывающую часть, или биспецифическую молекулу, или иммуноконъюгат и (ii) носитель. Также предусмотрен набор, содержащий (і) антитело или его антигенсвязывающую часть, ИЛИ биспецифическую молекулу, или иммуноконъюгат (ii) инструкции по применению. Также предусмотрен способ получения антитела к FX или его антигенсвязывающей части, включающий обеспечение экспрессии антитела или его антигенсвязывающей части в клетке и выделение антитела или его антигенсвязывающей части из клетки.

[16] В настоящем изобретении также предусмотрен способ измерения уровня зимогена FX (FXz) у субъекта, нуждающегося в включающий приведение в контакт антитела к FX или его антигенсвязывающей части, раскрытых в данном документе, С образцом, полученным от субъекта, в подходящих условиях измерение связывания антитела к FX или его антигенсвязывающей части с FXz в образце. В некоторых аспектах образцом является кровь или сыворотка крови от субъекта. В настоящем изобретении также предусмотрена биспецифическая молекула, содержащая (і) антитело к FIX или его антигенсвязывающую часть, раскрытые данном документе, И (ii) антитело K или его антигенсвязывающую часть, раскрытые в данном документе. некоторых аспектах биспецифическая молекула перекрестно конкурирует с эталонным биспецифическим антителом, где эталонное

биспецифическое антитело содержит VH и VL антитела к FIX, выбранного из группы, состоящей из антител к FIX, представленных на фиг. ЗА, фиг. ЗВ, фиг. ЗС и фиг. ЗD, и VH и VL антитела к FX, выбранного из группы, состоящей из антител к FX, представленных фиг. 12В 12A, и **фиг. 12C.** B некоторых аспектах фиг. биспецифическая молекула связывается с тем же эпитопом, что и эталонное биспецифическое антитело, где эталонное биспецифическое антитело содержит VH и VL антитела к FIX, выбранного из группы, состоящей из антител к FIX, представленных на фиг. 3A, фиг. 3B, фиг. 3C и фиг. 3D, и VH и VL антитела к FX, выбранного из группы, состоящей из антител к FX, представленных фиг. 12А, фиг. 12В и фиг. 12С. В некоторых из аспектов биспецифических молекул, раскрытых в данном документе, антитело к FIX или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL выбраны из группы, состоящей из CDR1 VH, CDR2 VH и CDR3 VH и CDR1 VL, CDR2 VL и CDR3 VL антител к FIX (BIIB-9), представленных на фиг. 16A, фиг. 16B, фиг. 16C и фиг. 16D; и (ii) антитело к FX или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL выбраны из группы, состоящей из CDR1 VH, CDR2 VH и CDR3 VH и CDR1 VL, CDR2 VL и CDR3 VL антител к FX (BIIB-12), представленных на фиг. 16A, фиг. 16B, фиг. 16C и фиг. 16D. В некоторых аспектах биспецифической молекулы, раскрытой в данном документе, (a) антитело к FIX или антигенсвязывающая часть содержат (а1) последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 815, 860 или 905, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 950, 995 или 1040 (BIIB-9-484); (a2) последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 822, 867 и 912, и/или последовательности CDR1, CDR2 и CDR3 VL, предусматривающие соответственно SEQ ID NO: 957, 1002 и 1047 (BIIB-9-619); (a3) последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1347, 1351 и 1355, и/или последовательности CDR1, CDR3 VL, предусматривающие CDR2 и

соответственно SEQ ID NO: 1359, 1363 и 1367 (BIIB-9-578); (a4) CDR2 и CDR3 VH, предусматривающие последовательности CDR1, соответственно SEQ ID NO: 843, 888 933, и/или последовательности CDR1, CDR2 и предусматривающие CDR3 VL, соответственно SEQ ID NO: 978, 1023 и 1068 (BIIB-9-1335); или (a5) последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEO ID NO: 844, 889 И 934, и/или последовательности CDR1, CDR2 и CDR3 VL, предусматривающие соответственно SEQ ID NO: 979, 1024 и 1069 (BIIB-9-1336); и (b) антитело к FX или его антигенсвязывающая часть содержат (b1) последовательности CDR1, CDR2 и CDR3 VH, предусматривающие NO: 1393, 1483 1573, соответственно SEQ ID И и/или последовательности CDR1, CDR2 и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1663, 1753 и 1843 (BIIB-12-915); (b2) последовательности CDR1, CDR2 и CDR3 VH, предусматривающие SEO ID NO: 1395, 1485 1575, и/или соответственно И последовательности CDR1, CDR2 CDR3 VL, предусматривающие соответственно SEQ ID NO: 1665, 1755 и 1845 (BIIB-12-917); (b3) последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно 1911, 1915 SEQ IDNO: 1919, и/или И последовательности CDR1, CDR2 и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1923, 1927 и 1931 (BIIB-12-925); (b4) последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEO ID NO: 1409, 1499 и 1589, и/или CDR2 и CDR3 VL, предусматривающие последовательности CDR1, соответственно SEQ ID NO: 1679, 1769 и 1859 (BIIB-12-932); или (b5) последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEO IDNO: 1433, 1523 И 1613, и/или последовательности CDR1, CDR2 и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1703, 1793 и 1883 (BIIB-12-1306). В некоторых аспектах биспецифической молекулы, раскрытой в данном документе, (a) антитело к FIX или его антигенсвязывающая часть содержат (a1) VH и VL, содержащие соответственно SEQ ID NO: 31 и 221 (BIIB-9-484); (a2) VH и VL, содержащие соответственно SEQ ID И 235 (BIIB-9-619); (a3) VH и VL, содержащие соответственно SEQ ID NO: 185 и 371 (BIIB-9-578); (a4) VH и VL,

содержащие соответственно SEQ ID NO: 87 и 221 (BIIB-9-1335); или (a5) VH и VL, содержащие соответственно SEQ ID NO: 89 и 221 (BIIB-9-1336); и (b) антитело к FX или его антигенсвязывающая часть содержат (b1) VH и VL, содержащие соответственно SEQ ID (BIIB-12-915); (b2) VH и VL, содержащие и 611 соответственно SEQ ID NO: 427 и 615 (BIIB-12-917); (b3) VH и VL, содержащие соответственно SEQ ID NO: 559 и 747 (BIIB-12-925); (b4) VH и VL, содержащие соответственно SEQ ID NO: 455 и 643 (BIIB-12-932); или (b5) VH и VL, содержащие соответственно SEQ (BIIB-12-1306). B 503 И 691 некоторых биспецифической молекулы, раскрытой в данном документе, антитело к FIX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 31 и 221 (BIIB-9-484); и антитело к FX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 423 и 611 915); или (ii) антитело к FIX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 31 и 221 (BIIB-9-484); и антитело к FX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 427 и 615 (BIIB-12-917); или (iii) антитело K FIX ИЛИ его часть содержат VH VL, антигенсвязывающая И соответственно SEQ ID NO: 31 и 221 (BIIB-9-484); и антитело к FX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 559 и 747 (BIIB-12-925); или антитело к FIX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 31 и 221 (BIIB-9-484); и антитело к FX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 455 и 643 (BIIB-12-932); или (v) антитело к FIX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 185 и 371 (BIIB-9-578); и антитело к FX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 423 и 611 (BIIB-12-915); ИЛИ (vi) антитело K FIX ИЛИ его антигенсвязывающая часть VHVL, содержат И содержащие соответственно SEQ ID NO: 185 и 371 (BIIB-9-578); и антитело к FX или его антигенсвязывающая часть содержат VH и VL, содержащие

соответственно SEQ ID NO: 427 и 615 (BIIB-12-917); или (vii) антитело к FIX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 45 и 235 (BIIB-9-619); и антитело к FX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 427 и 615 (BIIB-12-917); или (viii) антитело к FIX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 45 и 235 (BIIB-9-619); и антитело к FX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 559 и 747 (BIIB-12-925). В некоторых аспектах биспецифическая молекула функционально имитирует кофактор, представляющий собой активированный фактор VIII (FVIIIa), в по меньшей мере одном FVIIIa. анализе активности В некоторых аспектах активности FVIIIa выбран из хромогенного анализа образования FXa, одностадийного анализа свертывания крови или их комбинации. В некоторых аспектах достигаемая активность FVIIIa составляет по меньшей мере 10%, 20%, 30%, 35%, 40%, 45% 50%, 60%, 70%, 80%, 90%, 100%, 110%, 120%, 130%, 140%, 150%, 160%, 170%, 180%, 190%, или 200% от активности, в ином случае достигаемой FVIII в том же анализе. В некоторых аспектах биспецифическая молекула способна обеспечивать образование тромбина из протромбина, фибрина из фибриногена и/или фибринового стустка in vitro или in vivo. В некоторых аспектах биспецифическая молекула одновременно связывается как с FIXa, так и с FX, как определено с помощью BLI. В некоторых аспектах биспецифическая молекула относится к IgG. В некоторых аспектах изотип IqG относится подклассу IgG1. В некоторых аспектах изотип IgG относится подклассу IqG4. В некоторых аспектах биспецифическая молекула имеет формат биспецифического IgG и выбрана из группы, состоящей из антител, представленных в таблице 2. В некоторых аспектах биспецифическая молекула имеет формат биспецифического некоторых аспектах биспецифическая молекула гетеродимера. В содержит две разные тяжелые цепи и две разные легкие цепи. В аспектах биспецифическая молекула некоторых содержит идентичные легкие цепи и две разные тяжелые цепи. В некоторых аспектах биспецифическая молекула может обеспечивать контроль

или снижение частоты возникновения эпизодов кровотечения имеющего гемофилию. В некоторых субъекта, биспецифическая молекула может обеспечивать поддержание гомеостаза или у субъекта, имеющего гемофилию. В некоторых аспектах биспецифическая молекула может обеспечивать рутинную имеющего гемофилию. профилактику у субъекта, В аспектах у субъекта выработались или предположительно будут вырабатываться нейтрализующие антитела к фактору VIII.

- [17] В настоящем изобретении также предусмотрен иммуноконъюгат, содержащий биспецифическую молекулу, раскрытую в документе, связанную CO средством, например предусмотрена композиция, терапевтическим средством. Также содержащая (і) биспецифическую молекулу, раскрытую в документе, ИЛИ иммуноконъюгат, содержащий биспецифическую молекулу, и (іі) носитель. Также предусмотрен набор, содержащий (і) биспецифическую молекулу, раскрытую в данном документе, или иммуноконъюгат, содержащий биспецифическую молекулу, и (ii) инструкции по применению. Также предусмотрена последовательность нуклеиновой кислоты, кодирующая биспецифическую молекулу, данном документе. Также предусмотрены раскрытую в вектор, содержащий нуклеиновую кислоту, и клетка-хозяин, содержащая вектор. В некоторых аспектах клетка-хозяин представляет собой прокариотическую клетку, эукариотическую клетку, клетку простейшего, клетку животного, клетку растения, клетку гриба, дрожжевую клетку, клетку Sf9, клетку млекопитающего, клетку птицы, клетку насекомого, клетку CHO, клетку HEK или клетку COS. Также предусмотрен способ получения биспецифической молекулы, раскрытой в данном документе, включающий культивирование клеткихозяина, раскрытой в данном документе, в условиях, обеспечивают экспрессию биспецифической молекулы. В некоторых аспектах способ получения биспецифической молекулы, раскрытой в данном документе, дополнительно включает использование условий, которые увеличивают возможность гетеродимеризации.
- [18] В настоящем изобретении также предусмотрен способ обеспечения активации FX у субъекта, нуждающегося в этом, включающий введение субъекту терапевтически эффективного

количества биспецифической молекулы, раскрытой в данном документе, или иммуноконъюгата, композиции, нуклеиновой кислоты, вектора или клетки-хозяина, раскрытых в данном документе, которые содержат или кодируют биспецифическую молекулу, раскрытую в данном документе.

- настоящем изобретении также предусмотрен способ снижения частоты или степени эпизода кровотечения у субъекта, нуждающегося в этом, включающий введение субъекту эффективного количества биспецифической молекулы, раскрытой документе, или иммуноконъюгата, композиции, нуклеиновой кислоты, клетки-хозяина, раскрытых в данном документе, вектора или которые содержат ИЛИ кодируют биспецифическую молекулу, раскрытую в данном документе. В некоторых аспектах у субъекта ("FVIII") ингибитор фактора VIII или имеется выработался предрасположенность к его выработке. В некоторых аспектах ингибитор FVIII представляет собой нейтрализующее антитело FVIII. В некоторых аспектах эпизод кровотечения результатом гемартроза, кровотечения в мышцу, кровотечения в ротовой полости, кровоизлияния, кровоизлияния в мышцы, кровоизлияния в ротовую полость, травмы, травмы головы, желудочно-кишечного кровотечения, внутричерепного кровоизлияния, внутрибрюшного кровоизлияния, внутригрудного кровоизлияния, перелома кости, кровотечения в центральной нервной системе, кровотечения В заглоточное пространство, кровотечения забрюшинное пространство, кровотечения во влагалище подвздошнопоясничной мышцы или любых их комбинаций.
- [20] В настоящем изобретении также предусмотрен способ лечения нарушения свертывания крови у субъекта, нуждающегося в включающий введение субъекту эффективного количества HOTE, биспецифической молекулы, раскрытой в данном документе, и.пи иммуноконъюгата, композиции, нуклеиновой кислоты, вектора или клетки-хозяина, раскрытых в данном документе, которые содержат кодируют биспецифическую молекулу, раскрытую илли ланном документе. В некоторых аспектах нарушением свертывания крови является гемофилия А или гемофилия В. В некоторых аспектах субъектом является субъект-человек. В некоторых аспектах субъект

подвергается или подвергался заместительной терапии FVIII. В некоторых аспектах биспецифическую молекулу вводят в комбинации с терапией гемофилии. В некоторых аспектах терапия гемофилии представляет собой заместительную терапию FVIII. В некоторых аспектах биспецифическую молекулу, иммуноконъюгат, композицию, нуклеиновую кислоту, вектор или клетку-хозяина вводят до, во время или после осуществления терапии гемофилии. В некоторых аспектах биспецифическую молекулу, иммуноконъюгат, композицию, нуклеиновую кислоту, вектор или клетку-хозяина подкожно. В некоторых внутривенно ИЛИ аспектах биспецифической молекулы, иммуноконъюгата, композиции, вектора или клетки-хозяина обеспечивает нуклеиновой кислоты, снижение частоты эпизодов прорывного кровотечения, эпизодов спонтанного кровотечения или резкого кровотечения. В некоторых аспектах введение биспецифической молекулы, иммуноконъюгата, композиции, нуклеиновой кислоты, вектора или клетки-хозяина обеспечивает снижение годового показателя частоты кровотечения на 5%, 10%, 20%, 30% или 50%.

- [21] В настоящем изобретении также предусмотрены антитело к FIXa или его антигенсвязывающая часть, которые связываются с тем же эпитопом, что и BIIB-9-1336. Также предусмотрены антитело к FIXa или его антигенсвязывающая часть, которые связываются с эпитопом, перекрывающимся с эпитопом BIIB-9-1336.
- [22] В настоящем изобретении также предусмотрены антитело к FIXa или его антигенсвязывающая часть, которые связываются с областью эпитопа, содержащей по меньшей мере одну аминокислоту, расположенную между положениями, приведенными в соответствии с нумерацией для химотрипсиногена, (i) 91 и 101, (ii) 125 и 128, (iii) 165 и 179 или (iv) 232 и 241 в последовательности тяжелой Также предусмотрены антитело к FIXa или цепи FIXa. **PTO** антигенсвязывающая часть, которые связываются С MOULDING , содержащим по меньшей мере один из аминокислотных остатков, приведенных в соответствии с нумерацией для химотрипсиногена, H91, H92, N93, H101, D125, K126, E127, Y128, R165, Y177, N178, N179, S232, R233, Y234, V235, N236, W237, E240, и K241 последовательности тяжелой цепи FIXa. В некоторых аспектах

аминокислотные остатки, приведенные содержит соответствии с нумерацией для химотрипсиногена, N93, R165, N178 и R233 последовательности тяжелой цепи FIXa. В других аспектах HOTNHE содержит аминокислотные остатки, приведенные соответствии с нумерацией для химотрипсиногена, H91, H92, N93, H101, D125, K126, E127, Y128, R165, Y177, N178, N179, S232, R233, Y234, V235, N236, W237, E240, и K241 последовательности тяжелой цепи FIXa. В некоторых аспектах эпитоп не содержит по меньшей мере одного из аминокислотных остатков, приведенных в соответствии с нумерацией для химотрипсиногена, N100, K132, R170, T172, F174, T175, H185, E202, последовательности тяжелой цепи FIXa. В некоторых аспектах не содержит аминокислотных остатков, приведенных соответствии с нумерацией для химотрипсиногена, N100, R170, T172, F174, T175, H185, E202, последовательности тяжелой цепи FIXa. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с по меньшей мере одним аминокислотным остатком в легкой цепи FIXa (SEQ ID NO: 756). В некоторых аспектах аминокислотный остаток в легкой цепи FIXa (SEQ ID NO: 756) представляет собой K100. В некоторых аспектах эпитоп перекрывается с участком связывания FVIIIa с FIXa. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть перекрестно конкурируют с FVIIIa за связывание с FIXa. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть блокируют связывание FVIIIa с FIXa.

[23] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть, раскрытые в данном документе, которые специфически связываются с FIXa, содержат CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где (i) CDR1 VH предусматривает CDR1 VH, выбранную из группы, состоящей из CDR1 VH, представленных в таблице 7, или CDR1 VH с одной или двумя мутациями; и/или (ii) CDR2 VH предусматривает CDR2 VH, выбранную из группы, состоящей из CDR2 VH, представленных в таблице 7, или CDR2 VH с одной или двумя мутациями; и/или (iii) CDR3 VH предусматривает CDR3 VH, выбранную из группы, состоящей из CDR3 VH, представленных в таблице 7, или CDR3 VH, представленных в таблице 7, или CDR3 VH, представленных в

СDR1 VL предусматривает CDR1 VL, выбранную из группы, состоящей из CDR1 VL, представленных в таблице 7, или CDR1 VL с одной или двумя мутациями; и/или (v) CDR2 VL предусматривает CDR2 VL, выбранную из группы, состоящей из CDR2 VL, представленных в таблице 7, или CDR2 VL с одной или двумя мутациями; и/или (vi) CDR3 VL предусматривает CDR3 VL, выбранную из группы, состоящей из CDR3 VL, представленных в таблице 7, или CDR3 VL с одной или двумя мутациями.

- [24] или В некоторых аспектах антитело K FIXa его антигенсвязывающая часть, раскрытые в данном документе, которые специфически связываются с FIXa, содержат CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR3 VH содержит аминокислотную последовательность ARDX₁GGYAGYYGMDV (SEQ ID NO: 2196), представляет собой L или V. В некоторых аспектах (i) CDR1 содержит аминокислотную последовательность FTFX₁SX₂X₃MX₄ (SEQ ID NO: 2194), где X_1 представляет собой S, G или E, X_2 представляет собой Y или F, X_3 представляет собой S, E, G или D, и X_4 представляет собой N, V, A или T; и/или (ii) CDR2 VH содержит аминокислотную последовательность $X_5ISX_6X_7X_8X_9X_{10}IYYADSVKG$ (SEQ ID 2195), где X_5 представляет собой S, A, Y ИЛИ G, представляет собой S или A, X_7 представляет собой S, A или G, X_8 представляет собой S, G или D, X_9 представляет собой S, T или G, и X_{10} представляет собой Y или T.
- [25] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть, раскрытые в данном документе, которые специфически связываются с FIXa, содержат CDR1, CDR2 и CDR3 VL, где CDR3 VL содержит аминокислотную последовательность QQYANFPYT (SEQ ID NO: 2168). В некоторых аспектах (i) CDR1 VL содержит аминокислотную последовательность QASQDIANYLN (SEQ ID NO: 2116); и/или (ii) CDR2 VL содержит аминокислотную последовательность DASNLET (SEQ ID NO: 2142).
- [26] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть, раскрытые в данном документе, которые специфически связываются с FIXa, содержат (i) CDR1, CDR2 и CDR3 VH, где CDR1 VH выбрана из SEQ ID NO: 2038-2047, CDR2 VH выбрана из SEQ ID NO: 2064-2073, и CDR3 VH выбрана из SEQ ID NO: 2090-

2099, и/или (ii) CDR1, CDR2 и CDR3 VL, где CDR1 VL выбрана из SEQ ID NO: 2116-2125, CDR2 VL выбрана из SEQ ID NO: 2142-2151, и CDR3 VL выбрана из SEQ ID NO: 2168-2177.

- В некоторых аспектах антитело ĸ FIXa ИЛИ его антигенсвязывающая часть, раскрытые в данном документе, которые специфически связываются с FIXa, содержат CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR3 VH содержит аминокислотную последовательность X₁RDVX₂GYAGX₃YGMDV (SEQ ID NO: 2198), где X₁ представляет собой A или V, X_2 представляет собой G или S, и X_3 представляет собой Y или F. В некоторых аспектах (i) CDR1 VH содержит аминокислотную последовательность FTFGSYDMN (SEQ ID NO: 2048); и/или (ii) CDR2 VH содержит аминокислотную последовательность SISX₁X₂X₃SYIX₄YAX₅SVKG (SEQ ID NO: 2197), где X_1 представляет собой S или D, X_2 представляет собой G или S, X_3 представляет собой E или A, X_4 представляет собой Y или A, и X_5 представляет собой Е или D.
- [28] некоторых аспектах антитело K FIXa ИЛИ его антигенсвязывающая часть, раскрытые в данном документе, которые специфически связываются с FIXa, содержат CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR3 VL содержит аминокислотную последовательность X_1QYAX_2FPYT (SEQ ID NO: 2201), представляет собой Q или S, и X_2 представляет собой N или R. Bнекоторых аспектах антитело к FIXa или его антигенсвязывающая раскрытые в данном документе, которые специфически связываются с FIXa, содержат CDR1, CDR2 и CDR3 VL, где (i) CDR1 VL содержит аминокислотную последовательность $X_1AX_2X_3X_4IX_5X_6YLN$ (SEQ ID NO: 2199), где X_1 представляет собой Q, G или E, представляет собой S или N, X_3 представляет собой Q или E, X_4 представляет собой D или Y, X_5 представляет собой A или S, X_6 представляет собой N или D; и/или (ii) CDR2 VL содержит аминокислотную последовательность $DAX_7NLX_8X_9$ (SEQ ID NO: 2200), где X_7 представляет собой S или A, X_8 представляет собой E, H или Q, и X_9 представляет собой T или Y.
- [29] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть, раскрытые в данном документе, которые специфически связываются с FIXa, содержат (i) CDR1, CDR2 и CDR3

VH, где CDR1 VH выбрана из SEQ ID NO: 2048-2052, CDR2 VH выбрана из SEQ ID NO: 2074-2078, и CDR3 VH выбрана из SEQ ID NO: 2100-2104, и/или (ii) CDR1, CDR2 и CDR3 VL, где CDR1 VL выбрана из SEQ ID NO: 2126-2130, CDR2 VL выбрана из SEQ ID NO: 2152-2156, и CDR3 VL выбрана из SEQ ID NO: 2178-2182.

- [30] некоторых аспектах антитело к FIXa ИЛИ его антигенсвязывающая часть, раскрытые в данном документе, которые специфически связываются с FIXa, содержат VH CDR1, CDR2, и CDR3 и VL CDR1, CDR2, и CDR3, где CDR3 VH содержит аминокислотную последовательность ARDGPX $_1$ X $_2$ X $_3$ DYYMDV (SEQ ID NO: 2204), где X $_1$ представляет собой R или Q, X_2 представляет собой V, D, L или E, и X_3 представляет собой S или V. B некоторых аспектах антитело к его антигенсвязывающая часть, раскрытые документе, которые специфически связываются с FIXa, содержат CDR1, CDR2 и CDR3 VH, где (i) CDR1 VH содержит аминокислотную 2202), $YTFX_1X_2YX_3MH$ (SEQ ID NO: последовательность представляет собой T или H, X_2 представляет собой S, G или H, и X_3 представляет собой Y или P; и/или (ii) CDR2 VH содержит аминокислотную последовательность $X_4INPSX_5GX_6TX_7YAQKFQG$ (SEQ ID NO: 2203), где X_4 представляет собой I или S, X_5 представляет собой G или R, X_6 представляет собой S или R, и X_7 представляет собой S или Е.
- [31] аспектах антитело ĸ FIXa В некоторых антигенсвязывающая часть, раскрытые в данном документе, которые специфически связываются с FIXa, содержат CDR1, CDR2 и CDR3 VH и CDR2 и CDR3 VL, где CDR3 VL содержит аминокислотную последовательность QQRDNWPFT NO:2116). В некоторых (SEQ IDаспектах антитело K FIXa или его антигенсвязывающая часть, раскрытые в данном документе, которые специфически связываются с FIXa, содержат CDR1, CDR2 и CDR3 VL, где (i) CDR1 VL содержит аминокислотную последовательность RASQSVSSYLA (SEQ ID NO:2116); и/или (ii) CDR2 VL содержит аминокислотную последовательность DASNRAT (SEQ ID NO: 2116).
- [32] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть, раскрытые в данном документе, которые специфически связываются с FIXa, содержат (i) CDR1, CDR2 и CDR3

VH, где CDR1 VH выбрана из SEQ ID NO: 2053-2057, CDR2 VH выбрана из SEQ ID NO: 2079-2083, и CDR3 VH выбрана из SEQ ID NO: 2105-2109, и/или (ii) CDR1, CDR2 и CDR3 VL, где CDR1 VL выбрана из SEQ ID NO: 2131-2135, CDR2 VL выбрана из SEQ ID NO: 2157-2161, и CDR3 VL выбрана из SEQ ID NO: 2183-2187.

- [33] аспектах антитело к некоторых FIXa ИЛИ его антигенсвязывающая часть, раскрытые в данном документе, которые специфически связываются с FIXa, содержат CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR3 VH содержит аминокислотную последовательность ARDKYQDYSX₁DI (SEQ ID NO: 2207),, представляет собой F или V. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть, раскрытые в данном документе, которые специфически связываются с FIXa, содержат CDR1, CDR2 и где (i) CDR1 VHсодержит аминокислотную последовательность $GSIX_1SX_2X_3YX_4WX_5$ (SEQ ID NO: 2205),, где X_1 представляет собой S или A, X_2 представляет собой S, T, G или V, X_3 представляет собой S или A, X_4 представляет собой Y или A, и X_5 представляет собой G, V, N или S; и/или (ii) CDR2 VH содержит аминокислотную последовательность $X_6IX_7X_8X_9GX_{10}TX_{11}YNPSLKS$ (SEQ ID NO: 2206), где X_6 представляет собой S или Y, X_7 представляет собой S, Y, R, T или Q, X_8 представляет собой Y, G, P или A, X_9 представляет собой S или Q, X_{10} представляет собой S или K, и X_{11} представляет собой У или Q.
- В некоторых аспектах антитело K FIXa или его антигенсвязывающая часть, раскрытые в данном документе, которые специфически связываются с FIXa, содержат CDR1, CDR2 и CDR3 VL, где CDR3 VL содержит аминокислотную последовательность QQANFLPFT (SEQ ID NO: 2188). В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть, раскрытые в данном документе, которые специфически связываются с FIXa, содержат CDR1, CDR2 и CDR3 VL, CDR1 VL содержит аминокислотную последовательность где (i) RASQGIDSWLA (SEQ ID NO: 2136); и/или (ii) CDR2 VL содержит аминокислотную последовательность AASSLQS (SEQ ID NO: 2162).
- [35] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть, раскрытые в данном документе, которые специфически связываются с FIXa, содержат (i) CDR1, CDR2 и CDR3

VH, где CDR1 VH выбрана из SEQ ID NO: 2058-2063, CDR2 VH выбрана из SEQ ID NO: 2084-2089, и CDR3 VH выбрана из SEQ ID NO: 2110-2115, и/или (ii) CDR1, CDR2 и CDR3 VL, где CDR1 VL выбрана из SEQ ID NO: 2136-2141, CDR2 VL выбрана из SEQ ID NO: 2162-2167, и CDR3 VL выбрана из SEQ ID NO: 2188-2193.

- [36] некоторых аспектах антитело к FIXa или антигенсвязывающая часть, раскрытые в данном документе, которые специфически связываются с FIXa, содержат VH и VL, где (i) VH аминокислотную последовательность, которая содержит ПО меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 99% или приблизительно 100% идентична аминокислотной последовательности, выбранной группы, состоящей из SEQ ID NOs: 1935, 1939, 1943, 1947, 1951, 1955, 1959, 1963, 1967, 1971, 1975, 1979, 1983, 1987, 1991, 1995, 1999, 2003, 2007, 2011, 2015, 2019, 2023, 2027, 2031, и 2035; и/или (ii) VL содержит аминокислотную последовательность, которая на по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, меньшей мере приблизительно 95%, по меньшей мере приблизительно 97%, по 96%, по меньшей мере приблизительно меньшей приблизительно 98%, по меньшей мере приблизительно приблизительно 100% идентична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NOs: 1935, 1939, 1943, 1947, 1951, 1955, 1959, 1963, 1967, 1971, 1975, 1979, 1983, 1987, 1991, 1995, 1999, 2003, 2007, 2011, 2015, 2019, 2023, 2027, 2031, и 2037.
- [37] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть, раскрытые в данном документе, которые специфически связываются с FIXa, содержат VH и VL, где (a1) VH и VL содержат соответственно SEQ ID NO: 1935 и 1937 (ВІІВ-9-3595); (a2) VH и VL содержат соответственно SEQ ID NO: 1939 и 1941 (ВІІВ-9-3601); (a3) VH и VL содержат соответственно SEQ ID NO: 1943 и 1945 (ВІІВ-9-3604); (a4) VH и VL содержат соответственно

SEQ ID NO: 1947 и 1949 (BIIB-9-3617); (a5) VH и VL содержат соответственно SEQ ID NO: 1951 и 1953 (BIIB-9-3618); (a6) VH и VL содержат соответственно SEQ ID NO: 1955 и 1957 (BIIB-9-3621); (а7) VH и VL содержат соответственно SEQ ID NO: 1959 и 1961 (BIIB-9-3647); (a8) VH и VL содержат соответственно SEQ ID NO: 1963 и 1965 (BIIB-9-3649); (а9) VH и VL содержат соответственно SEQ ID NO: 1967 и 1969 (BIIB-9-3650); (a10) VH и VL содержат соответственно SEQ ID NO: 1971 и 1973 (BIIB-9-3654); (all) VH и VL содержат соответственно SEQ ID NO: 1975 и 1977 (BIIB-9-3753); (a12) VH и VL содержат соответственно SEQ ID NO: 1979 и 1981 (BIIB-9-3754); (a13) VH и VL содержат соответственно SEQ ID NO: 1983 и 1985 (BIIB-9-3756); (a14) VH и VL содержат соответственно SEQ ID NO: 1987 и 1989 (BIIB-9-3764); (a15) VH и VL содержат соответственно SEQ ID NO: 1991 и 1993 (BIIB-9-3766); (a16) VH и VL содержат соответственно SEQ ID NO: 1995 и 1997 (BIIB-9-3707); (a17) VH и VL содержат соответственно SEQ ID NO: 1999 и 2001 (BIIB-9-3709); (a18) VH и VL содержат соответственно SEQ ID NO: 2003 и 2005 (BIIB-9-3720); (a19) VH и VL содержат соответственно SEQ ID NO: 2007 и 2009 (BIIB-9-3727); (a20) VH и VL содержат соответственно SEQ ID NO: 2011 и 2013 (BIIB-9-3745); (a21) VH и VL содержат соответственно SEQ ID NO: 2015 и 2017 (BIIB-9-3780); (a22) VH и VL содержат соответственно SEQ ID NO: 2019 и 2021 (BIIB-9-3675); (a23) VH и VL содержат соответственно SEQ ID NO: 2023 и 2025 (BIIB-9-3681); (a24) VH и VL содержат соответственно SEQ ID NO: 2027 и 2029 (BIIB-9-3684); (a25) VH и VL содержат соответственно SEQ ID NO: 2031 и 2033 (BIIB-9-3698); или (a26) VH и VL содержат соответственно SEQ ID NO: 2035 и 2037 (ВІІВ-9-3704).

ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ

- [38] Вариант осуществления 1. Выделенное антитело или его антигенсвязывающая часть, которые специфически связываются с активированным фактором IX (FIXa) ("антитело к FIXa или его антигенсвязывающая часть"), где антитело к FIXa или его антигенсвязывающая часть предпочтительно связываются с FIXa в присутствии FIXa и зимогена фактора IX (FIXz).
 - [39] Вариант осуществления 2. Антитело к FIXa или его

- антигенсвязывающая часть согласно варианту осуществления 1, которые связываются с FIXa с более высокой аффинностью связывания, чем аффинность связывания антитела к FIXa или его антигенсвязывающей части с FIXz.
- [40] Вариант осуществления 3. Выделенное антитело к FIXa или его антигенсвязывающая часть, которые связываются с FIXa с более высокой аффинностью связывания, чем аффинность связывания антитела к FIXa или его антигенсвязывающей части с FIXz.
- [41] Вариант осуществления 4. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые связываются с FIXa с K_D , составляющей приблизительно 100 нМ или меньше, приблизительно 90 нМ или меньше, приблизительно 80 нМ или меньше, приблизительно 70 нМ или меньше, приблизительно 60 нМ или меньше, приблизительно 50 нМ или меньше, приблизительно 40 нМ или меньше, приблизительно 30 приблизительно 20 Мн или ΗМ ИЛИ меньше, меньше, приблизительно 10 нМ или меньше, приблизительно 1 нМ или меньше, как определено с помощью анализа, основанного на интерферометрии биослоя (BLI).
- [42] Вариант осуществления 5. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, где FIXa представляет собой свободный FIXa, FIXa в теназном комплексе или FIXa, ковалентно связанный с EGR-CMK (FIXa-SM).
- [43] Вариант осуществления 6. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, где FIXz предусматривает неактивируемый фактор IX (FIXn).
- [44] Вариант осуществления 7. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые перекрестно конкурируют с эталонным антителом, выбранным из группы, состоящей из антител, представленных на фиг. 3A, фиг. 3B и фиг. 3C.
- [45] Вариант осуществления 8. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые связываются с тем же эпитопом, что и

эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. 3A, фиг. 3B и фиг. 3C.

- [46] Вариант осуществления 9. Антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 7 или 8, где эталонное антитело выбрано из ВIIB-9-484, ВIIB-9-440, ВIIB-9-882, ВIIB-9-460, ВIIB-9-433 и любой их комбинации.
- [47] Вариант осуществления 10. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые предпочтительно связываются с FIXa-SM в отличие от свободного FIXa или FIXz и/или связываются с FIXa-SM с более высокой аффинностью связывания, чем аффинность связывания антитела к FIXa или его антигенсвязывающей части со свободным FIXa или FIXz.
- [48] Вариант осуществления 11. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые перекрестно конкурируют с эталонным антителом, выбранным из группы, состоящей из антител, представленных на фиг. 3A.
- [49] Вариант осуществления 12. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. 3A.
- [50] Вариант осуществления 13. Антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 11 или 12, где эталонное антитело выбрано из BIIB-9-484, BIIB-9-440, ВIIB-9-460 и любой их комбинации.
- [51] Вариант осуществления 14. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые предпочтительно связываются со свободным FIXa в отличие от FIXa-SM или FIXz и/или связываются со свободным FIXa с более высокой аффинностью связывания, чем аффинность связывания антитела к FIXa или его антигенсвязывающей части с FIXa-SM или FIXz.
- [52] Вариант осуществления 15. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам

осуществления, которые перекрестно конкурируют с эталонным антителом, выбранным из группы, состоящей из антител, представленных на ϕ ur. 3B.

- [53] Вариант осуществления 16. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. 3В.
- [54] Вариант осуществления 17. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые предпочтительно связываются со свободным FIXa или FIXa-SM в отличие от FIXz и/или связываются со свободным FIXa или FIXa-SM с более высокой аффинностью связывания, чем аффинность связывания антитела к FIXa или его антигенсвязывающей части с FIXz.
- [55] Вариант осуществления 18. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые перекрестно конкурируют с эталонным антителом, выбранным из группы, состоящей из антител, представленных на фиг. 3С.

Вариант осуществления 19. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. 3С.

- [56] Вариант осуществления 20. Антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 18 или 19, где эталонное антитело выбрано из ВIIB-9-882, ВIIB-9-433 и их комбинации.
- [57] Вариант осуществления 21. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые содержат CDR1, CDR2 и CDR3, где CDR3 предусматривает CDR3 VH, выбранную из группы, состоящей из CDR3 VH, представленных на фиг. 3A, фиг. 3B и фиг. 3C, или CDR3 VH с одной или двумя мутациями.
 - [58] Вариант осуществления 22. Антитело к FIXa или его

антигенсвязывающая часть согласно любому из вариантов осуществления 1-21, которые содержат CDR1, CDR2 и CDR3, где CDR3 содержит $ARDX_1X_2X_3X_4X_5X_6YYX_7MDV$ (SEQ ID NO:753), где X_1 представляет собой V или G, X_2 представляет собой G или V, X_3 представляет собой G или R, X_4 представляет собой Y или V, X_5 представляет собой A или S, X_6 представляет собой G или D, X_7 представляет собой G или отсутствует.

- [59] Вариант осуществления 23. Антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 22, где CDR3 содержит ARDVGGYAGYYGMDV (SEQ ID NO: 905, BIIB-9-484, 1335, 1336,), ARDISTDGESSLYYYMDV (SEQ ID NO: 901, BIIB-9-460), ARGPTDSSGYLDMDV (SEQ ID NO: 1186, BIIB-9-882), или ARDGPRVSDYY MDV (SEQ ID NO: 912, BIIB-9-619).
- [60] Вариант осуществления 24. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые содержат CDR1, CDR2 и CDR3, где CDR1 предусматривает CDR1 VH, выбранную из группы, состоящей из CDR1 VH, представленных на фиг. 3A, фиг. 3B и фиг. 3C, или CDR1 VH с одной или двумя мутациями.
- [61] Вариант осуществления 25. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые содержат CDR1, CDR2 и CDR3 VH, где CDR2 предусматривает CDR2 VH, выбранную из группы, состоящей из CDR2 VH, представленных на фиг. 3A, фиг. 3B и фиг. 3C, или CDR2 VH с одной или двумя мутациями.
- [62] Вариант осуществления 26. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые содержат CDR1, CDR2 и CDR3 VL, где CDR1 предусматривает CDR1 VL, выбранную из группы, состоящей из CDR1 VL, представленных на фиг. 3A, фиг. 3B и фиг. 3C, или CDR1 VL с одной или двумя мутациями.
- [63] Вариант осуществления 27. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые содержат CDR1, CDR2 и CDR3 VL, где CDR2 предусматривает CDR2 VL, выбранную из группы, состоящей из CDR2 VL, представленных на фиг. 3A, фиг. 3B и фиг. 3C, или CDR2 VL с

одной или двумя мутациями.

- [64] Вариант осуществления 28. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые содержат CDR1, CDR2 и CDR3 VL, где CDR3 предусматривает CDR3 VL, выбранную из группы, состоящей из CDR3 VL, представленных на фиг. 3A, фиг. 3B и фиг. 3C, или CDR3 VL с одной или двумя мутациями.
- [65] Вариант осуществления 29. Выделенное антитело к FIXа или его антигенсвязывающая часть, которые специфически связываются с FIXa, содержащие CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL где CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL предусматривают CDR1 VH, CDR2 VH и CDR3 VH и CDR1, CDR2 и CDR3 VL, представленные соответственно на фиг. 3A, фиг. 3B и фиг. 3C.
- [66] Вариант осуществления 30. Антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 29, где антитело к FIXa или его антигенсвязывающая часть содержат последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 815, 860 и 905, и/или последовательности CDR1, CDR2 и CDR3 VL, предусматривающие соответственно SEQ ID NO: 950, 995 и 1040 (ВIIB-9-484).
- [67] Вариант осуществления 31. Антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 29, где
- (a1) антитело содержит последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 809, SEQ ID NO: 854 и SEQ ID NO: 899, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 944, SEQ ID NO: 989 и SEQ ID NO: 1034 (BIIB-9-440);
- (a2) антитело содержит последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1102, SEQ ID NO: 1144 и SEQ ID NO: 1186, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1228, SEQ ID NO: 1270 и SEQ ID NO: 1312 (BIIB-9-882);
- (a3) антитело содержит последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 811, SEQ ID NO: 856 и SEQ ID NO: 901, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 946, SEQ

- ID NO: 991 и SEQ ID NO: 1036 (BIIB-9-460); или
- (a4) антитело содержит последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1108, SEQ ID NO: 1150 и SEQ ID NO: 1192, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1234, SEQ ID NO: 1276 и SEQ ID NO: 1318 (ВІІВ-9-433).
- [68] Вариант осуществления 32. Антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 29, где антитело содержит последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 822, SEQ ID NO: 867 и SEQ ID NO: 912, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 957, SEQ ID NO: 1002 и SEQ ID NO: 1047 (ВIIВ-9-619).
- [69] Вариант осуществления 33. Антитело к FIXa или антигенсвязывающая часть согласно варианту осуществления 29, где (i) антитело содержит последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 843, SEQ ID NO: 888 и SEQ ID NO: 933, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 950, SEQ ID NO: 1040, или (ii) NO: 995 И SEQ ID антитело последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 844, SEQ ID NO: 889 и SEQ ID NO: 934, последовательности CDR1 VL, CDR2 VLИ CDR3 VL, предусматривающие соответственно SEQ ID NO: 950, SEQ ID NO: 995 и SEQ ID NO: 1040 (BIIB-9-1335 и BIIB-9-1336).
- [70] Вариант осуществления 34. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, содержащие VH И VL, где VHаминокислотную последовательность, которая на по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, 99% или меньшей мере приблизительно приблизительно 100% идентична аминокислотной последовательности, выбранной группы, состоящей из SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17,

- 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181.
- [71] Вариант осуществления 35. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам VH И VL, осуществления, содержащие где VLсодержит аминокислотную последовательность, которая на по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 96%, по 95%, по меньшей мере приблизительно меньшей приблизительно 97%, по меньшей мере приблизительно меньшей мере приблизительно 99% или приблизительно илентична аминокислотной последовательности, выбранной группы, состоящей из SEQ ID NOs: 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323, 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351, 353, 355, 357, 359, 361, 363, 365, и 367.
- [72] Вариант осуществления 36. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые содержат VH и VL, где VH получена из последовательности зародышевого типа VH1-46,0, VH1-46,4, VH1-46,5, VH1-46,7, VH1-46,9, VH1-69,9, VH3-07,0, VH3-21,0, VH3-21,2, VH3-23,0, VH3-23,1, VH4-31,0, VH4-34,0, VH4-39,0, VH4-39,2, VH4-39,3, VH4-39,5, VH4-39,6, VH4-39,8, VH4-59,6, VH4-08.6.
- [73] Вариант осуществления 37. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые содержат VH и VL, где VL получена из последовательности зародышевого типа VK1-05,0, VK1-05,6, VK1-

- 05,9, VK1-05,21, VK1-12,0, VK1-12,3, VK1-33,0, VK1-33,1, VK1-33,2, VK1-33,8, VK1-33,10, VK1-39,0, VK1-39,6, VK2-28,0, VK2-28,1, VK3-11,0, VK3-11,2, VK3-11,6, VK3-11,10, VK3-11,14, VK3-
- 15,0, VK3-15,6, VK3-15,8, VK3-15,11, VK3-15,20, VK3-15,26, VK3-20,0, VK3-20,4, VK3-20,5, VK3-20,8, или VK4-01,0.
- [74] Вариант осуществления 38. Антитело к FIXa или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, содержащие VH и VL, где
- (a1) VH и VL содержат соответственно SEQ ID NO: 31 и 221 (BIIB-9-484);
- (a2) VH и VL содержат соответственно SEQ ID NO: 19 и 209 (BIIB-9-440);
- (а3) VH и VL содержат соответственно SEQ ID NO: 115 и 301 (BIIB-9-882);
- (a4) VH и VL содержат соответственно SEQ ID NO: 23 и 213 (BIIB-9-460);
- (a5) VH и VL содержат соответственно SEQ ID NO: 127 и 313 (BIIB-9-433);
- (а6) VH и VL содержат соответственно SEQ ID NO: 45 и 235 (ВIIВ-9-619);
- (а7) VH и VL содержат соответственно SEQ ID NO: 185 и 371 (BIIB-9-578);
- (a8) VH и VL содержат соответственно SEQ ID NO: 87 и 221 (BIIB-9-1335); или
- (а9) VH и VL содержат соответственно SEQ ID NO: 89 и 221 (ВІІВ-9-1336).
- [75] Вариант осуществления 39. Выделенное антитело или его антигенсвязывающая часть, которые специфически связываются с FIXz ("антитело к FIXz или его антигенсвязывающая часть"), где антитело к FIXz или его антигенсвязывающая часть предпочтительно связываются с FIXz в присутствии свободного FIXa или FIXa-SM, и/или антитело к FIXz или его антигенсвязывающая часть связываются с FIXz с более высокой аффинностью связывания, чем аффинность связывания антитела к FIXz или его антигенсвязывающей части со свободным FIXa или FIXa-SM.
 - [76] Вариант осуществления 40. Антитело к FIXz или его

антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые перекрестно конкурируют с эталонным антителом, выбранным из группы, состоящей из антител, представленных на ϕ ur. 3D.

- [77] Вариант осуществления 41. Антитело к FIXz или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. 3D.
- [78] Вариант осуществления 42. Антитело к FIXz или его антигенсвязывающая часть согласно варианту осуществления 40 или 41, где эталонное антитело представляет собой BIIB-9-578.
- [79] Вариант осуществления 43. Антитело к FIXz или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые содержат CDR1, CDR2 и CDR3, где CDR3 предусматривает CDR3 VH, выбранную из группы, состоящей из CDR3 VH, представленных на ϕ ur. 3D, или CDR3 VH с одной или двумя мутациями.
- [80] Вариант осуществления 44. Антитело к FIXz или его антигенсвязывающая часть согласно варианту осуществления 43, где CDR3 содержит ARDKYQDYSFDI (SEQ ID NO: 1355, BIIB-9-578).
- [81] Вариант осуществления 45. Антитело к FIXz или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые содержат CDR1, CDR2 и CDR3, где CDR1 предусматривает CDR1 VH, выбранную из группы, состоящей из CDR1 VH, представленных на ϕ ur. 3D, или CDR1 VH с одной или двумя мутациями.
- [82] Вариант осуществления 46. Антитело к FIXz или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые содержат CDR1, CDR2 и CDR3 VH, где CDR2 предусматривает CDR2 VH, выбранную из группы, состоящей из CDR2 VH, представленных на ϕ ur. 3D, или CDR2 VH с одной или двумя мутациями.
- [83] Вариант осуществления 47. Антитело к FIXz или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые содержат CDR1, CDR2 и CDR3 VL, где CDR1

предусматривает CDR1 VL, выбранную из группы, состоящей из CDR1 VL, представленных на ϕ иг. 3D, или CDR1 VL с одной или двумя мутациями.

- [84] Вариант осуществления 48. Антитело к FIXz или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые содержат CDR1, CDR2 и CDR3 VL, где CDR2 предусматривает CDR2 VL, выбранную из группы, состоящей из CDR2 VL, представленных на ϕ ur. 3D, или CDR2 VL с одной или двумя мутациями.
- [85] Вариант осуществления 49. Антитело к FIXz или его антигенсвязывающая часть согласно любым предыдущим вариантам осуществления, которые содержат CDR1, CDR2 и CDR3 VL, где CDR3 предусматривает CDR3 VL, выбранную из группы, состоящей из CDR3 VL, представленных на фиг. 3D, или CDR3 VL с одной или двумя мутациями.
- [86] Вариант осуществления 50. Антитело к FIX или его антигенсвязывающая часть согласно любому из предыдущих вариантов осуществления и вариантов осуществления 169-204, где антитело выбрано из группы, состоящей из IgG1, IgG2, IgG3, IgG4 или их варианта.
- [87] Вариант осуществления 51. Антитело к FIX или его антигенсвязывающая часть согласно варианту осуществления 50, где антитело представляет собой антитело IgG4.
- [88] Вариант осуществления 52. Антитело к FIX или его антигенсвязывающая часть согласно варианту осуществления 50, где антитело содержит не имеющий эффекторных функций Fc IgG4.
- [89] Вариант осуществления 53. Антитело к FIX или его антигенсвязывающая часть согласно любому из предыдущих вариантов осуществления и вариантов осуществления 169-204, содержащие константную область тяжелой цепи.
- [90] Вариант осуществления 54. Антитело к FIX согласно любому из предыдущих вариантов осуществления и вариантов осуществления 169-204, где антитело представляет собой человеческое антитело, сконструированное антитело или гуманизированное антитело.
 - [91] Вариант осуществления 55. Антигенсвязывающая часть

- антитела к FIX согласно любому из предыдущих вариантов осуществления и вариантов осуществления 169-204, где его антигенсвязывающая часть предусматривает Fab, Fab', F(ab')2, Fv или одноцепочечный Fv (scFv).
- [92] Вариант осуществления 56. Биспецифическая молекула, содержащая антитело к FIX или его антигенсвязывающую часть согласно любому из предыдущих вариантов осуществления и вариантов осуществления 169-204, связанные с молекулой, обладающей второй специфичностью связывания.
- [93] Вариант осуществления 57. Нуклеиновая кислота, кодирующая вариабельную область тяжелой и/или легкой цепи антитела к FIX или его антигенсвязывающей части согласно любому из вариантов осуществления 1-55 и вариантов осуществления 169-204 или биспецифическую молекулу согласно варианту осуществления 56.
- [94] Вариант осуществления 58. Вектор экспрессии, содержащий молекулу нуклеиновой кислоты согласно варианту осуществления 57.
- [95] Вариант осуществления 59. Клетка, трансформированная вектором экспрессии согласно варианту осуществления 58.
- [96] Вариант осуществления 60. Иммуноконъюгат, содержащий антитело или его антигенсвязывающую часть согласно любому из вариантов осуществления 1-55 и вариантов осуществления 169-204 или биспецифическую молекулу согласно варианту осуществления 56, связанные со средством.
- [97] Вариант осуществления 61. Композиция, содержащая антитело или его антигенсвязывающую часть согласно любому из вариантов осуществления 1-55 и вариантов осуществления 169-204, биспецифическую молекулу согласно варианту осуществления 56 или иммуноконъюгат согласно варианту осуществления 60 и носитель.
- [98] Вариант осуществления 62. Набор, содержащий антитело или его антигенсвязывающую часть согласно любому из вариантов осуществления 1-55 и вариантов осуществления 169-204, биспецифическую молекулу согласно варианту осуществления 56 или иммуноконъюгат согласно варианту осуществления 60 и инструкции по применению.

- [99] Вариант осуществления 63. Способ получения антитела к FIX или его антигенсвязывающей части, включающий обеспечение экспрессии антитела или его антигенсвязывающей части в клетке согласно варианту осуществления 59 и выделение антитела или его антигенсвязывающей части из клетки.
- [100] Вариант осуществления 64. Способ измерения уровня активированного FIX у субъекта, нуждающегося в этом, включающий приведение в контакт антитела к FIXa или его антигенсвязывающей части согласно любому из вариантов осуществления 1-55 и вариантов осуществления 169-204 с образцом, полученным от субъекта, в подходящих условиях и измерение связывания антитела к FIXa или его антигенсвязывающей части с FIXa в образце.
- [101] Вариант осуществления 65. Способ согласно варианту осуществления 64, где образцом является кровь или сыворотка крови.
- [102] Вариант осуществления 66. Выделенное антитело или его антигенсвязывающая часть, которые специфически связываются с (FXz) ("антитело зимогеном фактора Х К FXz или его антигенсвязывающая часть"), где антитело K FXz ИЛИ его антигенсвязывающая часть предпочтительно связываются с FXz присутствии FXz и активированного фактора X (FXa).
- [103] Вариант осуществления 67. Антитело к FXz или его антигенсвязывающая часть согласно варианту осуществления 66. которые связываются С FXz С более высокой аффинностью связывания, чем аффинность связывания антитела или его антигенсвязывающей части с FXa.
- [104] Вариант осуществления 68. Выделенное антитело к FXz или его антигенсвязывающая часть, которые связываются с FXz с более высокой аффинностью связывания, чем аффинность связывания антитела или его антигенсвязывающей части с FXa.
- [105] Вариант осуществления 69. Антитело к FXz или антигенсвязывающая часть согласно любому ИЗ вариантов 66-68, которые осуществления связываются составляющей приблизительно 100 нМ или меньше, приблизительно 90 нМ или меньше, приблизительно 80 нМ или меньше, приблизительно 70 60 Мн ИЛИ меньше, приблизительно Мн ИЛИ

- приблизительно 50 нМ или меньше, приблизительно 40 нМ или меньше, приблизительно 30 нМ или меньше, приблизительно 20 нМ или меньше, приблизительно 1 нМ или меньше, как измерено с помощью BLI.
- [106] Вариант осуществления 70. Антитело к FXZ или его антигенсвязывающая часть согласно любому из вариантов осуществления 66-69, где FXа представляет собой свободный FXа или FXа, ковалентно связанный с EGR-CMK (FIXa-SM).
- [107] Вариант осуществления 71. Антитело к FXz или его антигенсвязывающая часть согласно любому из вариантов осуществления 66-70, где FXz предусматривает неактивируемый фактор X (FXn).
- [108] Вариант осуществления 72. Антитело к FXz или его антигенсвязывающая часть согласно любому из вариантов осуществления 66-71, которые перекрестно конкурируют с эталонным антителом, выбранным из группы, состоящей из антител, представленных на фиг. 12A и фиг. 12B.
- [109] Вариант осуществления 73. Антитело к FXz или его антигенсвязывающая часть согласно любому из вариантов осуществления 66-72, которые связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. 12A и фиг. 12B.
- [110] Вариант осуществления 74. Антитело к FXz или его антигенсвязывающая часть согласно варианту осуществления 73, которые связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из ВІІВ—12—915, ВІІВ—12—917, ВІІВ—12—932 и любой их комбинации.
- [111] Вариант осуществления 75. Антитело к FXz или его антигенсвязывающая часть согласно любому из вариантов осуществления 66-74, которые содержат CDR1, CDR2 и CDR3, где CDR3 предусматривает CDR3 VH, выбранную из группы, состоящей из CDR3 VH, представленных на фиг. 12A и фиг. 12B, или CDR3 VH с одной или двумя мутациями.
- [112] Вариант осуществления 76. Антитело к FXz или его антигенсвязывающая часть согласно любому из вариантов осуществления 66-75, которые содержат CDR1, CDR2 и CDR3, где

- СDR3 содержит $ARX_1X_2X_3RX_4X_5X_6X_7FDX_8$ (SEQ ID NO: 766), где X_1 представляет собой G или L, X_2 представляет собой R или G, X_3 представляет собой F или Y, X_4 представляет собой P или G, X_5 представляет собой R или A, X_6 представляет собой G или S, X_7 представляет собой R или A, и X_8 представляет собой Y или I.
- [113] Вариант осуществления 77. Антитело к FXz или его антигенсвязывающая часть согласно любому из вариантов осуществления 66-76, которые содержат CDR1, CDR2 и CDR3, где CDR3 содержит ARGRFRPRGRFDY (SEQ ID NO: 1575, BIIB-12-917), ARLGYRGASAFDI (SEQ ID NO: 1589, BIIB-12-932), или ARVGGGYANP (SEQ ID NO: 1573, BIIB-12-915).
- [114] Вариант осуществления 78. Антитело к FXz или его антигенсвязывающая часть согласно любому из вариантов осуществления 66-77, которые содержат CDR1, CDR2 и CDR3 VH, где CDR1 предусматривает CDR1 VH, выбранную из группы, состоящей из CDR1 VH, представленных на фиг. 12A и фиг. 12B, или CDR1 VH с одной или двумя мутациями.
- [115] Вариант осуществления 79. Антитело к FXz или его антигенсвязывающая часть согласно любому из вариантов осуществления 66-78, которые содержат CDR1, CDR2 и CDR3 VH, где CDR2 предусматривает CDR2 VH, выбранную из группы, состоящей из CDR2 VH, представленных на фиг. 12A и фиг. 12B, или CDR2 VH с одной или двумя мутациями.
- [116] Вариант осуществления 80. Антитело к FXz или его антигенсвязывающая часть согласно любому из вариантов осуществления 66-79, которые содержат CDR1, CDR2 и CDR3 VL, где CDR1 предусматривает CDR1 VL, выбранную из группы, состоящей из CDR1 VL, представленных на фиг. 12A и фиг. 12B, или CDR1 VL с одной или двумя мутациями.
- [117] Вариант осуществления 81. Антитело к FXz или его антигенсвязывающая часть согласно любому из вариантов осуществления 66-80, которые содержат CDR1, CDR2 и CDR3 VL, где CDR2 предусматривает CDR2 VL, выбранную из группы, состоящей из CDR2 VL, представленных на фиг. 12A и фиг. 12B, или CDR2 VL с одной или двумя мутациями.
 - [118] Вариант осуществления 82. Антитело к FXz или его

антигенсвязывающая часть согласно любому из вариантов осуществления 66-81, которые содержат CDR1, CDR2 и CDR3 VL, где CDR3 предусматривает CDR3 VL, выбранную из группы, состоящей из CDR3 VL, представленных на фиг. 12A и фиг. 12B, или CDR3 VL с одной или двумя мутациями.

- [119] Вариант осуществления 83. Выделенное антитело или его антигенсвязывающая часть, которые специфически связываются с FXz, содержащие CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL предусматривают CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, представленные соответственно на фиг. 12A и фиг. 12B.
- [120] Вариант осуществления 84. Антитело к FXz или его антигенсвязывающая часть согласно варианту осуществления 83, где антитело содержит последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1393, 1483 или 1573, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1663, 1753 или 1843 (ВІІВ—12—915).
- [121] Вариант осуществления 85. Антитело к FXz или его антигенсвязывающая часть согласно варианту осуществления 83, где антитело содержит последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1395, 1485 или 1575, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1665, 1755 или 1845 (ВІІВ—12—917).
- [122] Вариант осуществления 86. Антитело к FXz или его антигенсвязывающая часть согласно варианту осуществления 83, где антитело содержит последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1409, 1499 или 1589, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1679, 1769 или 1859 (ВІІВ—12—932).
- [123] Вариант осуществления 87. Антитело к FXz или его антигенсвязывающая часть согласно любому из вариантов осуществления 66-86, содержащие VH и VL, где VH содержит аминокислотную последовательность, которая на по меньшей мере

приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей приблизительно 97%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 99% или приблизительно 100% идентична аминокислотной последовательности, выбранной группы, состоящей из SEQ ID NOs: 377, 379, 381, 383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405, 407, 409, 411, 413, 415, 417, 419, 421, 423, 425, 427, 429, 431, 433, 435, 437, 439, 441, 443, 445, 447, 449, 451, 453, 455, 457, 459, 461, 463, 465, 467, 469, 471, 473, 475, 477, 479, 481, 483, 485, 487, 489, 491, 493, 495, 497, 499, 501, 503, 505, 507, 509, 511, 513, 515, 517, 519, 521, 523, 525, 527, 529, 531, 533, 535, 537, 539, 541, 543, 545, 547, 549, 551, 553, и 555.

[124] Вариант осуществления 88. Антитело к FXz или его антигенсвязывающая часть согласно любому из вариантов осуществления 66-87, содержащие VH и VL, где VL аминокислотную последовательность, которая на по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по мере приблизительно 99% или меньшей приблизительно 100% идентична аминокислотной последовательности, выбранной ИЗ группы, состоящей из SEQ ID NOs: 565, 567, 569, 571, 573, 575, 579, 581, 583, 585, 587, 589, 591, 593, 595, 597, 599, 601, 603, 605, 607, 609, 611, 613, 615, 617, 619, 621, 623, 625, 627, 629, 631, 633, 635, 637, 639, 641, 643, 645, 647, 649, 651, 653, 655, 657, 659, 661, 663, 665, 667, 669, 671, 673, 675, 677, 679, 681, 683, 685, 687, 689, 691, 693, 695, 697, 699, 701, 703, 705, 707, 709, 711, 713, 715, 717, 719, 721, 723, 725, 727, 729, 731, 733, 735, 737, 739, 741, и 743.

[125] Вариант осуществления 89. Антитело к FXz или его антигенсвязывающая часть согласно любому из вариантов осуществления 66-88, которые содержат VH и VL, где VH получена из последовательности зародьшевого типа VH1-18,0, VH1-18,1, VH1-

- 18,8, VH1-46,0, VH1-46,4, VH1-46,5, VH1-46,6, VH1-46,7, VH1-46,8, VH1-46,9, VH3-21,0, VH3-23,0, VH3-23,2, VH3-23,6, VH3-30,0, VH4-31,5, VH4-39,0, VH4-39,5. VH4-0B.4, или VH5-51,1.
- [126] Вариант осуществления 90. Антитело к FXz или его антигенсвязывающая часть согласно любому из вариантов осуществления 66-89, которые содержат VH и VL, где VL получена из последовательности зародышевого типа VK1-05,6, VK1-05,12, VK1-12,0, VK1-12,4, VK1-12,7, VK1-12,10, VK1-12,15, VK1-39,0, VK1-39,3, VK1-39,15, VK2-28,0, VK2-28,1, VK2-28,5, VK3-11,0, VK3-11,2, VK3-11,6, VK3-11,14, VK3-15,0, VK3-15,8, VK3-15,10, VK3-20,0, VK3-20,1, VK3-20,4, VK3-20,5, VK4-01,0, VK4-01,4, VK4-01,20.
- [127] Вариант осуществления 91. Антитело к FXz или его антигенсвязывающая часть согласно любому из вариантов осуществления 66-90, содержащие VH и VL, где
- (b1) VH и VL содержат соответственно SEQ ID NO: 423 и 611 (BIIB-12-915);
- (b2) VH и VL содержат соответственно SEQ ID NO: 427 и 615 (BIIB-12-917); или
- (b3) VH и VL содержат соответственно SEQ ID NO: 455 и 643 (BIIB-12-932).
- [128] Вариант осуществления 92. Выделенное антитело или его антигенсвязывающая часть, которые специфически связываются с активированным фактором X (FXa) ("антитело к FXa или его антигенсвязывающая часть"), где антитело K FXa ИЛИ его антигенсвязывающая часть предпочтительно связываются с FXa присутствии FXz и FXa и/или связываются с FXa с более высокой аффинностью связывания, чем аффинность связывания антитела или его антигенсвязывающей части с FXz.
- [129] Вариант осуществления 93. Антитело к FXa или его антигенсвязывающая часть согласно варианту осуществления 92, которые перекрестно конкурируют с эталонным антителом, выбранным из группы, состоящей из антител, представленных на фиг. 12C.
- [130] Вариант осуществления 94. Антитело к FXa или его антигенсвязывающая часть согласно варианту осуществления 92 или 93, которые связываются с тем же эпитопом, что и эталонное

- антитело, выбранное из группы, состоящей из антител, представленных на ϕ иг. 12С.
- [131] Вариант осуществления 95. Антитело к FXa или его антигенсвязывающая часть согласно варианту осуществления 94, которые связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из BIIB-12-925.
- [132] Вариант осуществления 96. Антитело к FXa или его антигенсвязывающая часть согласно любому из вариантов осуществления 92-95, которые содержат CDR1, CDR2 и CDR3, где CDR3 предусматривает CDR3 VH, выбранную из группы, состоящей из CDR3 VH, представленных на фиг. 12C, или CDR3 VH с одной или двумя мутациями.
- [133] Вариант осуществления 97. Антитело к FXa или его антигенсвязывающая часть согласно любому из вариантов осуществления 92-96, которые содержат CDR1, CDR2 и CDR3, где CDR3 содержит AKGPRYYWYSWYFDL (

SEQ ID NO: 1919, BIIB-12-925).

- [134] Вариант осуществления 98. Антитело к FXa или его антигенсвязывающая часть согласно любому из вариантов осуществления 92-97, которые содержат CDR1, CDR2 и CDR3 VH, где CDR1 предусматривает CDR1 VH, выбранную из группы, состоящей из CDR1 VH, представленных на фиг. 12C, или CDR1 VH с одной или двумя мутациями.
- [135] Вариант осуществления 99. Антитело к FXa или его антигенсвязывающая часть согласно любому из вариантов осуществления 92-98, которые содержат CDR1, CDR2 и CDR3 VH, где CDR2 предусматривает CDR2 VH, выбранную из группы, состоящей из CDR2 VH, представленных на фиг. 12C, или CDR2 VH с одной или двумя мутациями.
- [136] Вариант осуществления 100. Антитело к FXa или его антигенсвязывающая часть согласно любому из вариантов осуществления 92-99, которые содержат CDR1, CDR2 и CDR3 VL, где CDR1 предусматривает CDR1 VL, выбранную из группы, состоящей из CDR1 VL, представленных на фиг. 12C, или CDR1 VL с одной или двумя мутациями.
 - [137] Вариант осуществления 101. Антитело к FXa или его

антигенсвязывающая часть согласно любому из вариантов осуществления 92-100, которые содержат CDR1, CDR2 и CDR3 VL, где CDR2 предусматривает CDR2 VL, выбранную из группы, состоящей из CDR2 VL, представленных на фиг. 12C, или CDR2 VL с одной или двумя мутациями.

- [138] Вариант осуществления 102. Антитело к FXa или его антигенсвязывающая часть согласно любому из вариантов осуществления 92-101, которые содержат CDR1, CDR2 и CDR3 VL, где CDR3 предусматривает CDR3 VL, выбранную из группы, состоящей из CDR3 VL, представленных на фиг. 12C, или CDR3 VL с одной или двумя мутациями.
- [139] Вариант осуществления 103. Выделенное антитело или его антигенсвязывающая часть, которые специфически связываются с FXa, содержащие CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL предусматривают CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, представленные соответственно на фиг. 12C.
- [140] Вариант осуществления 104. Антитело к FXa или его антигенсвязывающая часть согласно варианту осуществления 103, где антитело содержит последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1911, 1915 или 1919, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1923, 1927 или 1931 (ВІІВ—12—925).
- [141] Вариант осуществления 105. Антитело к FXa или его антигенсвязывающая часть согласно любому из вариантов осуществления 92–104, содержащие VH и VL, где VH и VL содержат соответственно SEQ ID NO: 559 и 747 (ВIIB-12-925).
- [142] Вариант осуществления 106. Антитело к FX или его антигенсвязывающая часть согласно любому из вариантов осуществления 66-105, где антитело выбрано из группы, состоящей из IgG1, IgG2, IgG3, IgG4 или их варианта.
- [143] Вариант осуществления 107. Антитело к FX или его антигенсвязывающая часть согласно варианту осуществления 106, где антител представляет собой антитело IgG4.
 - [144] Вариант осуществления 108. Антитело к FX или его

антигенсвязывающая часть согласно варианту осуществления 106, где антитело содержит не имеющий эффекторных функций Fc IqG4.

- [145] Вариант осуществления 109. Антитело к FX или его антигенсвязывающая часть согласно любому из вариантов осуществления 66-108, которые содержат константную область тяжелой цепи.
- [146] Вариант осуществления 110. Антитело к FX согласно любому из вариантов осуществления 66-109, где антитело представляет собой человеческое антитело, сконструированное антитело или гуманизированное антитело.
- [147] Вариант осуществления 111. Антигенсвязывающая часть антитела к FX согласно любому из вариантов осуществления 66-110, где его антигенсвязывающая часть предусматривает Fab, Fab, F(ab)2, Fv или одноцепочечный Fv (scFv).
- [148] Вариант осуществления 112. Биспецифическая молекула, содержащая антитело к FX согласно любому из вариантов осуществления 66-111, связанное с молекулой, обладающей второй специфичностью связывания.
- [149] Вариант осуществления 113. Нуклеиновая кислота, кодирующая вариабельную область тяжелой и/или легкой цепи антитела или его антигенсвязывающей части согласно любому из вариантов осуществления 66-111 или биспецифическую молекулу согласно варианту осуществления 112.
- [150] Вариант осуществления 114. Вектор экспрессии, содержащий молекулу нуклеиновой кислоты согласно варианту осуществления 113.
- [151] Вариант осуществления 115. Клетка, трансформированная вектором экспрессии согласно варианту осуществления 114.
- [152] Вариант осуществления 116. Иммуноконъюгат, содержащий антитело или его антигенсвязывающую часть согласно любому из вариантов осуществления 66-111 или биспецифическую молекулу согласно варианту осуществления 112, связанные со средством.
- [153] Вариант осуществления 117. Композиция, содержащая антитело или его антигенсвязывающую часть согласно любому из вариантов осуществления 66-111, или биспецифическую молекулу согласно варианту осуществления 112, или иммуноконъюгат согласно

варианту осуществления 116 и носитель.

- [154] Вариант осуществления 118. Набор, содержащий антитело или его антигенсвязывающую часть согласно любому из вариантов осуществления 66-111, или биспецифическую молекулу согласно варианту осуществления 112, или иммуноконъюгат согласно варианту осуществления 116 и инструкции по применению.
- [155] Вариант осуществления 119. Способ получения антитела к FX или его антигенсвязывающей части, включающий обеспечение экспрессии антитела или его антигенсвязывающей части в клетке согласно варианту осуществления 115 и выделение антитела или его антигенсвязывающей части из клетки.
- [156] Вариант осуществления 120. Способ измерения уровня зимогена FX (FXz) у субъекта, нуждающегося в этом, включающий приведение в контакт антитела к FX или его антигенсвязывающей части согласно любому из вариантов осуществления 66-111 с образцом, полученным от субъекта, в подходящих условиях и измерение связывания антитела к FX или его антигенсвязывающей части с FXz в образце.
- [157] Вариант осуществления 121. Способ согласно варианту осуществления 120, где образцом является кровь или сыворотка крови от субъекта.
- [158] Вариант осуществления 122. Биспецифическая молекула, содержащая антитело к FIX или его антигенсвязывающую часть согласно любому из вариантов осуществления 1-55 и вариантов 169-204 (ii) осуществления И антитело к FΧ ИЛИ антигенсвязывающую часть согласно любому ИЗ вариантов осуществления 66-111.
- [159] Вариант осуществления 123. Биспецифическая молекула согласно варианту осуществления 122, которая перекрестно конкурирует с эталонным биспецифическим антителом, где эталонное биспецифическое антитело содержит VH и VL антитела к FIX, выбранного из группы, состоящей из антител к FIX, представленных на фиг. 3A, фиг. 3B, фиг. 3C и фиг. 3D, и VH и VL антитела к FX, выбранного из группы, состоящей из антител к FX, представленных на фиг. 12A, фиг. 12B и фиг. 12C.
 - [160] Вариант осуществления 124. Биспецифическая молекула

согласно варианту осуществления 122 или 123, которая связывается с тем же эпитопом, что и эталонное биспецифическое антитело, где эталонное биспецифическое антитело содержит VH и VL антитела к FIX, выбранного из группы, состоящей из антител к FIX, представленных на фиг. 3A, фиг. 3B, фиг. 3C и фиг. 3D, и VH и VL антитела к FX, выбранного из группы, состоящей из антител к FX, представленных на фиг. 12A, фиг. 12B и фиг. 12C.

- [161] Вариант осуществления 125. Биспецифическая молекула согласно любому из вариантов осуществления 122-124, где
- (i) антитело к FIX или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL выбраны из группы, состоящей из CDR1 VH, CDR2 VH и CDR3 VH и CDR1 VL, CDR2 VL и CDR3 VL антител к FIX (ВІІВ-9), представленных на фиг. 16A, фиг. 16B, фиг. 16C и фиг. 16D; и
- (ii) антитело к FX или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL выбраны из группы, состоящей из CDR1 VH, CDR2 VH и CDR3 VH и CDR1 VL, CDR2 VL и CDR3 VL антител к FX (BIIB-12), представленных на фиг. 16A, фиг. 16B, фиг. 16C и фиг. 16D.
- [162] Вариант осуществления 126. Биспецифическая молекула согласно любому из вариантов осуществления 122-124, где
- (a) антитело к FIX или его антигенсвязывающая часть содержат:
- (a1) последовательности CDR1, CDR2 И CDR3 VH, предусматривающие соответственно SEQ ID NO: 815, 860 или 905, VL, и/или последовательности CDR1 VLCDR2 CDR3 VL, предусматривающие соответственно SEQ ID NO: 950, 995 или (BIIB-9-484);
- (a2) последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 822, 867 и 912, и/или последовательности CDR1, CDR2 и CDR3 VL, предусматривающие соответственно SEQ ID NO: 957, 1002 и 1047 (ВIIB-9-619);
- (а3)
 последовательности
 CDR1,
 CDR2
 и
 CDR3
 VH,

 предусматривающие соответственно
 SEQ
 ID
 NO:
 1347,
 1351
 и
 1355,

- и/или последовательности CDR1, CDR2 и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1359, 1363 и 1367 (BIIB-9-578);
- (a4) последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 843, 888 и 933, и/или последовательности CDR1, CDR2 и CDR3 VL, предусматривающие соответственно SEQ ID NO: 978, 1023 и 1068 (BIIB-9-1335); или
- (а5) последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 844, 889 и 934, и/или последовательности CDR1, CDR2 и CDR3 VL, предусматривающие соответственно SEQ ID NO: 979, 1024 и 1069 (ВIIВ-9-1336); и
- (b) антитело к FX или его антигенсвязывающая часть содержат:
- (b1) последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1393, 1483 и 1573, и/или последовательности CDR1, CDR2 и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1663, 1753 и 1843 (ВІІВ—12—915);
- (b2) последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1395, 1485 и 1575, и/или последовательности CDR1, CDR2 и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1665, 1755 и 1845 (ВІІВ-12-917);
- (b3) последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1911, 1915 и 1919, и/или последовательности CDR1, CDR2 и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1923, 1927 и 1931 (ВІІВ-12-925);
- (b4) последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1409, 1499 и 1589, и/или последовательности CDR1, CDR2 и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1679, 1769 и 1859 (ВІІВ—12—932); или
- (b5) последовательности CDR1, CDR2 и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1433, 1523 и 1613, и/или последовательности CDR1, CDR2 и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1703, 1793 и 1883 (ВІІВ-12-1306).
- [163] Вариант осуществления 127. Биспецифическая молекула согласно любому из вариантов осуществления 122-124, где
- (a) антитело к ${\sf FIX}$ или его антигенсвязывающая часть содержат:

- (a1) VH и VL, содержащие соответственно SEQ ID NO: 31 и 221 (BIIB-9-484);
- (a2) VH и VL, содержащие соответственно SEQ ID NO: 45 и 235 (BIIB-9-619);
- (a3) VH и VL, содержащие соответственно SEQ ID NO: 185 и $371 \, (BIIB-9-578);$
- (a4) VH и VL, содержащие соответственно SEQ ID NO: 87 и 221 (BIIB-9-1335); или
- (a5) VH и VL, содержащие соответственно SEQ ID NO: 89 и 221 (BIIB-9-1336); и
- (b) антитело к FX или его антигенсвязывающая часть содержат:
- (b1) VH и VL, содержащие соответственно SEQ ID NO: 423 и 611 (BIIB-12-915);
- (b2) VH и VL, содержащие соответственно SEQ ID NO: 427 и 615 (BIIB-12-917);
- (b3) VH и VL, содержащие соответственно SEQ ID NO: 559 и 747 (BIIB-12-925);
- (b4) VH и VL, содержащие соответственно SEQ ID NO: 455 и 643 (BIIB-12-932); или
- (b5) VH и VL, содержащие соответственно SEQ ID NO: 503 и $691 \, (BIIB-12-1306)$.
- [164] Вариант осуществления 128. Биспецифическая молекула согласно любому из вариантов осуществления 122-127,
- (i) где антитело к FIX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 31 и 221 (ВІІВ-9-484); и антитело к FX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 423 и 611 (ВІІВ-12-915);
- (ii) где антитело к FIX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 31 и 221 (ВІІВ-9-484); и антитело к FX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 427 и 615 (ВІІВ-12-917);
- (iii) где антитело к FIX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 31 и 221

- (ВІІВ-9-484); и антитело к FX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 559 и 747 (ВІІВ-12-925);
- (iv) где антитело к FIX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 31 и 221 (ВІІВ-9-484); и антитело к FX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 455 и 643 (ВІІВ-12-932);
- (v) где антитело к FIX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 185 и 371 (ВІІВ-9-578); и антитело к FX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 423 и 611 (ВІІВ-12-915);
- (vi) где антитело к FIX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 185 и 371 (BIIB-9-578); и антитело к FX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 427 и 615 (BIIB-12-917);
- (vii) где антитело к FIX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 45 и 235 (BIIB-9-619); и антитело к FX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 427 и 615 (BIIB-12-917); или
- (viii) где антитело к FIX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 45 и 235 (BIIB-9-619); и антитело к FX или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 559 и 747 (BIIB-12-925).
- [165] Вариант осуществления 129. Биспецифическая молекула согласно любому из вариантов осуществления 122-128, которая функционально имитирует кофактор, представляющий собой активированный фактор VIII (FVIIIa), в по меньшей мере одном анализе активности FVIIIa.
- [166] Вариант осуществления 130. Биспецифическая молекула согласно варианту осуществления 129, где анализ активности FVIIIa выбран из хромогенного анализа образования FXa,

одностадийного анализа свертывания крови или их комбинации.

- [167] Вариант осуществления 131. Биспецифическая молекула согласно варианту осуществления 129 или 130, где достигаемая активность FVIIIa составляет по меньшей мере 10%, 20%, 30%, 35%, 40%, 45% 50%, 60%, 70%, 80%, 90%, 100%, 110%, 120%, 130%, 140%, 150%, 160%, 170%, 180%, 190%, или 200% от активности, в ином случае достигаемой FVIII в том же анализе.
- [168] Вариант осуществления 132. Биспецифическая молекула согласно любому из вариантов осуществления 122-131, где биспецифическая молекула способна обеспечивать образование тромбина из протромбина, фибрина из фибриногена и/или фибринового стустка in vitro или in vivo.
- [169] Вариант осуществления 133. Биспецифическая молекула согласно любому из вариантов осуществления 122-132, где биспецифическая молекула одновременно связывается как с FIXa, так и с FX, как определено с помощью BLI.
- [170] Вариант осуществления 134. Биспецифическая молекула согласно любому из вариантов осуществления 122-133, где биспецифическая молекула относится к изотипу IgG.
- [171] Вариант осуществления 135. Биспецифическая молекула согласно варианту осуществления 134, где изотип IgG относится к подклассу IgG1.
- [172] Вариант осуществления 136. Биспецифическая молекула согласно варианту осуществления 134, где изотип IgG относится к подклассу IgG4.
- [173] Вариант осуществления 137. Биспецифическая молекула согласно любому из вариантов осуществления 122-136, где биспецифическая молекула имеет формат биспецифического IgG и выбрана из группы, состоящей из антител, представленных в таблице 2.
- [174] Вариант осуществления 138. Биспецифическая молекула согласно варианту осуществления 137, где биспецифическая молекула имеет формат биспецифического гетеродимера.
- [175] Вариант осуществления 139. Биспецифическая молекула согласно любому из вариантов осуществления 122-138, где биспецифическая молекула содержит две разные тяжелые цепи и две

разные легкие цепи.

- [176] Вариант осуществления 140. Биспецифическая молекула согласно любому из вариантов осуществления 122-138, где биспецифическая молекула содержит две идентичные легкие цепи и две разные тяжелые цепи.
- [177] Вариант осуществления 141. Биспецифическая молекула согласно любому из вариантов осуществления 122-140, где биспецифическая молекула может обеспечивать контроль или снижение частоты возникновения эпизодов кровотечения у субъекта, имеющего гемофилию.
- [178] Вариант осуществления 142. Биспецифическая молекула согласно любому из вариантов осуществления 122-140, где биспецифическая молекула может обеспечивать поддержание гомеостаза или у субъекта, имеющего гемофилию.
- [179] Вариант осуществления 143. Биспецифическая молекула согласно любому из вариантов осуществления 122-140, где биспецифическая молекула может обеспечивать рутинную профилактику у субъекта, имеющего гемофилию.
- [180] Вариант осуществления 144. Биспецифическая молекула согласно любому из вариантов осуществления 122-143, где у субъекта выработались или предположительно будут вырабатываться нейтрализующие антитела к фактору VIII.
- [181] Вариант осуществления 145. Иммуноконъюгат, содержащий биспецифическую молекулу согласно любому из вариантов осуществления 122-144, связанную со средством.
- [182] Вариант осуществления 146. Композиция, содержащая биспецифическую молекулу согласно любому из вариантов осуществления 122-144 или иммуноконъюгат согласно варианту осуществления 145 и носитель.
- [183] Вариант осуществления 147. Набор, содержащий биспецифическую молекулу согласно любому из вариантов осуществления 122-144 или иммуноконъюгат согласно варианту осуществления 145 и инструкции по применению.
- [184] Вариант осуществления 148. Последовательность нуклеиновой кислоты, кодирующая биспецифическую молекулу согласно любому из вариантов осуществления 122-144.

- [185] Вариант осуществления 149. Вектор, содержащий нуклеиновую кислоту согласно варианту осуществления 148.
- [186] Вариант осуществления 150. Клетка-хозяин, содержащая вектор согласно варианту осуществления 149.
- [187] Вариант осуществления 151. Клетка-хозяин согласно варианту осуществления 150, где клетка-хозяин представляет собой прокариотическую клетку, эукариотическую клетку, клетку простейшего, клетку животного, клетку растения, клетку гриба, дрожжевую клетку, клетку Sf9, клетку млекопитающего, клетку птицы, клетку насекомого, клетку CHO, клетку НЕК или клетку COS.
- [188] Вариант осуществления 152. Способ получения биспецифической молекулы, включающий культивирование клетки-хозяина согласно варианту осуществления 150 в условиях, которые обеспечивают экспрессию биспецифической молекулы.
- [189] Вариант осуществления 153. Способ получения биспецифической молекулы согласно любому из вариантов осуществления 122-144, дополнительно предусматривающий условия, которые увеличивают возможность гетеродимеризации.
- 154. Способ обеспечения [190] Вариант осуществления активации FX у субъекта, нуждающегося в HOTOM, включающий субъекту терапевтически эффективного количества введение биспецифической молекулы согласно любому ИЗ вариантов 122-144, осуществления иммуноконъюгата согласно варианту осуществления 145, композиции согласно варианту осуществления 146, нуклеиновой кислоты согласно варианту осуществления 148, вектора согласно варианту осуществления 149 или клетки-хозяина согласно варианту осуществления 150.
- [191] Вариант осуществления 155. Способ снижения частоты или степени эпизода кровотечения у субъекта, нуждающегося в этом, включающий введение субъекту эффективного количества биспецифической молекулы согласно любому из вариантов осуществления 122-144, иммуноконъюгата согласно варианту осуществления 145, композиции согласно варианту осуществления 146, нуклеиновой кислоты согласно варианту осуществления 148, вектора согласно варианту осуществления 148, согласно варианту осуществления 149 или клетки-хозяина согласно варианту осуществления 150.

- [192] Вариант осуществления 156. Способ согласно варианту осуществления 155, где у субъекта выработался ингибитор фактора VIII ("FVIII") или имеется предрасположенность к его выработке.
- [193] Вариант осуществления 157. Способ согласно варианту осуществления 156, где ингибитор FVIII представляет собой нейтрализующее антитело к FVIII.
- [194] Вариант осуществления 158. Способ согласно любому из вариантов осуществления 155-157, где эпизод кровотечения результатом гемартроза, кровотечения является В мышцу, кровотечения в ротовой полости, кровоизлияния, кровоизлияния в мышцы, кровоизлияния в ротовую полость, травмы, травмы головы, желудочно-кишечного кровотечения, внутричерепного кровоизлияния, кровоизлияния, внутригрудного внутрибрюшного кровоизлияния, перелома кости, кровотечения в центральной нервной системе, кровотечения В заглоточное пространство, кровотечения забрюшинное пространство, кровотечения во влагалище подвздошнопоясничной мышцы или любых их комбинаций.
- [195] Вариант осуществления 159. Способ лечения нарушения свертывания крови у субъекта, нуждающегося в этом, включающий эффективного введение субъекту количества биспецифической молекулы согласно любому из вариантов осуществления 122-144, иммуноконъюгата согласно варианту осуществления 145, композиции варианту осуществления 146, нуклеиновой согласно кислоты согласно варианту осуществления 148, вектора согласно варианту 149 или клетки-хозяина согласно осуществления варианту осуществления 150.
- [196] Вариант осуществления 160. Способ согласно варианту осуществления 159, где нарушением свертывания крови является гемофилия А или гемофилия В.
- [197] Вариант осуществления 161. Способ согласно любому из вариантов осуществления 154-160, где субъектом является субъект-человек.
- [198] Вариант осуществления 162. Способ согласно любому из вариантов осуществления 154-160, где субъект получает или получил заместительную терапию FVIII.
 - [199] Вариант осуществления 163. Способ согласно любому из

вариантов осуществления 154-162, где биспецифическую молекулу вводят в комбинации с терапией гемофилии.

- [200] Вариант осуществления 164. Способ согласно варианту осуществления 163, где терапия гемофилии представляет собой заместительную терапию FVIII.
- [201] Вариант осуществления 165. Способ согласно варианту осуществления 163 или 164, где биспецифическую молекулу вводят до, во время или после осуществления терапии гемофилии.
- [202] Вариант осуществления 166. Способ согласно любому из вариантов осуществления 154-165, где биспецифическую молекулу вводят внутривенно или подкожно.
- [203] Вариант осуществления 167. Способ согласно любому из вариантов осуществления 154–166, где введение биспецифической молекулы обеспечивает снижение частоты эпизодов прорывного кровотечения, эпизодов спонтанного кровотечения или резкого кровотечения.
- [204] Вариант осуществления 168. Способ согласно варианту осуществления 167, где введение биспецифической молекулы обеспечивает снижение годового показателя частоты кровотечения на 5%, 10%, 20%, 30% или 50%.
- [205] Вариант осуществления 169. Антитело к FIXa или его антигенсвязывающая часть, которые связываются с тем же эпитопом, что и BIIB-9-1336.
- [206] Вариант осуществления 170. Антитело к FIXa или его антигенсвязывающая часть, которые связываются с эпитопом, перекрывающимся с эпитопом ВIIB-9-1336.
- [207] Вариант осуществления 171. Антитело к FIXa или его антигенсвязывающая часть, которые связываются с областью эпитопа, содержащей по меньшей мере одну аминокислоту, расположенную между положениями, приведенными в соответствии с нумерацией для химотрипсиногена, (i) 91 и 101, (ii) 125 и 128, (iii) 165 и 179 или (iv) 232 и 241 в последовательности тяжелой цепи FIXa.
- [208] Вариант осуществления 172. Антитело к FIXa или его антигенсвязывающая часть, которые связываются с эпитопом, содержащим по меньшей мере один из аминокислотных остатков,

приведенных в соответствии с нумерацией для химотрипсиногена, H91, H92, N93, H101, D125, K126, E127, Y128, R165, Y177, N178, N179, S232, R233, Y234, V235, N236, W237, E240, и K241 последовательности тяжелой цепи FIXa.

- [209] Вариант осуществления 173. Антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 171 или 172, где эпитоп содержит аминокислотные остатки, приведенные в соответствии с нумерацией для химотрипсиногена, N93, R165, N178 и R233 последовательности тяжелой цепи FIXa.
- [210] Вариант осуществления 174. Антитело к FIXa или его антигенсвязывающая часть согласно вариантам осуществления 171-173, где эпитоп содержит аминокислотные остатки, приведенные в соответствии с нумерацией для химотрипсиногена, Н91, Н92, N93, Н101, D125, K126, E127, Y128, R165, Y177, N178, N179, S232, R233, Y234, V235, N236, W237, E240, и K241 последовательности тяжелой цепи FIXa.
- [211] Вариант осуществления 175. Антитело к FIXa или его антигенсвязывающая часть согласно вариантам осуществления 171-174, где эпитоп не содержит по меньшей мере одного из аминокислотных остатков, приведенных в соответствии с нумерацией для химотрипсиногена, N100, K132, Y137, R170, T172, F174, T175, H185, E202 и G205 последовательности тяжелой цепи FIXa.
- [212] Вариант осуществления 176. Антитело к FIXa или его антигенсвязывающая часть согласно вариантам осуществления 171-175, где эпитоп не содержит аминокислотных остатков, приведенных в соответствии с нумерацией для химотрипсиногена, N100, K132, Y137, R170, T172, F174, T175, H185, E202 и G205 последовательности тяжелой цепи FIXa.
- [213] Вариант осуществления 177. Антитело к FIXa или его антигенсвязывающая часть согласно вариантам осуществления 171-176, которые связываются с по меньшей мере одним аминокислотным остатком в легкой цепи FIXa (SEQ ID NO: 756).
- [214] Вариант осуществления 178. Антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 177, где аминокислотный остаток в легкой цепи FIXa (SEQ ID NO: 756) представляет собой K100.

- [215] Вариант осуществления 179. Антитело к FIXa или его антигенсвязывающая часть согласно любому из вариантов осуществления 169-178, где эпитоп перекрывается с участком связывания FVIIIa с FIXa.
- [216] Вариант осуществления 180. Антитело к FIXa или его антигенсвязывающая часть согласно любому из вариантов осуществления 169-179, которые перекрестно конкурируют FVIIIa за связывание с FIXa.
- [217] Вариант осуществления 181. Антитело к FIXa или его антигенсвязывающая часть согласно любому из вариантов осуществления 169-180, где антитело или его антигенсвязывающая часть блокируют связывание FVIIIa с FIXa.
- [218] Вариант осуществления 182. Антитело к FIXa или его антигенсвязывающая часть согласно любому из вариантов осуществления 1-12, которые специфически связываются с FIXa, содержащие CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где
- (i) CDR1 VH предусматривает CDR1 VH, выбранную из группы, состоящей из CDR1 VH, представленных в таблице 7, или CDR1 VH с одной или двумя мутациями; и/или
- (ii) CDR2 VH предусматривает CDR2 VH, выбранную из группы, состоящей из CDR2 VH, представленных в таблице 7, или CDR2 VH с одной или двумя мутациями; и/или
- (iii) CDR3 VH предусматривает CDR3 VH, выбранную из группы, состоящей из CDR3 VH, представленных в таблице 7, или CDR3 VH с одной или двумя мутациями; и/или
- (iv) CDR1 VL предусматривает CDR1 VL, выбранную из группы, состоящей из CDR1 VL, представленных в таблице 7, или CDR1 VL с одной или двумя мутациями; и/или
- (v) CDR2 VL предусматривает CDR2 VL, выбранную из группы, состоящей из CDR2 VL, представленных в таблице 7, или CDR2 VL с одной или двумя мутациями; и/или
- (vi) CDR3 VL предусматривает CDR3 VL, выбранную из группы, состоящей из CDR3 VL, представленных в таблице 7, или CDR3 VL с одной или двумя мутациями.
- [219] Вариант осуществления 183. Антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 182,

которые специфически связываются с FIXa, содержащие CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR3 VH содержит аминокислотную последовательность $ARDX_1GGYAGYYGMDV$ (SEQ ID NO: 2196), где X_1 представляет собой L или V.

- [220] Вариант осуществления 184. Выделенное антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 183, где
- (i) CDR1 VH содержит аминокислотную последовательность $FTFX_1SX_2X_3MX_4$ (SEQ ID NO: 2194), где X_1 представляет собой S, G или E, X_2 представляет собой Y или F, X_3 представляет собой S, E, G или D, и X_4 представляет собой N, V, A или T; и/или
- (ii) CDR2 VH содержит аминокислотную последовательность $X_5ISX_6X_7X_8X_9X_{10}IYYADSVKG$ (SEQ ID NO: 2195), где X_5 представляет собой S, A, Y или G, X_6 представляет собой S или A, X_7 представляет собой S, A или G, X_8 представляет собой S, G или D, X_9 представляет собой S, T или G, и X_{10} представляет собой Y или T.
- [221] Вариант осуществления 185. Выделенное антитело к FIXa или его антигенсвязывающая часть согласно любому из вариантов осуществления 182-184, которые содержат CDR1, CDR2 и CDR3 VL, где CDR3 VL содержит аминокислотную последовательность QQYANFPYT (SEQ ID NO: 2168).
- [222] Вариант осуществления 186. Выделенное антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 185, которые содержат CDR1, CDR2 и CDR3 VL, где
- (i) CDR1 VL содержит аминокислотную последовательность QASQDIANYLN (SEQ ID NO: 2116); и/или
- (ii) CDR2 VL содержит аминокислотную последовательность DASNLET (SEQ ID NO: 2142).
- [223] Вариант осуществления 187. Антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 182, которые содержат CDR1, CDR2 и CDR3 VH, предусматривающие CDR1 VH, выбранную из SEQ ID NO: 2038-2047, CDR2 VH, выбранную из SEQ ID NO: 2064-2073, и CDR3 VH, выбранную из SEQ ID NO: 2090-2099, и/или CDR1, CDR2 и CDR3 VL, предусматривающие CDR1 VL, выбранную из SEQ ID NO: 2116-2125, CDR2 VL, выбранную из SEQ ID NO: 2142-

2151, и CDR3 VL, выбранную из SEQ ID NO: 2168-2177.

- [224] Вариант осуществления 188. Выделенное антитело к FIXа или его антигенсвязывающая часть согласно варианту осуществления 182, которые специфически связываются с FIXa, содержащие CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR3 VH содержит аминокислотную последовательность $X_1RDVX_2GYAGX_3YGMDV$ (SEQ ID NO: 2198), где X_1 представляет собой A или V, X_2 представляет собой G или S, и X_3 представляет собой Y или F.
- [225] Вариант осуществления 189. Выделенное антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 188, где
- (i) CDR1 VH содержит аминокислотную последовательность FTFGSYDMN (SEQ ID NO: 2048); и/или
- (ii) CDR2 VH содержит аминокислотную последовательность $SISX_1X_2X_3SYIX_4YAX_5SVKG$ (SEQ ID NO: 2197), где X_1 представляет собой S или D, X_2 представляет собой G или S, X_3 представляет собой E или A, X_4 представляет собой Y или A, и X_5 представляет собой E или D.
- [226] Вариант осуществления 190. Выделенное антитело к FIXa или его антигенсвязывающая часть согласно любому из вариантов осуществления 182, 188 или 189, которые специфически связываются с FIXa, содержащие CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR3 VL содержит аминокислотную последовательность X_1QYAX_2FPYT (SEQ ID NO: 2201), где X_1 представляет собой Q или S, и X_2 представляет собой N или R.
- [227] Вариант осуществления 191. Выделенное антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 190, которые содержат CDR1, CDR2 и CDR3 VL, где
- (i) CDR1 VL содержит аминокислотную последовательность $X_1AX_2X_3X_4IX_5X_6YLN$ (SEQ ID NO: 2199), где X_1 представляет собой Q, G или E, X_2 представляет собой S или N, X_3 представляет собой Q или E, X_4 представляет собой D или Y, X_5 представляет собой A или S, X_6 представляет собой N или D; и/или
- (ii) CDR2 VL содержит аминокислотную последовательность $DAX_7NLX_8X_9$ (SEQ ID NO: 2200), где X_7 представляет собой S или A, X_8 представляет собой E, H или Q, и X_9 представляет собой T или

Υ.

- [228] Вариант осуществления 192. Антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 182, которые содержат CDR1, CDR2 и CDR3 VH, предусматривающие CDR1 VH, выбранную из SEQ ID NO: 2048-2052, CDR2 VH, выбранную из SEQ ID NO: 2074-2078, и CDR3 VH, выбранную из SEQ ID NO: 2100-2104, и/или CDR1, CDR2 и CDR3 VL, предусматривающие CDR1 VL, выбранную из SEQ ID NO: 2126-2130, CDR2 VL, выбранную из SEQ ID NO: 2152-2156, и CDR3 VL, выбранную из SEQ ID NO: 2152-
- [229] Вариант осуществления 193. Выделенное антитело к FIXа или его антигенсвязывающая часть согласно варианту осуществления 182, которые специфически связываются с FIXa, содержащие CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR3 VH содержит аминокислотную последовательность ARDGPX $_1$ X $_2$ X $_3$ DYYMDV (SEQ ID NO: 2204), где X $_1$ представляет собой R или Q, X $_2$ представляет собой V, D, L или E, и X $_3$ представляет собой S или V.
- [230] Вариант осуществления 194. Выделенное антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 193, которые содержат CDR1, CDR2 и CDR3 VH, где
- (i) CDR1 VH содержит аминокислотную последовательность $YTFX_1X_2YX_3MH$ (SEQ ID NO: 2202), где X_1 представляет собой T или H, X_2 представляет собой S, G или H, и X_3 представляет собой Y или P; и/или
- (ii) CDR2 VH содержит аминокислотную последовательность $X_4INPSX_5GX_6TX_7YAQKFQG$ (SEQ ID NO: 2203), где X_4 представляет собой I или S, X_5 представляет собой G или R, X_6 представляет собой S или R, и X_7 представляет собой S или E.
- [231] Вариант осуществления 195. Выделенное антитело к FIXа или его антигенсвязывающая часть согласно любому из вариантов осуществления 182, 193 или 194, которые специфически связываются с FIXa, содержащие CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR3 VL содержит аминокислотную последовательность QQRDNWPFT (SEQ ID NO: 2116).
- [232] Вариант осуществления 196. Выделенное антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 195, которые содержат CDR1, CDR2 и CDR3 VL, где

- (i) CDR1 VL содержит аминокислотную последовательность RASQSVSSYLA (SEQ ID NO: 2116); и/или
- (ii) CDR2 VL содержит аминокислотную последовательность DASNRAT (SEQ ID NO: 2116).
- [233] Вариант осуществления 197. Антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 182, где антитело к FIXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH, предусматривающие CDR1 VH, выбранную из SEQ ID NO: 2053-2057, CDR2 VH, выбранную из SEQ ID NO: 2079-2083, и CDR3 VH, выбранную из SEQ ID NO: 2105-2109, и/или CDR1, CDR2 и CDR3 VL, предусматривающие CDR1 VL, выбранную из SEQ ID NO: 2131-2135, CDR2 VL, выбранную из SEQ ID NO: 2157-2161, и CDR3 VL, выбранную из SEQ ID NO: 2183-2187.
- [234] Вариант осуществления 198. Выделенное антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 182, которые специфически связываются с FIXa, содержащие CDR1, CDR2 и CDR3 VH и CDR1, CDR2 и CDR3 VL, где CDR3 VH содержит аминокислотную последовательность ARDKYQDYSX $_1$ DI (SEQ ID NO: 2207), где X $_1$ представляет собой F или V.
- [235] Вариант осуществления 199. Выделенное антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 198, которые содержат CDR1, CDR2 и CDR3 VH, где
- (i) CDR1 VH содержит аминокислотную последовательность $GSIX_1SX_2X_3YX_4WX_5$ (SEQ ID NO: 2205), где X_1 представляет собой S или A, X_2 представляет собой S, T, G или V, X_3 представляет собой S или A, X_4 представляет собой Y или A, и X_5 представляет собой G, V, N или S; и/или
- (ii) CDR2 VH содержит аминокислотную последовательность $X_6IX_7X_8X_9GX_{10}TX_{11}YNPSLKS$ (SEQ ID NO: 2206), где X_6 представляет собой S или Y, X_7 представляет собой S, Y, R, T или Q, X_8 is Y, G, P или A, X_9 представляет собой S или Q, X_{10} представляет собой S или Q, или Q.
- [236] Вариант осуществления 200. Выделенное антитело к FIXa согласно варианту осуществления 182, 198 или 199, которые содержат CDR1, CDR2 и CDR3 VL, где CDR3 VL содержит аминокислотную последовательность QQANFLPFT (SEQ ID NO: 2188).

- [237] Вариант осуществления 201. Выделенное антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 200, которые содержат CDR1, CDR2 и CDR3 VL, где
- (i) CDR1 VL содержит аминокислотную последовательность RASQGIDSWLA (SEQ ID NO: 2136); и/или
- (ii) CDR2 VL содержит аминокислотную последовательность AASSLOS (SEQ ID NO: 2162).
- [238] Вариант осуществления 202. Антитело к FIXa или его антигенсвязывающая часть согласно варианту осуществления 182, где антитело к FIXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH, предусматривающие CDR1 VH, выбранную из SEQ ID NO: 2058-2063, CDR2 VH, выбранную из SEQ ID NO: 2084-2089, и CDR3 VH, выбранную из SEQ ID NO: 2110-2115, и/или CDR1, CDR2 и CDR3 VL, предусматривающие CDR1 VL, выбранную из SEQ ID NO: 2136-2141, CDR2 VL, выбранную из SEQ ID NO: 2162-2167, и CDR3 VL, выбранную из SEQ ID NO: 2188-2193.
- [239] Вариант осуществления 203. Антитело к FIXa или его антигенсвязывающая часть согласно любому из вариантов осуществления 182-202, содержащие VH и VL, где
- (i) VH содержит аминокислотную последовательность, которая 80%, по меньшей мере приблизительно меньшей приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 97%, по 96%, по меньшей мере приблизительно меньшей 98%, по меньшей мере приблизительно приблизительно приблизительно 100% идентична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NOs: 1935, 1939, 1943, 1947, 1951, 1955, 1959, 1963, 1967, 1971, 1975, 1979, 1987, 1991, 1995, 1999, 2003, 2007, 2011, 2015, 2019, 2027, 2031, и 2035; и/или
- (ii) VL содержит аминокислотную последовательность, которая на по меньшей мере приблизительно 80%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 99% или

- приблизительно 100% идентична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NOs: 1937, 1941, 1945, 1949, 1953, 1957, 1961, 1965, 1969, 1973, 1977, 1981, 1985, 1989, 1993, 1997, 2001, 2005, 2009, 2013, 2017, 2021, 2025, 2029, 2033, и 2037.
- [240] Вариант осуществления 204. Антитело к FIXa или его антигенсвязывающая часть согласно любому из вариантов осуществления 182-203, содержащие VH и VL, где
- (a1) VH и VL содержат соответственно SEQ ID NO: 1935 и 1937 (BIIB-9-3595);
- (a2) VH и VL содержат соответственно SEQ ID NO: 1939 и 1941 (BIIB-9-3601);
- (a3) VH и VL содержат соответственно SEQ ID NO: 1943 и 1945 (BIIB-9-3604);
- (a4) VH и VL содержат соответственно SEQ ID NO: 1947 и 1949 (BIIB-9-3617);
- (a5) VH и VL содержат соответственно SEQ ID NO: 1951 и 1953 (BIIB-9-3618);
- (a6) VH и VL содержат соответственно SEQ ID NO: 1955 и 1957 (BIIB-9-3621);
- (а7) VH и VL содержат соответственно SEQ ID NO: 1959 и 1961 (ВІІВ-9-3647);
- (a8) VH и VL содержат соответственно SEQ ID NO: 1963 и 1965 (BIIB-9-3649);
- (a9) VH и VL содержат соответственно SEQ ID NO: 1967 и 1969 (BIIB-9-3650);
- (a10) VH и VL содержат соответственно SEQ ID NO: 1971 и 1973 (BIIB-9-3654);
- (a11) VH и VL содержат соответственно SEQ ID NO: 1975 и 1977 (BIIB-9-3753);
- (a12) VH и VL содержат соответственно SEQ ID NO: 1979 и 1981 (BIIB-9-3754);
- (a13) VH и VL содержат соответственно SEQ ID NO: 1983 и 1985 (BIIB-9-3756);
- (a14) VH и VL содержат соответственно SEQ ID NO: 1987 и 1989 (BIIB-9-3764);

- (a15) VH и VL содержат соответственно SEQ ID NO: 1991 и
- 1993 (BIIB-9-3766);
- (a16) VH и VL содержат соответственно SEQ ID NO: 1995 и
- 1997 (BIIB-9-3707);
- (a17) VH и VL содержат соответственно SEQ ID NO: 1999 и
- 2001 (BIIB-9-3709);
- (a18) VH и VL содержат соответственно SEQ ID NO: 2003 и
- 2005 (BIIB-9-3720);
- (a19) VH и VL содержат соответственно SEQ ID NO: 2007 и
- 2009 (BIIB-9-3727);
 - (a20) VH и VL содержат соответственно SEQ ID NO: 2011 и
- 2013 (BIIB-9-3745);
- (a21) VH и VL содержат соответственно SEQ ID NO: 2015 и
- 2017 (BIIB-9-3780);
 - (a22) VH и VL содержат соответственно SEQ ID NO: 2019 и
- 2021 (BIIB-9-3675);
- (a23) VH и VL содержат соответственно SEQ ID NO: 2023 и
- 2025 (BIIB-9-3681);
- (a24) VH и VL содержат соответственно SEQ ID NO: 2027 и
- 2029 (BIIB-9-3684);
- (a25) VH и VL содержат соответственно SEQ ID NO: 2031 и
- 2033 (ВІІВ-9-3698); или
- (a26) VH и VL содержат соответственно SEQ ID NO: 2035 и
- 2037 (BIIB-9-3704).

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ/ФИГУР

- фиг. 1A показана схематическая иллюстрация доменной организации зимогена FIX и активированного FIX c имитатором субстрата, связанным в активном сайте (FIXa+EGR-CMK), или без него (свободный FIXa и FIXa-SM соответственно). На фиг. показана схематическая иллюстрация доменной организации зимогена FΧ И активированного FX с имитатором субстрата, связанным в активном сайте (FXa+EGR-CMK), или без него. На этой иллюстрации НС представляет собой тяжелую цепь FIX, FIXa, FX или FXa. LC представляет собой легкую цепь FIX, FIXa, FX или FXa.
- [242] На фиг. 2 показана схематическая иллюстрация получения антитела, определения характеристик антитела и

определения функциональных характеристик для некоторых вариантов осуществления, описанных в данном документе.

- фиг. 3A-3D представлены 95 антител к раскрытых В данном документе, выявленных с помощью способа получения антител, описанного на фиг. 2. Зародышевый тип, длина аминокислотные последовательности CDR SEO ID NO для VH, так И пля VLантител. представлены как последовательности VH и VL представлены в таблице 4. Номер SEQ ID для каждой последовательности CDR представлен в таблице 4. **На** 3A-3C антитела, показаны которые предпочтительно связываются с активированным фактором свертывания (FIXa) (например, со свободным FIXa и/или FIXa, модифицированным посредством ковалентного связывания с EGR- или LTR-CMK (FIXa-SM)) в отличие от зимогена FIX (например, неактивируемого FIX). В частности, на фиг. ЗА перечислены антитела, предпочтительно связывающиеся с FIXa-SM в отличие от свободного FIXa зимогена FIXa (например, неактивируемого FIX) (класс I). На фиг. перечислены антитела, предпочтительно связывающиеся со свободным FIXa в отличие от FIXa-SM или зимогена FIX (например, неактивируемого FIX) (класс II). На фиг. 3C перечислены антитела, которые связываются с FIXa-SM либо со свободным FIXa, связываются существенно зимогеном FIX C (например, FIX) (класс III). На фиг. 3D неактивируемым перечислены антитела, которые предпочтительно связываются с зимогеном FIX (например, неактивируемым FIX) в отличие от свободного FIXa или FIXa-SM (класс IV).
- [244] На фиг. 4А и 4В показаны показатели связывания, измеренные с помощью интерферометрии биослоя (BLI), связанного с сенсором IgG с указанным антигеном, зимогеном FIX (например, неактивируемым FIX) (Наемаtologic Technologies, Inc., Essex Junction, Вермонт, США) или FIXa (Наемаtologic Technologies, Inc., Essex Junction, Вермонт, США). Максимальный ответ BLI (нм) для каждого антитела представлен на графике по оси у.
- [245] На фиг. 5 представлена таблица, демонстрирующая значения кажущейся моновалентной аффинности (K_D) в отношении свободного FIXa для каждого из перечисленных антител,

определенные с помощью алгоритмов подгонки 1:1, реализованных в программном обеспечении ForteBio Data Analysis 9.0.

фиг. 6A-6E показаны показатели связывания, измеренные с помощью BLI, связанного с сенсором IgG с указанным (свободным FIXa ИЛИ зимогеном FIX антигеном (например, неактивируемым FIX)). На фиг. 6A показаны измеренные показатели связывания для антитела BIIB-9-484 (VH: SEQ ID NO: 31; VL: SEQ NO: 221). На фиг. 6В показаны измеренные показатели связывания для антитела BIIB-9-440 (VH: SEQ ID NO: 19; VL: SEQ ID 209). На фиг. показаны измеренные 6C связывания для антитела BIIB-9-882 (VH: SEQ ID NO: 115; VL: SEQ 301). На фиг. 6D показаны измеренные показатели связывания для антитела BIIB-9-460 (VH: SEQ ID NO: 23; VL: SEQ 213). На фиг. 6E показаны измеренные связывания для антитела BIIB-9-433 (VH: SEQ ID NO: 127; VL: SEQ ID NO: 313). На графиках показан ответ BLI (нм) в отношении ассоциации и диссоциации в зависимости от времени. На фиг. 6F показана таблица CO значениями кажущейся моновалентной аффинности (K_D) в отношении зимогена FIX (например, свободного неактивируемого FIX) и FIXa соответственно ДЛЯ каждого из перечисленных антител (т. е. BIIB-9-484, BIIB-9-440, BIIB-9-882, BIIB-9-460 и BIIB-9-433), описанных на фиг. 6A-6E, определенными с помощью алгоритмов подгонки 1:1, реализованных в программном обеспечении ForteBio Data Analysis 9.0.

[247] На фиг. 7 показаны показатели связывания, измеренные с помощью BLI, связанного с сенсором IgG с указанным антигеном, свободным FIXa (Haematologic Technologies, Inc., Essex Junction, Вермонт, США) или FIXa-SM (например, FIXa+EGR-CMK (Haematologic Technologies, Inc., Essex Junction, Вермонт, США)). Максимальный ответ BLI (нм) для каждого антитела представлен на графике по оси у.

[248] На фиг. 8A-8E представлены показатели связывания, измеренные с помощью BLI, связанного с сенсором IgG с указанными антигенами (FIXa-SM, например FIXa+EGF-CMK, и свободным FIXa). На фиг. 8A показаны измеренные показатели связывания для антитела BIIB-9-484 (VH: SEQ ID NO: 31; VL: SEQ ID NO: 221). На

фиг. 8В показаны измеренные показатели связывания для антитела BIIB-9-440 (VH: SEQ ID NO: 19; VL: SEQ ID NO: 209). На фиг. 8С показаны измеренные показатели связывания для антитела BIIB-9-SEQ ID NO: 115; VL: SEQ ID NO: 301). Ha фur. показаны измеренные показатели связывания для антитела BIIB-9-460 (VH: SEQ ID NO: 23; VL: SEQ ID NO: 213). На фиг. 8E показаны измеренные показатели связывания для антитела BIIB-9-433 (VH: SEQ ID NO: 127; VL: SEQ ID NO: 313). На представленных графиках показан ответ BLI (нм) в отношении ассоциации и диссоциации в времени. На фиг. 8F \circ T показана значениями кажущейся моновалентной аффинности (K_D) в отношении (i) свободного FIXa или (ii) FIXa-SM (например, FIXa+EGR-CMK) для каждого из перечисленных антител (т. е. BIIB-9-484, BIIB-9-440, BIIB-9-882, BIIB-9-460 и BIIB-9-433), определенными помощью алгоритмов подгонки 1:1, реализованных в программном обеспечении ForteBio Data Analysis 9.0.

[249] Ha фиг. 9A-9D продемонстрированы показатели связывания, измеренные с помощью BLI, перечисленных связанных с сенсором IgG с указанными антигенами, FIXn (неактивируемым FIX), свободным FIXa или FXa-SM (например, FIXa+EGR-CMK) (все которых получены от Haematologic Technologies, Inc., Junction, Вермонт, США), в зависимости от времени. Максимальный ответ BLI (нм) представлен на каждой сенсограмме. На фиг. показаны измеренные показатели связывания для иллюстративных антител класса I (ϕ иг. 3A), например, антитела BIIB-9-484 антитела BIIB-9-460 (VH: SEQ ID NO: 23; VL: SEQ ID NO: 213). Ha фиг. 9B показаны измеренные показатели связывания иллюстративных антител класса II (ϕ ur. 3B), например, антитела BIIB-9-416 (VH: SEQ ID NO: 93; VL: SEQ ID NO: 279) и антитела BIIB-9-885 (VH: SEQ ID NO: 97; VL: SEQ ID NO: 283). На фиг. 9С показаны измеренные показатели связывания для иллюстративного антитела класса III (фиг. 3C), например, антитела BIIB-9-1287 (VH: SEQ ID NO: 181; VL: SEQ ID NO: 367). На фиг. 9D показаны измеренные показатели связывания для иллюстративного антитела класса IV (фиг. 3D), например, антитела BIIB-9-397 (VH: SEQ ID NO: 183; VL: SEQ ID NO: 369).

[250] На фиг. 10 показана таблица, в которой перечислены 95 антител, раскрытых в данном документе, наряду с классом, которому они отнесены на основании профилей связывания антигена, определенных в анализах связывания с помощью BLI. Антитела относили к соответствующим классам при демонстрации различия в 0,1 или более единиц в их ответе BLI в отношении одного антигена по сравнению с другим с использованием параметров анализа, определенных в примерах. Антитела класса Ι соответствуют антителам, представленным на 3A. фиг. Антитела класса ΙI соответствуют антителам, представленным на фиг. 3В. Антитела класса III соответствуют антителам, представленным на фиг. 3C. Антитела класса IV соответствуют антителам, представленным на фиг. 3D.

[251] На фиг. 11 показана таблица, в которой перечислены значения максимальной длины волны (нм) для каждого указанного антитела, как определено с помощью скрининга по склонности к взаимодействию между собой с помощью AC-SINS. Пороговое значение 540 нм устанавливали на основании внутренних контролей, при этом антитела, превышающие пороговое значение, заштрихованы черным (что указывает на потенциальную возможность взаимодействия между собой).

фиг. 12А-12С представлены таблицы, в которых перечислены 94 антитела, раскрытые В данном документе, выявленные с помощью способа получения антител. Зародышевый тип, длина CDR, аминокислотные последовательности CDR и SEQ ID NO представлены как для VH, так и для VL каждого из 94 антител. Последовательности полных VHИ VLкаждого ДЛЯ антитела представлены в таблице 4. На фиг. 12А и фиг. 12В представлены антитела, которые предпочтительно связываются с зимогеном FX (например, неактивируемым FX) В отличие от активированного фактора свертывания крови FΧ (FXa) (например, FXa, модифицированного посредством ковалентного связывания с EGR- или LTR-CMK (FXa-SM)) (класс V). На фиг. 12С показаны антитела, которые предпочтительно связываются с активированным фактором свертывания крови FX (FXa) (например, FXa, модифицированным посредством ковалентного связывания с EGR- или LTR-CMK (FXa-SM))

в отличие от зимогена FX (например, неактивируемого FX)) (класс VI).

[253] **На фиг. 13A** и **13B** показаны показатели связывания, измеренные с помощью BLI, связанного с сенсором IgG с указанным антигеном, зимогеном FX или FXa-SM (например, FXa+EGR-CMK). Максимальный ответ BLI (нм) для каждого антитела представлен на графике по оси у.

[254] На фиг. 14 показана таблица со значениями кажущейся моновалентной аффинности (K_D) в отношении зимогена FX в М для каждого из перечисленных антител, определенными с помощью алгоритмов подгонки 1:1, реализованных в программном обеспечении ForteBio Data Analysis 9.0.

[255] На фиг. 15 показана таблица, в которой перечислены значения максимальной длины волны (нм) для каждого указанного антитела, как определено с помощью скрининга по склонности к взаимодействию между собой с помощью AC-SINS. Пороговое значение 540 нм устанавливали на основании внутренних контролей. Антитела, превышающие пороговое значение, заштрихованы черным, что указывает на потенциальную возможность взаимодействия между собой.

16A-16D 202 [256] Ha фиг. показаны биспецифических антитела, идентифицированные как обладающие способностью замены FVIIIa-подобной функции В хромогенном анализе образования фактора Ха. 202 биспецифических антитела разделяли на четыре группы, и они представлены на четырех соответствующих подчастях фигуры. На фиг. 16А показаны значения скорости расщепления хромогенного субстрата FXa для первой группы биспецифических антител (1-51 из 202). На фиг. 16B показаны значения скорости расщепления хромогенного субстрата FXa для второй биспецифических антител (52-102 из 202). На фиг. 16C показаны значения скорости расщепления хромогенного субстрата FXa для третьей группы биспецифических антител (103-152 из 202). На фиг. показаны значения скорости расщепления хромогенного субстрата FXa для четвертой группы биспецифических антител (153-202 из 202). В каждом случае пунктирной линией показана средняя исходная скорость в отсутствие биспецифического антитела.

[257] На фиг. 17 показаны значения скорости расщепления хромогенного субстрата FXa для подгруппы биспецифических антител в формате IgG4. Пунктирной линией показана средняя исходная скорость в отсутствие биспецифического антитела.

18 [258] На фиг. показаны кинетические показатели хромогенного субстрата FXa В присутствии иллюстративных биспецифических антител. По сравнению с исходным контролем (при котором в реакционную смесь не добавляли BIIB-9-484/BIIIB-12-915, BIIB-9-619/BIIB-12-925 антитело) ВІІВ-9-578/ВІІВ-12-917 были способны увеличивать расщепления хромогенного субстрата FXa, 0 чем указывало увеличение OD со временем.

[259] На фиг. 19 показана способность ВІІВ-9-484/ВІІВ-12-917, BIIB-9-484/BIIB-12-915 и BIIB-9-484/BIIB-12-1306 заменять функцию FVIIIa В плазме крови, дефицитной no FVIII, одностадийном анализе свертывания крови (0 чем указывает уменьшение времени свертывания). Для сравнения показана плазма крови, дефицитная по FVIII, без биспецифического антитела.

[260] На фиг. 20 показано, что способность биспецифического антитела ВІІВ-9-484/ВІІВ-12-917 заменять функцию FVІІІа в плазме крови, дефицитной по FVІІІ, в одностадийном анализе свертывания крови зависит от биспецифического формата. Гомодимерное ВІІВ-9-484, гомодимерное ВІІВ-12-917 и смесь двух гомодимеров были не способны заменять FVIIIa-подобную функцию. Для сравнения показана плазма крови, дефицитная по FVIII, без антитела.

[261] На фиг. 21 показан анализ связывания с помощью ВЫІ для оценки взаимного связывания каждого целевого антигена с указанным биспецифическим антителом с применением стрептавидиновых биосенсоров Dip and Read. Сенсограмма представлена в виде графика зависимости ответа ВЫІ (нм) от времени, при этом каждая стадия эксперимента отделена черной вертикальной линией. Увеличение ответа на определенной стадии свидетельствует о загрузке белка.

[262] На фиг. 22A перечислены последовательности CDR BIIB-9-484 и двух дочерних антител с созревшей аффинностью BIIB-9-1335 и BIIB-9-1336. Представлено множественное выравнивание

последовательностей VH-сегментов BIIB-9-484, BIIB-9-1335, BIIB-9-1336 в формате CLUSTAL с помощью MAFFT (v7.205). Степень консервативности аминокислот указана выше выравнивания ("*" = 11 : 11 = высококонсервативные; идентичные; низкоконсервативные), а также в виде строк под выравниванием. CDR VH и VL подчеркнуты. Последовательность, находящаяся перед VH-CDR1, представляет собой каркасную область (FR) последовательность, находящаяся после VH-CDR1 и перед VH-CDR2, представляет собой FR2; последовательность, находящаяся после перед VH-CDR3, представляет собой VH-CDR2 последовательность, находящаяся после VH-CDR3, представляет FR4. Последовательность, находящаяся перед VL-CDR1, представляет собой каркасную область (FR) 1; последовательность, находящаяся после VL-CDR1 и перед VL-CDR2, представляет собой FR2; последовательность, находящаяся после VL-CDR2 и перед VL-CDR3, представляет собой FR3; и последовательность, находящаяся после VL-CDR3, представляет собой FR4. На фиг. 22B-22D показан определенный с помощью BLI профиль связывания свободного FIXa с BIIB-9-484, BIIB-9-1335 и BIIB-9-1336 соответственно.

[263] На фиг. 23 показано, что увеличение аффинности за счет плеча антитела к FIXa в составе биспецифического антитела с FVIIIa-подобной активностью приводит к более высокой активности одностадийном анализе свертывания крови. Пример иллюстрируется на вышеупомянутом графике, на котором биспецифические антитела с высокоаффинными плечами антител (BIIB-9-1335/BIIB-12-917 N BIIB-9-1336/BIIB-12-917) демонстрируют дополнительное уменьшение времени свертывания по сравнению с биспецифическим антителом с плечом антитела к FIXa с более низкой аффинностью (BIIB-9-484/BIIB-12-917).

[264] На фиг. 24А показана аффинность связывания биспецифического антитела с последовательностью, идентичной эмицизумабу (АСЕ910) ("биоэквивалент эмицизумаба"), с зимогеном FIX, активированным FIX, зимогеном FX и активированным FX (т. е. 1 мкМ, 1 мкМ, 1 мкМ и 1 мкМ соответственно). На фиг. 24В показана аффинность связывания биспецифической молекулы (ВЅ-027125) с зимогеном FIX, активированным FIX, зимогеном FX и

активированным FX (т. е. 8 нМ, 2 нМ, 20 нМ и не выявлено соответственно).

[265] На фиг. 25 показано время свертывания (с) для FVIII (перевернутый треугольник), гомодимера BS-025 к FIXa (большой ромб), гомодимера BS-027 к FX (маленький ромб), смеси гомодимеров BS-027025 (треугольник) и биспецифического BS-027025 (квадрат) при различных концентрациях (МЕ/мл или мкМ).

[266] На фиг. 26 показана активность FVIII (эквивалент FVIII в %) у BS-027125 (квадрат), гомодимера BS-027125 к FIXа (треугольник) и гомодимера BS-027125 к FX (кружок). Активность FVIII измеряли с помощью одностадийного анализа свертывания крови.

[267] На фиг. 27 показана концентрация FXa в нМ, образованного при помощи rFVIII (большой кружок), BS-027125 (квадрат), гомодимера BS-027125 к FIXa (треугольник), гомодимера BS-027125 к FX (перевернутый треугольник) и BS-027125 (без PL) (маленький кружок), измеренная с помощью хромогенного анализа образования фактора Xa (FXa).

[268] На фиг. 28А показаны результаты анализа образования тромбина для BS-027125. На левой панели показано время задержки (минуты), а на правой панели показана максимальная концентрация.

[269] На фиг. 28В показано количество тромбина, образованного при помощи rFVIII (левая панель) и BS-027125 (правая панель).

[270] На фиг. 29 показана концентрация FXa в нМ, образованного в присутствии rFVIII, биоэквивалента эмицизумаба или BS-027125 с фосфолипидными везикулами на основе PC/PS (80%/20%) либо PC/PE/PS (40%/40%/20%) (верхние панели), и кратность изменения активности, обусловленная фосфолипидными везикулами на основе PC/PE/PS по сравнению с PC/PS (нижние панели).

[271] На фиг. 30 показаны результаты анализа образования тромбина с использованием фосфолипидов PC/PE/PS в присутствии rFVIII, биоэквивалента эмицизумаба и BS-027125. На верхних панелях показано время задержки (минуты); на средних панелях показана максимальная концентрация тромбина (нМ); а на нижних

панелях показан эндогенный тромбиновый потенциал (ETP) (нМ * минута).

- 31A, 31B, 31С и [272] Ha фиг. 31D показана специфическая сортировка 47 разных антител к FIXa друг с другом, как определено с помощью интерферометрии биослоя. На фиг. 31А и фиг. 31B показаны соответственно определенные с помощью Octet профили для неконкурентных и конкурентных связывающих молекул. На фиг. 31С обобщены протестированные взаимодействия в формате 47×47 и то, обеспечивают ли пары антител конкурентное или неконкурентное связывание. Темно-серые квадраты обозначают пары антител, которые осуществляют перекрестное блокирование, указывает на то, что они относятся к одной и той же категории. квадраты обозначают пары антител, Средне-серые осуществляют перекрестное блокирование, что указывает на то, что они относятся к разным категориям. Белые квадраты обозначают несоответствия, однонаправленные а светло-серые квадраты обозначают антитела, данные которых не МОГУТ быть проанализированы. На фиг. 31D показан узловой анализ сортировки, определенной на фиг. 31С. Чем ближе два антитела находятся на этой карте, тем более схожи их профили сортировки.
- [273] На фиг. 32A показан профиль связывания ВІІВ-9-484 с FIXа в присутствии и в отсутствие кальция с помощью интерферометрии биослоя. Пунктирная линия указывает на конец фазы ассоциации и начало фазы диссоциации.
- [274] На фиг. 32В показан профиль связывания ВІІВ-9-1336 с FIXа в присутствии и в отсутствие кальция с помощью интерферометрии биослоя. Пунктирная линия указывает на конец фазы ассоциации и начало фазы диссоциации.
- [275] На фиг. 33А показана скорость расщепления субстрата с (250 нМ) в отдельности FTXa или присутствии В возрастающих концентраций двух различных антител к FIXa (BIIB-9-1336 и BIIB-9-579) или контрольного антитела к FX (BIIB-12-917). BIIB-9-1336 тестировали в виде гомодимерного двухвалентного антитела ("BIIB-9-1336"), в виде одноплечевого антитела ("BIIB-9-1336 с одним плечом") и в биспецифической конфигурации с ВІІВ-12-917 ("BIIB-9-1336/BIIB-12-917"). Скорость расщепления

субстрата выражена в мОD/минута, а возрастающие количества антитела выражены с помощью концентрации (нМ) комплекса FIXa-Ab.

[276] На фиг. 33В показана кратность увеличения амидолитической активности FIXa, которую наблюдали для 500 нМ FIXa в присутствии панели антител BIIB-9-484, BIIB-9-1336, BIIB-9-619 и BIIB-9-578.

[277] На фиг. 33C показана скорость расщепления субстрата с помощью FIXa при различных концентрациях субстрата в присутствии или в отсутствие насыщающих количеств BIIB-9-1336.

[278] На фиг. **33D** показаны K_M и V_{max} для FIXa в присутствии и в отсутствие BIIB-9-1336.

[279] На фиг. 34A И фиг. 34B показана скорость ингибирования FIXa посредством ATIII В присутствии отсутствие антител к FIXa. На фиг. 34A показано появление полосы размером 75 кДа, соответствующей комплексу ATIII-FIXa. Скорость образования комплекса указывает ингибирование на FIXa посредством ATIII и увеличивается в присутствии BIIB-9-1335 и BIIB-9-1336. фиг. 34B На показана интенсивность соответствующей образованию комплексу ATIII-FIXa, количественно оцененная и нанесенная на график в различные моменты времени.

[280] На фиг. 35 представлено изображение кристаллической структуры Fab-области BIIB-9-1336 в комплексе с EGF2 и серинпротеазным доменом FIXa, показанное в двух ориентациях.

[281] На фиг. 36 показан серинпротеазный домен FIXa в представлении поверхности с эпитопами для BIIB-9-1336 (эпитоп для 1336) и FVIIIa (эпитоп для FVIIIa), картированными на поверхности. Эпитоп для BIIB-9-1336 на FIXa и эпитоп для FVIIIa на FIXa окрашены в черный цвет. Остатки, общие для двух эпитопов, выделены белым.

[282] На фиг. 37 перечислены конкретные аминокислотные остатки тяжелой цепи FIXa, из которых состоят эпитопы для BIIB-9-1336 и FVIIIa, и которые соответствуют остаткам, выделенным на фиг. 36. Остатки, общие для двух эпитопов, показаны подчеркиванием и жирным шрифтом. Остатки, приведенные в скобках, не показаны на фиг. 36, поскольку они не согласуются среди опубликованных докладов. Нумерация аминокислотных остатков

основана на нумерации для химотрипсиногена. ВІІВ-9-1336 также вступает в контакт с одним остатком в легкой цепи FIXa, и он обозначен звездочкой. Остатки легкой цепи, вступающие в контакт с FVIIIa, не указаны.

[283] На фиг. 38А показано связывание ВІІВ-12-917 с панелью вариантов FX, в том числе зимогеном фактора X дикого типа, активированным FX с сохраненным активационным пептидом, зимогеном FX без активационного пептида и химерной конструкцией FIX, в которой активационный пептид FIX был заменен активационным пептидом FX, как определено с помощью интерферометрии биослоя. Пунктирная линия указывает на конец фазы ассоциации и начало фазы диссоциации.

[284] На фиг. 38B показаны изображения каждого ИЗ вышеупомянутых вариантов FX. Знаки+и _ указывают на TO, связывается ли BIIB-12-917. Эти данные демонстрируют, что эпитоп для BIIB-12-917 находится в области активационного пептида FX.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

настоящем изобретении предусмотрены антитела, предпочтительно связываются с конкретными факторов свертывания крови. В частности, в настоящем изобретении предусмотрены антитела и их антигенсвязывающие части, специфически С FIX (например, связываются антитела антигенсвязывающие части, которые предпочтительно связываются с активированным фактором IX (FIXa) в присутствии FIXa и зимогена фактора IX (FIXz)). В настоящем изобретении также предусмотрены антитела и их антигенсвязывающие части, которые специфически и FΧ (зимогеном FΧ предпочтительно связываются с (FXz)) присутствии FXz и FXa.

Также предусмотрены биспецифические (например, антитела), содержащие любое из антител к FIX или их антигенсвязывающих частей, раскрытых в данном документе, и любое из антител к FX или их антигенсвязывающих частей, раскрытых в данном документе. Такие биспецифические антитела могут одновременно связываться с FIX и FX и имитировать функцию фактора коагуляции VIIIa.

[287] В настоящем изобретении также предусмотрены,

например, композиции, содержащие связывающие молекулы, например антитела, раскрытые в данном документе (например, фармацевтические или диагностические композиции), нуклеиновые кислоты и векторы, кодирующие связывающие молекулы, раскрытые в данном документе, клетки, содержащие нуклеиновые кислоты, кодирующие связывающие молекулы, раскрытые в данном документе, способы получения, способы лечения и диагностики, иммуноконъюгаты и наборы.

[288] Приведенные в данном документе заголовки не различные аспекты или аспекты изобретения, которые могут быть определены посредством ссылки на описание целом. Соответственно, настоящее В термины, определенные непосредственно ниже, более полно определяются посредством ссылки на настоящее описание во всей его полноте. Перед обращением к более подробному описанию настоящего изобретения следует понимать, что настоящее изобретение ограничивается конкретными композициями или стадиями способа, так как они могут изменяться.

І. Определения

[289] Для облегчения понимания настоящего изобретения сначала определяются некоторые термины. Как используется в настоящей заявке, за исключением случаев, когда в данном документе прямо предусмотрено иное, каждый из следующих терминов имеет значение, изложенное ниже. Дополнительные определения изложены на протяжении всей настоящей заявки.

Настоящее изобретение включает варианты осуществления, в которых ровно один представитель группы присутствует в указанном продукте или способе, используется в или иным образом имеет отношение к ним. Настоящее XNH изобретение включает варианты осуществления, в которых более чем один представитель или все представители группы присутствуют в указанном продукте или способе, используются в них или иным образом имеют отношение к ним.

[291] В настоящем описании и прилагаемой формуле изобретения формы единственного числа включают определяемые объекты и во множественном числе, если из контекста явно не

следует иное. Термины в форме единственного числа, а также термины "один или несколько" и "по меньшей мере один" могут использоваться в данном документе взаимозаменяемо. В некоторых аспектах термин в форме единственного числа означают "один". В других аспектах термин в форме единственного числа подразумевает "два или более" или "несколько".

[292] Кроме того, "и/или" при использовании в данном документе следует понимать как конкретное раскрытие каждого из двух указанных признаков или компонентов с другим или без него. Таким образом, подразумевается, что термин "и/или", используемый в данном документе в такой фразе, как "А и/или В", включает "А и В", "А или В", "А" (отдельно) и "В" (отдельно). Аналогично, подразумевается, что термин "и/или", используемый в такой фразе, как "А, В и/или С", охватывает каждый из следующих аспектов: А, В и С; А, В или С; А или В; В или С; А и С; А и В; В и С; А (отдельно); В (отдельно) и С (отдельно).

[293] Если не определено иное, то все используемые в данном документе технические и научные термины имеют то же значение, которое обычно понимает специалист в области техники, к которой относится настоящее изобретение. Например, Concise Dictionary of Biomedicine and Molecular Biology, Juo, Pei-Show, 2nd ed., 2002, CRC Press; The Dictionary of Cell and Molecular Biology, 3rd ed., 1999, Academic Press и Oxford Dictionary Of Biochemistry And Molecular Biology, Revised, 2000, Oxford University Press обеспечивают специалиста общим словарем многих терминов, используемых в настоящем изобретении.

[294] Во всех случаях, когда аспекты описываются в данном документе с формулировкой "содержащий", также предусмотрены другие аналогичные аспекты, описываемые терминами "состоящий из" и/или "состоящий по сути из".

[295] Единицы измерения, приставки и символы обозначены в их форме, принятой согласно Международной системе единиц (SI). Числовые диапазоны включают числа, определяющие диапазон. В тех случаях, когда указан диапазон значений, следует понимать, что каждое промежуточное целочисленное значение и каждая его дробная часть между указанными верхним и нижним пределами этого

диапазона также конкретно раскрыты наряду с каждым поддиапазоном такими значениями. Верхний и нижний пределы могут быть независимо диапазона включены диапазон исключены из него, и каждый диапазон, в который включены один из пределов, ни один из них или оба из них, также охватывается настоящим изобретением. В тех случаях, когда значение явно указано, следует понимать, которые обозначают что значения, приблизительно такое же количество или величину, что и указанное также входят в объем настоящего изобретения. В тех значение, случаях, когда раскрыта комбинация, каждая подкомбинация элементов этой комбинации также конкретно раскрыта и находится в настоящего изобретения. И наоборот, пределах объема случаях, когда различные элементы или группы элементов раскрыты по отдельности, их комбинации также раскрыты. В тех случаях, когда любой элемент настоящего изобретения раскрыт как имеющий множество альтернатив, в данном документе также раскрыты примеры настоящего изобретения, в которых каждая альтернатива исключена в отдельности или в любой комбинации с другими альтернативами; такие исключения может иметь более чем один элемент настоящего изобретения, комбинации элементов, И все имеющих такие исключения, раскрыты в данном документе.

Нуклеотиды обозначены с помощью $_{
m NX}$ общепринятых однобуквенных кодов. Если не указано иное, нуклеиновые кислоты 5'-3'. записаны слева направо В направлении Нуклеотиды обозначены В данном документе С помощью общеизвестных XNоднобуквенных символов, рекомендованных Комиссией IUPAC-IUB. биохимической номенклатуре Соответственно, Α представляет собой аденин, С представляет собой цитозин, G представляет собой гуанин, Т представляет собой IJ TUMUH, представляет собой урацил.

[297] Аминокислоты обозначены в данном документе помощью их общеизвестных трехбуквенных символов, либо с помощью однобуквенных символов, рекомендованных Комиссией ПО номенклатуре IUPAC-IUB. биохимической Если не указано иное, последовательности аминокислотные записаны слева направо направлении от амино- к карбокси-концу.

[298] Приблизительно. Термин "приблизительно", используемый вместе с числовым значением во всем описании и формуле изобретения, обозначает интервал точности, знакомый и приемлемый для специалиста в данной области техники. Обычно такой интервал точности составляет \pm 10%.

[299] В тех случаях, когда указаны диапазоны, конечные точки включены в них. Кроме того, если иное не указано или не очевидно из контекста и понимания специалистом в данной области, значения, которые выражены в виде диапазонов, могут представлять любое конкретное значение или поддиапазон в пределах указанных диапазонов в различных вариантах осуществления настоящего изобретения, вплоть до десятой части единицы нижнего предела диапазона, если из контекста явно не следует иное.

Введение Bкомбинации. Используемый документе термин "введение В комбинации", "комбинированное введение" или "комбинированная терапия" означает, что два или более средств, например связывающую молекулу, раскрытую в данном документе, и второе средство, вводят субъекту в одно и то же время или с интервалом, в результате чего у пациента может иметь место наложение эффекта каждого средства. В некоторых вариантах осуществления их вводят в течение приблизительно 60, 30, 15, 10, минуты друг после друга. В некоторых вариантах осуществления введения средств отделяются друг от друга достаточно коротким интервалом, в результате чего достигается сочетательный (например, синергический) эффект.

[301] Аффинность. Термин "аффинность" относится к степени, с которой связывающая молекула, например антитело, связывается с антигеном так, чтобы равновесие антигена и связывающей молекулы смещалось в сторону присутствия комплекса, образованного их связыванием. Таким образом, при объединении антигена и связывающей молекулы в относительно равной концентрации связывающая молекула с высокой аффинностью будет связываться с доступным антигеном, чтобы сместить равновесие в сторону высокой концентрации полученного комплекса. Связывающие молекулы, например антитела или их антигенсвязывающие фрагменты, варианты или производные в соответствии с настоящим раскрытием, также

могут быть описаны или определены с точки зрения их аффинности связывания с антигеном. Аффинность связывающей молекулы, например антитела, в отношении антигена можно определить экспериментально с применением любого подходящего способа. (См., например, Berzofsky et al., "Antibody-Antigen Interactions" в Fundamental Immunology, Paul, W. E., Ed., Raven Press: New York, N.Y. (1984); Kuby, Janis Immunology, W. H. Freeman and Company: New York, N.Y. (1992); и способы, описанные в данном документе).

[302] Измеренная аффинность конкретного взаимодействия связывающей молекулы и антигена может варьировать при измерении в разных условиях (например, концентрация солей, рН). Таким образом, измерения аффинности и других параметров связывания антигена (например, K_D , K_a , K_d) предпочтительно осуществляют с применением стандартизированных растворов связывающей молекулы и антигена и стандартизированного буфера.

аффинность" [303] "Высокая для связывающей молекулы, например антитела, относится к равновесной константе ассоциации (K_{aff}) , составляющей 1×10^{7} по меньшей мере приблизительно меньшей мере приблизительно литров/моль, 1×10^{8} ИЛИ ПО меньшей мере приблизительно 1×10^{9} литров/моль, ИЛИ ПО 1×10^{10} литров/моль, меньшей мере приблизительно ИЛИ ПО 1×10^{11} литров/моль, меньшей мере приблизительно или ПО приблизительно 1×10^{12} литров/моль, меньшей мере ИЛИ ПО 1×10^{13} литров/моль, меньшей мере приблизительно ИЛИ ПО 1×10^{14} литров/моль, приблизительно ИЛИ ПО меньшей мере литров/моль или больше. "Высокая аффинность" связывания может варьировать у изотипов антитела.

[304] K_D , равновесная константа диссоциации, представляет собой термин, который также используют для описания аффинности антитела, и она является обратной K_{aff} . K_D получают из отношения k_d к k_a (т. е. k_d/k_a) и выражают в виде молярной концентрации (М). Значения K_D для антител можно определить с помощью способов, хорошо известных в данной области техники. Доступные способы определения K_D антитела включают анализ, основанный на интерферометрии биослоя (ВLI), поверхностный плазмонный резонанс, систему биосенсоров, такую как система ВІАСОRE®, или

проточную цитометрию и анализ Скэтчарда. При использовании K_D термин "высокая аффинность" для антитела относится к равновесной константе диссоциации (K_D) , составляющей менее приблизительно 1×10^{-7} М, или менее приблизительно 1×10^{-8} М, или менее приблизительно 1×10^{-8} М, или менее приблизительно 1×10^{-10} М, или менее приблизительно 1×10^{-10} М, или менее приблизительно 1×10^{-12} М, или менее приблизительно 1×10^{-12} М, или менее приблизительно 1×10^{-14} М или менее приблизительно 1×10^{-14} М или меньше.

[305] Аминокислотная замена. Термин "аминокислотная замена" относится к замещению аминокислотного остатка, присутствующего в эталонной исходной или последовательности (например, последовательности дикого типа), другим аминокислотным остатком. Аминокислота может быть заменена в исходной или эталонной последовательности (например, полипептидной последовательности дикого типа), например, посредством химического синтеза пептидов или с помощью рекомбинантных способов, известных из уровня Соответственно, ссылка на "замену в положении Χ" относится к замене аминокислоты, присутствующей в положении Х, альтернативным аминокислотным остатком. В некоторых аспектах паттерны замены могут быть описаны согласно схеме Any, где A собой однобуквенный соответствующий код, аминокислоте, присутствующей в естественных VСЛОВИЯХ изначально в положении п, а У представляет собой заменяющий аминокислотный остаток. В других аспектах паттерны замены могут быть описаны согласно схеме An(YZ), где А представляет собой однобуквенный код, соответствующий аминокислотному остатку, заменяющему аминокислоту, присутствующую в естественных условиях или изначально в положении n, а Y и Z представляют собой альтернативные заменяющие аминокислотные остатки, которые могут замещать А.

[306] В контексте настоящего изобретения замены (даже когда они упоминаются как аминокислотные замены) проводятся на уровне нуклеиновой кислоты, т. е. замена аминокислотного остатка альтернативным аминокислотным остатком проводится путем замены кодона, кодирующего первую аминокислоту, кодоном, кодирующим вторую аминокислоту.

[307] Созревшая аффинность. Термин "созревшая аффинность" относится к связывающей молекуле, например антителу, которая подверглась созреванию аффинности, процессу, посредством которого получают связывающие молекулы, например антитела, с увеличенной аффинностью в отношении целевого антигена. Таким антитело с созревшей аффинностью представляет собой антитело с одним или несколькими изменениями в одной или нескольких его CDR, которые приводят к улучшению аффинности антитела в отношении антигена по сравнению с исходным антителом, которое не несет таких изменения (-й). Иллюстративные антитела с характеризоваться созревшей аффинностью будут значениями аффинности в отношении целевого антигена, находящимися наномолярном или даже пикомолярном диапазоне.

[308] Любой один или несколько способов получения и/или применения библиотек созревания аффинности, доступных из уровня техники, можно использовать для получения антител с созревшей аффинностью в соответствии с различными вариантами осуществления настоящего изобретения, раскрытого В данном документе. Иллюстративные способы созревания аффинности включают случайный мутагенез, пересев бактерий мутаторных штаммов, сайтнаправленный мутагенез, нацеливание на "горячие точки" мутаций, экономный мутагенез, перетасовку областей антител, перетасовку легких цепей, перетасовку тяжелых цепей, мутагенез CDR1 и/или также способы получения и применения созревания аффинности, при этом поддающиеся реализации способы и применения в соответствии с различными вариантами осуществления настоящего изобретения, раскрытого в данном документе, включают, например, раскрытые в Prassler et al. (2009); Immunotherapy, Vol. 1 (4), pp. 571 -583; Sheedy et al. (2007), Biotechnol. Adv., Vol. 25(4), pp. 333-352; W02012/009568; W02009/036379; W02010/105256; US2002/0177170; W02003/074679, все из включены в данный документ посредством ссылки во всей своей Marks et al. (1992)BioTechnology описывается созревание аффинности с помощью перетасовки доменов VH и VL. Случайный мутагенез CDR и/или каркасных остатков описывается в Barbas et al. (1994) Proc. Nat. Acad. Sci. USA

91:3809-3813; Schier et al. (1995) Gene 169:147-155; Yelton et al. (1995) J. Immunol. 155:1994-2004; Jackson et al. (1995) J. Immunol. 154(7):3310-9 и Hawkins et al. (1992) J. Mol. Biol. 226:889-896. Мутация по селективным положениям мутагенеза, положениям контакта или гипермутации, с использованием усиливающего активность аминокислотного остатка описывается в патенте США № 6914128.

[309] Животное. Используемый в данном документе термин "животное" относится к любому представителю царства животных. В некоторых вариантах осуществления "животное" относится человеку на любой стадии развития. В некоторых вариантах осуществления "животное" относится к отличным от человека животным на любой стадии развития. В определенных вариантах осуществления ОТЛИЧНЫМ \circ T человека животным млекопитающее (например, грызун, мышь, крыса, кролик, обезьяна, собака, кошка, овца, крупный рогатый скот, примат или свинья). В вариантах осуществления животные включают некоторых ограничения млекопитающих, птиц, рептилий, земноводных, рыб и червей. В некоторых вариантах осуществления животное является трансгенным животным, животным, полученным с помощью генной инженерии, или клоном.

- [310] Антитело. Термины "антитело" и "иммуноглобулин" "Ig") используются в (сокращенно данном документе взаимозаменяемо и относятся к молекуле, содержащей по меньшей ОДИН домен иммуноглобулина, который специфически связывается С конкретным антигеном ИЛИ вступает иммунологическую реакцию с ним. Термин включает целые антитела и любую их антигенсвязывающую часть или их отдельные цепи и их комбинации (например, биспецифические антитела).
- [311] Типичное антитело содержит по меньшей мере две тяжелые цепи ("HC") и две легкие цепи ("L"), связанные между собой дисульфидными связями.
- [312] Каждая "тяжелая цепь" состоит из "вариабельной области тяжелой цепи" (сокращенно обозначенной в данном документе как "VH") и "константной области тяжелой цепи" (сокращенно обозначенной в данном документе как "CH").

Константная область тяжелой цепи в немодифицированном антителе состоит из трех константных доменов СН1, СН2 и СН3.

[313] Каждая "легкая цепь" состоит из "вариабельной области легкой цепи" (сокращенно обозначенной в данном документе как "VL") и "константной области легкой цепи". Константная область легкой цепи в немодифицированном антителе состоит из одного константного домена "CL". Области VH и VL можно дополнительно подразделить на области гипервариабельности, называемые областями, определяющими комплементарность ("CDR"), которые чередуются с более консервативными областями, называемыми "каркасными областями" ("FW").

[314] Каждая VH и VL состоит из трех CDR и четырех FW, от амино-конца к карбокси-концу в расположенных порядке: FW1, CDR1, FW2, CDR2, FW3, CDR3, FW4. В настоящем изобретении представлены последовательности VH и VL, а также подпоследовательности, соответствующие CDR1, CDR2 И CDR3. Соответственно, специалисту в данной области техники понятно, что последовательности FW1, FW2, FW3 и FW4 раскрыты в равной степени. Для конкретной VH FW1 является подпоследовательностью, находящейся между N-концом VH и N-концом VH-CDR1, FW2 является подпоследовательностью, находящейся между VH-CDR1 И N-концом VH-CDR2, FW3 подпоследовательностью, находящейся между С-концом VH-CDR2 и Nи FW4 концом VH-CDR3, является подпоследовательностью, находящейся между С-концом VH-CDR3 и С-концом VH. образом, для конкретной VL FW1 является подпоследовательностью, находящейся между N-концом VL и N-концом VL-CDR1, FW2 является подпоследовательностью, находящейся между С-концом VL-CDR1 и Nконцом VL-CDR2, FW3 является подпоследовательностью, находящейся между С-концом VL-CDR2 и N-концом VL-CDR3, и FW4 является подпоследовательностью, находящейся между С-концом VL-CDR3 и Сконцом VL.

[315] Вариабельные области тяжелых и легких цепей содержат домен связывания, который взаимодействует с антигеном. Константные области антител могут опосредовать связывание иммуноглобулина с тканями или факторами хозяина, в том числе с

различными клетками иммунной системы (например, эффекторными клетками) и первым компонентом (C1q) классического пути активации системы комплемента. Иллюстративные антитела по настоящему изобретению включают типичные антитела, scFv и их комбинации, где, например, scFv ковалентно связан (например, посредством пептидных связей или посредством химического линкера) с N-концом тяжелой цепи и/или легкой цепи типичного антитела или встроен в тяжелую цепь и/или легкую цепь типичного антитела.

- [316] Используемый в данном документе термин "антитело" интактные поликлональные антитела, интактные моноклональные антитела, фрагменты антител (такие как фрагменты Fab, Fab', F(ab')2 и Fv), одноцепочечный вариабельный фрагмент стабилизированные дисульфидными полиспецифические антитела, такие как биспецифические антитела, полученные из по меньшей мере двух интактных антител и/или их антигенсвязывающих частей, химерные антитела, гуманизированные антитела, человеческие антитела, слитые белки, содержащие определяющую антиген часть антитела, и любую другую модифицированную молекулу иммуноглобулина, содержащую антигенраспознающий участок, при условии, что антитела демонстрируют требуемую биологическую активность.
- [317] Антитело может относиться к любому из пяти основных классов (изотипов) иммуноглобулинов: IgA, IgD, IgE, IgG и IgM или их подклассов (например, IgG1, IgG2, IgG3, IgG4, IgA1 и IgA2) на основании особенностей их константных доменов тяжелой цепи, обозначаемых соответственно как альфа, дельта, эпсилон, гамма и мю. Различные классы иммуноглобулинов имеют разные и хорошо известные структуры субъединиц и трехмерные конфигурации. Антитела могут быть "голыми" или конъюгированными с другими молекулами, такими как терапевтические средства или диагностические средства, с образованием иммуноконъюгатов.
- [318] Существуют по меньшей мере две методики определения CDR: (1) подход, основанный на межвидовой вариабельности последовательностей (т. е. Kabat et al. Sequences of Proteins of Immunological Interest, (5th ed., 1991, National Institutes of

Health, Bethesda Md.)); и (2) подход, основанный на кристаллографических исследованиях комплексов антиген-антитело (Al-lazikani et al. (1997) J. Molec. Biol. 273:927-948)). Кроме того, для определения CDR в данной области техники иногда применяют комбинации этих двух подходов. Обычно при обозначении остатка в вариабельном домене (примерно остатки 1-107 легкой цепи и остатки 1-113 тяжелой цепи) применяют систему нумерации согласно Kabat (например, Kabat et al., Sequences of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)).

[319] Фразы "нумерация положений аминокислот согласно Kabat", "положение согласно Kabat" и их грамматические варианты относятся к системе нумерации, применяемой к вариабельным доменам тяжелой цепи или вариабельным доменам легкой цепи антител в соответствии с компиляцией Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991). При применении данной системы нумерации фактическая линейная аминокислотная последовательность может содержать меньшее количество аминокислот или дополнительные аминокислоты, соответствующие укорочению FW или CDR вариабельного домена или вставке в них. Например, вариабельный домен тяжелой цепи может содержать вставку из одной аминокислоты (остаток 52а согласно Kabat) после остатка 52 в H2 и вставленные остатки (например, остатки 82a, 82b и 82c и т. д. согласно Kabat) после остатка 82 FW тяжелой цепи. См. таблицу 1.

таблица 1

Петля	Kabat	AbM	Chothia
Ll	L24-L34	L24-L34	L24-L34
L2	L50-L56	L50-L56	L50-L56
L3	L89-L97	L89-L97	L89-L97
Hl	H31-H35B	H26-H35B H26-H3234 (нумерация по Kabat)	
НІ	Н31-Н35	H26-H35 (нумерация п	H26-H32 to Chothia)
H2 H3	H50-H65 H95-H102	H50-H58 H95-H102	H52-H56 H95-H102

1.

[320] Нумерацию остатков согласно Kabat можно определить данного ДЛЯ антитела путем выравнивания последовательности антитела со "стандартной" последовательностью, пронумерованной Kabat, в областях гомологии. В отличие от согласно Chothia ссылается на расположение структурных петель (Chothia and Lesk, J. Mol. Biol. 196:901-917 (1987)). Конец петли CDR-H1 согласно Chothia при нумерации с использованием правил нумерации согласно Kabat варьирует от H32 до H34 в зависимости от длины ore) обусловлено TeM, ЧТО в соответствии со схемой нумерации согласно Kabat вставки расположены в H35A и H35B; при этом если не присутствуют ни 35A, ни 35B, то петля заканчивается на 32; если присутствует только 35А, то петля заканчивается на 33; если присутствуют как 35А, так и 35В, то петля заканчивается 34). Определение гипервариабельных областей согласно АЬМ представляет собой компромисс между определением CDR согласно Kabat и структурных петель согласно Chothia и применяется в программном обеспечении для моделирования антител AbM от Oxford Molecular.

[321] IMGT (ImMunoGeneTics) также предусматривает систему нумерации вариабельных областей иммуноглобулинов, в том числе CDR. См., например, Lefranc, M.P. et al., Dev. Comp. Immunol. 27: 55-77(2003), которая включена в данный документ посредством ссылки. Система нумерации IMGT была основана на выравнивании

более 5000 последовательностей, данных о структуре и определении характеристик гипервариабельных петель и позволяет легко сравнивать вариабельные и CDR-области для всех видов. Согласно схеме нумерации IMGT VH-CDR1 находится в положениях 26-35, VH-CDR2 находится в положениях 51-57, VH-CDR3 находится в положениях 93-102, VL-CDR1 находится в положениях 27-32, VL-CDR2 находится в положениях 50-52 и VL-CDR3 находится в положениях 89-97.

- [322] Для всех положений аминокислот константной области тяжелой цепи, обсуждаемых в настоящем изобретении, нумерация приведена в соответствии с индексом EU, впервые описанным в Edelman et al., 1969, Proc. Natl. Acad. Sci. USA 63 (1): 78-85, описывающим аминокислотную последовательность миеломного белка EU, который является первым секвенированным человеческим IgG1. Индекс EU согласно Edelman et al. также изложен в Kabat et al., 1991, Sequences of Proteins of Immunological Interest, 5th Ed., United States Public Health Service, National Institutes of Health, Bethesda. Таким образом, фразы "индекс EU, как изложено у Kabat" или "индекс EU согласно Kabat" и "положение ... в соответствии с индексом EU, изложенным У Kabat" XNграмматические варианты относятся к системе нумерации остатков на основании человеческого антитела IgG1 EU согласно Edelman et al., как изложено у Kabat, 1991.
- [323] Системой нумерации, используемой для вариабельных доменов (как тяжелой цепи, так и легкой цепи) и аминокислотной последовательности константной области легкой цепи, является система, изложенная у Kabat, 1991.
- [324] Как используется в данном документе, Гс-область включает полипептиды, содержащие константную область антитела, исключением первого домена константной за области иммуноглобулина. Таким образом, Fc относится к двум последним доменам константной области иммуноглобулинов IqA, IqD и IqG, и трем последним доменам константной области иммуноглобулинов IgE и IgM, и гибкой шарнирной области с N-конца этих доменов. В случае IgA и IgM Fc может содержать J-цепь. В случае IgG Fc содержит домены иммуноглобулина С-гамма-2 и С-гамма-3

Сү3) и шарнирную область между С-гамма-1 (Сү1) и С-гамма-2 (Сү2).

[325] Несмотря на то, что границы Fc-области могут варьировать, Fc-область тяжелой цепи человеческого IgG обычно определяется как содержащая остатки C226 или P230 на ее карбоксильном конце, где нумерация приведена в соответствии с индексом EU, как изложено у Kabat. Fc может относиться к данной области в отдельности или к данной области в контексте антитела, фрагмента антитела или слитого белка на основе Fc.

[326] Полиморфизмы наблюдали в ряде различных положений в константных областях антитела (например, в положениях Fc, в том числе без ограничения в положениях 270, 272, 312, 315, 356 и 358, пронумерованных в соответствии с индексом EU, как изложено И, таким образом, могут существовать различия между представленной последовательностью последовательностями предшествующего $_{\rm RN}$ уровня техники. Полиморфные формы иммуноглобулинов человека хорошо изучены. В настоящее время известно 18 Gm-аллотипов: G1m (1, 2, 3, 17) или Glm (a, x, f, z), G2m (23) или G2m (n), G3m (5, 6, 10, 11, 13, 14, 15, 16, 21, 24, 26, 27, 28) или G3m (b1, c3, b3, b0, b3, b4, s, t, g1, c5, u, v, g5). Cm. Lefranc, et al., The human IgG subclasses: molecular analysis of structure, function regulation. Pergamon, Oxford, pp. 43-78 (1990); Lefranc et al. (1979) Hum. Genet.: 50, 199-211. В частности, предполагается, настоящему изобретению МОГУТ антитела ПО аллотип, изоаллотип или гаплотип любого гена иммуноглобулина, и они не ограничиваются аллотипом, изоаллотипом или гаплотипом последовательностей, представленных в данном документе.

Участок, связываемый антителом. Термин "участок, связываемый антителом" относится к области антигена (например, FIXa или FXz), содержащей непрерывный или прерывистый участок е. эпитоп), с которым специфически связывается комплементарное антитело. Таким образом, участок, связываемый может содержать дополнительные области антителом, антигена, которые находятся за пределами эпитопа и которые определять такие свойства, как аффинность связывания и/или стабильность, или влиять на такие свойства, как ферментативная активность или димеризация антигена. Соответственно, даже если два антитела связываются с одним и тем же эпитопом в пределах антигена, если молекулы антитела устанавливают отличающиеся межмолекулярные контакты с аминокислотами вне эпитопа, то считается, что такие антитела связываются с различными участками, связываемыми антителом.

[328] Антигенсвязывающая часть. Используемый в данном "антигенсвязывающая часть" документе термин может взаимозаменяемо использоваться с термином "антигенсвязывающий фрагмент" и относится к части интактного антитела, способной специфически связываться с тем же эпитопом, что и интактное В частности, он относится к части или интактного антитела, содержащим одну или несколько CDR интактного антитела. \mathbb{N} уровня техники известно, ਪਾਾਨ антигенсвязывающая функция антитела может осуществляться полноразмерного антитела. Примеры фрагментов антитела включают без ограничения фрагменты Fab, Fab', F(ab')2 и Fv, линейные антитела, одноцепочечные антитела полиспецифические антитела, образованные из фрагментов антител.

[329] Антигенсвязывающая молекула. "антигенсвязывающая молекула" и "связывающая молекула" в настоящем изобретении взаимозаменяемо ИСПОЛЬЗУЮТСЯ охватывают антитела, определенные в данном документе, а также другие молекулярные объекты, содержащие по меньшей мере одну из CDR антител, раскрытых в данном документе, которые способны связываться с теми же эпитопами. Например, термин включает миметики антител на основе каркаса домена фибронектина типа III (монотела), другие каркасные системы (например, тенасцин), которых привиты одна или несколько CDR, аптамеры и т. д. В некоторых аспектах антигенсвязывающая молекула может быть биспецифической, т. е. "биспецифическая связывающая молекула" или "биспецифическая молекула".

[330] Примерно. Используемый в данном документе термин "примерно" применительно к одному или нескольким значениям, представляющим интерес, относится к значению, сходному с

указанным заданным значением. В определенных вариантах осуществления термин "примерно" относится к диапазону значений, находящихся в пределах 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1% или меньше в любом направлении (больше или меньше) от указанного заданного значения, если не указано иное или иное не очевидно из контекста (за исключением случаев, когда такое число будет превышать 100% от возможного значения).

- [331] Ассоциированный. Термин "ассоциированный", используемый в данном документе в отношении заболевания, означает, что рассматриваемые симптом, измерение, характеристика или состояние связаны с диагнозом, развитием, наличием или прогрессированием данного заболевания. Ассоциация может, но не обязательно должна, означать причинную связь с заболеванием.
- [332] Используемые в отношении двух или более фрагментов "ассоциированный", "конъюгированный", "связанный", "присоединенный" и "привязанный" означают, что фрагменты физически ассоциированы или соединены друг с другом либо напрямую, либо посредством одного или нескольких дополнительных фрагментов, служащих в качестве линкерного средства, образованием структуры, достаточно стабильной для того, чтобы фрагменты оставались физически ассоциированными в условиях, в которых используют структуру, например, в физиологических "Ассоциация" не обязательно должна формироваться условиях. исключительно путем непосредственного образования ковалентных химических связей. Она также может предполагать образование ионных или водородных связей или связывание за счет гибридизации при достаточной стабильности, чтобы "ассоциированные" объекты оставались физически ассоциированными.
- [333] $A \phi \phi u h h o c t b c b s s b b a h u s . "А \phi ф u h h o c t b s s b b a h u s . "А ф ф u h h o c b s s b b a h u s a u m o действий между одним участком связывания молекулы (например, антитела) и его партнером по связыванию (например, антигеном). Если не указано и h o e, используемый в данном документе термин "а ф ф u h h o c t b s s b b a h u s d ф u h h o c t c b s s b b a h u s d ф u h h o c t c b s s b b a h u s d p u h o c t c b s s b b a h u s d p u h o c t c b s s b b a h u s d p u h o c t c b s s b b a h u s d p u h o c t b c b s s b b a h u s d p u h o c t b c b s s b b a h u s d p u h o c t b c b s s b b a h u s d p u h o c t b c b s s b b a h u s d p u h o c t b c b s s b b a h u s d p u h o c t b c b s s b b a h u s d p u h o c t b c b s s b b a h u s d p u h o c t b c b s s b b a h u s d p u h o c t b c b s s b b a h u s d p u h o c t b c b s s b b a h u s d p u h o c t b c b s s b b a h u s d p u h o c t b c b s s b a h u s d p u h o c t b c b s s b a h u s d p u h o c t b c b s s b a h u s d p u h o c t b c b s s b a h u s d p u h o c t b c b s s b a h u s d p u h o c t b c b s s b a h u s d p u h o c t b c b s s b a h u s d p u h o c t b c b s s b a h u s d p u h o c t b c b s s b a h u s d p u h o c t b c b c b s s b a h u s d p u h o c t b c b c b c b a h u n u s d p u h u s d$

молекулы X в отношении ее партнера Y, как правило, может быть представлена константой диссоциации (K_D) . Аффинность можно измерить с помощью общепринятых способов, известных из уровня техники, в том числе способов, описанных в данном документе. Антитела с низкой аффинностью, как правило, связываются с антигеном медленно и склонны легко диссоциировать, тогда как антитела с высокой аффинностью, как правило, связываются с антигеном быстрее и склонны дольше оставаться связанными. Из уровня техники известен ряд способов измерения аффинности связывания, любой из которых можно использовать для целей настоящего изобретения.

[334] Термины "более высокая аффинность связывания" или "большая аффинность" применительно к любому из антител по настоящему изобретению относятся к увеличенной аффинности связывания (измеренной, например, с помощью K_{D}) относительно эталонного антитела. В некоторых вариантах осуществления эталонное антитело представляет собой соответствующее антитело, которое не подвергалось созреванию аффинности. В вариантах осуществления эталонное антитело представляет собой другое антитело с такой же специфичностью (например, для FIXa, раскрытого в данном документе, антитело может представлять собой другое антитело к FIX или антитело к FIXa, известное из уровня техники). В некоторых вариантах осуществления увеличенная аффинность связывания может по меньшей мере приблизительно например, на меньшей мере приблизительно 20%, по меньшей мере приблизительно меньшей мере 30%, по меньшей мере приблизительно 40%, по приблизительно 50%, по меньшей мере приблизительно 60%, по меньшей мере приблизительно 70%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 90% или по меньшей мере приблизительно 100% выше аффинности связывания эталонного антитела в отношении тех же фактора коагуляции (например, FIX ИЛИ FX), формы фактора (например, FIXa или антигенсвязывающего участка (например, эпитопа). В некоторых вариантах осуществления увеличенная аффинность связывания может быть например, в по меньшей мере приблизительно 2 раза,

меньшей мере приблизительно 3 раза, по меньшей мере приблизительно 4 раза, по меньшей мере приблизительно 5 раз, по мере приблизительно 6 раз, ПО меньшей приблизительно 7 раз, по меньшей мере приблизительно 8 раз, по приблизительно 9 раз или по меньшей меньшей мере мере приблизительно 10 раз выше аффинности связывания эталонного антитела в отношении тех же фактора коагуляции (например, FIX ИЛИ FX), формы фактора (например, FIXa или FXz) или антигенсвязывающего участка (например, эпитопа).

- [335] Связывание. Термин "связывание" относится к физическому взаимодействию между двумя молекулами, например, антителом и антигеном.
- 2. (і) Специфичность связывания. Термин "специфичность" относится к способности связывающей молекулы, например антитела, предпочтительно связываться С ОДНИМ антигенным участком (например, эпитопом) в отличие от другого антигенного участка, и он не обязательно подразумевает высокую аффинность. "специфичность связывания" и "специфичность" используются взаимозаменяемо и могут относиться как к (і) специфической части связывающей молекулы, так и к (ii) способности связывающей специфически связываться определение молекулы (CM."специфическое связывание" ниже) с конкретным эпитопом. Например, в некоторых вариантах осуществления биспецифическое антитело, раскрытое в данном документе, обладает двумя видами специфичности связывания, первый вид специфичности связывания, например, в отношении FIXa, а второй вид специфичности связывания, например, в отношении FXz (в данном контексте "специфичность связывания", например, связывание конкретной области биспецифического антитела с конкретной антигенной детерминантой, будет соответствовать "связывающему домену").
- (ii) Специфическое связывание. Связывающая молекула, например антитело, "специфически связывается", если имеет место иммунологическая реакция в результате специфического взаимодействия между антигеном и связывающей молекулой. Термин "специфически связывает" означает, что антитело было получено с возможностью связывания антигена его вариабельной областью.

Термин "неспецифическое связывание" означает, что антитело было получено без возможности специфического связывания с антигеном, но, так или иначе, связывает антиген неспецифическим образом. В качестве одного примера, антитело будет неспецифически связываться с Fc-рецептором посредством Fc-части молекулы антитела. В качестве другого примера, некоторые антитела могут непреднамеренно перекрестно реагировать с антигенами, для которых они не были получены.

3. (ііі) Предпочтительное связывание. Связывающая молекула, например антитело, "предпочтительно связывается" с антигеном, если она связывается с большей аффинностью, авидностью, легче и/или с большей продолжительностью по сравнению с ее связыванием Например, веществами. антитело, предпочтительно связывается с эпитопом FIXa, представляет собой антитело, которое связывает данный эпитоп с большей аффинностью, авидностью, легче и/или большей продолжительностью С сравнению с его связыванием с другими эпитопами FIXa или то иминриито ,имепотипе FIXa. Например, антитело FIX предпочтительно связывается с активированным FIX в отличие от зимогена FIX, если более 50%, 60%, 70%, 80%, 90% или 95% антитела к FIX связывается с FIXa в присутствии как FIXa, так и FIXz. При истолковании данного определения также следует понимать, что, например, антитело (или фрагмент, или эпитоп), которое предпочтительно связывается с первой мишенью, предпочтительно связываться со второй мишенью или может делать этого. Соответственно, "предпочтительное связывание" не обязательно требует (хотя может предусматривать) исключительное Таким связывание. образом, В некоторых аспектах "предпочтительное связывание" может представлять "исключительное связывание". Для иллюстрации данных понятий, если 50% антитела к FIX специфически связывается с зимогеном FIX, и 50% специфически связывается с FIXa, то такое связывание будет "неселективным" или "непредпочтительным". Если менее 50% антитела к FIX связывается с зимогеном FIX, И более связывается с FXa, то антитело к FIX будет "предпочтительно связываться" с FIXa. Если антитело к FIX не связывается с

зимогеном FIX, а связывается только с FIXа, то антитело к FIX будет "исключительно связываться" с FIXа.

[336] Биологический образец. Термин "биологический образец", используемый в данном документе, относится к любому образцу, полученному от субъекта, клеточной линии, культуры тканей или другого источника, потенциально содержащего молекулу, содержащую антиген, специфически распознаваемый связывающими молекулами, раскрытыми в данном документе. В некоторых аспектах биологический образец представляет собой образец крови или образец, полученный из образца крови (например, плазма крови). Способы получения тканевых биоптатов и биологических жидкостей от млекопитающих хорошо известны из уровня техники.

[337] Биспецифическое антитело. "Биспецифическое антитело" представляет собой конкретный тип "биспецифической молекулы" или "биспецифической связывающей молекулы". Термин "биспецифическое антитело" означает антитело, которое способно связываться с по меньшей мере двумя антигенными детерминантами (например, эпитопами) посредством двух разных антигенсвязывающих участков. В определенных вариантах осуществления биспецифическое антитело способно одновременно связывать две антигенные детерминанты эпитопы). В некоторых вариантах осуществления биспецифическое антитело связывает один антиген (или эпитоп) за счет одного из своих связывающих плечей (одной пары тяжелой цепи/легкой цепи), и связывает другой антиген (или эпитоп) за (другой пары счет своего второго связывающего плеча цепи/легкой цепи). В некоторых вариантах осуществления биспецифическое антитело может иметь два отличающихся антигенсвязывающих плеча (как по специфичности, так ПО последовательностях CDR), и является одновалентным в отношении каждого антигена, с которым оно связывается. Виспецифические антитела включают, например, антитела, полученные с помощью квадромы (Milstein & Cuello (1983)305(5934):537-40), путем химического конъюгирования двух разных (1985)моноклональных антител (Staerz et al. Nature 314 (6012)):628-31) или с помощью подхода "выступ-во-впадину" или подобных подходов, с помощью которых вводят мутации в Fc-область

(Holliger et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90(14): 6444-6448).

[338] За последнее время было разработано большое разнообразие форматов рекомбинантных биспецифических антител, например, путем слияния, например, антитела формата IgG и одноцепочечных доменов (см. Kontermann RE, mAbs 4:2, (2012) 1-16). Биспецифические антитела, в которых вариабельные домены VL и VH или константные домены CL и CH1 заменены друг на друга, описаны в WO2009080251 и WO2009080252.

[339] Подход, позволяющий обойти проблему образования ошибочно спаренных побочных продуктов, который известен как "выступы-во-впадины", направлен на то, чтобы обеспечивать вынужденное спаривание двух разных тяжелых цепей антител путем в СН3-домены с модификацией введения мутаций На контакта. одной цепи крупные аминокислоты заменяют аминокислотами короткими боковыми цепями с образованием С "впадины". И наоборот, для получения "выступа" в другой СНЗдомен вводят аминокислоты с большими боковыми цепями. При совместной экспрессии данных двух тяжелый цепей (и двух идентичных легких цепей, которые должны соответствовать обеим тяжелым цепям) наблюдали высокие показатели выхода в отношении образования гетеродимеров ("выступ-впадина") по сравнению с образованием гомодимеров ("выступ-выступ" или "впадина-впадина") (Ridgway JB, Presta LG, Carter P; и W01996027011). Процентное содержание гетеродимерной формы можно дополнительно увеличивать путем изменения структуры поверхностей взаимодействия двух СН3доменов с применением подхода фагового дисплея и введения дисульфидного мостика для стабилизации гетеродимеров (Merchant A.M, et al, Nature Biotech 16 (1998) 677-681; Atwell S, Ridgway JB, Wells JA, Carter P., J Mol Biol 270 (1997) 26-35). Новые подходы к технологии "выступы-во-впадины" описаны, например, в EP 1870459A1. B Xie, Z., et al, J Immunol Methods 286 (2005) 95-101 рассмотрен формат биспецифического антитела с применением scFv в комбинации с технологией "выступы-во-впадины" для FCчасти.

[340] Была разработана модульная структура антител для

создания более 60 разных форматов биспецифического антитела. См. Spiess et al. (2015) Molecular Immunology 67:95-106, которая включена в данный документ посредством ссылки во всей своей полноте. Соответственно, в некоторых аспектах формат биспецифического антитела выбран из кроссмаб, DAF (Fab с двойным действием) (два в одном), DAF (четыре в одном), DutaMab, DT-IgG, общей LC с "выступами-во-впадины", сборки с "выступами-вовпадины", заряженной пары, продукта обмена Fab-плеча, SEEDbody, LUZ-Y(биспецифического антитела с "лейциновой триомаб, застежкой", индуцирующей гетеродимеризацию двух HC), Fcab, KAтела, ортогонального Fab, DVD-IgG (IgG с двойным вариабельным доменом), IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)IgG, IgG(L,H)-Fv, IgG(H)-V, V(H)-IgG, IgG(L)-V, V(L)-IgG, KIH IgG-VscFab, 2scFv-IqG, IqG-2scFv, scFv4-Iq, зитела, DVI-IqG (четыре в одном), нанотела, нанотело-HSA, BiTE (биспецифического активатора T-клеток), диатела, DART (переориентирующегося антитела с двойной аффинностью), TandAb (тандемного антитела), одноцепочечного диатела, одноцепочечного диатела-СНЗ, антитела на основе трех фрагментов, миниантитела, минитела, минитела TriBi, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab')2, F(ab')2-ScFv2, scFv-KIH, Fab-scFv-Fc, четырехвалентного HC Ab, одноцепочечного диатела-Fc, диатела-Fc, тандемного scFv-Fc, интратела, антитела, полученного с помощью методики "замок на ImmTAC, HSAbody, одноцепочечного диатела-HSA, тандемного scFv-токсина, IgG-IgG, Cov-X-Body и scFv1-PEG-scFV2.

[341] В некоторых аспектах биспецифическое антитело представляет собой асимметричное (например, гетеродимерное) антитело, содержащее цепь А и цепь В, где

цепь А содержит мутацию Т336W, и цепь В содержит мутации Т366W, L368A и Y407V (формат "выступы-во-впадины");

цепь A содержит мутацию F405L, и цепь B содержит мутацию K409R (формат дуотело);

цепь A содержит мутации T350V, L351Y, F405A и Y407V, и цепь В содержит мутации T350V, T366L, K392L и T394W (асимметричный формат);

цепь A содержит мутации K409D и K392D, и цепь В содержит

мутации D399К и E356К (формат заряженной пары);

цепь A содержит мутации D221E, P228E и L368E, и цепь B содержит мутации D221R, P228R и K409R (формат заряженной пары);

цепь А содержит мутации S364H и F405A, и цепь В содержит мутации Y349T и T394F (формат HA-TF); или

цепь A предусматривает химеру IgG/A, и цепь B также предусматривает химеру IgG/A (формат SEEDbody).

- [342] B некоторых аспектах биспецифическое антитело представляет собой моноспецифическое антитело, сконструированное с возможностью проявления биспецифичности путем присоединения либо карбокси-концов легких либо тяжелых дополнительными антигенсвязывающими звеньями. Альтернативы для дополнительных антигенсвязывающих звеньев VL или однодоменные антитела (неспаренные VH), спаренные вариабельные домены антитела (например, Fv или scFv) сконструированные белковые каркасные структуры. В некоторых аспектах биспецифическая молекула по настоящему изобретению предусматривает биспецифический фрагмент антитела. Из уровня формы техники известны многочисленные биспецифических фрагментов, в которых отсутствуют некоторые или все константные биспецифических антител. В некоторых биспецифическая молекула по настоящему изобретению представляет собой биспецифический слитый белок, например ImmTAC (scFv, связанный с рецептором с созревшей аффинностью). В аспектах биспецифическая молекула представляет собой конъюгат на основе биспецифического антитела.
- [343] Биспецифическая молекула. См. представленное выше определение "антигенсвязывающей молекулы"/"связывающей молекулы".
- [344] Химерное антитело. Термин "химерное антитело" и его грамматические варианты относятся К антителам, В которых последовательность аминокислотная молекулы иммуноглобулина получена \circ T двух или более видов животных. Как правило, область как легкой, так тяжелой вариабельная И цепей соответствует вариабельной области антител, полученных от одного вида млекопитающих (например, мыши, крысы, кролика и т. д.) с

требуемыми специфичностью, и/или аффинностью, и/или функциональной способностью, тогда как константные области гомологичны последовательностям антител, полученных от другого вида (обычно человека), во избежание вызывания иммунного ответа у данного вида.

[345] Область, определяющая комплементарность. Термин "область, определяющая комплементарность" или "CDR" относится к вариабельным областям Н (тяжелой) либо L (легкой) цепей, содержащим аминокислотные последовательности, способные специфически связываться с антигенными мишенями. Данные CDR-области обуславливают основную специфичность антитела в отношении конкретной структуры, представляющей собой антигенную детерминанту. Такие области также называют "гипервариабельными областями". См. представленное выше определение "антитело".

[346] Консервативная аминокислотная замена. "Консервативная аминокислотная замена" представляет собой замену, при которой аминокислотный остаток замещается аминокислотным остатком со сходной боковой цепью. Семейства аминокислотных остатков, имеющих сходные боковые цепи, были определены в уровне техники, включая основные боковые цепи (например, лизин, аргинин или гистидин), кислые боковые цепи (например, аспарагиновая кислота или глутаминовая кислота), незаряженные полярные боковые цепи (например, глицин, аспарагин, глутамин, серин, треонин, тирозин или цистеин), неполярные боковые цепи (например, аланин, валин, лейцин, изолейцин, пролин, фенилаланин, метионин или триптофан), бета-разветвленные боковые цепи (например, треонин, изолейцин) и ароматические боковые цепи (например, тирозин, фенилаланин, триптофан или гистидин). Таким образом, если аминокислота в полипептиде заменяется другой аминокислотой из того же семейства боковых цепей, то аминокислотная замена считается консервативной. В другом аспекте нить из аминокислот можно подвергнуть консервативному замещению сходной структурном отношении нитью, которая отличается порядком расположения и/или составом представителей семейства боковых цепей.

[347] Неконсервативные аминокислотные замены включают

замены, при которых (i) остаток, имеющий электроположительную боковую цепь (например, Arg, His или Lys), заменяет электроотрицательный остаток или заменяется на него (например, Glu или Asp), (ii) гидрофильный остаток (например, Ser или Thr) заменяет гидрофобный остаток или заменяется на него (например, Ala, Leu, Ile, Phe или Val), (iii) цистеин или пролин заменяют любой другой остаток или заменяются на него или (iv) остаток, имеющий крупную гидрофобную или ароматическую боковую цепь (например, Val, His, Ile или Trp), заменяет остаток, имеющий меньшую боковую цепь (например, Ala или Ser) или не имеющий боковой цепи (например, Gly), или заменяется на него.

Другие аминокислотные замены МОГУТ быть [348] легко идентифицированы специалистами в данной области техники. Например, в случае аминокислоты, представляющей собой аланин, замена может быть выбрана из любого из D-аланина, глицина, бетааланина, L-цистеина и D-цистеина. В случае лизина заместитель тэжом быть любым ИЗ D-лизина, аргинина, D-аргинина, гомоаргинина, метионина, D-метионина, орнитина или D-орнитина. Как правило, замены в функционально важных областях, которые, как можно ожидать, будут вызывать изменения свойств выделенных полипептидов, представляют собой замены, при которых (і) полярный остаток, например серин или треонин, заменяет гидрофобный остаток, например лейцин, изолейцин, фенилаланин или аланин (или заменяется на него); (іі) цистеиновый остаток заменяет любой другой остаток (или заменяется на него); (ііі) остаток, имеющий электроположительную боковую цепь, например ГИСТИДИН, заменяет лизин, аргинин или остаток, имеющий электроотрицательную боковую цепь, например глутаминовая кислота или аспарагиновая кислота (или заменяется на него); или (iv) остаток, имеющий крупную боковую цепь, например фенилаланин, заменяет остаток, не имеющий такой боковой цепи, например глицин заменяется на него). Вероятность того, что одна вышеуказанных неконсервативных замен может изменить функциональные свойства белка, также коррелирует с положением замены относительно функционально важных областей белка; этом некоторые неконсервативные замены могут соответственно

оказывать незначительный эффект в отношении биологических свойств или не оказывать такого эффекта.

Консервативный. Используемый В данном документе "консервативный" термин ОТНОСИТСЯ K нуклеотидам ИЛИ аминокислотным остаткам соответственно полинуклеотидной последовательности или полипептидной последовательности, которые встречаются в неизменном виде в одном и том же положении в двух более сравниваемых последовательностях. Нуклеотиды или которые являются относительно консервативными, аминокислоты, представляют собой такие, которые являются консервативными среди родственных последовательностей, чем нуклеотиды аминокислоты, встречающиеся в других частях последовательностей.

[350] В некоторых вариантах осуществления две или более последовательностей называют "полностью консервативными" "идентичными", если они на 100% идентичны друг другу. В некоторых вариантах осуществления и.пи две более последовательностей называют "высококонсервативными", если они на по меньшей мере 70% идентичны, по меньшей мере 80% идентичны, по меньшей мере 90% идентичны или по меньшей мере 95% идентичны друг другу. В некоторых вариантах осуществления две или более последовательностей называют "высококонсервативными", если они на приблизительно 70% идентичны, приблизительно 80% идентичны, приблизительно 90% идентичны, приблизительно 95%, приблизительно 98% или приблизительно 99% идентичны друг другу. В некоторых более последовательностей осуществления две ИЛИ называют "консервативными", если они на по меньшей мере 30% идентичны, по меньшей мере 40% идентичны, по меньшей мере 50% идентичны, по меньшей мере 60% идентичны, по меньшей мере 70% идентичны, по меньшей мере 80% идентичны, по меньшей мере 90% идентичны или по меньшей мере 95% идентичны друг другу. В некоторых вариантах осуществления или более две "консервативными", последовательностей называют если ОНИ на приблизительно 30ક идентичны, приблизительно 40% идентичны, приблизительно 50% идентичны, приблизительно 60% идентичны, 80% приблизительно 70% идентичны, приблизительно идентичны, 90% 95% приблизительно идентичны, приблизительно идентичны,

приблизительно 98% идентичны или приблизительно 99% идентичны друг другу. Консервативность последовательности может относиться ко всей длине полинуклеотида или полипептида или может относиться к его части, области или признаку.

[351] Перекрестно конкурировать. Термины "конкурировать" или "перекрестно конкурировать", используемые в данном документе в отношении связывающей молекулы, например антитела, означают, что первая связывающая молекула, например первое антитело или его антигенсвязывающая часть, связывается с эпитопом таким образом, который достаточно сходен со связыванием связывающей молекулы, например второго антитела или его антигенсвязывающей части, так что результат связывания первой связывающей молекулы с ее когнатным эпитопом заметно уменьшается второй связывающей молекулы по сравнению связыванием первой связывающей молекулы в отсутствие второй связывающей молекулы. Может, но не обязательно, иметь место альтернатива, когда связывание второй связывающей молекулы с ее мопотипе также заметно уменьшается в присутствии первой связывающей молекулы. То есть первая связывающая молекула может подавлять связывание второй связывающей молекулы с ее эпитопом, при этом данная вторая молекула не подавляет связывание первой связывающей молекулы с ее соответствующим эпитопом. Однако, в случае, если каждая связывающая молекула заметно подавляет связывание другой связывающей молекулы с ее когнатным эпитопом, будь то в одинаковой, большей или меньшей степени, то считается, что связывающие молекулы "перекрестно конкурируют" друг с другом за связывание их соответствующего (-их) эпитопа (-ов). Настоящим изобретением охватываются как конкурирующие, так и перекрестно конкурирующие связывающие молекулы.

[352] Считается, что связывающие молекулы, например антитела, "связываются с одним и тем же эпитопом", или "содержат один и тот же участок связывания", или обладают "по сути одними и теми же характеристиками связывания", если связывающие молекулы перекрестно конкурируют таким образом, что только одно антитело может связываться с эпитопом в заданный момент времени, т. е. одна связывающая молекула предотвращает связывание или

модулирующий эффект другой.

[353] Конкуренция в данном документе означает относительное подавление на более чем по меньшей мере приблизительно 20%, по меньшей мере приблизительно 25%, по меньшей мере приблизительно 30%, по меньшей мере приблизительно 35%, по меньшей мере приблизительно 40%, по меньшей мере приблизительно 45%, по меньшей мере приблизительно 50%, по меньшей мере приблизительно 55%, по меньшей мере приблизительно 60%, по меньшей мере приблизительно 65%, по меньшей мере приблизительно 70%, по меньшей мере приблизительно 75%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95% или приблизительно 100%, как определено с помощью конкурентного анализа ELISA или с помощью анализа ForteBio, например, описано в разделе "Примеры". Может потребоваться установка более высокого порогового значения относительного подавления качестве критерия того, что является подходящим конкуренции в конкретном контексте. Таким образом, например, можно установить критерии для конкурентного связывания, при меньшей мере приблизительно которых выявляют ПО 40% относительного подавления, или по меньшей мере приблизительно 45%, или по меньшей мере приблизительно 50%, или по меньшей мере приблизительно 55%, или по меньшей мере приблизительно 60%, или меньшей мере приблизительно 65%, или по меньшей мере приблизительно 70%, или по меньшей мере приблизительно 75%, или меньшей мере меньшей мере приблизительно 80%, или ПО приблизительно 85%, или по меньшей мере приблизительно 90%, или по меньшей мере приблизительно 95%, или даже приблизительно прежде чем определить антитело как достаточно конкурентное.

[354] Эффективное количество. Используемый в данном документе термин "эффективное количество" средства, например терапевтического средства, такого как антитело, представляет собой такое количество, которого достаточно для достижения благоприятных или требуемых результатов, например, клинических результатов, и, как таковое, "эффективное количество" зависит от

контекста, в котором оно применяется. Например, в контексте введения терапевтического средства, с помощью которого лечат кровотечение, эффективное количество средства представляет собой, например, количество, достаточное для уменьшения или сокращения случаев кровотечения по сравнению с ответом, полученным без введения средства. Термин "эффективное количество" можно использовать взаимозаменяемо с "эффективной дозой", "терапевтически эффективным количеством" или "терапевтически эффективным количеством" или

[355] Эффекторная функция. "Эффекторная функция" антитела представляет собой способность связывать белки системы комплемента, которые могут способствовать лизису целевого антигена, например, клеточного патогена, в процессе, называемом комплемент-зависимой цитотоксичностью (CDC). Другой эффекторной активностью Fc-области является связывание с Fc-рецепторами (например, FcyR) на поверхности иммунных клеток или так называемых эффекторных клеток, которые обладают способностью вызывать другие иммунные эффекты. Эффекторной функции антитела можно избежать, например, путем применения фрагментов антител, лишенных Fc-области (например, таких как Fab, F(ab')2 или одноцепочечный Fv (scFv)), путем удаления сахаров, которые связаны с конкретными остатками в Fc-области (агликозилированные антитела), или путем использования Fc-областей из антитела IgG4 ("не имеющий эффекторных функций Fc IgG4") вместо IgG1. Хорошо антитела IgG4 характеризуются более низкими уровнями активации системы комплемента и антителозависимой клеточной цитотоксичностью, чем IgG1.

[356] Сконструированное антитело. Как используется в данном документе, варианты осуществления настоящего изобретения являются "сконструированными", если они разработаны таким образом, что обладают признаком или свойством, будь то структурным или химическим, по которым они отличаются от исходной молекулы, молекулы дикого типа или нативной молекулы. В этом отношении "сконструированное антитело" представляет собой, например, антитело, в котором были осуществлены замены/мутации для улучшения аффинности, периода полужизни в плазме крови и т.

д., был изменен формат антитела (например, путем образования scFv или биспецифического антитела), или антитело было подвергнуто созреванию аффинности.

Эпитоп. Термин "эпитоп", используемый в данном антигенной белковой документе, относится K детерминанте (например, аминокислотной подпоследовательности FIXa или FXz), способной связываться со связывающей молекулой, например антителом. Эпитопы обычно COCTOST ИЗ химически активных поверхностных групп молекул, таких как боковые цепи аминокислот или сахаров, и обычно обладают специфическими характеристиками трехмерной структуры, а также специфическими характеристиками Часть антитела или связывающей молекулы, заряда. которая HOTNE, называется паратопом. Эпитопы белковых антигенов разделяют на две категории, конформационные эпитопы и линейные эпитопы, исходя из их структуры и взаимодействия с Конформационный HOTNHE COCTOMT паратопом. ИЗ прерывистых участков аминокислотной последовательности антигена. Данные эпитопы взаимодействуют с паратопом за счет пространственных особенностей поверхности и формы или третичной структуры антигена. В отличие от этого, линейные эпитопы взаимодействуют с паратопом за счет их первичной структуры. Линейный эпитоп образован непрерывной последовательностью аминокислот антигена.

[358] Вектор экспрессии. "Вектор экспрессии" представляет собой полинуклеотид, который при введении в подходящую клеткухозяина может транскрибироваться и транслироваться в полипептид. "Система экспрессии" обычно относится к подходящей экспрессии, который XOBRUHY, содержащей вектор тэжом функционировать с получением требуемого продукта экспрессии. Антитела (например, биспецифические антитела) в соответствии с настоящим изобретением предпочтительно получают рекомбинантными способами. Такие способы широко известны из уровня техники и включают обеспечение экспрессии белка в прокариотических эукариотических клетках с последующим выделением полипептида антитела и обычно очисткой до фармацевтически приемлемой чистоты.

[359] Последовательность зародышевого типа. Используемый в

данном документе термин "последовательность зародышевого типа" к последовательности из неперегруппированных относится последовательностей ДНК иммуноглобулина. Можно использовать любой подходящий источник иммуноглобулина, не подвергнутого перегруппировке. Термин "зародышевый тип" относится к последовательностям минигенов V, D и J до воздействия антитела "V-области" описывают Перегруппированные на антиген. генетический элемент, который образуется в результате явления перегруппировки между минигенами V, D и J (в случае тяжелых цепей) или V и J (в случае легких цепей). "V-область антитела" относится к области полипептида, кодируемой элементом V, D и J. V-область антитела кодируется перегруппированными минигенами V, D и J. Термин "V(D) J-рекомбинация" относится к любому способу, при котором миниген V, D или J подвергается рекомбинации с другим минигеном V, D или J. V-область может быть частью полноразмерного антитела, Fab, scFv или любого другого производного антитела (см. нижеприведенное определение антитела). "V-область зародьшевого типа" относится последовательности перегруппированных минигенов V, D и J до существенных мутагенных событий. V-область зародышевого типа может иметь случайные вставки или делеции в областях соединения минигенов V-D, D-J или V-J. V-область не зародышевого типа (или "зрелая" V-область) будет отличаться от последовательностей зародышевого типа минигенов обычно на более чем 5 остатков (не включая делеции или вставки при соединении).

[360] Гомология. Используемый в данном документе термин "гомология" относится к общему родству между полимерными молекулами, например, между молекулами нуклеиновых кислот (например, молекулами ДНК и/или молекулами РНК) и/или между молекулами полипептидов. Как правило, термин "гомология" подразумевает эволюционную взаимосвязь между двумя молекулами. Таким образом, две молекулы, являющиеся гомологичными, будут иметь общего эволюционного предка. В контексте настоящего изобретения термин "гомология" охватывает как идентичность, так и сходство.

[361] В некоторых вариантах осуществления полимерные

молекулы считаются "гомологичными" друг другу, если по меньшей мере 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% или 99% мономеров в молекуле являются идентичными (в точности такие же мономеры) или сходными (консервативные замены). Термин "гомологичный" обязательно относится к сравнению по меньшей мере двух последовательностей (полинуклеотидных или полипептидных последовательностей).

[362] Человеческое антитело. Термин "человеческое антитело" означает антитело, вырабатываемое в организме человека, имеющее аминокислотную последовательность, соответствующую антителу, вырабатываемому в организме человека, полученное с применением любой методики, известной из уровня техники (например, рекомбинантной экспрессии в культивируемых клетках или экспрессии в трансгенных животных). Таким образом, термин "человеческое антитело" охватывает также антитело, последовательность, имеющее аминокислотную соответствующую антителу, изначально вырабатываемому в организме человека (или сконструированному варианту или производному), экспрессированному в системе, не имеющей отношения к человеку полученное С помощью химического (например, синтеза; экспрессированное рекомбинантным путем в клетках микроорганизма, млекопитающего или насекомого или экспрессированное в организме животного). Соответственно, антитело, полученное от субъектачеловека или из клеток человека (например, гибридомы или клеточной линии, экспрессирующей рекомбинантное антитело или его организме фрагмент) И впоследствии экспрессированное в животного, например мыши, считается человеческим антителом. Это определение человеческого антитела включает интактные ИЛИ полноразмерные антитела, их фрагменты и/или антитела, содержащие по меньшей мере один полипептид человеческой тяжелой и/или легкой цепи, как, например, антитело, содержащее полипептиды мышиной легкой цепи и человеческой тяжелой цепи.

[363] Гуманизированное антитело. Термин "гуманизированное антитело" относится к антителу, полученному из иммуноглобулина, отличного от человеческого (например, мышиного), которое было сконструировано так, чтобы содержание в нем последовательностей,

отличных от человеческих (например, мышиных), было минимальным. правило, гуманизированные антитела представляют собой человеческие иммуноглобулины, в которых остатки из CDR заменены остатками из CDR отличных от человека видов (например, мыши, крысы, кролика или хомячка), которые характеризуются требуемыми специфичностью, аффинностью и функциональной способностью (Jones et al., 1986, Nature, 321:522-525; Riechmann et al., 1988, Nature, 332:323-327; Verhoeyen et al., 1988, Science, 239:1534-В FW некоторых случаях остатки человеческого иммуноглобулина заменяют соответствующими остатками антитела от человека вида, отличного $\circ \mathtt{T}$ которое обладает требуемыми специфичностью, и/или аффинностью, и/или функциональной способностью.

[364] Гуманизированное антитело МОЖНО дополнительно модифицировать путем замены дополнительных остатков В областях и/или в пределах замещенных остатков, не являющихся человеческими, чтобы улучшить и оптимизировать специфичность, и/или аффинность, и/или функциональную способность антитела. В целом, гуманизированное антитело будет содержать фактически все из по меньшей мере одного и, как правило, двух или трех вариабельных доменов, содержащих все или фактически все из CDRобластей, которые соответствуют отличному от человеческого иммуноглобулину, тогда как все или фактически все FW-области представляют собой таковые из консенсусной последовательности человеческого иммуноглобулина. Гуманизированное антитело также может содержать по меньшей мере часть константной области или домена (Fc) иммуноглобулина, как правило, иммуноглобулина человека. Примеры способов, применяемых ДЛЯ получения гуманизированных антител, описаны в патентах США №№ 5225539 или 5639641.

[365] Идентичность. Используемый в данном документе термин "идентичность" относится к общей консервативности мономеров между полимерными молекулами, например, между молекулами полипептидов или молекулами полинуклеотидов (например, молекулами ДНК и/или молекулами РНК). Термин "идентичный" без каких-либо дополнительных определителей, например, белок А

идентичен белку В, подразумевает, что последовательности идентичны на 100% (100% идентичность последовательностей). Описание двух последовательностей как, например, "идентичных на 70%" эквивалентно описанию их как характеризующихся, например, "70% идентичностью последовательностей".

[366] Расчет процентной идентичности двух полинуклеотидных последовательностей, например, можно осуществлять выравнивания двух последовательностей с целью оптимального первой сравнения (например, в одну или обе из И последовательностей нуклеиновых кислот можно вводить гэпы для оптимального выравнивания, и с целью сравнения неидентичные последовательности можно не принимать во внимание). определенных вариантах осуществления длина последовательности, выровненной с целью сравнения, составляет по меньшей мере 30%, по меньшей мере 40%, по меньшей мере 50%, по меньшей мере 60%, по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, 95% 100% от ПО меньшей мере ИЛИ ДЛИНЫ эталонной последовательности. Затем сравнивают нуклеотиды соответствующих положениях нуклеотидов. Если положение в первой последовательности TOT нуклеотид, занимает же ЧТО И В второй последовательности, соответствующем положении во молекулы являются идентичными по этому положению. Процентная идентичность между двумя последовательностями зависит от числа идентичных положений, общих для последовательностей, с учетом числа гэпов и длины каждого гэпа, который необходимо ввести для оптимального выравнивания данных двух последовательностей. последовательностей Сравнение И определение процентной идентичности между двумя последовательностями можно выполнять с помощью математического алгоритма. При сравнении ДНК и РНК тимин (T) и урацил (U) могут считаться эквивалентными.

[367] Подходящие программы системы программного обеспечения ИСТОЧНИКОВ И ДОСТУПНЫ ИЗ различных предназначены ДЛЯ выравнивания как белковых, так И нуклеотидных последовательностей. Одной подходящей программой для определения процентной идентичности последовательностей является bl2seq, часть пакета программ BLAST, доступного на веб-сайте

Национального центра биотехнологической информации правительства США (blast.ncbi.nlm.nih.gov). В Bl2seq сравнение двух последовательностей выполняется с помощью алгоритма BLASTN либо BLASTP. BLASTN используется для сравнения последовательностей нуклеиновых кислот, тогда как BLASTP используется для сравнения аминокислотных последовательностей. Другими подходящими программами являются, например, Needle, Stretcher, Water или Matcher, часть пакета биоинформатических программ EMBOSS, а также доступные от Европейского института биоинформатики (EBI) по адресу www.ebi.ac.uk/Tools/psa.

[368] Процедуры выравнивания последовательностей можно проводить с помощью способов, известных из уровня техники, таких как MAFFT, Clustal (ClustalW, Clustal X или Clustal Omega), MUSCLE и т. д.

[369] Каждая из разных областей В одной целевой полинуклеотидной или полипептидной последовательности, выравниваемой относительно эталонной полинуклеотидной или полипептидной последовательности, может характеризоваться собственной процентной идентичностью последовательности. Следует отметить, ЧТО процентной идентичности значение последовательностей округляют до ближайших десятых. Например, 80,11, 80,12, 80,13 и 80,14 округляют в меньшую сторону до 80,1, тогда как 80,15, 80,16, 80,17, 80,18 и 80,19 округляют в большую сторону до 80,2. Также следует отметить, что значение длины всегда будет целым числом.

[370] В определенных аспектах процентное значение идентичности "% ID" первой аминокислотной последовательности последовательности нуклеиновой кислоты) CO второй аминокислотной последовательностью (или последовательностью нуклеиновой кислоты) рассчитывают как % ID=100 x (Y/Z), где Y представляет собой число аминокислотных остатков (или нуклеотидных оснований), подсчитанных как идентичные совпадения при выравнивании первой И второй последовательностей (выравниваемых посредством визуального осмотра или конкретной программы выравнивания последовательностей), и Z представляет собой общее число остатков во второй последовательности. Если

длина первой последовательности больше, чем длина второй последовательности, то процентная идентичность первой последовательностью будет выше, чем процентная идентичность второй последовательности с первой последовательности с первой последовательностью.

[371] Специалисту в данной области техники будет понятно, что построение выравнивания последовательностей для расчета процентной идентичности последовательностей не ограничивается бинарными сравнениями двух последовательностей, основанными исключительно на первичных данных о последовательностях. Также следует понимать, что выравнивания последовательностей можно построить с помощью интеграции данных о последовательностях с данными из неоднородных источников, такими как структурные кристаллографические структуры (например, функциональные данные (например, локализация мутаций) филогенетические данные. Подходящей программой, с помощью данные с построением которой интегрируют неоднородные множественного выравнивания последовательностей, является Coffee, доступная на www.tcoffee.org и альтернативно доступная, например, от EBI. Также следует понимать, что конечное выравнивание, применяемое для расчета процентной идентичности последовательностей, можно проверять либо автоматически, либо вручную.

[372] Иммуноконъюгат. Термин "иммуноконъюгат", используемый данном документе, относится к соединению, содержащему связывающую молекулу (например, антитело к FIXa, антитело к FXz или биоспецифическое антитело к FIXa/FXz) и один или несколько фрагментов, например фрагментов терапевтической ИЛИ значимости, химически конъюгированных диагностической связывающей молекулой. В целом, иммуноконъюгат определяется общей формулой: A-(L-M)n, где A представляет собой связывающую (например, антитело), L представляет необязательный линкер, и М представляет собой гетерологичный который может представлять собой, например, терапевтическое средство, выявляемую метку и т. Д., представляет собой целое число. Иммуноконъюгаты также могут

определяться общей формулой в обратном порядке. В некоторых аспектах иммуноконъюгат представляет собой "конъюгат антитела и лекарственного средства" ("ADC"). В контексте настоящего раскрытия термин "иммуноконъюгат" не ограничивается химически или ферментативно конъюгированными молекулами. Термин "иммуноконъюгат", используемый в настоящем изобретении, также включает генетические слияния.

[373] Выделенный. Используемый в данном документе термин "выделенный" относится к веществу или объекту (например, полипептиду, антителу, полинуклеотиду, вектору, клетке или композиции, которые находятся в форме, не встречающейся в природе), которые были отделены по меньшей мере от некоторых из компонентов, с которыми они были связаны (будь то в природе или в экспериментальных условиях). Выделенные вещества (например, нуклеотидная последовательность или белковая последовательность) могут иметь различные уровни чистоты по отношению к веществам, с которыми они были связаны.

(374) Выделенные вещества и/или объекты могут быть отделены от по меньшей мере приблизительно 10%, по меньшей мере приблизительно 20%, по меньшей мере приблизительно 20%, по меньшей мере приблизительно 30%, по меньшей мере приблизительно 30%, по меньшей мере приблизительно 40%, по меньшей мере приблизительно 40%, по меньшей мере приблизительно 50%, по меньшей мере приблизительно 50%, по меньшей мере приблизительно 65%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 90%, по меньшей мере объекты мере приблизительно 90%, по меньшей мере объекты мере приблизительно 90%, по меньшей мере объекты мере объек

[375] В некоторых вариантах осуществления выделенные вещества являются чистыми на более чем приблизительно 80%, 90%, приблизительно приблизительно 85%, приблизительно 91%, приблизительно 92%, приблизительно 93%, приблизительно 94%, приблизительно 95%, приблизительно 96%, приблизительно 97%, 98%, приблизительно 99% приблизительно ИЛИ более чем приблизительно 99%.

Как используется в данном документе, вещество является "чистым", если оно фактически не содержит других "фактически компонентов. Термин выделенный" означает, ЧТО соединение фактически отделено от среды, в которой оно было ИЛИ обнаружено. Частичное отделение тежом предусматривать, например, композицию, обогащенную соединением настоящему изобретению. Фактическое отделение может предусматривать композиции, содержащие ПО меньшей мере приблизительно 30%, по меньшей мере приблизительно 35%, меньшей мере приблизительно 40%, по меньшей мере приблизительно 45%, по меньшей мере приблизительно 50%, по меньшей приблизительно 55%, по меньшей мере приблизительно меньшей мере приблизительно 65%, по меньшей мере приблизительно 70%, по меньшей мере приблизительно 75%, по меньшей приблизительно 80%, по меньшей мере приблизительно 85%, меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 97% или по меньшей мере приблизительно 99% по весу соединения по настоящему изобретению или его соли.

[377] Полинуклеотид (например, антитело), вектор, полипептид, клетка или любая композиция, раскрытые в данном документе, которые "выделены", представляют собой полинуклеотид (например, антитело), вектор, полипептид, клетку или композицию, которые находятся в форме, не встречающейся в природе. Выделенные полинуклеотиды, векторы, полипептиды или композиции включают такие, которые были очищены до такой степени, что они больше не находятся в форме, в которой они встречаются в природе. В некоторых аспектах полинуклеотид, вектор, полипептид или композиция, которые выделены, являются фактически чистыми.

[378] Имитация активности FVIIIa. Способность связывающей молекулы, раскрытой в данном документе, "имитировать активность FVIIIa", т. е. способность имитировать активность активированного фактора VIII, может быть измерена в соответствии с различными способами, известными из уровня техники. Одним из таких способов является хромогенный анализ, описанный в разделе

"Примеры" настоящего описания. В одном аспекте считается, что связывающая молекула, раскрытая в данном документе (например, биспецифическое антитело) "имитирует активность FVIIIa", если наблюдаемая скорость расщепления субстрата FXa по меньшей мере на три стандартных отклонения выше средней базальной скорости в добавленной связывающей отсутствие молекулы биспецифического антитела). Другим иллюстративным способом является анализ активированного частичного тромбопластинового (aPTT). "активированное времени Термин частичное тромбопластиновое время (аРТТ)" происходит из первоначальной теста (разработанной В 1953 году), В которой контролировалась только концентрация фосфолипида в тесте (а не концентрации фосфолипида И поверхностного активатора), тромбопластин" "частичный применяли В TO фосфолипидным препаратам, которые ускоряли свертывание, корректировали длительное время свертывания гемофильной плазмы крови. По сути, термин "частичный" означает, что фосфолипид присутствует, но без тканевого фактора. аРТТ также известен как каолин-кефалиновое время свертывания крови (КССТ) или частичное тромбопластиновое время с каолином (РТТК). Другие применимые способы включают одностадийный (OS) анализ свертывания крови, который модифицирован исходя из традиционного анализа аРТТ, выше. В одностадийном анализе свертывания крови описанного используют плазму крови, дефицитную по FVIII, и разбавленный тестируемый образец, И С помощью него ОНЖОМ количественную оценку активности FVIII. См. пример 4. В отличие этого в анализе аРТТ используют образец плазмы крови с реагентом аРТТ и кальцием и регистрируют время свертывания.

[379] Моноклональное антитело. "Моноклональное антитело" относится K однородной популяции антител, участвующих высокоспецифичном распознавании и связывании одной антигенной детерминанты или эпитопа. Этим они отличаются от поликлональных антител, которые, как правило, включают разные антитела, против направленные разных антигенных детерминант. Термин "моноклональное антитело" охватывает как интактные, так полноразмерные моноклональные антитела, а также фрагменты антитела (такие как Fab, Fab', F(ab')2, Fv), одноцепочечные вариабельные фрагменты (scFv), слитые белки, содержащие часть антитела, и любую другую модифицированную молекулу иммуноглобулина, содержащую антигенраспознающий участок. Кроме того, "моноклональное антитело" относится к таким антителам, полученным любым из ряда способов, в том числе без ограничения с помощью гибридомы, фагового отбора, рекомбинантной экспрессии и использования трансгенных животных (например, экспрессия человеческого антитела в организме трансгенной мыши).

[380] Мутация. В контексте настоящего изобретения термины "мутация" и "аминокислотная замена", определенные выше (иногда упоминается просто как "замена"), считаются взаимозаменяемыми. В некоторых аспектах термин "мутация" относится к делеции любого нуклеотида в нуклеиновой кислоте, кодирующей ген зародьшевого антитела, его вставке в нее или его замене в ней химическим, ферментативным или любым другим способом, так что аминокислотная последовательность полученного полипептида изменяется на один или несколько аминокислотных остатков. В некоторых аспектах мутация в последовательности нуклеиновой кислоты, раскрытой в данном документе, приводит к аминокислотной замене. В других аспектах мутация кодона в последовательности нуклеиновой кислоты, раскрытой в данном документе, полученный кодон является синонимичным кодоном, не приводит к аминокислотной замене. Соответственно, в некоторых последовательности нуклеиновых кислот, раскрытые в документе, можно подвергать оптимизации кодонов путем введения одного или нескольких синонимических изменений кодонов. оптимизация кодонов может, например, (і) улучшать выход белка экспрессии рекомбинантного белка или (ii) улучшать стабильность, время полужизни или другое требуемое свойство mRNA или ДНК, кодирующих связывающую молекулу, раскрытую в данном документе, при этом такую mRNA или ДНК вводят субъекту, нуждающемуся в этом.

[381] Пациент. Как используется в данном документе, "пациент" относится к субъекту, который может обращаться за лечением или нуждаться в нем, требует лечения, получает лечение,

будет получать лечение, или к субъекту, который находится под наблюдением квалифицированного специалиста по поводу конкретного заболевания или состояния.

[382] Фармацевтическая композиция. Термин "фармацевтическая композиция" относится к препарату, который находится в такой форме, которая обеспечивает эффективное проявление биологической активности активного ингредиента (например, связывающей молекулы, раскрытой в данном документе, такой как антитело), и который не содержит дополнительных компонентов, которые неприемлемо токсичны для субъекта, которому будут вводить композицию. Такая композиция может быть стерильной.

Фармацевтически приемлемый. Фраза "фармацевтически [383] приемлемый" используется в данном документе для обозначения тех соединений, материалов, композиций и/или лекарственных форм, которые с медицинской точки зрения подходят для применения в контакте с тканями людей и животных, не вызывая чрезмерную токсичность, раздражение, аллергическую реакцию ИЛИ проблемы или осложнения, соизмеримые с обоснованным соотношением польза/риск. В целом, одобрение регулирующего федерального правительства или правительств штатов (или Фармакопее США или другой общепризнанной приведение в фармакопее) для применения у животных, и более конкретно у подразумевает, что такие соединения, людей, материалы, композиции и/или лекарственные формы являются фармацевтически приемлемыми. Соединения, материалы, композиции лекарственные формы, которые общепризнанны как безопасные для терапевтических целей, являются "терапевтически приемлемыми". Соединения, материалы, композиции и/или лекарственные которые общепризнанны как безопасные для диагностических целей, являются "диагностически приемлемыми".

[384] Фармацевтически приемлемые вспомогательные вещества. Фраза "фармацевтически приемлемое вспомогательное вещество", используемая в данном документе, относится к любому ингредиенту, отличному от соединений, описанных в данном документе (например, среде-носителю, способной суспендировать или растворять активное соединение), и обладающему свойствами, заключающимися в том, что

он является фактически нетоксичным и не вызывает воспаление в организме пациента. Вспомогательные вещества могут включать, например, антиадгезивы, антиоксиданты, связующие вещества, вещества для нанесения покрытия, добавки для прессования, разрыхлители, красители (пигменты), смягчающие средства, эмульгаторы, наполнители (разбавители), пленкообразователи или вещества для нанесения покрытия, вкусоароматические добавки, отдушки, вещества, способствующие скольжению (вещества, препятствующие слеживанию и комкованию), смазывающие вещества, консерванты, типографские краски, сорбенты, суспендирующие или диспергирующие вещества, подсластители и гидратационную воду. Иллюстративные вспомогательные вещества включают без ограничения бутилированный гидрокситолуол (ВНТ), карбонат кальция, фосфат кальция (двухосновный), стеарат кальция, кроскармеллозу, сшитый поливинилпирролидон, лимонную кислоту, кросповидон, цистеин, желатин, гидроксипропилцеллюлозу, этилцеллюлозу, гидроксипропилметилцеллюлозу, лактозу, стеарат магния, мальтит, метионин, метилцеллюлозу, маннит, метилпарабен, полиэтиленгликоль, микрокристаллическую целлюлозу, поливинилпирролидон, повидон, прежелатинизированный крахмал, пропилпарабен, ретинилпальмитат, шеллак, диоксид кремния, карбоксиметилцеллюлозу натрия, цитрат натрия, крахмалгликолят натрия, сорбит, крахмал (кукурузный), стеариновую кислоту, сахарозу, тальк, диоксид титана, витамин А, витамин Е, витамин С и ксилит.

[385] Вспомогательные вещества, которые общепризнанны как безопасные для терапевтических целей, представляют собой "терапевтически приемлемые вспомогательные вещества". Вспомогательные вещества, которые общепризнанны как безопасные для диагностических целей, представляют собой "диагностически приемлемые вспомогательные вещества".

[386] Фармацевтически приемлемые соли. Настоящее изобретение также охватывает фармацевтически приемлемые соли соединений, описанных в данном документе. Используемый в данном документе термин "фармацевтически приемлемые соли" относится к производным раскрытых соединений, при этом исходное соединение

модифицируют путем превращения имеющегося кислотного и.пи основного фрагмента в форму его соли (например, путем осуществления реакции группы свободного основания с подходящей органической кислотой). Примеры фармацевтически приемлемых солей включают без ограничения соли минеральных или органических кислот с основными остатками, такими как амины; щелочные или органические соли с кислотными остатками, такими как остатки карбоновых кислот и т. п. Иллюстративные соли присоединения кислоты включают ацетатные соли, соли уксусной кислоты, адипатные, альгинатные, аскорбатные, аспартатные, бензолсульфонатные соли, соли бензолсульфоновой кислоты, бензоатные, бисульфатные, боратные, бутиратные, камфоратные, камфорсульфонатные, цитратные, циклопентанпропионатные, диглюконатные, додецилсульфатные, этансульфонатные, фумаратные, глюкогептонатные, глицерофосфатные, гемисульфатные, гептонатные, гексаноатные, гидробромидные, гидрохлоридные, гидройодидные, 2гидроксиэтансульфонатные, лактобионатные, лактатные, лауратные, лаурилсульфатные, малатные, малеатные, малонатные, метансульфонатные, 2-нафталинсульфонатные, никотинатные, нитратные, олеатные, оксалатные, пальмитатные, памоатные, персульфатные, 3-фенилпропионатные, фосфатные, пикратные, пивалатные, пропионатные, стеаратные, сукцинатные, сульфатные, тартратные, тиоцианатные, толуолсульфонатные, ундеканоатные, валератные соли и т. п. Иллюстративные соли щелочных или щелочноземельных металлов включают соли натрия, лития, калия, кальция, магния и т. п., а также соли с катионами нетоксичного аммония, четвертичного аммония и амина, в том числе без ограничения аммония, тетраметиламмония, тетраэтиламмония, метиламина, диметиламина, триметиламина, триэтиламина, этиламина т. п. Фармацевтически приемлемые соли по настоящему изобретению включают традиционные нетоксичные соли исходного соединения, образуемые, например, нетоксичными неорганическими или органическими кислотами. Фармацевтически приемлемые соли по настоящему изобретению можно синтезировать из исходного соединения, содержащего основный или кислотный фрагмент, с помощью стандартных химических способов. Как правило, такие соли

можно получить путем осуществления реакции данных соединений в форме свободной кислоты или основания со стехиометрическим количеством подходящего основания или кислоты в воде, или в органическом растворителе, или в смеси их обоих; как правило, используют неводные среды, такие как простой эфир, этилацетат, этанол, изопропанол или ацетонитрил. Перечни подходящих солей находятся в Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, Pa., 1985, p. 1418, Pharmaceutical Salts: Properties, Selection, and Use, P.H. Stahl and C.G. Wermuth (eds.), Wiley-VCH, 2008, и Berge et al., Journal of Pharmaceutical Science, 66, 1-19 (1977), каждая из которых включена в данный документ посредством ссылки во всей своей полноте.

[387] Фармацевтически приемлемый сольват. "фармацевтически приемлемый сольват", используемый в данном документе, означает соединение по настоящему изобретению, где молекулы подходящего растворителя встроены в кристаллическую решетку. Подходящий растворитель является физиологически переносимым при вводимой дозе. Например, сольваты можно получить путем кристаллизации, перекристаллизации или осаждения \mathbb{R}^{3} раствора, содержащего органические растворители, воду или их смесь. Примерами подходящих растворителей являются этанол, вода (например, моно-, ди- и тригидраты), N-метилпирролидинон (NMP), диметилсульфоксид (DMSO), N, N'-диметилформамид (DMF), диметилацетамид (DMAC), 1,3-диметил-2-имидазолидинон (DMEU), 1,3-диметил-3,4,5,6-тетрагидро-2-(1H)-пиримидинон (DMPU), ацетонитрил (ACN), пропиленгликоль, этилацетат, бензиловый спирт, 2-пирролидон, бензилбензоат и т. п. Если растворителем является вода, то сольват называют "гидратом".

[388] Фармакокинетические показатели. Как используется в данном документе, "фармакокинетические показатели" относятся к одному или нескольким свойствам молекулы или соединения в том, как это относится к поведению веществ, вводимых в живой организм. Фармакокинетические показатели подразделяются на несколько категорий, в том числе степень и скорость абсорбции, распределение, метаболизм и экскрецию. Они обычно называются

АDME, где (А) абсорбция представляет собой процесс проникновения вещества в кровяное русло; (D) распределение представляет собой распространение или рассредоточение веществ по всем жидкостям и тканям организма; (M) метаболизм (или биотрансформация) представляет собой необратимое превращение исходных соединений в продукты-метаболиты; и (Е) экскреция (или выведение) относится к выведению веществ из организма. В редких случаях некоторые лекарственные средства необратимо накапливаются В ткани организма.

[389] Полинуклеотид. Термин "полинуклеотид", используемый в данном документе, относится к полимерам из нуклеотидов, в том числе рибонуклеотидов, дезоксирибонуклеотидов, их аналогов или их смесей, любой длины. Данный термин относится к первичной структуре молекулы. Таким образом, термин включает трех-, двухи однонитевую дезоксирибонуклеиновую кислоту ("ДНК"), а также трех-, двух- и однонитевую рибонуклеиновую кислоту ("РНК"). Он также включает модифицированные, например, путем алкилирования и/или путем кэпирования, И немодифицированные полинуклеотида. Более конкретно, термин "полинуклеотид" включает 2-дезокси-D-рибозу), полидезоксирибонуклеотиды (содержащие полирибонуклеотиды (содержащие D-рибозу), в том числе tRNA, hRNA, siRNA И mRNA, будь TO сплайсированные несплайсированные, полинуклеотид любого другого типа, который представляет собой N-ИЛИ С-гликозид пуринового ИЛИ пиримидинового основания, И другие полимеры, содержащие ненуклеотидные остовы, например, полиамидные (например, пептидонуклеиновые кислоты "РNА") и полиморфолиновые полимеры, а также другие синтетические полимеры нуклеиновых кислот, специфические последовательности, при условии, что полимеры содержат нуклеотидные основания В конфигурации, обеспечивающей возможность спаривания оснований и стэкинга оснований, например, В ДНК PHK. В конкретных обнаруживается И полинуклеотид предусматривает mRNA. В другом аспекте представляет собой синтетическую mRNA. В некоторых синтетическая mRNA содержит по меньшей мере одно неприродное нуклеотидное основание. В некоторых аспектах все нуклеотидные

основания определенного класса были заменены неприродными нуклеотидными основаниями (например, все уридиновые основания в полинуклеотиде, раскрытом в данном документе, могут 5заменены неприродным нуклеотидным основанием, например метоксиуридином). В некоторых аспектах полинуклеотид (например, синтетическая РНК ИЛИ синтетическая ДНК) содержит природные нуклеотидные основания, т. е. А, С, Т и U в случае синтетической ДНК или A, C, T и U в случае синтетической РНК.

[390] Специалисту в данной области техники будет понятно, что основания Т на картах кодонов, раскрытых в данном документе, присутствуют в ДНК, тогда как основания Т будут основаниями U в соответствующих РНК. Например, в нуклеотидной последовательности кодонов, раскрытой в данном документе в форме ДНК, например, вектора или матрицы для трансляции in vitro (IVT), ee основания Τ будут транскрибироваться как U, находящиеся в ее соответствующей транскрибированной mRNA. В этом отношении как кодон-оптимизированные последовательности ДНК (содержащие Т), так и их соответствующие последовательности РНК (содержащие U) считаются кодон-оптимизированными нуклеотидными последовательностями по настоящему изобретению. Специалисту в данной области техники также будет понятно, что путем замены одного или нескольких оснований неприродными основаниями можно построить эквивалентные карты кодонов. Таким образом, например, кодон ТТС (карта ДНК) будет соответствовать кодону UUC (карта РНК), который, в свою очередь, будет соответствовать кодону ФФС (карта РНК, в которой U был заменен псевдоуридином).

[391] Стандартные пары оснований А-Т и G-С образуются в условиях, обеспечивающих образование водородных связей между N3- Н и C4-окси тимидина и N1 и C6-NH2 аденозина соответственно, а также между C2-окси, N3 и C4-NH2 цитидина и C2-NH2, N'-Н и C6- окси гуанозина соответственно. Таким образом, например, гуанозин (2-амино-6-окси-9- β -D-рибофуранозилпурин) может быть модифицирован с образованием изогуанозина (2-окси-6-амино-9- β -D-рибофуранозилпурина). Такая модификация приводит к получению нуклеозидного основания, которое больше не будет эффективно образовывать стандартную пару оснований с цитозином. Однако

(1-β-D-рибофуранозил-2-окси-4цитозина модификация образованием изоцитозина $(1-\beta-D$ аминопиримидина) с рибофуранозил-2-амино-4-оксипиримидина) приводит к получению модифицированного нуклеотида, который не будет эффективно образовывать пару оснований с гуанозином, но будет образовывать пару оснований с изогуанозином (патент США № 5681702, выданный Collins и соавт.). Изоцитозин доступен от Sigma Chemical Co. (Сент-Луис, Миссури); изоцитидин можно получить с помощью способа, описанного в Switzer et al. (1993) Biochemistry 32:10489-10496 и литературных источниках, цитируемых в ней; 2'дезокси-5-метилизоцитидин можно получить с помощью способа, описанного в Tor et al. (1993) J. Am. Chem. Soc. 115:4461-4467 и литературных источниках, цитируемых в ней; и изогуаниновые получить с помощью способа, нуклеотиды можно описанного Switzer et al., 1993, выше, и Mantsch et al. (1993) Biochem. 14:5593-5601, или с помощью способа, описанного в патенте США № 5780610, выданном Collins и соавт. Другие неприродные пары оснований можно синтезировать с помощью способа, описанного в Piccirilli et al. (1990) Nature 343:33-37, в отношении синтеза 2,6-диаминопиримидина и комплементарного ему (1-метилпиразоло-[4,3] пиримидин-5,7-(4H,6H) -диона. Известны и другие модифицированные нуклеотидные звенья, которые образуют уникальные пары оснований, такие как описанные в Leach et al. (1992) J. Am. Chem. Soc. 114:3675-3683 и Switzer et al., выше.

[392] Полипентид. Термины "полипентид", "пептид" и "белок" используются в данном документе взаимозаменяемо для обозначения полимеров из аминокислот любой длины. Полимер может содержать модифицированные аминокислоты. Термины также охватывают полимер из аминокислот, который был модифицирован естественным путем или посредством вмешательства; например, посредством образования дисульфидной связи, гликозилирования, липидизации, ацетилирования, фосфорилирования или любой другой манипуляции или модификации, такой как конъюгирование с метящим компонентом. В данное определение также включены, например, полипептиды, содержащие один или несколько аналогов аминокислот (в том числе, например, неприродные аминокислоты, такие как гомоцистеин,

орнитин, п-ацетилфенилаланин, D-аминокислоты и креатин), а также другие модификации, известные из уровня техники.

[393] Используемый в данном документе термин относится к белкам, полипептидам и пептидам любого размера, структуры или Полипептиды предусматривают продукты функции. генов, встречающиеся в природе полипептиды, синтетические полипептиды, гомологи, ортологи, паралоги, фрагменты и другие эквиваленты, варианты и аналоги вышеуказанного. Полипептид может представлять собой отдельный полипептид или представлять может собой многомолекулярный комплекс, такой как димер, тример ИЛИ тетрамер. Они также МОГУТ включать одноцепочечные или Дисульфидные связи многоцепочечные полипептиды. чаще всего находятся в многоцепочечных полипептидах. Термин "полипептид" также может применяться в отношении полимеров из аминокислот, в которых один или несколько аминокислотных остатков являются искусственным химическим аналогом соответствующей встречающейся в природе аминокислоты. В некоторых вариантах осуществления "пептид" может иметь длину, меньшую или равную 50 аминокислотам, например длину, составляющую приблизительно 5, 10, 15, 20, 25, 30, 35, 40, 45 или 50 аминокислот.

Предупреждение. Используемый в данном документе "предупреждение" относится к частичной или начала проявления заболевания, и/или задержке нарушения состояния; частичной или полной задержке начала проявления одного или нескольких симптомов, признаков или клинических проявлений конкретного заболевания, нарушения и/или состояния; частичной или полной задержке начала проявления одного или нескольких симптомов, признаков или проявлений конкретного заболевания, нарушения и/или состояния; частичной или полной задержке прогрессирования конкретного заболевания, нарушения и/или состояния и/или снижению риска развития патологии, ассоциированной с заболеванием, нарушением и/или состоянием.

[395] Профилактический. Как используется в данном документе, "профилактический" относится к терапевтическому средству или плану действий, используемым для предупреждения начала проявления заболевания или состояния или для

предупреждения или задержки симптома, ассоциированного с эпизодом кровотечения, например гемофилии.

[396] Профилактика. Как используется в данном документе, "профилактика" относится к мере, предпринимаемой для поддержания здоровья и предупреждения или задержки начала проявления эпизода кровотечения или для предупреждения или задержки симптомов, ассоциированных с заболеванием или состоянием.

[397] Рекомбинантный. "Рекомбинантный" полипептид или белок относятся к полипептиду или белку, полученным посредством технологии рекомбинантных ДНК. Полученные рекомбинантным путем белки, экспрессирующиеся в сконструированных полипептиды и клетках-хозяевах, считаются выделенными для целей настоящего поскольку представляют собой изобретения, нативные ИЛИ рекомбинантные полипептиды, которые были фракционированы или частично или фактически очищены с помощью любой подходящей методики. Полипептиды, раскрытые в данном документе, ОНЖОМ получить рекомбинантным путем с помощью способов, известных из уровня техники. Как альтернатива, белки и пептиды, раскрытые в данном документе, можно синтезировать химическим путем.

[398] Сходство. Используемый в данном документе термин "сходство" относится к общему родству между полимерными молекулами, например, между молекулами полинуклеотидов (например, молекулами ДНК и/или молекулами РНК) и/или между молекулами полипептидов. Расчет процентного сходства полимерных молекул друг с другом можно осуществлять таким же образом, как и расчет процентной идентичности, за исключением того, что при расчете процентного сходства учитываются консервативные замены, как принято в данной области техники.

[399] Субъект. Под "субъектом", или "индивидуумом", или "животным", или "пациентом", или "млекопитающим" подразумевается любой субъект, в частности субъект-млекопитающее, которому необходимо провести диагностику, прогнозирование или терапию. Субъекты-млекопитающие включают без ограничения людей, домашних животных, сельскохозяйственных животных, зоопарковых животных, животных, используемых в спортивных соревнованиях, домашних

питомцев, таких как собаки, кошки, морские свинки, кролики, лошадей, крупный рогатый скот, коров; приматов, крысы, мыши, человекообразные обезьяны, нечеловекообразные орангутаны и шимпанзе; псовых, таких как собаки обезьяны, волки; кошачьих, таких как кошки, львы и тигры; лошадиных, таких как лошади, ослы и зебры; медведей, животных, которых содержат для получения продуктов питания, таких как коровы, свиньи и овцы; копытных животных, таких как олени и жирафы; грызунов, таких как мыши, крысы, хомячки и морские свинки; и т. д. В определенных вариантах осуществления млекопитающим субъект-человек. В других вариантах осуществления субъектом является пациент-человек. В конкретном варианте осуществления субъектом является пациент-человек или полученные \circ T клетки, будь то in vivo, in vitro или ex vivo, пригодные для способов, описанных в данном документе.

- [400] Фактически. Используемый в данном документе термин "фактически" относится к качественному состоянию проявления характеристики или свойства, представляющих интерес, в полной или почти полной мере или степени. Специалисту в области биологии будет понятно, что биологические и химические явления редко, если это вообще имеет место, происходят до конца и/или продолжаются до полноты или до достижения или избегания абсолютного результата. Следовательно, термин "фактически" используется в данном документе для охвата потенциального недостатка полноты, присущего многим биологическим и химическим явлениям.
- [401] Φ актически равный. Используемый в данном документе термин в том, как это относится к разницам во времени между приемами доз, означает плюс-минус 2%.
- [402] Фактически одновременный. Используемый в данном документе термин в том, как это относится к множеству доз, означает в пределах 2 секунд.
- [403] Страдающий от. У индивидуума, "страдающего от" заболевания, нарушения и/или состояния, были диагностированы и/или проявляются один или несколько симптомов заболевания, нарушения и/или состояния.

[404] Подверженный. У индивидуума, "подверженного" заболеванию, нарушению и/или состоянию, не были диагностированы и/или могут не проявляться симптомы заболевания, нарушения и/или состояния, но имеется предрасположенность к развитию заболевания его симптомов. В некоторых вариантах осуществления ИЛИ индивидуум, подверженный заболеванию, нарушению и/или состоянию (например, раку), может характеризоваться одним или несколькими следующего: (1) генетическая мутация, ассоциированная с заболевания, нарушения и/или (2)развитием состояния; ассоциированный генетический , MENÓGOMNRON С развитием заболевания, нарушения и/или состояния; (3) увеличенная и/или сниженная экспрессия и/или активность белка и/или нуклеиновой кислоты, ассоциированных с заболеванием, нарушением и/или привычки и/или особенности (4)образа жизни, ассоциированные С развитием заболевания, нарушения и/или состояния; (5) наличие заболевания, нарушения и/или состояния в семейном анамнезе И (6) воздействие микроорганизма, ассоциированного с развитием заболевания, нарушения и/или состояния, и/или инфицирование им. В некоторых вариантах осуществления индивидуума, подверженного заболеванию, У и/или состоянию, будет развиваться заболевание, нарушение и/или состояние. В некоторых вариантах осуществления у индивидуума, подверженного заболеванию, нарушению и/или состоянию, не будет развиваться заболевание, нарушение и/или состояние.

[405] Терапевтическое средство. Термины "терапевтическое средство" или "средство" относятся к молекулярному объекту, субъекту оказывает который при введении терапевтический, диагностический и/или профилактический эффект и/или вызывает требуемый биологический и/или фармакологический эффект. Например, в некоторых вариантах осуществления биспецифическое антитело, раскрытое в документе, данном может являться терапевтическим средством. В некоторых вариантах осуществления средством является другая молекула (например, фактор свертывания крови, кофактор и т. д.), которую совместно вводят в качестве части комбинированной терапии с по меньшей мере одним

антител, раскрытых в данном документе.

[406] Терапевтически эффективное количество. Используемый в данном документе термин "терапевтически эффективное количество" означает количество средства, подлежащего доставке (например, нуклеиновой кислоты, лекарственного средства, терапевтического средства, диагностического средства, профилактического средства и т. д.), которое при введении субъекту, страдающему от инфекции, заболевания, нарушения и/или состояния или подверженному им, является достаточным для лечения инфекции, заболевания, нарушения, обеспечения улучшения в отношении их симптомов, их диагностирования, предупреждения и/или задержки начала их проявления.

[407] Терапевтически эффективный результат. Используемый в данном документе термин "терапевтически эффективный результат" означает результат, который у субъекта, страдающего от инфекции, заболевания, нарушения и/или состояния или подверженному им, является достаточным для лечения инфекции, заболевания, нарушения и/или состояния, обеспечения улучшения в отношении их симптомов, их диагностирования, предупреждения и/или задержки начала их проявления.

[408] Осуществление лечения, лечение, терапия. Используемые "осуществлять лечение", или данном документе термины "лечение", или "терапия" или их грамматические варианты относятся к частичному или полному облегчению, ослаблению, улучшению, уменьшению, задержке начала проявления, подавлению прогрессирования, уменьшению тяжести и/или уменьшению частоты возникновения одного или нескольких симптомов или признаков связанного с кровотечением заболевания, нарушения или состояния, Например, "лечение" связанного с например гемофилии. кровотечением нарушения может относиться к предупреждению кровотечения, уменьшению частоты и/или тяжести эпизодов кровотечения и т. д. Лечение можно проводить в отношении субъекта, у которого не проявляются признаки заболевания, нарушения и/или состояния, и/или в отношении субъекта, у которого проявляются только ранние признаки заболевания, нарушения и/или состояния, с целью снижения риска развития

патологии, ассоциированной с заболеванием, нарушением и/или состоянием.

[409] Вектор. "Вектор" представляет собой молекулу нуклеиновой кислоты, в частности самореплицирующуюся, которая переносит вставленную молекулу нуклеиновой кислоты в клеткихозяева и/или между ними. Термин включает векторы, основной функцией которых является встраивание ДНК или РНК в клетку хромосомная интеграция), репликативные векторы, (например, основной функцией которых является репликация ДНК или РНК, и которых экспрессии, основной функцией обеспечение транскрипции и/или трансляции ДНК или РНК. некоторых аспектах введение и/или обеспечение экспрессии нуклеиновой кислоты (ДНК или РНК, такой как mRNA), кодирующей связывающую молекулу, раскрытую в данном документе, осуществлять invitro (например, в ходе получения рекомбинантного белка), тогда как в других случаях их можно осуществлять in vivo (например, введение mRNA субъекту) или ех vivo (например, ДНК или РНК, введенные в аутологичные или гетерологичные клетки для введения субъекту, нуждающемуся в этом). Также включены векторы, которые обеспечивают более чем одну из описанных функций.

II. Связывающие молекулы, представляющие собой антитело к FIX и антитело к FX

[410] В настоящем изобретении предусмотрены антитела, которые связываются с фактором IX и фактором X, а также их антигенсвязывающие части. Данные антитела способны предпочтительно связываться С конкретными функциональными формами данных факторов свертывания крови. Например, в некоторых вариантах осуществления раскрытые антитела к FIX предпочтительно связываются с активированным FIX (FIXa), например, свободным FIXa или FIXa, ковалентно связанным с имитатором субстрата в активном сайте (FXa+EGR-CMK). В других вариантах осуществления раскрытые антитела предпочтительно связываются с FIXa-SM отличие от свободного FIXa или зимогена FIX. В еще одних вариантах осуществления раскрытые антитела предпочтительно связываются со свободным FIXa в отличие от FIXa-SM или зимогена

- FIX. В отличие от этого, в некоторых вариантах осуществления раскрытые антитела к FX предпочтительно связываются с зимогеном отличие \circ T активированного FΧ (FXa). предпочтительное связывание имеет особо важное значение получения биспецифических молекул, содержащих фрагмент антитела к FIXa и фрагмент антитела к FXz, которые могут специфически и одновременно связываться с FIXa и FXz. Фактор VIII является кофактором для FIXa, который в присутствии Ca^{2+} и фосфолипидов образует комплекс с FX, который обеспечивает превращение FX в активированный FXa. Следовательно, образование комплекса между FIXa и FXz посредством антитела имитирует эффект FVIIIa.
- [411] В еще одних вариантах осуществления некоторые раскрытые антитела предпочтительно связываются с зимогеном FIX в отличие от свободного FIXa или FIXa-SM ("антитело к FIXz"). Следовательно, антитело к FIXz можно использовать для получения биспецифической молекулы, содержащей антитело к FIXz и антитело к FX (например, антитело к FXz или антитело к FXa).
- [412] В определенных вариантах осуществления некоторые раскрытые антитела к FX предпочтительно связываются с FXа в отличие от FX2 ("антитело к FX3"). Антитело к FX4 можно использовать для получения биспецифической молекулы, содержащей антитело к FX6 и антитело к FX7 (например, антитело к FX8 или антитело к FX9).
- [413] Следовательно, образование комплекса между FIX и FX посредством антитела может использоваться для избежания необходимости в заместительной терапии FVIII, в частности, у субъектов, у которых выработаны антитела к FVIII или существует риск выработки антител к FVIII.
- [414] В настоящем изобретении также предусмотрена биспецифическая связывающая молекула, которая связывается с FX (FXz и/или FXa) и FIX (FIXz и/или FIXa). В одном варианте осуществления биспецифическая связывающая молекула может представлять собой комбинацию любого из антитела к FIXa или антитела к FIXz и любого из антитела к FXz. В некоторых вариантах осуществления биспецифическая связывающая молекула специфически связывается с FXz, FIXz и FIXa, но не

характеризуется выявляемым связыванием с FXa. В определенных вариантах осуществления биспецифическая связывающая молекула связывается с FIXz, FIXa и FXz с разной аффинностью связывания (например, K_D). В других вариантах осуществления биспецифическая связывающая молекула связывается с K_D , составляющей менее 1 мкM, в случае каждого из FIXz, FIXa и FXz (например, 8 нM, 2 нМ или 20 нМ соответственно).

Молекулы, связывающиеся с FIXa

- [415] В настоящем изобретении предусмотрены молекулы, связывающиеся с FIX, например, антитела к FIX или молекулы, содержащие их антигенсвязывающие части, которые предпочтительно связываются с активированным FIX (FIXa), а не с зимогеном FIX.
- [416] Фактор IX (FIX) синтезируется гепатоцитами печени в предшественника прозимогена, которому существенная посттрансляционная модификация. Предшественник предшественник пептида прозимогена содержит (гидрофобный сигнальный пептид) на своем аминоконце, который транспортирует растущий полипептид в полость эндоплазматического ретикулума. Оказавшись внутри ER, этот сигнальный пептид расщепляется сигнальной пептидазой. Пропептид действует как элемент для витамин К-зависимой карбоксилазы распознавания $(\lambda$ глутамилкарбоксилазы), которая модифицирует 12 остатков глутаминовой кислоты в гамма-карбоксиглутамильные (Gla) остатки. Такие остатки необходимы для связывания с анионной фосфолипидной поверхностью посредством Са2+-зависимого связывания.
- [417] Аминокислотная последовательность предшественника прозимогена FIX представлена ниже (сигнальная последовательность подчеркнута (1-28); последовательность пропептида (29-46) выделена жирным шрифтом):

MQRVNMIMAESPGLITICLLGYLLSAECTVFLDHENANKILNRPKRYNSGKLEEFVQGN
LERECMEEKCSFEEAREVFENTERTTEFWKQYVDGDQCESNPCLNGGSCKDDINSYECWCPFGF
EGKNCELDVTCNIKNGRCEQFCKNSADNKVVCSCTEGYRLAENQKSCEPAVPFPCGRVSVSQTS
KLTRAETVFPDVDYVNSTEAETILDNITQSTQSFNDFTRVVGGEDAKPGQFPWQVVLNGKVDAF
CGGSIVNEKWIVTAAHCVETGVKITVVAGEHNIEETEHTEQKRNVIRIIPHHNYNAAINKYNHD
IALLELDEPLVLNSYVTPICIADKEYTNIFLKFGSGYVSGWGRVFHKGRSALVLQYLRVPLVDR
ATCLRSTKFTIYNNMFCAGFHEGGRDSCQGDSGGPHVTEVEGTSFLTGIISWGEECAMKGKYGI

YTKVSRYVNWIKEKTKLT (SEQ ID NO:764)

[418] После расщепления сигнального пептида и пропептида FIX оказывается в форме зимогена. Таким образом, FIX зимоген циркулирует как одноцепочечный полипептид из 415 аминокислот. См. Vysotchin et al., J. Biol. Chem. 268:8436 (1993). В одном варианте осуществления зимоген FIX представлен аминокислотами 47-461 из SEQ ID NO: 764. В другом варианте осуществления зимоген FIX представлен аминокислотами 47-461 из SEQ ID NO: 764, где аминокислотный остаток 180 представляет собой аланин вместо аргинина (т. е. неактивируемый FIX).

Зимоген FIXактивируется посредством FXIa комплексом тканевый фактор/FVIIa. Первое расщепление происходит в Arg191 (Arg145 в зрелой последовательности FIX) с образованием неактивного FIX-альфа. Второе расщепление в Arg226 (Arg180 в зрелой последовательности FIX) удаляет 35 аминокислот активационного пептида FIX и приводит к каталитически активной Этот каталитически молекуле FIXa-бета. активный FIXa, связанный с FVIIIa, также именуют в данном документе свободным FIXa. Такой полученный гетеродимер удерживается дисульфидным Cys178-Cys335. Сериновая протеаза содержит мостиком В каталитическую триаду His267, Asp315 и Ser411. После расщепления в Arg226, Val227 может образовывать солевой мостик с Asp410, который является характеристикой активных сериновых протеаз. В варианте осуществления свободный FIXa COCTONT аминокислот 47-191 из SEQ ID NO: 764 и аминокислот 227-461 из SEQ ID NO: 764, где аминокислота 178 и аминокислота 335 из SEQ ID NO: 764 образуют дисульфидную связь.

[420] Однако известно, что активность свободного FIXa сходна с активностью зимогена FIX. Образование комплекса с кофактором FVIIIa представляет собой критическую вторую фазу активации, после которой собственный комплекс Хаѕе достигает примерно 200000-кратной повышенной активности, которая строго специфична в отношении физиологического субстрата FX и ограничена поверхностью активированных тромбоцитов (van Dieijen et al., J Biol Chem. 1981 Apr 10;256(7):3433-42). Этой макромолекулярной активации способствуют низкомолекулярные

агонисты, в том числе Ca2+ (Mathur et al., Biol. Chem., 272 (1997), pp. 23418-23426). Некоторые данные указывают на то, что связывание Ca2+ сопровождается конформационной перестройкой (Bajaj et al., Proc. Natl. Acad. Sci. USA, 89 (1992), pp. 152-156, Enfield and Thompson, Blood, 64 (1984), pp. 821-831). Такой сверхактивный FIXa в теназном комплексе можно имитировать путем ковалентного присоединения субстратного имитатора (например, Glu-Gly-Arg-хлорметилкетона (EGR-CMK)) к активному сайту FIXa (FXa+EGR-CMK, также называемый FIXa-SM). Таким образом, FIXa-SM можно использовать в качестве важного инструмента для различения антител или их антигенсвязывающей части, которые предпочтительно связываются со сверхактивным FIXa (в теназном комплексе) в отличие от свободного FIXa.

[421] Трипептидные хлорметилкетоны обычно относят в данной области субстратным имитаторам, причем трипептидная последовательность представляет собой нативную субстратную последовательность, которая расщепляется конкретным ферментом, и часть дает возможность этому трипептиду необратимо блокироваться в активном сайте, поскольку он реагирует с активным сериновым сайтом. Как следствие, если фермент связан с субстратным имитатором, то ЭTO должно представлять связанную с субстратом форму, т. е. истинную конформацию. См. Brandsteter et al. (1995) Proc. Natl. Acad. Sci. USA 92(21):9796-80 и Hopfner et al. (1999) Structure 7(8):989-96.

[422] Термин "зимоген FIX" может использоваться в данном документе взаимозаменяемо с "FIXz", "предшественник FIX", "неактивированный FIX", "отличный от активированного FIX" или "предшественник FIX, отличный от активированного". В одном варианте осуществления зимоген FIX (FIXz) включает в себя предшественник FIX, отличный от активированного, в котором активационный пептид (например, 35 активирующих пептидов, которые представлены в виде аминокислот 146—180 из SEQ ID NO: 764 (нумерация на основании зрелых белков) не отщеплен от предшественника. FIX зимоген может включать любые встречающиеся в природе или сконструированные варианты. Неограничивающий

пример зимогена FIX показан в SEQ ID NO: 764. В другом варианте осуществления зимоген FIX представляет собой неактивируемый FIX который сконструирован так, чтобы быть неактивным в присутствии фактора XIa, активированного предшественника плазменного тромбопластина. Примером неактивируемого FIX может быть FIX, несущий мутацию по типу замены аргинина на аланин в положении 180 (нумерация на основании зрелых предотвращением его активации и поддержанием фактора IX в форме FIX может необязательно содержать (FIXz). Зимоген зимогена сигнальный пептид и/или пропептид.

- [423] Термин "активированный FIX" можно использовать данном документе взаимозаменяемо с "FIXa". В одном варианте FIX осуществления активированный представляет встречающийся в природе FIXa дикого типа (также называемый в данном документе "FIXa дикого типа"). В другом варианте осуществления FIXa содержит не встречающийся в природе FIXa, например конформационный вариант FIXa. Например, FIXa может представлять собой FIXa-SM, который сконструирован так, чтобы иметь ту же конформацию, что и встречающийся в природе FIXa дикого типа, связанный с его субстратом FX. В конкретном варианте осуществления FIXa-SM представляет собой активированный FIX с имитатором субстрата, ковалентно связанным с активным сайтом, который предназначен для имитации наиболее активной конформации активированного FIX.
- [424] Зимоген FIX и FIXa могут включать варианты FIX. одном варианте осуществления варианты FIX были клонированы, как описано в патентах США №№ 4770999 и 7700734, и кДНК, кодирующая выделена, охарактеризована фактор ΙX человека, была клонирована в векторы экспрессии (см., например, Choo et al., Nature 299:178-180 (1982); Fair et al., Blood 64:194-204 (1984); и Kurachi et al., Proc. Natl. Acad. Sci., U.S.A. 79:6461-6464 (1982)). Один конкретный вариант FIX, вариант R338L FIX (Padua), al., 2009, содержит мутацию характеризуемый Simioni et усилением функции, которая коррелирует с почти 8-кратным увеличением активности варианта Padua по сравнению с нативным FIX. Варианты FIX также могут включать любой полипептид FIX,

имеющий одну или несколько консервативных аминокислотных замен, которые не влияют на активность FIX полипептида FIX.

[425] Следовательно, настоящее изобретение предусматривает антитело (например, выделенное антитело) или его антигенсвязывающую часть, которые специфически связываются с активированным фактором IX (FIXa) (например, свободным FIXa или FIXa-SM), где антитело к FIXa или его антигенсвязывающая часть предпочтительно связываются с FIXa в присутствии зимогена FIXa и FIX ("антитело к FIXa или его антигенсвязывающая часть").

[426] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с FIXa с более высокой аффинностью связывания, чем аффинность связывания антитела к FIXa или его антигенсвязывающей части с FIXz. В одном варианте осуществления аффинность связывания выражается как K_D .

Настоящее изобретение также предусматривает выделенное антитело к FIXa или его антигенсвязывающую часть, FIXa c которые связываются с более высокой аффинностью связывания, чем аффинность связывания антитела к FIXa или его антигенсвязывающей части с FIXz. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с FIXa с K_D , составляющей приблизительно 100 нМ или меньше (например, от 1 нМ до 100 нМ или от 0,1 нМ до 100 нМ), приблизительно 95 нМ или меньше, приблизительно 90 нМ или меньше, приблизительно 85 нМ или меньше, приблизительно 80 нМ или меньше, приблизительно 75 нМ или меньше, приблизительно 70 нМ или меньше, приблизительно ИЛИ меньше, приблизительно 60 Мн или приблизительно 55 нМ или меньше, приблизительно 50 нМ или меньше, приблизительно 45 нМ или меньше, приблизительно 40 нМ или меньше, приблизительно 35 нМ или меньше, приблизительно 30 нМ или меньше, приблизительно 25 нМ или меньше, приблизительно 2.0 ΗМ или меньше, приблизительно 15 Мн или меньше, приблизительно 10 нМ или меньше, приблизительно 5 нМ или меньше или приблизительно 1 нМ или меньше, как определено с помощью интерферометрии биослоя (BLI). В других вариантах осуществления антитело к FIXa или его антигенсвязывающая часть связываются с FIXa с K_D , составляющей приблизительно 10 нМ или меньше, приблизительно 9 нМ или меньше, приблизительно 8 нМ или меньше, приблизительно 7 нМ или меньше, приблизительно 6 нМ или меньше, приблизительно 5 нМ или меньше, приблизительно 4 нМ или меньше, приблизительно 3 нМ или меньше, приблизительно 2 нМ или меньше, приблизительно 1 нМ или меньше, приблизительно 0,5 нМ или меньше, приблизительно 0,2 нМ или меньше, приблизительно 0,1 нМ или меньше или приблизительно 0,05 нМ или меньше. В других вариантах осуществления антитело к FTXa или его антигенсвязывающая часть связываются с FIXa с K_D , составляющей от 1 HM GO 100 HM, OT 1 HM GO 90 HM, OT 1 HM GO 80 HM, OT 1 HM GO 70 HM, OT 1 HM GO 60 HM, OT 1 HM GO 50 HM, OT 1 HM GO 40 HM, OT 1 нМ до 30 нМ, от 1 нМ до 20 нМ, от 1 нМ до 10 нМ, от 0,1 нМ до 100 нМ, от 0,1 нМ до 90 нМ, от 0,1 нМ до 80 нМ, от 0,1 нМ до 70 нМ, от 0,1 нМ до 60 нМ, от 0,1 нМ до 50 нМ, от 0,1 нМ до 40 нМ, от 0,1 нМ до 30 нМ, от 0,1 нМ до 20 нМ, от 0,1 нМ до 10 нМ или от 0,1 нМ до 1 нМ.

[428] В некоторых аспектах антитело к FIXа или его антигенсвязывающая часть перекрестно конкурируют с эталонным антителом, выбранным из группы, состоящей из антител, представленных на фиг. ЗА, ЗВ и/или ЗС. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. ЗА, ЗВ и/или ЗС. В некоторых аспектах эталонное антитело выбрано из ВІІВ-9-484, ВІІВ-9-440, ВІІВ-9-882, ВІІВ-9-460, ВІІВ-9-433 и любой их комбинации.

[429] В дополнительных аспектах антитело к FIXa или его антигенсвязывающая часть могут быть дополнительно классифицированы на три класса:

класс I: антитела к FIXa или их антигенсвязывающая часть, которые предпочтительно связываются с FIXa-SM в отличие от свободного FIXa или FIXz (антитела, представленные на фиг. 3A);

класс II: антитела к FIXa или их антигенсвязывающая часть, которые предпочтительно связываются со свободным FIXa в отличие от FIXa-SM или FIXz (антитела, представленные на ϕ ur. 3B); и

класс III: антитела к FIXa или их антигенсвязывающая часть,

которые связываются со свободными FIXa и FIXa-SM почти эквивалентно, но не связываются существенно с FIXz (антитела, представленные на ϕ ur. 3C).

[430] В некоторых вариантах осуществления антитело к FIXa или его антигенсвязывающая часть перекрестно конкурируют эталонным антителом, выбранным из группы, состоящей из антител, представленных на фиг. 3А. В других вариантах осуществления антитело к FIXa или его антигенсвязывающая часть связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. ЗА. В некоторых вариантах осуществления антитело к FIXa ИЛИ антигенсвязывающая часть перекрестно конкурируют с эталонным выбранным ИЗ группы, состоящей ИЗ представленных на фиг. 3В. В других вариантах осуществления антитело к FIXa или его антигенсвязывающая часть связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. 3В. В некоторых осуществления антитело к FIXa ИЛИ вариантах его антигенсвязывающая часть перекрестно конкурируют с эталонным антителом, выбранным группы, состоящей КN ENантител, представленных на фиг. 3С. В других вариантах осуществления антитело к FIXa или его антигенсвязывающая часть связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. 3С.

[431] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где CDR3 VH содержит

последовательность CDR3 VH, идентичную последовательности CDR3 VH, выбранной из группы, состоящей из последовательностей CDR3 VH, раскрытых на ϕ ur. 3A, или

последовательность CDR3 VH, идентичную последовательности CDR3 VH, выбранной из группы, состоящей из последовательностей CDR3 VH, раскрытых на ϕ ur. 3A, за исключением 1, 2 или 3 аминокислотных замен.

[432] В других аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH,

где CDR3 VH содержит

последовательность CDR3 VH, идентичную последовательности CDR3 VH, выбранной из группы, состоящей из последовательностей CDR3 VH, раскрытых на ϕ ur. 3B, или

последовательность CDR3 VH, идентичную последовательности CDR3 VH, выбранной из группы, состоящей из последовательностей CDR3 VH, раскрытых на ϕ иг. 3B, за исключением 1, 2 или 3 аминокислотных замен.

[433] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где CDR3 VH содержит

последовательность CDR3 VH, идентичную последовательности CDR3 VH, выбранной из группы, состоящей из последовательностей CDR3 VH, раскрытых на ϕ ur. 3C, или

последовательность CDR3 VH, идентичную последовательности CDR3 VH, выбранной из группы, состоящей из последовательностей CDR3 VH, раскрытых на фиг. 3C, за исключением 1, 2 или 3 аминокислотных замен.

- [434] В некоторых аспектах аминокислотные замены представляют собой консервативные аминокислотные замены. В других аспектах аминокислотные замены представляют собой обратную мутацию.
- [435] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR3 VH предусматривает аминокислотную последовательность $ARDX_1X_2X_3X_4X_5X_6YYX_7MDV$ (SEQ ID NO:753), где X_1 представляет собой V или G, X_2 представляет собой G или V, X_3 представляет собой G или R, X_4 представляет собой Y или V, X_5 представляет собой A или S, X_6 представляет собой G или D, X_7 представляет собой G или ничего.
- [436] Специалист в данной области техники поймет, что в случае если положение описывается как "ничего" или "отсутствует" в согласованной последовательности, то такое отсутствие не указывает на разрыв в полипептидной цепи. Эти термины просто отражают возникновение вставок и делеций в аминокислотных цепях, что наблюдается при множественном выравнивании

последовательностей. Таким образом, в случае если две последовательности, одна из которых содержит аминокислотную вставку, выровнены для образования консенсусной последовательности, то последовательность, в которой отсутствует вставка, будет иметь "отсутствующую" ("нулевую") аминокислоту в данном положении.

[437] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR3 VH предусматривает аминокислотную последовательность, выбранную из ARDVGGYAGYYGMDV (SEQ ID NO: 905; CDR 3 VH для BIIB-9-484; BIIB-9-1335 и BIIB-9-1336), ARDISTDGESSLYYYMDV (SEQ ID NO: 901; BIIB-9-460), ARGPTDSSGYLDMDV (SEQ ID NO: 1186; BIIB-9-882), ARSPRHKVRGPNWFDP (SEQ ID NO: 899; ВІІВ-9-440) или ARDGPRVSDYYMDV (SEQ ID NO: 912; ВІІВ-9-619). В некоторых аспектах последовательности CDR3 VH, раскрытые в данном документе, могут содержать 1, 2 или 3 аминокислотных замены.

[438] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR1 VH предусматривает

последовательность CDR1 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VH, раскрытых на ϕ ur. 3A, или

последовательность CDR1 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VH, раскрытых на фиг. 3A, за исключением 1, 2 или 3 аминокислотных замен.

[439] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR1 VH предусматривает

последовательность CDR1 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VH, раскрытых на ϕ ur. 3B, или

последовательность CDR1 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VH, раскрытых на ϕ ur. 3B, за исключением 1, 2 или 3 аминокислотных

замен.

[440] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR1 VH предусматривает

последовательность CDR1 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VH, раскрытых на ϕ ur. 3C, или

последовательность CDR1 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VH, раскрытых на ϕ ur. 3C, за исключением 1, 2 или 3 аминокислотных замен.

[441] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR2 VH предусматривает

последовательность CDR2 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VH, раскрытых на ϕ ur. 3A, или

последовательность CDR2 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VH, раскрытых на ϕ ur. 3A, за исключением 1, 2 или 3 аминокислотных замен.

[442] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR2 VH предусматривает

последовательность CDR2 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VH, раскрытых на ϕ ur. 3B, или

последовательность CDR2 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VH, раскрытых на ϕ ur. 3B, за исключением 1, 2 или 3 аминокислотных замен.

[443] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR2 VH предусматривает

последовательность CDR2 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VH,

раскрытых на фиг. 3С, или

последовательность CDR2 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VH, раскрытых на ϕ ur. 3C, за исключением 1, 2 или 3 аминокислотных замен.

[444] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR1 VL предусматривает

последовательность CDR1 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VL, раскрытых на ϕ ur. 3A, или

последовательность CDR1 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VL, раскрытых на ϕ ur. 3A, за исключением 1, 2 или 3 аминокислотных замен.

[445] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR1 VL предусматривает

последовательность CDR1 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VL, раскрытых на ϕ ur. 3B, или

последовательность CDR1 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VL, раскрытых на ϕ ur. 3B, за исключением 1, 2 или 3 аминокислотных замен.

[446] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR1 VL предусматривает

последовательность CDR1 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VL, раскрытых на ϕ ur. 3C, или

последовательность CDR1 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VL, раскрытых на фиг. 3C, за исключением 1, 2 или 3 аминокислотных замен.

[447] В некоторых аспектах антитело к FIXa или его

антигенсвязывающая часть содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR2 VL предусматривает

последовательность CDR2 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VL, раскрытых на ϕ ur. 3A, или

последовательность CDR2 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VL, раскрытых на ϕ ur. 3A, за исключением 1, 2 или 3 аминокислотных замен.

[448] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR2 VL предусматривает

последовательность CDR2 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VL, раскрытых на ϕ ur. 3B, или

последовательность CDR2 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VL, раскрытых на ϕ ur. 3B, за исключением 1, 2 или 3 аминокислотных замен.

[449] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR2 VL предусматривает

последовательность CDR2 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VL, раскрытых на ϕ ur. 3C, или

последовательность CDR2 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VL, раскрытых на ϕ ur. 3C, за исключением 1, 2 или 3 аминокислотных замен.

[450] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR3 VL предусматривает

последовательность CDR3 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR3 VL, раскрытых на ϕ ur. 3A, или

последовательность CDR3 VL, идентичную последовательности,

выбранной из группы, состоящей из последовательностей CDR3 VL, раскрытых на ϕ ur. 3A, за исключением 1, 2 или 3 аминокислотных замен.

[451] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR3 VL предусматривает

последовательность CDR3 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR3 VL, раскрытых на ϕ ur. 3B, или

последовательность CDR3 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR3 VL, раскрытых на ϕ ur. 3B, за исключением 1, 2 или 3 аминокислотных замен.

[452] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR3 VL предусматривает

последовательность CDR3 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR3 VL, раскрытых на ϕ ur. 3C, или

последовательность CDR3 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR3 VL, раскрытых на ϕ ur. 3C, за исключением 1, 2 или 3 аминокислотных замен.

[453] B настоящем изобретении также предусмотрены выделенное антитело или его антигенсвязывающая часть, которые специфически связываются с FIXa, содержащее CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL, где CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL предусматривают CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL антитела к FIXa, выбранного из группы, состоящей из антител на Фиг. 3A: BIIB-9-605, BIIB-9-475, BIIB-9-477, BIIB-9-479, BIIB-9-480, BIIB-9-558, BIIB-9-414, BIIB-9-415, BIIB-9-425, BIIB-9-440, BIIB-9-452, BIIB-9-460, BIIB-9-461, BIIB-9-465, BIIB-9-564, BIIB-9-484, BIIB-9-469, BIIB-9-566, BIIB-9-567, BIIB-9-569, BIIB-9-588, BIIB-9-611, BIIB-9-619, BIIB-9-626, BIIB-9-883, BIIB-9-419, BIIB-9-451, BIIB-9-473, BIIB-9-565, BIIB-9-573, BIIB-

9-579, BIIB-9-581, BIIB-9-582, BIIB-9-585, BIIB-9-587, BIIB-9-590, BIIB-9-592, BIIB-9-606, BIIB-9-608 BIIB-9-616, BIIB-9-621, BIIB-9-622, BIIB-9-627, BIIB-9-1335, и ВІІВ-9-1336.

[454] В других вариантах осуществления в настоящем изобретении предусмотрены выделенное антитело или его антигенсвязывающая часть, которые специфически связываются с FIXa, содержащее CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL, где CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL предусматривают CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VH, a также CDR1 VH, a также CDR1 VL, CDR2 VL и CDR3 VL антитела к FIXa, выбранным из группы, состоящей из антител на фиг. 3B: BIIB-9-408, BIIB-9-416, BIIB-9-629 или ВIIB-9-885.

[455] В других вариантах осуществления в настоящем предусмотрены выделенное антитело ИЛИ антигенсвязывающая часть, которые специфически связываются с FIXa, содержащее CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL, где CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL предусматривают CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL антитела к FIXa, выбранным из группы, состоящей из антител на фиг. 3C: BIIB-9-607, BIIB-9-471, BIIB-9-472, BIIB-9-439, BIIB-9-446, BIIB-9-568, BIIB-9-615, BIIB-9-628, BIIB-9-882, BIIB-9-884, BIIB-9-886, BIIB-9-887, BIIB-9-888, BIIB-9-889, BIIB-9-433, BIIB-9-445, BIIB-9-470, BIIB-9-625, BIIB-9-1264, BIIB-9-1265, BIIB-9-1266, BIIB-9-1267, BIIB-9-1268, BIIB-9-1269, BIIB-9-1270, BIIB-9-1271, BIIB-9-1272, BIIB-9-1273, BIIB-9-1274, BIIB-9-1275, BIIB-9-1276, BIIB-9-1277, BIIB-9-1278, BIIB-9-1279, BIIB-9-1280, BIIB-9-1281, BIIB-9-1282, BIIB-9-1283, BIIB-9-1284, BIIB-9-1285, BIIB-9-1286, и BIIB-9-1287.

[456] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат последовательности CDR1 VH, CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 800-844, SEQ ID NO: 845-889 и SEQ ID NO: 890-934, соответственно (CDR VH для антител класса I), и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 935-979, SEQ ID NO: 980-1024 и SEQ ID NO: 1025-1069, соответственно (CDR VL для антител класса I).

- [457] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат последовательности CDR1 VH, CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 1070-1073, SEQ ID NO: 1074-1077 и SEQ ID NO: 1078-1081, соответственно (CDR VH для антител класса II), и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 1082-1085, SEQ ID NO: 1086-1089 и SEQ ID NO: 1090-1093, соответственно (CDR VL для антител класса II).
- [458] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат последовательности CDR1 VH, CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 1094-1135, SEQ ID NO: 1136-1177 и SEQ ID NO: 1178-1219, соответственно (CDR VH для антител класса III), и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 1220-1261, SEQ ID NO: 1262-1303 и SEQ ID NO: 1304-1345, соответственно (CDR VL для антител класса III).
- [459] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат последовательности CDR1 VH, CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 815, SEQ ID NO: 860 и SEQ ID NO: 905, соответственно (CDR VH для антитела BIIB-9-484), и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 950, SEQ ID NO: 995 и SEQ ID NO: 1040, соответственно (CDR VL для антитела BIIB-9-484).
- [460] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат последовательности CDR1 VH, CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 843, SEQ ID NO: 888 и SEQ ID NO: 933, соответственно (CDR VH для антитела BIIB-9-1335), и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 950, SEQ ID NO: 995 и SEQ ID NO: 1040, соответственно (CDR VL для антитела BIIB-9-1335).
- [461] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат последовательности CDR1 VH, CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 844, SEQ ID NO: 889 и SEQ ID NO: 934, соответственно (CDR VH для антитела BIIB-9-1336), и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 950, SEQ ID NO: 995 и SEQ ID NO: 1040,

соответственно (CDR VL для антитела BIIB-9-1336).

- В других аспектах антитело к FIXa или антигенсвязывающая часть перекрестно конкурируют с антителами BIIB-9-484, BIIB-9-1335 и BIIB-9-1336 и/или связываются с тем же эпитопом, что и антитела ВІІВ-9-484, ВІІВ-9-1335 и ВІІВ-9-1336. антитело K FIXa В определенных аспектах ИЛИ антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL, где CDR3 VH содержит ARDVGGYAGYYGMDV (SEQ ID NO: 905, BIIB-9-484 VH CDR3), VH CDR2 SISSX₁X₂SYIYYAX₃SVKG (SEQ 754), ID NO: где представляет собой S, G или любую консервативную замену, представляет собой S, E или любую консервативную замену, и X_3 представляет собой D, E или любую консервативную замену, CDR1 VH содержит $FTFX_4SYX_5MX_6$ (SEQ ID NO: 755), где X_4 представляет собой S, G или любую консервативную замену, X_5 представляет собой D, S или любую консервативную замену, и X_6 представляет собой H, N или любую консервативную замену. Антитело К FIXa ИЛИ его антигенсвязывающая часть могут содержать SEQ ID NO: 815 для CDR1 VH, SEQ ID NO: 860 для CDR2 VH и SEQ ID NO: 905 для CDR3 VH. (BIIB-9-484 CDR VH)
- [463] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат
- (a1) последовательности CDR1 VH, CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 809, SEQ ID NO: 854 и SEQ ID NO: 899, соответственно (CDR VH для антитела BIIB-9-440), и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 944, SEQ ID NO: 989 и SEQ ID NO: 1034, соответственно (CDR VL для антитела BIIB-9-440);
- (a2) последовательности CDR1 VH, CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 1102, SEQ ID NO: 1144 и SEQ ID NO: 1186, соответственно (CDR VH для антитела BIIB-9-882), и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 1228, SEQ ID NO: 1270 и SEQ ID NO: 1312, соответственно (CDR VL для антитела BIIB-9-882);
- (a3) последовательности CDR1 VH, CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 811, SEQ ID NO: 856 и SEQ ID NO: 901,

соответственно (CDR VH для антитела BIIB-9-460), и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 946, SEQ ID NO: 991 и SEQ ID NO: 1036, соответственно (CDR VL для антитела BIIB-9-460); или

(а4) последовательности CDR1 VH, CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 1108, SEQ ID NO: 1150 и SEQ ID NO: 1192, соответственно (CDR VH для антитела BIIB-9-433), и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 1234, SEQ ID NO: 1276 и SEQ ID NO: 1318, соответственно (CDR VL для антитела BIIB-9-433).

[464] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат последовательности CDR1 VH, CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 822, SEQ ID NO: 867 и SEQ ID NO: 912, соответственно (CDR VH для антитела ВIIB-9-619), и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 957, SEQ ID NO: 1002 и SEQ ID NO: 1047, соответственно (CDR VL для антитела ВIIB-9-619).

[465] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат

последовательности CDR1 VH, CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 843, SEQ ID NO: 888 и SEQ ID NO: 933, соответственно (CDR VH для антитела BIIB-9-1335), и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 950, SEQ ID NO: 995 и SEQ ID NO: 1040, соответственно (CDR VL для антитела BIIB-9-1335); или

последовательности CDR1 VH, CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 844, SEQ ID NO: 889 и SEQ ID NO: 934, соответственно (CDR VH для антитела BIIB-9-1336), и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 950, SEQ ID NO: 995 и SEQ ID NO: 1040, соответственно (CDR VL для антитела BIIB-9-1336).

[466] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат VH, где VH содержит аминокислотную последовательность, которая на по меньшей мере приблизительно 70%, по меньшей мере приблизительно 75%, по меньшей мере приблизительно

85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 99% или приблизительно 100% идентична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, и 181 (SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, и 89 для антител класса I; SEQ ID NO: 91, 93, 95 и 97 для антител класса II и SEQ IDNOs: 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, и 181 для антител класса III).

[467] В некоторых аспектах антитело к FIXa или антигенсвязывающая часть содержат VL, где VL аминокислотную последовательность, которая на по меньшей мере приблизительно 70%, по меньшей мере приблизительно 75%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 99% или приблизительно 100% идентична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NOs: 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323, 325, 327, 329, 331,

333, 335, 337, 339, 341, 343, 345, 347, 349, 351, 353, 355, 357, 359, 361, 363, 365, и 367 (SEQ ID Nos: 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, и 275 для антител класса I; SEQ ID NO: 277, 279, 281 и 283 для антител класса II; SEQ ID Nos: 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323, 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351, 353, 355, 357, 359, 361, 363, 365, и 367 для антител класса III).

[468] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, где

VH содержит аминокислотную последовательность, которая на ПО меньшей мере приблизительно 70%, ПО меньшей мере приблизительно 75%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 100% идентична 99% приблизительно аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, и 181 (SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, и 89 для антител класса I; SEQ ID NO: 91, 93, 95 и 97 для антител класса II и SEQ IDNOs: 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, и 181 для

антител класса III); и

VL содержит аминокислотную последовательность, которая на меньшей мере приблизительно 70%**,** ПО приблизительно 75%, по меньшей мере приблизительно 80%, меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 100% 99% приблизительно идентична ИЛИ аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NOs: 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323, 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351, 353, 355, 357, 359, 361, 363, 365, и 367 (SEQ ID NOs: 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, и 275 для антител класса I; SEQ ID NO: 277, 279, 281 и 283 для антител класса II; SEQ ID NOs: 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323, 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351, 353, 355, 357, 359, 361, 363, 365, и 367 для антител класса III).

[469] В определенных аспектах антитело к FIXa содержит вариабельную область тяжелой цепи из конкретного гена тяжелой цепи иммуноглобулина зародышевого типа и/или вариабельную конкретного ген область легкой цепи из легкой цепи иммуноглобулина зародышевого типа. В некоторых вариантах осуществления последовательность VH антитела к FIXa может быть получена из любой из последовательностей V, D или J зародышевого типа, и/или последовательность VL антитела к FIXa может быть получена из любой из каппа- или лямбда-последовательности зародышевого типа.

- [470] Как показано в данном документе, были получены человеческие антитела, специфические в отношении FIXa, которые содержат вариабельную область тяжелой цепи, которая является продуктом человеческого гена зародышевого типа или получена от него. Соответственно, в данном документе предусмотрены выделенные антитела к FIXa или их антигенсвязывающие части, содержащие вариабельную область тяжелой цепи, которая является продуктом или получена от гена VH человека зародышевого типа, выбранного из группы, состоящей из: VH1-18, VH1-46, VH3-21, VH3-30, VH4-31, VH4-39, VH4-0B, VH5-51, и любой их комбинации. В конкретных вариантах осуществления ген VH зародышевого типа выбран из группы, состоящей из VH1-18,0, VH1-18,1, VH1-18,8, VH1-46,0, VH1-46,4, VH1-46,5, VH1-46,6, VH1-46,7, VH1-46,8, VH1-46,9, VH3-21,0, VH3-23,0, VH3-23,2, VH3-23,6, VH3-30,0, VH4-31,5, VH4-39,0, VH4-39,5. VH4-0B.4, VH5-51,1, и любой их комбинации.
- [471] В других аспектах в данном документе предусмотрены выделенные антитела к FIXa или их антигенсвязывающие части, содержащие вариабельную область тяжелой цепи, которая является продуктом или получена от гена VL человека зародышевого типа, выбранного из группы, состоящей из: VK1-05, VK1-12, VK1-39, VK2-28, VK3-11, VK3-15, VK3-20, VK4-01, и любой их комбинации. В конкретных вариантах осуществления ген VL зародышевого типа выбран из группы, состоящей из VK1-05,6, VK1-05,12, VK1-12,0, VK1-12,4, VK1-12,7, VK1-12,10, VK1-12,15, VK1-39,0, VK1-39,3, VK1-39,15, VK2-28,0, VK2-28,1, VK2-28,5, VK3-11,0, VK3-11,2, VK3-11,6, VK3-11,14, VK3-15,0, VK3-15,8, VK3-15,10, VK3-20,0, VK3-20,1, VK3-20,4, VK3-20,5, VK4-01,0, VK4-01,4, VK4-01,20, и любой их комбинации.
- [472] Антитела, описанные в данном документе, включают антитела, содержащие вариабельную область тяжелой цепи, которая является продуктом или получена от одного из вышеперечисленных генов VH человека зародышевого типа, а также содержащие вариабельную область легкой цепи, которая является продуктом или получена от одного из вышеперечисленных генов VK человека зародышевого типа, как показано на фигурах.

[473] Как используется в данном документе, человеческое антитело содержит вариабельные области тяжелой и легкой цепей, которые являются "продуктом" или "получены из" конкретной последовательности зародышевого типа, если вариабельные области антитела получены из системы, в которой используются иммуноглобулина человека зародышевого типа. Такие системы включают в себя иммунизацию трансгенной мыши, несущей гены иммуноглобулина человека, представляющим интерес антигеном, или библиотеки генов иммуноглобулина СКРИНИНГ человека, представленной на фаге с представляющим интерес антигеном. Человеческое антитело, которое является "продуктом" или "полученным из" последовательности иммуноглобулина человека зародышевого типа, можно идентифицировать как таковое путем аминокислотной последовательности человеческого антитела с аминокислотными последовательностями иммуноглобулина и выбора последовательности человека зародьшевого типа иммуноглобулина человека зародышевого типа, которая наиболее по последовательности (т. е. имеет наибольший идентичности) к последовательности человеческого антитела. Человеческое антитело, которое является "продуктом" ИЛИ "получено из" конкретной последовательности иммуноглобулина человека зародышевого типа, может содержать аминокислотные различия по сравнению с последовательностью зародышевого типа, например, вследствие встречающихся в природе соматических мутаций или преднамеренного введения сайт-направленной мутации. Однако выбранное человеческое антитело, как правило, на меньшей мере 90% идентично по аминокислотным последовательностям аминокислотной последовательности, кодируемой геном иммуноглобулина человека зародьшевого типа, и содержит аминокислотные остатки, которые идентифицируют человеческое антитело являющееся человеческим по сравнению как С последовательностями иммуноглобулина аминокислотными зародьшевого типа других видов (например, мьшиной последовательности зародьшевого типа). В отдельных случаях аминокислотная последовательность человеческого антитела может являться на по меньшей мере 95% или даже на по меньшей мере 96%,

- 97%, 98% или 99% идентичной аминокислотной последовательности, кодируемой геном иммуноглобулина зародышевого типа. Как правило, антитело, полученное ИЗ последовательности человека зародьшевого типа, будет проявлять 10 аминокислотных отличий \circ T аминокислотной не последовательности, кодируемой геном иммуноглобулина человека зародышевого типа. В некоторых случаях человеческое антитело может демонстрировать не более 5 или даже не более 4, 3, 2 или 1 аминокислотного отличия от аминокислотной последовательности, кодируемой геном иммуноглобулина зародышевого типа.
- [474] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, где
- (а1) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 31, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 221 (VH и VL ВІІВ—9-484, соответственно);
- (а2) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 19, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO 209 (VH и VL BIIB-9-440, соответственно);
- (а3) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 115, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по

меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 301 (VH и VL BIIB-9-882, соответственно);

- (а4) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 23, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 213 (VH и VL ВІІВ—9-460, соответственно);
- (а5) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 127, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 313 (VH и VL BIIB-9-433, соответственно);
- (аб) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 45, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 235 (VH и VL ВІІВ—9-619, соответственно);
- (а7) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 87, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по

меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 221 (VH и VL BIIB-9-1335, соответственно); или

(а8) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 89, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 221 (VH и VL BIIB-9-1336, соответственно).

[475] В некоторых аспектах FXa антитело к ИЛИ его антигенсвязывающая часть связываются с тем же эпитопом, BIIB-9-1336. В других аспектах антитело K FIXa антигенсвязывающая часть связываются с эпитопом, перекрывающим эпитоп BIIB-9-1336. В некоторых вариантах осуществления антитело к FIXa или его антигенсвязывающая часть связываются с областью эпитопа, содержащей ПО меньшей мере одну аминокислоту, расположенную между положениями, приведенными в соответствии с нумерацией для химотрипсиногена, 91 и 101, 125 и 128, 165 и 179 241 В последовательности тяжелой (соответствует соответственно положениям 76-88, 112-115, 153-167 и 222-231 в SEO ID NO: 758).

[476] Используемая в данном документе фраза "аминокислотный приведенный в соответствии С нумерацией химотрипсиногена" и ее грамматические варианты относятся описанию некоторых аминокислот В FIX ПО гомологии химотрипсиногеном сериновой протеазы. В настоящем описании для химотрипсиногена в серинпротеазном нумерация использовалась в соответствии с Hopfner et al. (EMBO J. 1997; 16:6626-35). Для настоящего изобретения нумерация химотрипсиногену используется только в случае, если это явно документе. Соответствие между указано данном раскрытыми аминокислотными остатками с нумерацией по химотрипсиногену и аминокислотным положением в SEQ ID NO: 758 представлено

таблице ниже.

Соответствие между нумерацией по	химотрипсиногену FIXa и
положениями SEQ ID NO: 758	
Аминокислотные остатки с нумерацией	Аминокислотный остаток SEQ
по химотрипсиногену FIXa	ID NO: 758
Н91	Н76
Н92	H77
И93	N78
H101	Н88
D125	D112
K126	K113
E127	E114
Y128	Y115
R165	R153
Y177	Y165
N178	N166
N179	N167
S232	S222
R233	R223
Y234	Y224
V235	V225
N236	N226
W237	W227
E240	E230
K241	K231
N100	N87
K132	K121
Y137	Y126
R170	R158
T172	T160
F174	F162
T175	T163
H185	H174
E202	E192

G205 G195

[477] В некоторых аспектах антитело к FIXa его антигенсвязывающая часть связываются с эпитопом, содержащим по меньшей мере один из аминокислотных остатков, приведенных в соответствии с нумерацией для химотрипсиногена, Н91, Н92, N93, H101, D125, K126, E127, Y128, R165, Y177, N178, N179, S232, R233, Y234, V235, N236, W237, E240, и K241 в последовательности тяжелой цепи FIXa (соответствующих положениям H76, H77, N78, H88, D112, K113, E114, Y115, R153, Y165, N166, N167, S222, R223, Y224, V225, N226, W227, E230, и K231, соответственно, в SEQ ID NO: 758). В некоторых аспектах антитело к FIXa или антигенсвязывающая часть связываются с эпитопом, содержащим по меньшей мере 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12, 13, 14, 15, 16, 17, 18, или 19 аминокислотных остатков, выбранных из группы, состоящей из аминокислотных остатков, приведенных в соответствии с нумерацией для химотрипсиногена, H91, H92, N93, H101, D125, K126, E127, Y128, R165, Y177, N178, N179, S232, R233, Y234, V235, N236, W237, E240, и K241 в последовательности тяжелой цепи FIXa (соответствующих положениям H76, H77, N78, H88, D112, K113, E114, Y115, R153, Y165, N166, N167, S222, R223, Y224, V225, N226, W227, E230, и K231, соответственно, в SEQ ID NO: 758).

[478] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с эпитопом, содержащим аминокислотные остатки, приведенные в соответствии с нумерацией для химотрипсиногена, Н91, Н92, N93, Н101, D125, K126, E127, Y128, R165, Y177, N178, N179, S232, R233, Y234, V235, N236, W237, E240, и K241 в последовательности тяжелой цепи FIXa (соответствующих положениям Н76, Н77, N78, Н88, D112, K113, E114, Y115, R153, Y165, N166, N167, S222, R223, Y224, V225, N226, W227, E230, и K231, соответственно, в SEQ ID NO: 758).

[479] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с эпитопом, состоящим из аминокислотных остатков, приведенных в соответствии с нумерацией для химотрипсиногена, H91, H92, N93, H101, D125, K126, E127, Y128, R165, Y177, N178, N179, S232, R233, Y234, V235, N236, W237, E240, и K241 в последовательности тяжелой цепи FIXa

(соответствующих положениям H76, H77, N78, H88, D112, K113, E114, Y115, R153, Y165, N166, N167, S222, R223, Y224, V225, N226, W227, E230, и K231, соответственно, в SEQ ID NO: 758).

[480] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с эпитопом, содержащим аминокислотные остатки, приведенные в соответствии с нумерацией для химотрипсиногена, N93, R165, N178 и R233 в последовательности тяжелой цепи FIXa (соответствующие положениям N78, R153 N166 и R223, соответственно, в SEQ ID NO: 758).

[481] В некоторых аспектах антитело к FIXа или его антигенсвязывающая часть связываются с эпитопом, который не содержит по меньшей мере один из аминокислотных остатков, приведенных в соответствии с нумерацией для химотрипсиногена, N100, K132, Y137, R170, T172, F174, T175, H185, E202 и G205 в последовательности тяжелой цепи FIXa (соответствующих положениям N87, K121, Y126, R158, T160, F162, T163, H174, E192 и G195, соответственно, в SEQ ID NO: 758). В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с эпитопом, который не содержит аминокислотные остатки, приведенные в соответствии с нумерацией для химотрипсиногена, N100, K132, Y137, R170, T172, F174, T175, H185, E202, и G205 в последовательности тяжелой цепи FIXa (соответствующих положениям N87, K121, Y126, R158, T160, F162, T163, H174, E192 и G195, соответственно, в SEQ ID NO: 758).

[482] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с эпитопом, содержащим по меньшей мере один аминокислотный остаток в легкой цепи FIXa (SEQ ID NO:756). В некоторых аспектах эпитоп в легкой цепи FIXa (SEQ ID NO:756), с которым связываются антитело к FIXa или его антигенсвязывающая часть, представляет собой K100.

[483] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с эпитопом, содержащим аминокислотные остатки, приведенные в соответствии с нумерацией для химотрипсиногена, H91, H92, N93, H101, D125, K126, E127, Y128, R165, Y177, N178, N179, S232, R233, Y234, V235, N236, W237, E240, и K241, в последовательности тяжелой цепи FIXa

(соответствующих положениям H76, H77, N78, H88, D112, K113, E114, Y115, R153, Y165, N166, N167, S222, R223, Y224, V225, N226, W227, E230, и K231, соответственно, в SEQ ID NO: 758) и аминокислотный остаток K100 последовательности легкой цепи FIXa (SEQ ID NO:756). В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с эпитопом, состоящим из аминокислотных остатков, приведенных в соответствии с нумерацией для химотрипсиногена, H91, H92, N93, H101, D125, K126, E127, Y128, R165, Y177, N178, N179, S232, R233, Y234, V235, N236, W237, E240, и K241 в последовательности тяжелой цепи FIXa (соответствующих положениям H76, H77, N78, H88, D112, K113, E114, Y115, R153, Y165, N166, N167, S222, R223, Y224, V225, N226, W227, E230, и K231, соответственно, в SEQ ID NO: 758) и аминокислотный остаток K100 последовательности легкой цепи FIXa (SEO ID NO:756).

[484] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с эпитопом, который перекрывает участок связывания FVIIIa с FIXa. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть перекрестно конкурируют с FVIIIa за связывание с FIXa. В некоторых аспектах антитело к FXa или его антигенсвязывающая часть блокируют связывание FVIIIa с FIXa.

[485] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть, которые специфически связываются с FIXa, содержат последовательности CDR1, CDR2 и CDR3 VH, где последовательность CDR1 VH предусматривает последовательность CDR1 VH, выбранную из группы, состоящей из последовательностей CDR1 VH, раскрытых в таблице 7, или последовательность CDR1 VH, раскрытую в таблице 7, с одной или двумя мутациями.

[486] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть, которые специфически связываются с FIXa, содержат последовательности CDR1, CDR2 и CDR3 VH, где последовательность CDR2 VH предусматривает последовательность CDR2 VH, выбранную из группы, состоящей из последовательностей CDR2 VH, раскрытых в таблице 7, или последовательность CDR2 VH, раскрытую в таблице 7, с одной или двумя мутациями.

- [487] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть, которые специфически связываются с FIXa, содержат последовательности CDR1, CDR2 и CDR3 VH, где последовательность CDR3 VH предусматривает последовательность CDR3 VH, выбранную из группы, состоящей из последовательности CDR3 VH, раскрытой в таблице 7, или последовательности CDR3 VH, раскрытой в таблице 7, с одной или двумя мутациями.
- [488] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть, которые специфически связываются с FIXa, содержат последовательности CDR1, CDR2 и CDR3 VL, где последовательность CDR1 VL предусматривает последовательность CDR1 VL, выбранную из группы, состоящей из последовательностей CDR1 VL, раскрытых в таблице 7, или последовательности CDR1 VL, раскрытой в таблице 7, с одной или двумя мутациями.
- [489] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть, которые специфически связываются с FIXa, содержат последовательности CDR1, CDR2 и CDR3 VL, где последовательность CDR2 VL предусматривает последовательность CDR2 VL, выбранную из группы, состоящей из последовательностей CDR2 VL, раскрытых в таблице 7, или последовательности CDR2 VL, раскрытой в таблице 7, с одной или двумя мутациями.
- [490] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть, которые специфически связываются с FIXa, содержат последовательности CDR1, CDR2 и CDR3 VL, где последовательность CDR3 VL предусматривает последовательность CDR3 VL, выбранную из группы, состоящей из последовательностей CDR3 VL, раскрытых в таблице 7, или последовательности CDR3 VL, раскрытой в таблице 7, с одной или двумя мутациями.
- [491] В некоторых аспектах выделенное антитело к FIXa или его антигенсвязывающая часть содержат последовательности CDR1, CDR2 и CDR3 VH и последовательности CDR1, CDR2 и CDR3 VL, где последовательности CDR1, CDR2 и CDR3 VH и последовательности CDR1, CDR2 и CDR3 VL содержат последовательности CDR1, CDR2 и CDR3 VL и последовательности CDR1, CDR2 и CDR3 VL, раскрытые в таблице 7, соответственно.
 - [492] В некоторых аспектах выделенное антитело к FIXa или

его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH, где

- (i) CDR1 VH содержит аминокислотную последовательность $FTFX_1SX_2X_3MX_4$ (SEQ ID NO: 2194), где X_1 представляет собой S, G или E, X_2 представляет собой Y или F, X_3 представляет собой S, E, G или D, и X_4 представляет собой N, V, A или T; и/или
- (ii) CDR2 VH содержит аминокислотную последовательность $X_5ISX_6X_7X_8X_9X_{10}IYYADSVKG$ (SEQ ID NO: 2195), где X_5 представляет собой S, A, Y или G, X_6 представляет собой S или A, X_7 представляет собой S, A или G, X_8 представляет собой S, G или D, X_9 представляет собой S, T или G, и X_{10} представляет собой Y или T; и/или
- (iii) CDR3 VH содержит аминокислотную последовательность $ARDX_{11}GGYAGYYGMDV$ (SEQ ID NO: 2196), где X_{11} представляет собой L или V.
- [493] В некоторых аспектах выделенное антитело к FIXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VL, где
- (i) CDR1 VL содержит аминокислотную последовательность QASQDIANYLN (SEQ ID NO:2116); и/или
- (ii) CDR2 VL содержит аминокислотную последовательность DASNLET (SEQ ID NO:2142); и/или
- CDR3 VL содержит аминокислотную последовательность OOYANFPYT (SEO ID NO:2168).
- [494] В некоторых аспектах выделенное антитело к FIXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH, где
- (i) CDR1 VH содержит аминокислотную последовательность $FTFX_1SX_2X_3MX_4$ (SEQ ID NO: 2194), где X_1 представляет собой S, G или E, X_2 представляет собой Y или F, X_3 представляет собой S, E, G или D, и X_4 представляет собой N, V, A или T; и/или
- (ii) CDR2 VH содержит аминокислотную последовательность $X_5ISX_6X_7X_8X_9X_{10}IYYADSVKG$ (SEQ ID NO: 2195), где X_5 представляет собой S, A, Y или G, X_6 представляет собой S или A, X_7 представляет собой S, A или G, X_8 представляет собой S, G или D, X_9 представляет собой S, T или G, и X_{10} представляет собой Y или T; и/или
- (iii) CDR3 VH содержит аминокислотную последовательность $ARDX_{11}GGYAGYYGMDV$ (SEQ ID NO: 2196), где X_{11} представляет собой L

или V; и

дополнительно содержат CDR1, CDR2 и CDR3 VL, где CDR1 VL содержит аминокислотную последовательность QASQDIANYLN (SEQ ID NO:2116); и/или CDR2 VL содержит аминокислотную последовательность DASNLET (SEQ ID NO:2142); и/или CDR3 VL содержит аминокислотную последовательность QQYANFPYT (SEQ ID NO:2168).

- [495] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат последовательности CDR1, CDR2 и CDR3 VH, предусматривающие CDR1 VH, выбранную из SEQ ID NO: 2038-2047, CDR2 VH, выбранную из SEQ ID NO: 2064-2073, и CDR3 VH, выбранную из SEQ ID NO: 2090-2099, и/или последовательности CDR1, CDR2 и CDR3 VL, предусматривающие CDR1 VL, выбранную из SEQ ID NO: 2116-2125, CDR2 VL, выбранную из SEQ ID NO: 2142-2151, и CDR3 VL, выбранную из SEQ ID NO: 2168-2177.
- [496] В некоторых аспектах выделенное антитело к FIXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH, где
- (i) CDR1 VH содержит аминокислотную последовательность FTFGSYDMN (SEQ ID NO: 2048); и/или
- (ii) CDR2 VH содержит аминокислотную последовательность $SISX_1X_2X_3SYIX_4YAX_5SVKG$ (SEQ ID NO: 2197), где X_1 представляет собой S или D, X_2 представляет собой G или S, X_3 представляет собой E или A, X_4 представляет собой Y или A, и X_5 представляет собой E или D; и/или
- (iii) CDR3 VH содержит аминокислотную последовательность X_6 RDVX $_7$ GYAGX $_8$ YGMDV (SEQ ID NO: 2198), где X_6 представляет собой A или V, X_7 представляет собой G или S, и X_8 представляет собой Y или F.
- [497] В некоторых аспектах выделенное антитело к FIXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VL, где
- (i) CDR1 VL содержит аминокислотную последовательность $X_1AX_2X_3X_4IX_5X_6YLN$ (SEQ ID NO: 2199), где X_1 представляет собой Q, G, или E, X_2 представляет собой S или N, X_3 представляет собой Q или E, X_4 представляет собой D или Y, X_5 представляет собой A или S, X_6 представляет собой N или D; и/или
 - (ii) CDR2 VL содержит аминокислотную последовательность

- $DAX_7NLX_8X_9$ (SEQ ID NO: 2200), где X_7 представляет собой S или A, X_8 представляет собой E, H или Q, и X_9 представляет собой T или Y; и/или
- (iii) CDR3 VL содержит аминокислотную последовательность $X_{10}QYAX_{11}FPYT$ (SEQ ID NO: 2201), где X_{10} представляет собой Q или S, и X_{11} представляет собой N или R.
- [498] В некоторых аспектах выделенное антитело к FIXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH, где
- (i) CDR1 VH содержит аминокислотную последовательность FTFGSYDMN (SEQ ID NO: 2048); и/или
- (ii) CDR2 VH содержит аминокислотную последовательность $SISX_1X_2X_3SYIX_4YAX_5SVKG$ (SEQ ID NO: 2197), где X_1 представляет собой S или D, X_2 представляет собой G или S, X_3 представляет собой E или A, X_4 представляет собой Y или A, и X_5 представляет собой E или D; и/или
- (iii) CDR3 VH содержит аминокислотную последовательность X_6 RDVX $_7$ GYAGX $_8$ YGMDV (SEQ ID NO: 2198), где X_6 представляет собой A или V, X_7 представляет собой G или S, и X_8 представляет собой Y или F; и

дополнительно содержат CDR1, CDR2 и CDR3 VL, где

- (iv) CDR1 VL содержит аминокислотную последовательность $X_1AX_2X_3X_4IX_5X_6YLN$ (SEQ ID NO: 2199), где X_1 представляет собой Q, G, или E, X_2 представляет собой S или N, X_3 представляет собой Q или E, X_4 представляет собой D или Y, X_5 представляет собой A или S, X_6 представляет собой N или D; и/или
- (v) CDR2 VL содержит аминокислотную последовательность $DAX_7NLX_8X_9$ (SEQ ID NO: 2200), где X_7 представляет собой S или A, X_8 представляет собой E, H или Q, и X_9 представляет собой T или Y; и/или
- (vi) CDR3 VL содержит аминокислотную последовательность $X_{10}QYAX_{11}FPYT$ (SEQ ID NO: 2201), где X_{10} представляет собой Q или S, и X_{11} представляет собой N или R.
- [499] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат последовательности CDR1, CDR2 и CDR3 VH, предусматривающие CDR1 VH, выбранную из SEQ ID NO: 2048-2052, CDR2 VH, выбранную из SEQ ID NO: 2074-2078, и CDR3

VH, выбранную из SEQ ID NO: 2100-2104, и/или последовательности CDR1, CDR2 и CDR3 VL, предусматривающие CDR1 VL, выбранную из SEQ ID NO: 2126-2130, CDR2 VL, выбранную из SEQ ID NO: 2152-2156, и CDR3 VL, выбранную из SEQ ID NO: 2178-2182.

[500] В некоторых аспектах выделенное антитело к FIXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH, где

- (i) CDR1 VH содержит аминокислотную последовательность $YTFX_1X_2YX_3MH$ (SEQ ID NO: 2202), где X_1 представляет собой T или H, X_2 представляет собой S, G, или H, и X_3 представляет собой Y или P; и/или
- (ii) CDR2 VH содержит аминокислотную последовательность $X_4INPSX_5GX_6TX_7YAQKFQG$ (SEQ ID NO: 2203), где X_4 представляет собой I или S, X_5 представляет собой G или R, X_6 представляет собой S или R, и X_7 представляет собой S или E; и/или
- (iii) CDR3 VH содержит аминокислотную последовательность $ARDGPX_8X_9X_{10}DYYMDV$ (SEQ ID NO: 2204), где X_8 представляет собой R или Q, X_9 представляет собой V, D, L или E, и X_{10} представляет собой S или V.
- [501] В некоторых аспектах выделенное антитело к FIXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VL, где CDR1 VL содержит аминокислотную последовательность RASQSVSSYLA (SEQ ID NO:2116); и/или CDR2 VL содержит аминокислотную последовательность DASNRAT (SEQ ID NO:2116); и/или (iii) CDR3 VL содержит аминокислотную последовательность QQRDNWPFT (SEQ ID NO:2116).
- [502] В некоторых аспектах выделенное антитело к FIXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH, где
- (i) CDR1 VH содержит аминокислотную последовательность $YTFX_1X_2YX_3MH$ (SEQ ID NO: 2202), где X_1 представляет собой T или H, X_2 представляет собой S, G, или H, и X_3 представляет собой Y или P; и/или
- (ii) CDR2 VH содержит аминокислотную последовательность $X_4INPSX_5GX_6TX_7YAQKFQG$ (SEQ ID NO: 2203), где X_4 представляет собой I или S, X_5 представляет собой G или R, X_6 представляет собой S или R, и X_7 представляет собой S или E; и/или
 - (iii) CDR3 VH содержит аминокислотную последовательность

ARDGPX $_8$ X $_9$ X $_{10}$ DYYMDV (SEQ ID NO: 2204), где X $_8$ представляет собой R или Q, X $_9$ представляет собой V, D, L или E, и X $_{10}$ представляет собой S или V; и

дополнительно содержат CDR1, CDR2 и CDR3 VL, где CDR1 VL содержит аминокислотную последовательность RASQSVSSYLA (SEQ ID NO:2116); и/или CDR2 VL содержит аминокислотную последовательность DASNRAT (SEQ ID NO:2116); и/или (iii) CDR3 VL содержит аминокислотную последовательность QQRDNWPFT (SEQ ID NO:2116).

[503] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат последовательности CDR1, CDR2 и CDR3 VH, предусматривающие CDR1 VH, выбранную из SEQ ID NO: 2053-2057, CDR2 VH, выбранную из SEQ ID NO: 2079-2083, и CDR3 VH, выбранную из SEQ ID NO: 2105-2109, и/или последовательности CDR1, CDR2 и CDR3 VL, предусматривающие CDR1 VL, выбранную из SEQ ID NO: 2131-2135, CDR2 VL, выбранную из SEQ ID NO: 2157-2161, и CDR3 VL, выбранную из SEQ ID NO: 2183-2187.

[504] В некоторых аспектах выделенное антитело к FIXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH, где

- (i) CDR1 VH содержит аминокислотную последовательность $GSIX_1SX_2X_3YX_4WX_5$ (SEQ ID NO: 2205), где X_1 представляет собой S или A, X_2 представляет собой S, T, G или V, X_3 представляет собой S или A, X_4 представляет собой Y или A, и X_5 представляет собой G, V, N или S; и/или
- (ii) CDR2 VH содержит аминокислотную последовательность $X_6IX_7X_8X_9GX_{10}TX_{11}YNPSLKS$ (SEQ ID NO: 2206), где X_6 представляет собой S или Y, X_7 представляет собой S, Y, R, T или Q, X_8 представляет собой Y, G, P или A, X_9 представляет собой S или Q, X_{10} представляет собой S или K, и X_{11} представляет собой Y или Q; и/или
- (iii) CDR3 VH содержит аминокислотную последовательность $ARDKYQDYSX_{12}DI$, где X_{12} представляет собой F или V (SEQ ID NO: 2207).
- [505] В некоторых аспектах выделенное антитело к FIXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VL, где CDR1 VL содержит аминокислотную последовательность RASQGIDSWLA

(SEQ ID NO:2136); и/или CDR2 VL содержит аминокислотную последовательность AASSLQS (SEQ ID NO:2162); и/или CDR3 VL содержит аминокислотную последовательность QQANFLPFT (SEQ ID NO:2188).

[506] В некоторых аспектах выделенное антитело к FIXa или его антигенсвязывающая часть содержат CDR1, CDR2 и CDR3 VH, где

- (i) CDR1 VH содержит аминокислотную последовательность $GSIX_1SX_2X_3YX_4WX_5$ (SEQ ID NO: 2205), где X_1 представляет собой S или A, X_2 представляет собой S, T, G или V, X_3 представляет собой S или A, X_4 представляет собой Y или A, и X_5 представляет собой G, V, N или S; и/или
- (ii) CDR2 VH содержит аминокислотную последовательность $X_6IX_7X_8X_9GX_{10}TX_{11}YNPSLKS$ (SEQ ID NO: 2206), где X_6 представляет собой S или Y, X_7 представляет собой S, Y, R, T или Q, X_8 представляет собой Y, G, P или A, X_9 представляет собой S или Q, X_{10} представляет собой S или K, и X_{11} представляет собой Y или Q; и/или
- (iii) CDR3 VH содержит аминокислотную последовательность ARDKYQDYSX $_{12}$ DI (SEQ ID NO: 2207), где X_{12} представляет собой F или V; и

дополнительно содержат CDR1, CDR2 и CDR3 VL, где CDR1 VL содержит аминокислотную последовательность RASQGIDSWLA (SEQ ID NO:2136); и/или CDR2 VL содержит аминокислотную последовательность AASSLQS (SEQ ID NO:2162); и/или CDR3 VL содержит аминокислотную последовательность QQANFLPFT (SEQ ID NO:2188).

[507] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат последовательности CDR1, CDR2 и CDR3 VH, предусматривающие CDR1 VH, выбранную из SEQ ID NO: 2058-2063, CDR2 VH, выбранную из SEQ ID NO: 2084-2089, и CDR3 VH, выбранную из SEQ ID NO: 2110-2115, и/или последовательности CDR1, CDR2 и CDR3 VL, предусматривающие CDR1 VL, выбранную из SEQ ID NO: 2136-2141, CDR2 VL, выбранную из SEQ ID NO: 2162-2167, и CDR3 VL, выбранную из SEQ ID NO: 2162-2167, и CDR3 VL, выбранную из SEQ ID NO: 2188-2193.

[508] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, где VH содержит

аминокислотную последовательность, которая на по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 100% идентична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID Nos: 1935, 1939, 1943, 1947, 1951, 1955, 1959, 1963, 1967, 1971, 1975, 1979, 1983, 1987, 1991, 1995, 1999, 2003, 2007, 2011, 2015, 2019, 2023, 2027, 2031, и 2035.

- [509] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, где VL содержит аминокислотную последовательность, которая на по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 90% или приблизительно 100% идентична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NOs: 1937, 1941, 1945, 1949, 1953, 1957, 1961, 1965, 1969, 1973, 1977, 1981, 1985, 1989, 1993, 1997, 2001, 2005, 2009, 2013, 2017, 2021, 2025, 2029, 2033, и 2037.
- [510] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, где
- (i) VH содержит аминокислотную последовательность, которая на по меньшей мере приблизительно 80%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 90% или приблизительно 98%, по меньшей мере приблизительно 99% или приблизительно 100% идентична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NOs: 1935, 1939, 1943, 1947, 1951, 1955, 1959, 1963, 1967, 1971, 1975, 1979, 1983, 1987, 1991, 1995, 1999, 2003, 2007, 2011, 2015, 2019, 2023,

2027, 2031, и 2035; и/или

- (ii) VL содержит аминокислотную последовательность, которая мере приблизительно 80%, ПО меньшей приблизительно 85%, по меньшей мере приблизительно 90%, меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей приблизительно 98%, по меньшей мере приблизительно приблизительно 100% идентична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NOs: 1937, 1941, 1945, 1949, 1953, 1957, 1961, 1965, 1969, 1973, 1977, 1981, 1985, 1989, 1993, 1997, 2001, 2005, 2009, 2013, 2017, 2021, 2025, 2029, 2033, и 2037.
- [511] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, где VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 89, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей м
- [512] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, где
- (а1) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1935, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 1937;
- (a2) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по

меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1939, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1941;

- (а3) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1943, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 1945;
- (а4) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1947, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 1949;
- (а5) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1951, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 1953;
- (а6) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по

меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1955, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1957;

- (а7) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1959, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 1961;
- (а8) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1963, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 1965;
- (а9) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1967, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 1969;
- (a10) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по

меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1971, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1973;

- (а11) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1975, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 1977;
- (а12) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1979, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 1981;
- (а13) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1983, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 1985;
- (a14) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по

меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1987, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1989;

- (а15) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1991, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 1993;
- (а16) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1995, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 1997;
- (а17) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 1999, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 2001;
- (a18) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по

меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 2003, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 2005;

- (а19) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 2007, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 2009;
- (а20) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 2011, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 2013;
- (а21) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 2015, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 2017;
- (a22) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по

меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 2019, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 2021;

- (а23) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 2023, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 2025;
- (а24) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 2027, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 2029;
- (а25) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 2031, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97% или 100% идентичную SEQ ID NO: 2033; или
- (a26) VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по

меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 2035, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 2037.

- [513] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, где
- (a1) VH и VL содержат соответственно SEQ ID NO: 1935 и 1937 (BIIB-9-3595);
- (a2) VH и VL содержат соответственно SEQ ID NO: 1939 и 1941 (BIIB-9-3601);
- (а3) VH и VL содержат соответственно SEQ ID NO: 1943 и 1945 (BIIB-9-3604);
- (a4) VH и VL содержат соответственно SEQ ID NO: 1947 и 1949 (BIIB-9-3617);
- (a5) VH и VL содержат соответственно SEQ ID NO: 1951 и 1953 (BIIB-9-3618);
- (a6) VH и VL содержат соответственно SEQ ID NO: 1955 и 1957 (BIIB-9-3621);
- (а7) VH и VL содержат соответственно SEQ ID NO: 1959 и 1961 (BIIB-9-3647);
- (а8) VH и VL содержат соответственно SEQ ID NO: 1963 и 1965 (ВІІВ-9-3649);
- (a9) VH и VL содержат соответственно SEQ ID NO: 1967 и 1969 (BIIB-9-3650);
- (a10) VH и VL содержат соответственно SEQ ID NO: 1971 и 1973 (BIIB-9-3654);
- (a11) VH и VL содержат соответственно SEQ ID NO: 1975 и 1977 (BIIB-9-3753);
- (a12) VH и VL содержат соответственно SEQ ID NO: 1979 и 1981 (BIIB-9-3754);
- (a13) VH и VL содержат соответственно SEQ ID NO: 1983 и 1985 (BIIB-9-3756);
 - (a14) VH и VL содержат соответственно SEQ ID NO: 1987 и

- 1989 (BIIB-9-3764);
- (a15) VH и VL содержат соответственно SEQ ID NO: 1991 и
- 1993 (BIIB-9-3766);
- (a16) VH и VL содержат соответственно SEQ ID NO: 1995 и
- 1997 (BIIB-9-3707);
- (a17) VH и VL содержат соответственно SEQ ID NO: 1999 и
- 2001 (BIIB-9-3709);
- (a18) VH и VL содержат соответственно SEQ ID NO: 2003 и
- 2005 (BIIB-9-3720);
- (a19) VH и VL содержат соответственно SEQ ID NO: 2007 и
- 2009 (BIIB-9-3727);
- (a20) VH и VL содержат соответственно SEQ ID NO: 2011 и
- 2013 (BIIB-9-3745);
- (a21) VH и VL содержат соответственно SEQ ID NO: 2015 и
- 2017 (BIIB-9-3780);
- (a22) VH и VL содержат соответственно SEQ ID NO: 2019 и
- 2021 (BIIB-9-3675);
- (a23) VH и VL содержат соответственно SEQ ID NO: 2023 и
- 2025 (BIIB-9-3681);
- (a24) VH и VL содержат соответственно SEQ ID NO: 2027 и
- 2029 (BIIB-9-3684);
- (a25) VH и VL содержат соответственно SEQ ID NO: 2031 и
- 2033 (ВІІВ-9-3698); или
- (a26) VH и VL содержат соответственно SEQ ID NO: 2035 и
- 2037 (BIIB-9-3704).
- [514] В некоторых аспектах связывание антитела к FIXa, раскрытого в данном документе (например, BIIB-9-484), с FIXa является кальций-зависимым. В других аспектах связывание антитела к FIXa, раскрытого в данном документе, с FIXa является кальций-независимым. В еще других аспектах связывание антитела к FIXa (например, BIIB-9-1336) с FIXa является частично кальций-зависимым.
- [515] В некоторых аспектах антитело к FIXa, раскрытое в данном документе, например BIIB-9-1336, может увеличивать амидолитическую активность FIXa. В некоторых аспектах антитело к FIXa, раскрытое в данном документе (например, BIIB-9-1336 или

биспецифическое антитело, содержащее BIIB-9-1336) увеличивать скорость расщепления субстрата (например, ADG299) с помощью FIXa. В некоторых аспектах связывание антитела к FIXa, раскрытого в данном документе, например BIIB-9-1336, с FIXa может повышать амидолитическую активность FIXa в по меньшей мере 2 раза, в по меньшей мере 3 раза или в по меньшей мере 4 раза. В некоторых аспектах связывание антитела к FIXa, раскрытого в данном документе, например BIIB-9-1336, с FIXa может повышать амидолитическую активность FIXa на по меньшей мере 10%, меньшей мере 20%, по меньшей мере 30%, по меньшей мере 40%, по меньшей мере 50%, по меньшей мере 60%, по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 100%, по меньшей мере 120%, по меньшей мере 140%, по меньшей мере 160%, по меньшей мере 180%, по меньшей мере 200%, по меньшей мере 220%, по меньшей мере 240%, по меньшей мере 260%, по меньшей мере 280%, по меньшей мере 300%, по меньшей мере 320%, по меньшей мере 340%, по меньшей мере 360%, по меньшей мере 380%, по меньшей мере 400%, по меньшей мере 420%, по меньшей мере 440%, по меньшей мере 460%, по меньшей мере 480% или по меньшей мере 500%.

[516] В настоящем изобретении предусмотрен способ повышения амидолитической активности FIXa, включающий введение раскрытого в данном документе антитела к FIXa, например, ВІІВ-9-1336 или биспецифического антитела, содержащего ВІІВ-9-1336, нуждающемуся в этом субъекту.

[517] В некоторых аспектах антитело к FIXa, раскрытое в данном документе, может увеличивать скорость ингибирования FIXa антитромбином III (ATIII). В некоторых аспектах антитело к FIXa, раскрытое в данном документе (например, ВIIВ-9-1336 или биспецифическое антитело, содержащее ВIIВ-9-1336) может увеличивать скорость ингибирования FIXa посредством ATIII. В некоторых аспектах скорость ингибирования FIXa посредством ATIII увеличивается в по меньшей мере 2 раза, в по меньшей мере 3 раза или в по меньшей мере 4 раза. В некоторых аспектах связывание антитела к FIXa, раскрытого в данном документе, например ВIIВ-9-1336, с FIXa может повышать скорость ингибирования FIXa

посредством ATIII на по меньшей мере 10%, по меньшей мере 20%, по меньшей мере 30%, по меньшей мере 40%, по меньшей мере 30%, по меньшей мере 30%, по меньшей мере 40%, по меньшей мере 50%, по меньшей мере 60%, по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 100%, по меньшей мере 120%, по меньшей мере 140%, по меньшей мере 160%, по меньшей мере 180%, по меньшей мере 200%, по меньшей мере 240%, по меньшей мере 340%, по меньшей мере 300%, по меньшей мере 340%, по меньшей мере 360%, по меньшей мере 340%, по меньшей мере 360%, по меньшей мере 340%, по меньшей мере 360%, по меньшей мере 400%.

[518] В настоящем изобретении предусмотрен способ повышения скорости ингибирования FIXa посредством ATIII, включающий введение раскрытого в данном документе антитела к FIXa, например, BIIB-9-1336 или биспецифического антитела, содержащего BIIB-9-1336, нуждающемуся в этом субъекту.

Молекулы, связывающиеся с FIXz

- [519] Настоящее изобретение предусматривает антитело (например, выделенное антитело) или его антигенсвязывающую часть, которые специфически связываются с зимогеном FIX (FIXz), где антитело или его антигенсвязывающая часть предпочтительно связываются с FIXz в присутствии FIXa и FIXz ("антитело к FIXz или его антигенсвязывающая часть").
- [520] В некоторых аспектах антитело к FIXz или его антигенсвязывающая часть связываются с FIXz с более высокой аффинностью связывания, чем аффинность связывания антитела к FIXz или его антигенсвязывающей части с FIXa (например, свободным FIXa или FIXa-SM).
- [521] Настоящее изобретение также предусматривает выделенное антитело к FIXz или его антигенсвязывающую часть, которые связываются с FIXz с более высокой аффинностью связывания, чем аффинность связывания антитела к FIXz или его антигенсвязывающей части с FIXa. В некоторых аспектах антитело к FIXz или его антигенсвязывающая часть связываются с FIXz с K_D , составляющей приблизительно 100 нМ или меньше, приблизительно 95 нМ или меньше, приблизительно

- 85 меньше, приблизительно 80 Мн ИЛИ ΗМ ИЛИ меньше, приблизительно 75 нМ или меньше, приблизительно 70 нМ или приблизительно 65 нМ или меньше, приблизительно 60 нМ или меньше, приблизительно 55 нМ или меньше, приблизительно 50 нМ или меньше, приблизительно 45 нМ или меньше, приблизительно 40 ΗМ меньше, приблизительно 35 Мн или ИЛИ приблизительно 30 нМ или меньше, приблизительно 25 нМ меньше, приблизительно 20 нМ или меньше, приблизительно 15 нМ или меньше, приблизительно 10 нМ или меньше, приблизительно 5 нМ или меньше или приблизительно 1 нМ или меньше, как определено с помощью анализа интерферометрии биослоя (BLI). других осуществления FIXz вариантах антитело К ИЛИ антигенсвязывающая часть связываются с FIXz с K_D , составляющей приблизительно 10 нМ или меньше, приблизительно 9 нМ или меньше, приблизительно 8 нМ или меньше, приблизительно 7 нМ или меньше, приблизительно 6 нМ или меньше, приблизительно 5 нМ или меньше, приблизительно 4 нМ или меньше, приблизительно 3 нМ или меньше, приблизительно 2 нМ или меньше, приблизительно 1 нМ или меньше, приблизительно 0,5 нМ или меньше, приблизительно 0,2 нМ или меньше, приблизительно 0,1 нМ или меньше или приблизительно 0,05 нМ или меньше.
- [522] В некоторых аспектах антитело к FIXz или его антигенсвязывающая часть перекрестно конкурируют с эталонным антителом, выбранным из группы, состоящей из антител на фиг. 3D. В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител на фиг. 3C. В некоторых аспектах эталонным антителом является ВІІВ-9-578.
- [523] В дополнительных аспектах антитело к FIXz или его антигенсвязывающая часть могут также относиться к классу IV: антителам к FIXz или их антигенсвязывающей части, которые предпочтительнее связываются с FIXz, чем со свободным FIXa или FIXa-SM (антитела фиг. 3D).
- [524] В некоторых аспектах антитело к FIXz или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где CDR3 VH содержит

последовательность CDR3 VH, идентичную последовательности CDR3 VH, выбранной из группы, состоящей из последовательностей CDR3 VH, раскрытых на ϕ ur. 3D, или

последовательность CDR3 VH, идентичную последовательности CDR3 VH, выбранной из группы, состоящей из последовательностей CDR3 VH, раскрытых на ϕ ur. 3D, за исключением 1, 2 или 3 аминокислотных замен.

[525] В некоторых аспектах аминокислотные замены представляют собой консервативные аминокислотные замены. В других аспектах аминокислотные замены представляют собой обратную мутацию.

[526] В некоторых аспектах антитело к FIXz или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR3 VH предусматривает аминокислотную последовательность, выбранную из ARDKYQDYSFDI (SEQ ID NO: 1355; ВІІВ-9-578). В некоторых аспектах последовательности CDR3 VH, раскрытые в данном документе, могут содержать 1, 2 или 3 аминокислотных замены.

[527] В некоторых аспектах антитело к FIXz или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где CDR3 VH содержит SEQ ID NO: 1355 (ВIIB-9-578) и последовательность CDR1 VH предусматривает

последовательность CDR1 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VH, раскрытых на ϕ ur. 3D, или

последовательность CDR1 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VH, раскрытых на ϕ ur. 3D, за исключением 1, 2 или 3 аминокислотных замен.

[528] В некоторых аспектах антитело к FIXz или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где CDR3 VH содержит SEQ ID NO: 1355 (ВIIВ-9-578) и последовательность CDR2 VH предусматривает

последовательность CDR2 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VH, раскрытых на ϕ ur. 3D, или

последовательность CDR2 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VH, раскрытых на ϕ ur. 3D, за исключением 1, 2 или 3 аминокислотных замен.

[529] В некоторых аспектах антитело к FIXz или его антигенсвязывающая часть дополнительно содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR1 VL предусматривает

последовательность CDR1 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VL, раскрытых на ϕ ur. 3D, или

последовательность CDR1 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VL, раскрытых на ϕ ur. 3D, за исключением 1, 2 или 3 аминокислотных замен.

[530] В некоторых аспектах антитело к FIXz или его антигенсвязывающая часть дополнительно содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR2 VL предусматривает

последовательность CDR2 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VL, раскрытых на ϕ ur. 3D, или

последовательность CDR2 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VL, раскрытых на ϕ ur. 3D, за исключением 1, 2 или 3 аминокислотных замен.

[531] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть дополнительно содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR3 VL предусматривает

последовательность CDR3 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR3 VL, раскрытых на ϕ ur. 3D, или

последовательность CDR3 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR3 VL, раскрытых на ϕ ur. 3D, за исключением 1, 2 или 3 аминокислотных замен.

[532] Настоящее изобретение также предусматривает выделенное антитело или его антигенсвязывающую часть, которые

предпочтительно связываются с FIXz, содержащим CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL, где CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL предусматривают CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL антитела к FIXz, выбранным из группы, состоящей из антител, представленных на фиг. 3D: ВІІВ-9-397, ВІІВ-9-578, ВІІВ-9-631 и ВІІВ-9-612.

[533] В некоторых аспектах антитело к FIXz или его антигенсвязывающая часть содержат последовательности CDR1 VH, CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 1346-1349, SEQ ID NO: 1350-1353 и SEQ ID NO: 1354-1357, соответственно (CDR VH для антител класса IV), и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 1358-1361, SEQ ID NO: 1362-1365 и SEQ ID NO: 1366-1369, соответственно (CDR VL для антител класса IV).

[534] В некоторых аспектах антитело к FIXz или его антигенсвязывающая часть содержат последовательности CDR1 VH, CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 1347, SEQ ID NO: 1351 и SEQ ID NO: 1355, соответственно (CDR VH для антител BIIB-9-578), и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 1359, SEQ ID NO: 1363 и SEQ ID NO: 1367, соответственно (CDR VL для антител BIIB-9-578);

В некоторых аспектах антитело к FIXz или антигенсвязывающая часть содержат VH, где VHаминокислотную последовательность, которая на по меньшей мере приблизительно 70%, ПО меньшей мере приблизительно меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 99% или приблизительно 100% последовательности, аминокислотной выбранной идентична группы, состоящей из SEQ ID NO: 183, 185, 187 и 189.

[536] В некоторых аспектах антитело к FIXz или его антигенсвязывающая часть содержат VL, где VL содержит аминокислотную последовательность, которая на по меньшей мере

приблизительно 70%, по меньшей мере приблизительно 75%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 99% или приблизительно 100% идентична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NO: 369, 371, 373 и 375.

[537] В некоторых аспектах антитело к FIXz или его антигенсвязывающая часть содержат VH и VL, где

VH содержит аминокислотную последовательность, которая на 70%, меньшей мере приблизительно ПО меньшей ПО приблизительно 75%, по меньшей мере приблизительно 80%, меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 99% приблизительно 100% идентична аминокислотной ИЛИ последовательности, выбранной из группы, состоящей из SEQ ID NO: 183, 185, 187 и 189; и

VL содержит аминокислотную последовательность, которая на меньшей мере приблизительно 70%, ПО меньшей приблизительно 75%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, меньшей мере приблизительно 98%, по меньшей мере приблизительно 99% приблизительно 100% идентична ИЛИ аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NO: 369, 371, 373 и 375.

[538] В определенных вариантах осуществления антитело к FIXz содержит вариабельную область тяжелой цепи из конкретного гена тяжелой цепи иммуноглобулина зародышевого типа, и/или вариабельную область легкой цепи из конкретного ген легкой цепи иммуноглобулина зародышевого типа. В некоторых вариантах осуществления последовательность VH антитела к FIXz может быть

получена из любой из последовательностей V, D или J зародышевого типа, и/или последовательность VL антитела κ FIXz может быть получена из любой из каппа или лямбда последовательности зародышевого типа.

[539] Как показано в данном документе, были получены человеческие антитела, специфические в отношении FIXz, которые содержат вариабельную область тяжелой цепи, которая является продуктом человеческого гена зародышевого типа или получена от Соответственно, в данном него. документе предусмотрены выделенные антитела к FIXz или их антигенсвязывающие части, содержащие вариабельную область тяжелой цепи, которая является продуктом или получена из гена VH человека зародышевого типа, выбранного из группы, состоящей из: VH1-18, VH1-46, VH3-21, VH3-30, VH4-31, VH4-39, VH4-0B, VH5-51 или любой их комбинации. В конкретных вариантах осуществления ген VH зародышевого типа выбран из группы, состоящей из VH1-18,0, VH1-18,1, VH1-18,8, VH1-46,0, VH1-46,4, VH1-46,5, VH1-46,6, VH1-46,7, VH1-46,8, VH1-46,9, VH3-21,0, VH3-23,0, VH3-23,2, VH3-23,6, VH3-30,0, VH4-31,5, VH4-39,0, VH4-39,5. VH4-0B.4, VH5-51,1, и любой $_{\rm NX}$ комбинации.

[540] В других вариантах осуществления в данном документе выделенные антитела К FIXa предусмотрены или ИX антигенсвязывающие части, содержащие вариабельную тяжелой цепи, которая является продуктом или получена из гена VL человека зародышевого типа, выбранного из группы, состоящей из: VK1-05, VK1-12, VK1-39, VK2-28, VK3-11, VK3-15, VK3-20, VK4-01, и любой их комбинации. В конкретных вариантах осуществления ген VL зародышевого типа выбран из группы, состоящей из VK1-05,6, VK1-05,12, VK1-12,0, VK1-12,4, VK1-12,7, VK1-12,10, VK1-12,15, VK1-39,0, VK1-39,3, VK1-39,15, VK2-28,0, VK2-28,1, VK2-28,5, VK3-11,0, VK3-11,2, VK3-11,6, VK3-11,14, VK3-15,0, VK3-15,8, VK3-15,10, VK3-20,0, VK3-20,1, VK3-20,4, VK3-20,5, VK4-01,0, VK4-01,4, VK4-01,20, и любой их комбинации.

[541] В некоторых аспектах антитело к FIXz или его антигенсвязывающая часть содержат VH и VL, где VH содержит аминокислотную последовательность, на по меньшей мере 70%, по

меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 185, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 371 (VH и VL антитела ВIIВ-9-578, соответственно).

Молекулы, связывающиеся с FXz

[542] Настоящее изобретение предусматривает молекулы, связывающиеся с FX, например, антитела к FX или молекулы, содержащие их FX-связывающие фрагменты, которые специфически связывают FX. В некоторых аспектах настоящего изобретения раскрытые FX-связывающие молекулы, например, антитела к FX или молекулы, содержащие их FX-связывающие фрагменты, предпочтительно связывают зимоген FX (FXz) (называемые в настоящем описании как "антитело к FXz").

[543] Фактор X представляет собой витамин К-зависимый гликопротеин с молекулярной массой 58,5 кДа, который выделяется из клеток печени в плазму в виде зимогена. Первоначально фактор X вырабатывается в виде препропептида с сигнальным пептидом, состоящим в общей сложности из 488 аминокислот. Аминокислотная последовательность зимогена FX (FXz) представлена ниже (сигнальная последовательность (1-23) подчеркнута, а пропептид (24-40) выделен жирным шрифтом):

MGRPLHLVLLSASLAGLLLLGESLFIRREQANNILARVTRANSFLEEMKKGHLERECME
ETCSYEEAREVFEDSDKTNEFWNKYKDGDQCETSPCQNQGKCKDGLGEYTCTCLEGFEGKNCEL
FTRKLCSLDNGDCDQFCHEEQNSVVCSCARGYTLADNGKACIPTGPYPCGKQTLERRKRSVAQA
TSSSGEAPDSITWKPYDAADLDPTENPFDLLDFNQTQPERGDNNLTRIVGGQECKDGECPWQAL
LINEENEGFCGGTILSEFYILTAAHCLYQAKRFKVRVGDRNTEQEEGGEAVHEVEVVIKHNRFT
KETYDFDIAVLRLKTPITFRMNVAPACLPERDWAESTLMTQKTGIVSGFGRTHEKGRQSTRLKM
LEVPYVDRNSCKLSSSFIITQNMFCAGYDTKQEDACQGDSGGPHVTRFKDTYFVTGIVSWGEGC
ARKGKYGIYTKVTAFLKWIDRSMKTRGLPKAKSHAPEVITSSPLK (SEQ ID NO:765)

[544] Сигнальный пептид отщепляется сигнальной пептидазой во время экспорта в эндоплазматический ретикулум. Последовательность пропептида отщепляется после гамма-

карбоксилирования в первых 11 остатках глутаминовой кислоты на N-конце зрелой N-концевой цепи. Дальнейшая стадия обработки происходит путем расщепления между Arg182 и Ser183. Такой этап обработки также приводит одновременно к делеции трипептида Arg180-Lys181-Arg182. Полученный в результате секретируемый фактор X зимоген состоит из N-концевой легкой цепи из 139 аминокислот (M, 16200) (т. е. аминокислоты 41-179 из SEQ ID NO: 765) и C-концевой тяжелой цепи из 306 аминокислот (M, 42000) (т. е. аминокислоты 183-488 из SEQ ID NO: 765), которые ковалентно связаны через дисульфидный мостик между Cys172 и Cys342. Дальнейшие этапы посттрансляционной обработки включают β - гидроксилирование Asp103, а также гликозилирование N- и O-типа.

[545] Зимоген FX может быть расщеплен в его тяжелой цепи между Arg234 и Ile235 (соответствует SEQ ID NO: 765) посредством фактора IXa и, следовательно, становиться активированным после высвобождения активационного пептида.

[546] Термин "зимоген FX" может использоваться в данном документе взаимозаменяемо с "FXz", "предшественник "неактивированный FX", "отличный от активированного FX" или то йингилто" активированного предшественник FX". В одном варианте осуществления зимоген FX (FIXz) включает в неактивированный предшественник FX, В котором активационный пептид (например, активационный пептид с 52 аминокислотами, которые представлены в виде аминокислот 183-234 из SEQ ID NO: (нумерация на основании зрелых белков) не отщеплен предшественника. FIX зимоген может включать любые встречающиеся природе или сконструированные варианты. Неограничивающий пример зимогена FX показан в SEQ ID NO: 765. В другом варианте осуществления зимоген FX представляет собой неактивируемый FX (FXn), который сконструирован так, чтобы быть неактивным в присутствии фактора FIXa. Примером неактивируемого FX может быть FX, несущий аргинин в мутации аланина в положении 194 (нумерация на основании зрелых белков), с предотвращением его активации и поддержанием фактора X в форме зимогена (FXz). Зимоген FX может необязательно содержать сигнальный пептид и/или пропептид.

[547] Термин "активированный FX" может использоваться в

данном документе взаимозаменяемо с "FXa". В одном варианте осуществления активированный FX представляет собой встречающийся в природе FXa дикого типа (также называемый в данном документе "FXa дикого типа"). В другом варианте осуществления FXa содержит не встречающийся в природе FXa, например конформационный вариант FXa. Например, FXa может представлять собой FXa-SM, который сконструирован так, чтобы иметь конформацию, аналогичную FXa, связанного с субстратом. В конкретном варианте осуществления FXa-SM представляет собой активированный FX с имитатором субстрата, ковалентно связанным с активным сайтом.

[548] В настоящем изобретении предусмотрены антитело (например, выделенное антитело) или его антигенсвязывающая часть, которые специфически связываются с FXz, где антитело к FX или его антигенсвязывающая часть предпочтительно связываются с FXz в присутствии FXz и FXa. В одном варианте осуществления FXa представляет собой FXa, ковалентно присоединенный к имитатору субстрата (т. е. Glu-Gly-Arg-xлорметилкетону (EGR-CMK)).

[549] В некоторых аспектах антитело К FXz его антигенсвязывающая часть связываются с FXz с более высокой аффинностью связывания, чем аффинность связывания антитела или его антигенсвязывающей части с FXa. Настоящее изобретение также выделенное антитело K FX предусматривает или его антигенсвязывающую часть, которые связываются с FXz с более аффинностью связывания, чем аффинность связывания антитела или его антигенсвязывающей части с FXa.

[550] B некоторых аспектах антитело к FXz антигенсвязывающая часть связываются с FXz с K_D , составляющей приблизительно 100 нМ или меньше, приблизительно 95 нМ или меньше, приблизительно 90 нМ или меньше, приблизительно 85 нМ или меньше, приблизительно 80 нМ или меньше, приблизительно 75 нМ или меньше, приблизительно 70 нМ или меньше, приблизительно 65 60 Мн или меньше, приблизительно Мн ИЛИ приблизительно 55 нМ или меньше, приблизительно 50 нМ или меньше, приблизительно 45 нМ или меньше, приблизительно 40 нМ или меньше, приблизительно 35 нМ или меньше, приблизительно 30 нМ или меньше, приблизительно 25 нМ или меньше, приблизительно

20 нМ или меньше, приблизительно 15 нМ или меньше, приблизительно 5 нМ или меньше или приблизительно 1 нМ или меньше, как определено с помощью анализа BLI.

[551] В других вариантах осуществления антитело к FXz или его антигенсвязывающая часть связываются с FXz с K_D , составляющей приблизительно 10 нМ или меньше, приблизительно 9 нМ или меньше, приблизительно 8 нМ или меньше, приблизительно 7 нМ или меньше, приблизительно 6 нМ или меньше, приблизительно 5 нМ или меньше, приблизительно 4 нМ или меньше, приблизительно 3 нМ или меньше, приблизительно 2 нМ или меньше, приблизительно 1 нМ или меньше, приблизительно 0,5 нМ или меньше, приблизительно 0,2 нМ или меньше, приблизительно 0,1 нМ или меньше или приблизительно 0,05 нМ или меньше. В других вариантах осуществления антитело к FXz антигенсвязывающая часть связываются С FXzсоставляющей от 1 нМ до 100 нМ, от 1 нМ до 90 нМ, от 1 нМ до 80 нМ, от 1 нМ до 70 нМ, 1 нМ до 60 нМ, от 1 нМ до 50 нМ, от 1 нМ до 40 нМ, от 1 нМ до 30 нМ, от 1 нМ до 20 нМ, от 1 нМ до 10 нМ, от 0,1 нМ до 100 нМ, от 0,1 нМ до 90 нМ, от 0,1 нМ до 80 нМ, от 0,1 нМ до 70 нМ, от 0,1 нМ до 60 нМ, от 0,1 нМ до 50 нМ, от 0,1 нМ до 40 нМ, от 0,1 нМ до 30 нМ, от 0,1 нМ до 20 нМ, от 0,1 нМ до 10 нМ или от 0,1 нМ до 1 нМ.

[552] В некоторых аспектах антитело K FXz или его антигенсвязывающая часть перекрестно конкурируют С эталонным выбранным ИЗ группы, состоящей ИЗ представленных на фиг. 12А и фиг. 12В. В некоторых аспектах антитело к FXz или его антигенсвязывающая часть связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. 12А и фиг. 12В. В некоторых аспектах антитело к FXz или его антигенсвязывающая часть связываются с тем же эпитопом, что и эталонное антитело, группы, состоящей из BIIB-12-915, BIIB-12-917, выбранное из BIIB-12-932 и любой их комбинации.

[553] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть связываются с антигенсвязывающим участком (например, эпитопом), который фактически совпадает с

антигенсвязывающим участком любого антитела к FXz или его антигенсвязывающей части, раскрытых в данном документе. В некоторых аспектах антитело к FXz или его антигенсвязывающая часть связываются с антигенсвязывающим участком (например, эпитопом), который перекрывается с антигенсвязывающим участком (например, эпитопом) антитела к FXz или его антигенсвязывающей части, раскрытых в данном документе.

[554] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR3 VH предусматривает

последовательность CDR3 VH, идентичную последовательности CDR3 VH, выбранной из группы, состоящей из последовательностей CDR3 VH, раскрытых на фиг. 12A или фиг. 12B; или

последовательность CDR3 VH, идентичную последовательности CDR3 VH, выбранной из группы, состоящей из последовательностей CDR3 VH, раскрытых на фиг. 12A или фиг. 12B, за исключением 1, 2 или 3 аминокислотных замен.

[555] В некоторых аспектах аминокислотные замены представляют собой консервативные аминокислотные замены и обратные мутации.

[556] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR3 VH предусматривает аминокислотную последовательность $ARX_1X_2X_3RX_4X_5X_6X_7FDX_8$ (SEQ ID NO: 766), где X_1 представляет собой G или L, X_2 представляет собой R или G, X_3 представляет собой F или Y, X_4 представляет собой P или G, X_5 представляет собой R или A, X_6 представляет собой G или S, X_7 представляет собой R или A, и X_8 представляет собой Y или I.

[557] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR3 VH состоит или состоит по сути из аминокислотной последовательности $ARX_1X_2X_3RX_4X_5X_6X_7FDX_8$ (SEQ ID NO: 766), где X_1 представляет собой G или L, X_2 представляет собой R или G, X_3 представляет собой F или Y, X_4 представляет собой P или G, X_5 представляет собой R или A, X_6 представляет собой G или S, X_7 представляет собой R или A, и X_8 представляет собой Y или I.

[558] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR3 VH предусматривает аминокислотную последовательность, выбранную из ARGRFRPRGRFDY (SEQ ID NO: 1575, ВІІВ-12-917), ARLGYRGASAFDI (SEQ ID NO: 1589, ВІІВ-12-932) или ARVGGGYANP (SEQ ID NO: 1573, ВІІВ-12-915).

[559] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR1 VH предусматривает

последовательность CDR1 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VH, раскрытых на ϕ ur. 12A или ϕ ur. 12B, или

последовательность CDR1 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VH, раскрытых на фиг. 12A или фиг. 12B, за исключением 1, 2 или 3 аминокислотных замен.

[560] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR2 VH предусматривает

последовательность CDR2 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VH, раскрытых на ϕ ur. 12A или ϕ ur. 12B, или

последовательность CDR2 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VH, раскрытых на фиг. 12A или фиг. 12B, за исключением 1, 2 или 3 аминокислотных замен.

[561] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR1 VL предусматривает

последовательность CDR1 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VL, раскрытых на ϕ ur. 12A или ϕ ur. 12B, или

последовательность CDR1 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VL, раскрытых на фиг. 12A или фиг. 12B, за исключением 1, 2 или 3 аминокислотных замен.

[562] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR2 VL предусматривает

последовательность CDR2 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VL, раскрытых на ϕ ur. 12A или ϕ ur. 12B, или

последовательность CDR2 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VL, раскрытых на фиг. 12A или фиг. 12B, за исключением 1, 2 или 3 аминокислотных замен.

[563] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR3 VL предусматривает

последовательность CDR3 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR3 VL, раскрытых на ϕ ur. 12A или ϕ ur. 12B, или

последовательность CDR3 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR3 VL, раскрытых на фиг. 12A или фиг. 12B, за исключением 1, 2 или 3 аминокислотных замен.

[564] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR3 VL состоит или состоит по сути из

последовательности CDR3 VL, идентичной последовательности, выбранной из группы, состоящей из последовательностей CDR3 VL, раскрытых на фиг. 12A или фиг. 12B, или

последовательности CDR3 VL, идентичной последовательности, выбранной из группы, состоящей из последовательностей CDR3 VL, раскрытых на фиг. 12A или фиг. 12B, за исключением 1, 2 или 3 аминокислотных замен.

[565] Настоящее изобретение также предусматривает выделенное антитело или его антигенсвязывающую часть, которые специфически связываются с FXz, содержащим CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL, где CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL предусматривают CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL

антитела к FXz, выбранного из группы, состоящей из BIIB-12-891, BIIB-12-892, BIIB-12-893, BIIB-12-895, BIIB-12-896, BIIB-12-897, BIIB-12-898, BIIB-12-899, BIIB-12-900, BIIB-12-901, BIIB-12-902, BIIB-12-903, BIIB-12-904, BIIB-12-905, BIIB-12-906, BIIB-12-907, BIIB-12-908, BIIB-12-909, BIIB-12-910, BIIB-12-911, BIIB-12-912, BIIB-12-913, BIIB-12-914, BIIB-12-915, BIIB-12-916, BIIB-12-917, BIIB-12-918, BIIB-12-919, BIIB-12-920, BIIB-12-921, BIIB-12-922, BIIB-12-923, BIIB-12-924, BIIB-12-926, BIIB-12-927, BIIB-12-928, BIIB-12-929, BIIB-12-930, BIIB-12-931, BIIB-12-932, BIIB-12-933, BIIB-12-934, BIIB-12-935, BIIB-12-936, BIIB-12-937, BIIB-12-1288, BIIB-12-1289, BIIB-12-1290, BIIB-12-1291, BIIB-12-1292, BIIB-12-1293, BIIB-12-1294, BIIB-12-1295, BIIB-12-1296, BIIB-12-1297, BIIB-12-1298, BIIB-12-1299, BIIB-12-1300, BIIB-12-1301, BIIB-12-1302, BIIB-12-1303, BIIB-12-1304, BIIB-12-1305, BIIB-12-1306, BIIB-12-1307, BIIB-12-1308, BIIB-12-1309, BIIB-12-1310, BIIB-12-1311, BIIB-12-1312, BIIB-12-1313, BIIB-12-1314, BIIB-12-1315, BIIB-12-1316, BIIB-12-1317, BIIB-12-1318, BIIB-12-1319, BIIB-12-1322, BIIB-12-1323, BIIB-12-1324, BIIB-12-1325, BIIB-12-1326, BIIB-12-1327, BIIB-12-1328, BIIB-12-1329, BIIB-12-1330, ВІІВ-12-1331, ВІІВ-12-1332,ВІІВ-12-1333, или ВІІВ-12-1334.

[566] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат последовательности CDR1 VH, CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 1393, SEQ ID NO: 1483 и SEQ ID NO: 1573, соответственно (CDR VH антитела BIIB-12-915), и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 1663, SEQ ID NO: 1753 и SEQ ID NO: 1843, соответственно (CDR VL антитела BIIB-12-915).

[567] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат последовательности CDR1 VH, CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 1395, SEQ ID NO: 1485 и SEQ ID NO: 1575, соответственно (CDR VH антитела BIIB-12-917), и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 1665, SEQ ID NO: 1755 и SEQ ID NO: 1845, соответственно (CDR VL антитела BIIB-12-917).

[568] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат последовательности CDR1 VH,

CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 1409, SEQ ID NO: 1499 и SEQ ID NO: 1589, соответственно (CDR VH антитела BIIB-12-932), и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 1679, SEQ ID NO: 1769 и SEQ ID NO: 1859, соответственно (CDR VL антитела BIIB-12-932).

[569] В некоторых аспектах антитело к FXz ИЛИ антигенсвязывающая часть содержат VH и VL, где VH содержит аминокислотную последовательность, которая на по меньшей мере приблизительно 70%, по меньшей мере приблизительно 75%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 99% или приблизительно 100% идентична аминокислотной последовательности, выбранной группы, состоящей из SEQ ID NOs: 377, 379, 381, 383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405, 407, 409, 411, 413, 415, 417, 419, 421, 423, 425, 427, 429, 431, 433, 435, 437, 439, 441, 443, 445, 447, 449, 451, 453, 455, 457, 459, 461, 463, 465, 467, 469, 471, 473, 475, 477, 479, 481, 483, 485, 487, 489, 491, 493, 495, 497, 499, 501, 503, 505, 507, 509, 511, 513, 515, 517, 519, 521, 523, 525, 527, 529, 531, 533, 535, 537, 539, 541, 543, 545, 547, 549, 551, 553, и 555.

[570] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат VH и VL, где VL содержит аминокислотную последовательность, которая на по меньшей мере приблизительно 70%, по меньшей мере приблизительно 75%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 99% или приблизительно 100% аминокислотной последовательности, выбранной группы, состоящей из SEQ ID NOs: 565, 567, 569, 571, 573, 575, 579, 581, 583, 585, 587, 589, 591, 593, 595, 597, 599, 601, 603, 605, 607, 609, 611, 613, 615, 617, 619, 621, 623, 625, 627, 629,

631, 633, 635, 637, 639, 641, 643, 645, 647, 649, 651, 653, 655, 657, 659, 661, 663, 665, 667, 669, 671, 673, 675, 677, 679, 681, 683, 685, 687, 689, 691, 693, 695, 697, 699, 701, 703, 705, 707, 709, 711, 713, 715, 717, 719, 721, 723, 725, 727, 729, 731, 733, 735, 737, 739, 741, и 743.

[571] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат VH и VL, где

VH содержит аминокислотную последовательность, которая на 70%, меньшей мере приблизительно ПО ПО меньшей приблизительно 75%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно или приблизительно 100% идентична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NOs: 377, 379, 381, 383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405, 407, 409, 411, 413, 415, 417, 419, 421, 423, 425, 427, 429, 431, 433, 435, 437, 439, 441, 443, 445, 447, 449, 451, 453, 455, 457, 459, 461, 463, 465, 467, 469, 471, 473, 475, 477, 479, 481, 483, 485, 487, 489, 491, 493, 495, 497, 499, 501, 503, 505, 507, 509, 511, 513, 515, 517, 519, 521, 523, 525, 527, 529, 531, 533, 535, 537, 539, 541, 543, 545, 547, 549, 551, 553, и 555; и

VL содержит аминокислотную последовательность, которая на меньшей мере приблизительно 70%, ПО меньшей приблизительно 75%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 100% идентична 99% приблизительно аминокислотной или последовательности, выбранной из группы, состоящей из 565, 567, 569, 571, 573, 575, 579, 581, 583, 585, 587, 589, 591, 593, 595, 597, 599, 601, 603, 605, 607, 609, 611, 613, 615, 617, 619, 621, 623, 625, 627, 629, 631, 633, 635, 637, 639, 641, 643, 645, 647,

649, 651, 653, 655, 657, 659, 661, 663, 665, 667, 669, 671, 673, 675, 677, 679, 681, 683, 685, 687, 689, 691, 693, 695, 697, 699, 701, 703, 705, 707, 709, 711, 713, 715, 717, 719, 721, 723, 725, 727, 729, 731, 733, 735, 737, 739, 741, 11, 743.

[572] В определенных вариантах осуществления антитело к FIXa содержит вариабельную область тяжелой цепи из конкретного гена тяжелой цепи иммуноглобулина зародышевого типа, и/или вариабельную область легкой цепи из конкретного ген легкой цепи иммуноглобулина зародышевого типа. В некоторых вариантах осуществления последовательность VH антитела к FIXa может быть получена из любой из последовательностей V, D или J зародышевого типа, и/или последовательность VL антитела к FIXa может быть получена из любой из каппа- или лямбда-последовательности зародышевого типа.

[573] Как показано в данном документе, были получены человеческие антитела, специфические в отношении FIXa, которые содержат вариабельную область тяжелой цепи, которая является продуктом человеческого гена зародышевого типа или получена от него. Соответственно, предусмотрено антитело к FXz или его антигенсвязывающая часть, содержащие VH и VL, где VH получена из последовательности зародышевого типа VH1-18, VH1-46, VH3-21, VH3-23, VH3-30, VH4-31, VH4-39, VH4-0B, или VH5-51. В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат VH и VL, где VL получена из последовательности зародышевого типа VK1-05, VK1-12, VK1-39, VK2-28, VK3-11, VK3-15, VK3-20 или VK4-01. В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат VH и VL, где VH получена из последовательности зародышевого типа VH1-18,0, VH1-18,1, VH1-18,8, VH1-46,0, VH1-46,4, VH1-46,5, VH1-46,6, VH1-46,7, VH1-46,8, VH1-46,9, VH3-21,0, VH3-23,0, VH3-23,2, VH3-23,6, VH3-30,0, VH4-31,5, VH4-39,0, VH4-39,5. VH4-0B.4, или VH5-51,1,, и VL получена из последовательности зародышевого типа VK1-05,6, VK1-05,12, VK1-12,0, VK1-12,4, VK1-12,7, VK1-12,10, VK1-12,15, VK1-39,0, VK1-39,3, VK1-39,15, VK2-28,0, VK2-28,1, VK2-28,5, VK3-11,0, VK3-11,2, VK3-11,6, VK3-11,14, VK3-15,0, VK3-15,8, VK3-15,10, VK3-20,0, VK3-20,1, VK3-20,4, VK3-20,5, VK4-01,0,

VK4-01,4, VK4-01,20. В некоторых аспектах VH и/или VL получены из их соответствующих зародышевых линий с помощью оптимизации по аффинности.

[574] Антитела, описанные в данном документе, включают антитела, содержащие вариабельную область тяжелой цепи, которая является продуктом или получена от одного из вышеперечисленных VH человека зародышевого типа, также а содержащие вариабельную область легкой цепи, которая является продуктом или вышеперечисленных генов VK человека получена \circ T ОДНОГО ИЗ зародышевого типа, как показано на фигурах.

[575] Как используется в данном документе, человеческое антитело содержит вариабельные области тяжелой и легкой цепей, "продуктом" или "получены из" являются последовательности зародышевого типа, если вариабельные области антитела получены из системы, в которой используются гены иммуноглобулина человека зародышевого типа. Такие системы включают в себя иммунизацию трансгенной мыши, несущей гены иммуноглобулина человека, представляющим интерес антигеном, или скрининг библиотеки генов иммуноглобулина человека, представленной на фаге с представляющим интерес антигеном. которое является "продуктом" Человеческое антитело, "полученным из" последовательности иммуноглобулина человека зародышевого типа, можно идентифицировать как таковое путем сравнения аминокислотной последовательности человеческого антитела с аминокислотными последовательностями иммуноглобулина человека зародьшевого типа И выбора последовательности иммуноглобулина человека зародышевого типа, которая наиболее близка по последовательности (T. е. имеет наибольший к последовательности человеческого идентичности) Человеческое антитело, которое является "продуктом" ИЛИ "получено из" конкретной последовательности иммуноглобулина зародышевого типа, может содержать аминокислотные различия по сравнению с последовательностью зародышевого типа, например, вследствие встречающихся В природе соматических мутаций или преднамеренного введения сайт-направленной мутации. Однако выбранное человеческое антитело, как правило, на

меньшей мере 90% идентично по аминокислотным последовательностям аминокислотной последовательности, кодируемой иммуноглобулина человека зародышевого типа, И содержит аминокислотные остатки, которые идентифицируют человеческое как человеческим антитело являющееся ПО сравнению иммуноглобулина аминокислотными последовательностями других типа видов (например, зародьшевого мьшиной последовательности зародышевого типа). В отдельных случаях аминокислотная последовательность человеческого антитела может являться на по меньшей мере 95% или даже на по меньшей мере 96%, 97%, 98% или 99% идентичной аминокислотной последовательности, кодируемой геном иммуноглобулина зародышевого типа. Как правило, антитело, полученное человеческое ИЗ последовательности человека зародышевого типа, будет проявлять 10 аминокислотных отличий \circ T аминокислотной последовательности, кодируемой геном иммуноглобулина человека зародышевого типа. В некоторых случаях человеческое антитело может демонстрировать не более 5 или даже не более 4, 3, 2 или 1 аминокислотного отличия от аминокислотной последовательности, кодируемой геном иммуноглобулина зародышевого типа.

- [576] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат по меньшей мере одну VH, где VH содержит, состоит или состоит по сути из последовательности, выбранной из SEQ ID NO: 423, 427 или 455.
- [577] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат по меньшей мере одну VL, где VL содержит, состоит или состоит по сути из последовательности, выбранной из SEQ ID NO: 611, 615 или 643.
- [578] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат по меньшей мере одну VH и по меньшей мере одну VL, где
- по меньшей мере одна VH содержит, состоит или состоит по сути из последовательности, выбранной из SEQ ID NO: 423, 427 или 455; и
- по меньшей мере одна VL содержит, состоит или состоит по сути из последовательности, выбранной из SEQ ID NO: 611, 615 или

643.

- [579] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат VH и VL, где
- (b1) VH и VL содержат, состоят или состоят по сути из SEQ ID NO: 423 и 611, соответственно;
- (b2) VH и VL содержат, состоят или состоят по сути из SEQ ID NO: 427 и 615, соответственно; или
- (b3) VH и VL содержат, состоят или состоят по сути из SEQ ID NO: 455 и 643, соответственно.
- [580] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат VH и VL, где VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 423, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 90%, по ме
- [581] В некоторых аспектах антитело к FXzИЛИ его антигенсвязывающая часть содержат VH и VL, где VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 427, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 615.
- [582] В некоторых аспектах антитело к FXz или его антигенсвязывающая часть содержат VH и VL, где VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 455, и VL содержит аминокислотную последовательность, на по меньшей мере

70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 643.

[583] В определенных аспектах данное антитело к FXz или его антигенсвязывающая часть не проявляют выявляемого связывания с FXa. В других аспектах биспецифическая молекула по настоящему изобретению предусматривает антитело к FXz или его антигенсвязывающую часть, которые специфически связываются с FXz и не проявляют выявляемого связывания с FXa, и антитело к FIX, которое специфически связывается как с FIXz, так и с FIXa.

Молекулы, связывающие FXa

[584] В настоящем изобретении предусмотрены антитело (например, выделенному антителу) или его антигенсвязывающая часть, которые специфически связываются с активированным фактором X (FXa), где антитело или его антигенсвязывающая часть следовательно предпочтительно связываются с FXa в присутствии FXz и FXa. В одном варианте осуществления FXa представляет собой FXa, ковалентно присоединенный к имитатору субстрата (т. е., EGR-CMK).

В некоторых аспектах антитело к FXa ИЛИ его антигенсвязывающая часть связываются с FXa с более высокой аффинностью связывания, чем аффинность связывания антитела или его антигенсвязывающей части с FXz. В настоящем изобретении предусмотрены выделенное антитело K FΧ илли его антигенсвязывающая часть, которые связываются с FXa аффинностью связывания, чем аффинность связывания антитела или его антигенсвязывающей части с FXz.

В некоторых аспектах антитело к FXa [586] ИЛИ его антигенсвязывающая часть связываются с FXa с K_D , составляющей приблизительно 100 нМ или меньше, приблизительно 95 нМ или меньше, приблизительно 90 нМ или меньше, приблизительно 85 нМ или меньше, приблизительно 80 нМ или меньше, приблизительно 75 нМ или меньше, приблизительно 70 нМ или меньше, приблизительно 60 МН меньше, приблизительно Мн или ИЛИ меньше, приблизительно 55 нМ или меньше, приблизительно 50 нМ или меньше, приблизительно 45 нМ или меньше, приблизительно 40 нМ или меньше, приблизительно 35 нМ или меньше, приблизительно 30 нМ или меньше, приблизительно 25 нМ или меньше, приблизительно 20 нМ или меньше, приблизительно 15 нМ или меньше, приблизительно 5 нМ или меньше или приблизительно 1 нМ или меньше, как определено с помощью анализа ВLI.

[587] В других вариантах осуществления антитело к FXa или его антигенсвязывающая часть связываются с FXa с K_D , составляющей приблизительно 10 нМ или меньше, приблизительно 9 нМ или меньше, приблизительно 8 нМ или меньше, приблизительно 7 нМ или меньше, приблизительно 6 нМ или меньше, приблизительно 5 нМ или меньше, приблизительно 4 нМ или меньше, приблизительно 3 нМ или меньше, приблизительно 2 нМ или меньше, приблизительно 1 нМ или меньше, приблизительно 0,5 нМ или меньше, приблизительно 0,2 меньше, приблизительно 0,1 нМ или меньше или приблизительно 0,05 нМ или меньше. В других вариантах осуществления антитело к FXa ИЛИ его антигенсвязывающая часть связываются FXa K_D , составляющей от 1 нМ до 100 нМ, от 1 нМ до 90 нМ, от 1 нМ до 80 нм, от 1 нм до 70 нм, 1 нм до 60 нм, от 1 нм до 50 нм, от 1 нм до 40 нМ, от 1 нМ до 30 нМ, от 1 нМ до 20 нМ, от 1 нМ до 10 нМ, от 0,1 нМ до 100 нМ, от 0,1 нМ до 90 нМ, от 0,1 нМ до 80 нМ, от 0,1 нМ до 70 нМ, от 0,1 нМ до 60 нМ, от 0,1 нМ до 50 нМ, от 0,1 нМ до 40 нМ, от 0,1 нМ до 30 нМ, от 0,1 нМ до 20 нМ, от 0,1 нМ до 10 нМ или от 0,1 нМ до 1 нМ.

В некоторых аспектах антитело K FXa антигенсвязывающая часть перекрестно конкурируют С эталонным антителом, выбранным ИЗ группы, состоящей ИЗ антител, представленных на фиг. 12С. В некоторых аспектах антитело к FXa или его антигенсвязывающая часть связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных фиг. **12C.** B некоторых на антитело к FXa или его антигенсвязывающая часть связываются с тем же эпитопом, что и эталонное антитело, которое представляет собой ВІІВ-12-925.

[589] В некоторых аспектах антитело к FXa или его антигенсвязывающая часть связываются с антигенсвязывающим

участком (например, эпитопом), который по существу совпадает с антигенсвязывающим участком любого антитела к FXa или его антигенсвязывающей части, раскрытых в данном документе. В некоторых аспектах антитело к FXa или его антигенсвязывающая часть связываются с антигенсвязывающим участком (например, эпитопом), который перекрывается с антигенсвязывающим участком (например, эпитопом) антитела к FXa или его антигенсвязывающей части, раскрытых в данном документе.

[590] В некоторых аспектах антитело к FXa или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR3 VH предусматривает

последовательность CDR3 VH, идентичную последовательности CDR3 VH, выбранной из группы, состоящей из последовательностей CDR3 VH, раскрытых на ϕ ur. 12C, или

последовательность CDR3 VH, идентичную последовательности CDR3 VH, выбранной из группы, состоящей из последовательностей CDR3 VH, раскрытых на ϕ ur. 12C, за исключением 1, 2 или 3 аминокислотных замен.

- [591] В некоторых аспектах аминокислотные замены представляют собой консервативные аминокислотные замены и обратные мутации.
- [592] В некоторых аспектах антитело к FXa или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR3 VH предусматривает аминокислотную последовательность, изложенную под (SEQ ID NO: 1919, BIIB-12-925).
- [593] В некоторых аспектах антитело к FXa или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR1 VH предусматривает

последовательность CDR1 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VH, раскрытых на ϕ ur. 12C, или

последовательность CDR1 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VH, раскрытых на фиг. 12C, за исключением 1, 2 или 3 аминокислотных замен.

[594] В некоторых аспектах антитело к FXa или его антигенсвязывающая часть содержат CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR2 VH предусматривает

последовательность CDR2 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VH, раскрытых на ϕ ur. 12C, или

последовательность CDR2 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VH, раскрытых на фиг. 12C, за исключением 1, 2 или 3 аминокислотных замен.

[595] В некоторых аспектах антитело к FXa или его антигенсвязывающая часть содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR1 VL предусматривает

последовательность CDR1 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VL, раскрытых на ϕ ur. 12C, или

последовательность CDR1 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VL, раскрытых на фиг. 12C, за исключением 1, 2 или 3 аминокислотных замен.

[596] В некоторых аспектах антитело к FXa или его антигенсвязывающая часть содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR2 VL предусматривает

последовательность CDR2 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VL, раскрытых на ϕ ur. 12C, или

последовательность CDR2 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VL, раскрытых на фиг. 12C, за исключением 1, 2 или 3 аминокислотных замен.

[597] В некоторых аспектах антитело к FXa или его антигенсвязывающая часть содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR3 VL предусматривает

последовательность CDR3 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR3 VL, раскрытых на ϕ ur. 12C, или

последовательность CDR3 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR3 VL, раскрытых на фиг. 12C, за исключением 1, 2 или 3 аминокислотных замен.

[598] В некоторых аспектах антитело к FXa или его антигенсвязывающая часть содержат CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR3 VL состоит или состоит по сути из

последовательности CDR3 VL, идентичной последовательности, выбранной из группы, состоящей из последовательностей CDR3 VL, раскрытых на ϕ ur. 12C, или

последовательности CDR3 VL, идентичной последовательности, выбранной из группы, состоящей из последовательностей CDR3 VL, раскрытых на фиг. 12C, за исключением 1, 2 или 3 аминокислотных замен.

[599] В настоящем изобретении также предусмотрены выделенное антитело или его антигенсвязывающая часть, которые связываются с FXa, содержащим CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL, где CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL содержат CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL антитела к FXa, выбранного из группы, состоящей из ВІІВ—12—894, ВІІВ—12—925, ВІІВ—12—1320 или ВІІВ—12—1321.

[600] В некоторых аспектах антитело к FXa или его антигенсвязывающая часть содержат последовательности CDR1 VH, CDR2 VH и CDR3 VH, содержащие SEQ ID NO: 1911, SEQ ID NO: 1915 и SEQ ID NO: 1919, соответственно, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, содержащие SEQ ID NO: 1923, SEQ ID NO: 1927 и SEQ ID NO: 1931, соответственно.

[601] В некоторых аспектах антитело к FXa или его антигенсвязывающая часть содержат VH и VL, где VH содержит аминокислотную последовательность, которая на по меньшей мере приблизительно 70%, по меньшей мере приблизительно 75%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно

98%, по меньшей мере приблизительно 99% или приблизительно 100% идентична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NO: 557, 559, 561 и 563.

некоторых аспектах антитело В к FXa ИЛИ антигенсвязывающая часть содержат VH и VL, где VL содержит аминокислотную последовательность, которая на по меньшей мере приблизительно 70%, по меньшей мере приблизительно 75%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 99% или приблизительно 100% аминокислотной последовательности, выбранной группы, состоящей из SEQ ID NO: 745, 747, 749 и 751.

[603] В некоторых аспектах антитело к FXa или его антигенсвязывающая часть содержат VH и VL, где

VH содержит аминокислотную последовательность, которая на приблизительно 70%, ПО меньшей мере ПО меньшей приблизительно 75%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 98%, по меньшей мере приблизительно 100% приблизительно идентична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NO: 557, 559, 561 и 563; и

VL содержит аминокислотную последовательность, которая на по меньшей мере приблизительно 70%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 96%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 97%, по меньшей мере приблизительно 90% или приблизительно 100% идентична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NO: 745, 747, 749 и 751.

[604] В определенных вариантах осуществления антитело к FIXa содержит вариабельную область тяжелой цепи из конкретного гена тяжелой цепи иммуноглобулина зародышевого типа, и/или вариабельную область легкой цепи из конкретного гена легкой цепи иммуноглобулина зародышевого типа. В некоторых вариантах осуществления последовательность VH антитела к FXa может быть получена из любой из последовательностей зародышевого типа V, D или J, и/или последовательность VL антитела к FXa может быть получена из любой из каппа— или лямбда—последовательности зародышевого типа.

[605] Как показано в данном документе, были получены антитела человека, специфические в отношении FXa, которые содержат вариабельную область тяжелой цепи, которая является продуктом человеческого гена зародышевого типа или получена от него. Соответственно, предусмотрены антитело к FXa или его антигенсвязывающая часть, содержащие VH и VL, где VH получена из последовательности зародышевого типа VH1-18, VH1-46, VH3-21, VH3-23, VH3-30, VH4-31, VH4-39, VH4-0B, или VH5-51. В некоторых аспектах антитело к FXa или его антигенсвязывающая часть содержат VH и VL, где VL получена из последовательности зародышевого типа VK1-05, VK1-12, VK1-39, VK2-28, VK3-11, VK3-15, VK3-20, или VK4-01. В некоторых аспектах антитело к FXa или его антигенсвязывающая часть содержат VH и VL, где VH получена из последовательности зародышевого типа VH1-18,0, VH1-18,1, VH1-18,8, VH1-46,0, VH1-46,4, VH1-46,5, VH1-46,6, VH1-46,7, VH1-46,8, VH1-46,9, VH3-21,0, VH3-23,0, VH3-23,2, VH3-23,6, VH3-30,0, VH4-31,5, VH4-39,0, VH4-39,5. VH4-0B.4, или VH5-51,1,, и VL получена из последовательности зародышевого типа VK1-05,6, VK1-05,12, VK1-12,0, VK1-12,4, VK1-12,7, VK1-12,10, VK1-12,15, VK1-39,0, VK1-39,3, VK1-39,15, VK2-28,0, VK2-28,1, VK2-28,5, VK3-11,0, VK3-11,2, VK3-11,6, VK3-11,14, VK3-15,0, VK3-15,8, VK3-15,10, VK3-20,0, VK3-20,1, VK3-20,4, VK3-20,5, VK4-01,0, VK4-01,4, VK4-01,20. В некоторых аспектах VH и/или VL получены из их соответствующих зародьшевых линий посредством оптимизации по аффинности.

[606] В некоторых аспектах антитело к FXa или его

антигенсвязывающая часть содержат VH и VL, где VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную SEQ ID NO: 559, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 95%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 90% или 100% идентичную SEQ ID NO: 747.

Типичные аспекты

[607] Определенные аспекты настоящего изобретения относятся к антителу к FIX (например, антителу к FIXa или антителу к FIXz) и антителу к FX (например, антителу к FXa или антителу к FXz), раскрытым в данном документе, содержащим последовательности CDR VH и VL, раскрытые в данном документе, все же содержат каркасные последовательности, отличающиеся от антител, раскрытых в данном документе. Такие каркасные последовательности могут быть получены из общедоступных баз данных ДНК или опубликованных ссылок, которые включают последовательности генов антител зародышевого типа. Например, последовательности ДНК зародышевого типа для генов вариабельной области тяжелой и легкой цепей человека ОНЖОМ найти В базе данных последовательностей зародышевого типа человека "VBase" (доступной в Интернете по адресу www.mrc-cpe.cam.ac.uk/vbase), а также Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242; Tomlinson, I. M., et al. (1992) "The Repertoire of Human Germline VH Sequences Reveals about Fifty Groups of VH Segments with Different Hypervariable Loops" Mol. Biol. 227:776-798 и Сох, J. P. L. et al. (1994) "A Directory of Human Germ-line VH Segments Reveals a Strong Bias in their Usage" Eur. J. Immunol. 24:827-836; содержание каждого которых включено в данный документ посредством ссылки.

[608] Иллюстративными каркасными последовательностями для применения в антителах, описанных в данном документе, являются те, которые структурно аналогичны каркасным последовательностям,

используемым антителами, описанными в данном документе. Последовательности CDR1, 2 и 3 VH и последовательности CDR1, 2 и 3 VL могут быть привиты на каркасные области, которые имеют идентичную последовательность, которая обнаружена в гене иммуноглобулина зародышевого типа, от которого происходит каркасная последовательность, или последовательности CDR могут быть привиты на каркасные области, которые содержат одну или несколько мутаций по сравнению с последовательностями зародышевого типа. Например, было обнаружено, что в некоторых случаях выгодно мутировать остатки в каркасных областях для поддержания или усиления антигенсвязывающей способности антитела (см., например, патенты США № 5530101; 5585089; 5693762 и 6180370, выданные Queen et al).

[609] Сконструированные антитела, описанные документе, включают те, в которых были сделаны модификации в каркасных остатках в VH и/или VL, например для улучшения свойств антитела. Как правило, такие модификации каркасной области осуществляют для снижения иммуногенности антитела. Например, один из подходов заключается в том, чтобы "с помощью обратной мутации" переместить один или несколько каркасных остатков в соответствующую последовательность зародышевого типа. конкретно, антитело, которое подверглось соматической мутации, может содержать каркасные остатки, которые отличаются последовательности зародьшевого типа, из которой получено Такие остатки могут быть идентифицированы путем сравнения каркасных последовательностей антитела последовательностями зародышевого типа, из которых получено антитело. Чтобы вернуть последовательности каркасной области в их конфигурацию зародышевого типа, соматические мутации могут быть "подвергнуты обратному мутированию" в последовательности зародышевого типа, например, с помощью сайт-направленного ПЦР-опосредованного мутагенеза. ИЛИ "подвергнутые обратному мутированию" антитела также должны быть охвачены. Другой тип модификации каркасной области включает в себя мутацию одного или нескольких остатков внутри каркасной области или даже внутри одной или нескольких областей CDR для

удаления T-клеточных эпитопов, чтобы снизить тем самым потенциальную иммуногенность антитела. Данный подход также упоминается как "деиммунизация" и более подробно описан в публикации патента США № 20030153043 Carr et al.

- [610] Другой тип модификации вариабельной области заключается в осуществлении мутации аминокислотных остатков в областях CDR1, CDR2 и/или CDR3 VH и/или VL, чтобы улучшить тем самым одно или несколько свойств связывания (например, аффинности) представляющего интерес антитела. Для введения мутации (-й) могут быть осуществлен сайт-направленный мутагенез или ПЦР-опосредованный мутагенез, и при этом эффект в отношении антител ИЛИ другое представляющее интерес связывания функциональное свойство может быть оценено в анализах in vitro или in vivo, как описано в данном документе и представлено в примерах. В некоторых вариантах осуществления консервативные модификации (как обсуждалось выше). Мутации могут представлять собой аминокислотные замены, добавления делеции. Кроме того, как правило, в области CDR изменяют не более одного, двух, трех, четырех или пяти остатков.
- [611] В некоторых аспектах остатки метионина в CDR антител могут быть окислены, что приводит к потенциальной химической деградации и последующему снижению активности антитела. Соответственно, также предусмотрены антитела к FIX/FX, которые имеют один или несколько метиониновых остатков в CDR тяжелой и/или легкой цепей, замененных аминокислотными остатками, которые не подвергнуты окислительной деградации. В ОДНОМ варианте осуществления остатки метионина в CDR антител, раскрытых в данном документе, заменены аминокислотными остатками, которые не подвергнуты окислительной деградации. Точно так же сайты дезамидирования могут быть удалены из любого из антител, в частности в CDR.
- [612] В определенных аспектах любое из антител к FIX (например, антител к FIXa или антител к FIXz) и антител к FX (например, антител к FXa или антител к FXz), раскрытых в данном документе, может представлять собой IgG. В некоторых аспектах IgG представляет собой IgG1, IgG2, IgG3, IgG4 или их вариант. В

некоторых аспектах любое из антител к FIX (например, антител к FIXa или антител к FIXz) и антител к FX (например, антител к FXa или антител к FXz), раскрытых в данном документе, представляет собой антитело IgG4. В некоторых аспектах антитело к FIX (например, антитело к FIXa или антитело к FIXz) и антитело к FX (например, антитело к FXa или антитело к FXz), раскрытые в данном документе, содержат не имеющий эффекторных функций Fc IgG4.

- [613] В некоторых аспектах константная область тяжелой цепи или ее фрагмент антитела к FIX (например, антитела к FIXa или антитела к FIXz) или антитела к FX (например, антитела к FXa или антитела к FXz) представляет собой константную область IgG. В IgG или ее фрагмент некоторых аспектах константная область представляет собой константную область IgG1, IgG2, IgG4. В некоторых аспектах антитело к FIX (например, антитело к FIXa или антитело к FIXz) или антитело к FX (например, антитело к FXa или антитело к FXz) содержит VL, содержащую константную область легкой цепи (LC), где константная LC представляет собой константную область каппа. В некоторых аспектах антитело к FIX (например, антитело к FIXa или антитело к FIXz) или антитело к FX (например, антитело к FXa или антитело к FXz) содержит VL, содержащую константную область легкой цепи (LC), где константная область LC представляет собой константную область лямбда.
- [614] В некоторых аспектах антитело K FIX FIXa или антитело к FIXz) или антитело антитело К FXa или FXz) (например, антитело K содержит константную область тяжелой цепи (СН). В некоторых аспектах антитело к FIX (например, антитело к FIXa или антитело к FIXz) или антитело к FX (например, антитело к FXa или антитело к FXz) содержит домен CH1, домен CH2 или домен CH3.
- [615] В некоторых аспектах его антигенсвязывающая часть к FΧ включает в себя Fab, Fab', F(ab')2, или одноцепочечный Fv (scFv). В других аспектах его антигенсвязывающая часть к FIX или FX включает в себя Fd, scFv, стабилизированный дисульфидными СВЯЗЯМИ scFv,

дисульфидными связями Fv, домен V-NAR, IgNar, интратело, IgG CH2, миниантитело, $F(ab')_3$, тетратело, триатело, диатело, однодоменное антитело, DVD-Ig, Fcab, mAb^2 , $(scFv)_2$ или scFv-Fc.

(например, [616] В некоторых аспектах антитело K FIX антитело к FIXa или антитело к FIXz) или антитело к (например, антитело к FXa или антитело к FXz), раскрытые в данном документе, являются моноспецифическими. В других аспектах антитело к FIX (например, антитело к FIXa или антитело к FIXz) или антитело к FX (например, антитело к FXa или антитело к FXz) является биспецифическим, триспецифическим, тетраспецифическим и т. д. В других аспектах антитело к FIX (например, антитело к FIXa или антитело к FIXz) или антитело к FX (например, антитело антитело к FXz) является мультиспецифическим. некоторых аспектах антитело к FIX (например, антитело к FIXa или антитело к FIXz) или антитело к FX (например, антитело к FXa или К FXz) антитело является одновалентным, двухвалентным, трехвалентным, четырехвалентным и т. д. В еще других аспектах антитело к FIX (например, антитело к FIXa или антитело к FIXz) или антитело к FX (например, антитело к FXa или антитело к FXz) является поливалентным. В конкретных аспектах антитело к FIX (например, антитело к FIXa или антитело к FIXz) или антитело к (например, антитело к FXa или антитело к FXz) является двухвалентным, содержащим например, антителом, несколько специфических участков связывания антигена. В конкретных аспектах антитело к FIX (например, антитело к FIXa или антитело к FIXz) или антитело к FX (например, антитело к FXa или антитело биспецифическим, т. FXz) является е. молекула специфически связываться с двумя разными антигенами (например, два разных эпитопа на одной или разных молекулах). В некоторых конкретных аспектах антитело к FIX (например, антитело к FIXa или антитело к FIXz) или антитело к FX (например, антитело к FXa или антитело к FXz) является двухвалентным и биспецифическим, например, антителом, содержащим четыре двухсвязывающих участка, которые способны связываться с двумя разными антигенами (например, с двумя разными эпитопами на одной и той же или разных молекулах).

[617] В некоторых аспектах антитело к FIX (например, антитело к FIXa или антитело к FIXz) или антитело K (например, антитело к FXa или антитело к FXz), раскрытые в данном документе, представляет собой человеческое антитело, сконструированное антитело, химерное антитело, гуманизированное антитело или оптимизированное антитело. В некоторых аспектах оптимизированное антитело представляет собой оптимизированное по аффинности антитело. В некоторых аспектах антитело требуемых оптимизировано для физико-химических ИЛИ функциональных свойств, например, увеличенного времени полужизни в плазме крови, низкой агрегации, термостабильности и т. д.

III. Биспецифические молекулы, связывающие FIXa/FXz

настоящем изобретении также предусмотрены биспецифические молекулы, характеризующиеся специфичностью отношении FIX (например, антитела к FIXa или антигенсвязывающей части, раскрытых в данном документе, или антитела к FIXz или его антигенсвязывающей части, раскрытых В данном документе), связанную с молекулой, имеющей вторую специфичность связывания. Также представлены биспецифические молекулы, характеризующиеся специфичностью в отношении FX (например, антитела к FXz или его антигенсвязывающей части, раскрытых в данном документе, или антитела к FXa или его антигенсвязывающей части, раскрытых в данном документе), связанную с молекулой, имеющей вторую специфичность связывания. Также представлена биспецифическая молекула, характеризующаяся (i) специфичностью в отношении FIX (например, антитела к FIXa или его антигенсвязывающей части, раскрытых в данном документе, или антитела к FIXz или антигенсвязывающей части, раскрытых в данном документе), связанную со (ii) специфичностью в отношении FXz (например, антитела к FXz или его антигенсвязывающей части, раскрытых в данном документе, или антитела к FXa или его антигенсвязывающей В данном документе). Раскрытые в части, раскрытых документе биспецифические молекулы не ограничиваются биспецифическими молекулами с иммуноглобулиновой укладкой или структурой, полученной из антитела, например перегруппировки доменов. Биспецифические молекулы, раскрытые в

данном документе, также включают в себя молекулярные каркасы, на которые могут быть привиты CDR, раскрытые в данном документе, или их комбинации (например, каркасы из фибронектина III или тенасцина-C).

[619] B некоторых аспектах биспецифическая молекула перекрестно конкурирует с эталонным биспецифическим антителом, где эталонное биспецифическое антитело содержит VH и VL антитела к FIXa, выбранного из группы, состоящей из антител к FIXa, представленных на фиг. 3A, и VH и VL антитела к FXz, выбранного из группы, состоящей из антител к FX, представленных на фиг. 12 \mathtt{A} 12B. В других аспектах биспецифическая молекула перекрестно конкурирует с эталонным биспецифическим антителом, где эталонное биспецифическое антитело содержит VH и VL антитела выбранного из группы, состоящей из антител к представленных на фиг. 3B, и VH и VL антитела к FXz, выбранного из группы, состоящей из антител к FXz, представленных на фиг. 12А и фиг. 12В. В некоторых аспектах биспецифическая молекула перекрестно конкурирует с эталонным биспецифическим антителом, где эталонное биспецифическое антитело содержит VH и VL антитела к FIXa, выбранного из группы, состоящей из антител к FIXa, представленных на фиг. 3C, и VH и VL антитела к FXz, выбранного из группы, состоящей из антител к FXz, представленных на фиг. 12А и фиг. 12В.

[620] В определенных аспектах биспецифическая молекула перекрестно конкурирует с эталонным биспецифическим антителом, где эталонное биспецифическое антитело содержит VH и VL антитела к FIXz, выбранного из группы, состоящей из антител к FIXz, представленных на фиг. 3D, и VH и VL антитела к FXz, выбранного из группы, состоящей из антител к FXz, представленных на фиг. 12A и фиг. 12B.

[621] В других аспектах настоящего изобретения биспецифическая предусмотрена молекула, перекрестно конкурирующая С эталонным биспецифическим антителом, эталонное биспецифическое антитело содержит VH и VL антитела к выбранного из группы, состоящей из антител представленных на фиг. 3A, и VH и VL антитела к FXa, выбранного из группы, состоящей из антител к FXa, представленных на фиг. вариантах осуществления биспецифическая некоторых молекула перекрестно конкурирует с эталонным биспецифическим антителом, где эталонное биспецифическое антитело содержит VH и VL антитела к FIXa, выбранного из группы, состоящей из антител к FIXa, представленных на фиг. 3B, и VH и VL антитела к FXa, выбранного из группы, состоящей из антител к FXa, представленных на фиг. 12С. В других вариантах осуществления биспецифическая молекула перекрестно конкурирует с эталонным биспецифическим антителом, где эталонное биспецифическое антитело содержит VH и VL антитела к FIXa, выбранного из группы, состоящей из антител к FIXa, представленных на фиг. 3C, и VH и VL антитела к FXa, выбранного из группы, состоящей из антител к FXa, представленных 12C. В еще других вариантах осуществления биспецифическая молекула перекрестно конкурирует с эталонным биспецифическим антителом, эталонное биспецифическое где антитело содержит VH и VL антитела к FIXz, выбранного из группы, состоящей из антител к FIXz, представленных на фиг. 3D, и VH и VL антитела к FXa, выбранного из группы, состоящей из антител к FXa, представленных на фиг. 12C.

В некоторых аспектах биспецифическая связывается с таким же эпитопом, что и эталонное биспецифическое антитело, где эталонное биспецифическое антитело содержит VH и VL антитела к FIXa, выбранного из группы, состоящей из антител к FIXa, представленных на фиг. 3A, и VH и VL антитела к FXz, выбранного из группы, состоящей из антител к FXz, представленных фиг. 12А и фиг. 12В. В других аспектах биспецифическая молекула связывается с таким же эпитопом, что и эталонное биспецифическое антитело, где эталонное биспецифическое антитело содержит VH и VL антитела к FIXa, выбранного из состоящей из антител к FIXa, представленных на фиг. 3B, и VH и VL антитела к FXz, выбранного из группы, состоящей из антител к FXz, представленных на фиг. 12A и фиг. **12B.** B еще других аспектах биспецифическая молекула связывается C таким же OTP , MODOTNIE И эталонное биспецифическое антитело, где эталонное биспецифическое антитело содержит VH и VL антитела к

FIXa, выбранного из группы, состоящей из антител к FIXa, представленных на ϕ ur. 3C, и VH и VL антитела к FXz, выбранного из группы, состоящей из антител к FXz, представленных на ϕ ur. 12A и ϕ ur. 12B.

[623] В некоторых других аспектах биспецифическая молекула связывается с таким же эпитопом, что и эталонное биспецифическое антитело, где эталонное биспецифическое антитело содержит VH и VL антитела к FIXz, выбранного из группы, состоящей из антител к FIXz, представленных на фиг. 3D, и VH и VL антитела к FXz, выбранного из группы, состоящей из антител к FXz, представленных на фиг. 12A и фиг. 12B. В еще других аспектах биспецифическая молекула связывается с таким же эпитопом, что и эталонное биспецифическое антитело, где эталонное биспецифическое антитело содержит VH и VL антитела к FIXz, выбранного из группы, состоящей из антител к FIXz, представленных на фиг. 3D, и VH и VL антитела к FXa, выбранного из группы, состоящей из антител к FXz, представленных на фиг. 12C.

некоторых аспектах биспецифическая молекула связывается с таким же эпитопом, что и эталонное биспецифическое антитело, где эталонное биспецифическое антитело содержит VH и VL антитела к FIXa, выбранного из группы, состоящей из антител к FIXa, представленных на фиг. 3A, и VH и VL антитела к FXa, выбранного из группы, состоящей из антител к FXz, представленных фиг. 12С. В некоторых аспектах биспецифическая молекула связывается с таким же эпитопом, что и эталонное биспецифическое антитело, где эталонное биспецифическое антитело содержит VH и VL антитела к FIXa, выбранного из группы, состоящей из антител к FIXa, представленных на фиг. 3B, и VH и VL антитела к FXa, выбранного из группы, состоящей из антител к FXz, представленных фиг. **12C.** B других аспектах биспецифическая молекула на связывается с таким же эпитопом, что и эталонное биспецифическое антитело, где эталонное биспецифическое антитело содержит VH и VL антитела к FIXa, выбранного из группы, состоящей из антител к FIXa, представленных на фиг. 3C, и VH и VL антитела к FXa, выбранного из группы, состоящей из антител к FXz, представленных на **фиг. 12С.**

[625] В некоторых аспектах биспецифическая молекула содержит

антитело к FIXa или его антигенсвязывающую часть, содержащие CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL, где CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL выбраны из группы, состоящей из CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL антител к FIXa (ВІІВ-9), представленных на фиг. 3A, 3B, 3C и 3D (например, CDR из фиг. 15A, 15B, 15C и 15D); и

антитело к FX или его антигенсвязывающую часть, содержащие CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL, где CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL выбраны из группы, состоящей из CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL антител к FX (ВІІВ—12), представленных на фиг. 12A и 12B (например, CDR из фиг. 15A, 15B, 15C и 15D).

- [626] В некоторых аспектах биспецифическая молекула содержит
- (a) антитело к ${\sf FIX}$ или его антигенсвязывающую часть, содержащие:
- (а1) последовательности CDR1 VH, CDR2 VH и CDR3 VH, предусматривающие соответственно SEQ ID NO: 815, 860 или 905, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 950, 995 или 1040 (ВIIB-9-484);
- (а2) последовательности CDR1 VH, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 822, 867 или 912, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 957, 1002 или 1047 (ВIIB-9-619);
- (а3) последовательности CDR1 VH, CDR2 VH и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1347, 1351 или 1355, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1359, 1363 или 1367 (ВIIB-9-578);
 - (a4) последовательности CDR1 VH, CDR2 VH и CDR3 VH,

- предусматривающие соответственно SEQ ID NO: 843, 888 или 933, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 978, 1023 или 1068 (ВIIB-9-1335); или
- последовательности CDR1 VH, CDR2 VН и CDR3 VH, предусматривающие соответственно SEQ ID NO: 844, 889 или 934, VL, последовательности CDR1 CDR2 VLИ CDR3 VL, предусматривающие соответственно SEQ ID NO: 979, 1024 или 1069 (ВІІВ-9-1336); и
- (b) антитело к FX или его антигенсвязывающую часть, содержащие:
- (b1) последовательности CDR1 VH, CDR2 VH и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1393, 1483 или 1573, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1663, 1753 или 1843 (ВIIB-12-915);
- (b2) последовательности CDR1 VH, CDR2 VH и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1395, 1485 или 1575, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1665, 1755 или 1845 (ВІІВ-12-917);
- (b3) последовательности CDR1 VH, CDR2 VH и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1911, 1915 или 1919, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1923, 1927 или 1931 (ВІІВ—12—925);
- (b4) последовательности CDR1 VH, CDR2 VH и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1409, 1499 или 1589, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1679, 1769 или 1859 (ВІІВ—12—932); или
- (b5) последовательности CDR1 VH, CDR2 VH и CDR3 VH, предусматривающие соответственно SEQ ID NO: 1433, 1523 или 1613, и/или последовательности CDR1 VL, CDR2 VL и CDR3 VL, предусматривающие соответственно SEQ ID NO: 1703, 1793 или 1883 (ВIIB-12-1306).

- [627] В некоторых аспектах биспецифическая молекула содержит
- (a) антитело к ${\sf FIX}$ или его антигенсвязывающую часть, содержащие:
- (a1) VH и VL, содержащие соответственно SEQ ID NO: 31 и 221 (BIIB-9-484);
- (a2) VH и VL, содержащие соответственно SEQ ID NO: 45 и 235 (BIIB-9-619);
- (a3) VH и VL, содержащие соответственно SEQ ID NO: 185 и $371 \; (BIIB-9-578);$
- (a4) VH и VL, содержащие соответственно SEQ ID NO: 87 и 221 (BIIB-9-1335); или
- (a5) VH и VL, содержащие соответственно SEQ ID NO: 89 и 221 (BIIB-9-1336):
- (b) антитело к FX или его антигенсвязывающую часть, содержащие:
- (b1) VH и VL, содержащие соответственно SEQ ID NO: 423 и 611 (BIIB-12-915);
- (b2) VH и VL, содержащие соответственно SEQ ID NO: 427 и 615 (BIIB-12-917);
- (b3) VH и VL, содержащие соответственно SEQ ID NO: 559 и 747 (BIIB-12-925);
- (b4) VH и VL, содержащие соответственно SEQ ID NO: 455 и 643 (BIIB-12-932); или
- (b5) VH и VL, содержащие соответственно SEQ ID NO: 503 и $691 \ (BIIB-12-1306)$.
- [628] В некоторых аспектах биспецифическая молекула содержит антитело к FIX или его антигенсвязывающую часть (т. е. антитело к FIXa или антитело к FIXz или его антигенсвязывающую часть) и антитело к FX или его антигенсвязывающую часть (т. е., антитело к FXz или к FXa или их антигенсвязывающая часть), где
- (i) антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 31 и 221 (ВIIB-9-484); и антитело к FXz или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 423 и 611 (ВIIB-12-915);

- (ii) антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 31 и 221 (ВIIB-9-484); и антитело к FXz или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 427 и 615 (ВIIB-12-917);
- (iii) антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 31 и 221 (ВIIB-9-484); и антитело к FXa или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 559 и 747 (ВIIB-12-925);
- (iv) антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 31 и 221 (ВIIB-9-484); и антитело к FXz или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 455 и 643 (ВIIB-12-932); или
- (v) антитело к FIXz или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 185 и 371 (ВІІВ-9-578); и антитело к FXz или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 423 и 611 (ВІІВ-12-915);
- (vi) антитело к FIXz или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 185 и 371 (ВІІВ-9-578); и антитело к FXz или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 427 и 615 (ВІІВ-12-917);
- (vii) антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 45 и 235 (ВIIB-9-619); и антитело к FXz или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 427 и 615 (ВIIB-12-917); или
- (viii) антитело к FIXa или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 45 и 235 (BIIB-9-619); и антитело к FXa или его антигенсвязывающая часть содержат VH и VL, содержащие соответственно SEQ ID NO: 559 и 747 (BIIB-12-925).
 - [629] В некоторых аспектах биспецифическая молекула

содержит антитело к FIXa или его антигенсвязывающую часть, содержащие VH и VL, где VH содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100% идентичную последовательности VH, раскрытой в таблице 6, и VL содержит аминокислотную последовательность, на по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 97%, по меньшей мере 99% или 100% идентичную последовательности VL, раскрытой в таблице 6.

[630] В некоторых аспектах биспецифическая молекула содержит антитело к FIXa или его антигенсвязывающую часть, содержащие CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR1 VH предусматривает

последовательность CDR1 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VH, раскрытых в таблице 7, или

последовательность CDR1 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VH, раскрытых в таблице 7, за исключением 1, 2 или 3 аминокислотных замен.

[631] В некоторых аспектах биспецифическая молекула содержит антитело к FIXa или его антигенсвязывающую часть, содержащие CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR2 VH предусматривает

последовательность CDR2 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VH из таблицы 7, или

последовательность CDR2 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VH из таблицы 7, за исключением 1, 2 или 3 аминокислотных замен.

[632] В некоторых аспектах биспецифическая молекула содержит антитело к FIXa или его антигенсвязывающую часть, содержащие CDR1 VH, CDR2 VH и CDR3 VH, где последовательность CDR3 VH предусматривает

последовательность CDR3 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR3 VH, раскрытых в таблице 7, или

последовательность CDR3 VH, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR3 VH, раскрытых в таблице 7, за исключением 1, 2 или 3 аминокислотных замен.

[633] В некоторых аспектах биспецифическая молекула содержит антитело к FIXa или его антигенсвязывающую часть, содержащие CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR1 VL предусматривает

последовательность CDR1 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VL, раскрытых в таблице 7, или

последовательность CDR1 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR1 VL, раскрытых в таблице 7, за исключением 1, 2 или 3 аминокислотных замен.

[634] В некоторых аспектах биспецифическая молекула содержит антитело к FIXa или его антигенсвязывающую часть, содержащие CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR2 VL предусматривает

последовательность CDR2 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VL из таблицы 7, или

последовательность CDR2 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR2 VL из таблицы 7, за исключением 1, 2 или 3 аминокислотных замен.

[635] В некоторых аспектах биспецифическая молекула содержит антитело к FIXa или его антигенсвязывающую часть, содержащие CDR1 VL, CDR2 VL и CDR3 VL, где последовательность CDR3 VL предусматривает

последовательность CDR3 VL, идентичную последовательности, выбранной из группы, состоящей из последовательностей CDR3 VL, раскрытых в таблице 7, или

последовательность CDR3 VL, идентичную последовательности,

выбранной из группы, состоящей из последовательностей CDR3 VL, раскрытых в таблице 7, за исключением 1, 2 или 3 аминокислотных замен.

[636] В некоторых аспектах антитело к FIXa или его антигенсвязывающая часть содержат последовательности CDR1 VH, CDR2 VH и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL, выбранные из CDR1 VH, VH CDR2 и CDR3 VH, а также CDR1 VL, CDR2 VL и CDR3 VL, раскрытые в таблице 7.

[637] Некоторые аспекты настоящего изобретения относятся к биспецифической молекуле, которая специфически связывается с FIX и FX, а затем функционально имитирует кофактор активированного фактора VIII (FVIIIa) в по меньшей мере одном анализе активности FVIIIa. В некоторых аспектах анализ активности FVIIIa выбран из хромогенного анализа образования FXa, одностадийного анализа свертывания крови или их комбинации. В конкретном аспекте настоящего изобретения предусмотрена биспецифическая молекула, которая предпочтительнее связывается с FIXa (например, FIXa в теназном комплексе, например, FIXa-SM), чем со свободным FIXa или зимогеном FIX и с зимогеном FX, чем с FXa (например, FXa-SM), и имитирует активность кофактора активированного фактора VIII.

[638] В некоторых вариантах осуществления активность FVIIIa достигает по меньшей мере приблизительно 10%, по меньшей мере приблизительно 15%, по меньшей мере приблизительно 20%, по меньшей мере приблизительно 25%, по меньшей мере приблизительно по меньшей мере приблизительно 35%, ПО меньшей мере приблизительно 40%, по меньшей мере приблизительно 45%, меньшей мере приблизительно 50%, по меньшей мере приблизительно 55%, по меньшей мере приблизительно 60%, по меньшей мере приблизительно 60%, по меньшей мере приблизительно 65%, по меньшей мере приблизительно 70%, по меньшей мере приблизительно 75%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95%, по меньшей мере приблизительно 100%, по меньшей мере приблизительно 105%, по меньшей мере приблизительно 110%, по меньшей мере приблизительно 115%, по

меньшей мере приблизительно 120%, по меньшей мере приблизительно 125%, по меньшей мере приблизительно 130%, по меньшей мере приблизительно 140%, по меньшей мере приблизительно 140%, по меньшей мере приблизительно 145%, по меньшей мере приблизительно 150%, по меньшей мере приблизительно 155%, по меньшей мере приблизительно 160%, по меньшей мере приблизительно 165%, по меньшей мере приблизительно 165%, по меньшей мере приблизительно 175%, по меньшей мере приблизительно 175%, по меньшей мере приблизительно 180%, по меньшей мере приблизительно 190%, по меньшей мере приблизительно 190%, по меньшей мере приблизительно 195% или по меньшей мере приблизительно 200% активности, иным образом достигаемой с помощью FVIII в том же анализе.

[639] В некоторых вариантах осуществления биспецифическая молекула способна образовывать тромбин из протромбина, фибрин из фибриногена и/или фибриновый сгусток in vitro или in vivo. В некоторых вариантах осуществления биспецифическая молекула одновременно связывается как с FIXa, так и с FX, как определено с помощью BLI.

[640] В некоторых аспектах биспецифическая молекула содержит антитело к FIX или его антигенсвязывающую часть (т. е. антитело к FIXa или антитело к FIXz или его антигенсвязывающую часть) и антитело к FX или его антигенсвязывающую часть (т. е. антитело к FXz или антитело к FXa или его антигенсвязывающую часть), где биспецифическая молекула демонстрирует значительную потерю активности в отсутствие фосфолипидов, как измерено помощью анализа образования FXa. В некоторых аспектах FIXa биспецифическая молекула содержит антитело к антигенсвязывающую часть (т. е. антитело к FIXa или антитело к FIXz или его антигенсвязывающую часть) и антитело к FX или его антигенсвязывающую часть (т. е., антитело к FXz или к FXa или их антигенсвязывающую часть). В некоторых аспектах отсутствие фосфолипидов в анализе образования FXa приводит к активности, составляющей по меньшей мере приблизительно 10%, по меньшей мере приблизительно 15%, по меньшей мере приблизительно 20%, по меньшей мере приблизительно 25%, по меньшей мере приблизительно 30%, по меньшей мере приблизительно 35%,

меньшей мере приблизительно 40%, по меньшей мере приблизительно 45%, по меньшей мере приблизительно 50%, по меньшей мере приблизительно 55%, по меньшей мере приблизительно 60%, меньшей мере приблизительно 65%, по меньшей мере приблизительно 70%, по меньшей мере приблизительно 75%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, меньшей мере приблизительно 90%, по меньшей мере приблизительно 95% или приблизительно 100% относительно активности, измеренной в присутствии фосфолипидов. В некоторых аспектах биспецифическая молекула проявляет минимальную фосфолипид-независимую активность сравнению с фосфолипид-независимой активностью эталонного биспецифического антитела, раскрытого в патенте США № 8062635 эмицизумаб, АСЕ910), который полностью включен в данный документ посредством ссылки. В некоторых биспецифическая молекула, раскрытая В данном документе, проявляет менее чем приблизительно 20%, менее чем приблизительно 15%, менее чем приблизительно 10% или менее чем приблизительно активности, наблюдаемой для эталонного биспецифического CⅢA № 8062635 антитела, раскрытого в патенте (например, эмицизумаб, АСЕ910) в анализе образования FXa в отсутствие фосфолипидов.

[641] В некотором аспекте раскрытая в данном документе биспецифическая молекула обладает более высокой активностью в анализе образования тромбина, запускаемой с помощью фактора XIa, когда исследуемые синтетические фосфолипидные везикулы состоят (фосфатидилсерин)/РЕ (фосфатидилэтаноламин)/РС (фосфатидилхолин) (208/408/408), чем когда синтетические фосфолипидные везикулы состоят из PS/PC (20%/80%). В некоторых аспектах активность биспецифической молекулы, раскрытой в данном документе, в анализе образования тромбина, запускаемой с помощью фактора XIa в присутствии РЕ-содержащих фосфолипидных везикул PS/PE/PC 20%/40%/40%), (например, на меньшей ПО приблизительно 50%, по меньшей мере приблизительно 60%, по меньшей мере приблизительно 70%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 90%, по меньшей приблизительно 100%, по меньшей мере приблизительно 110%, по

меньшей мере приблизительно 120%, по меньшей мере приблизительно 130%, по меньшей мере приблизительно 140%, по меньшей мере приблизительно 160%, по меньшей мере приблизительно 160%, по меньшей мере приблизительно 160%, по меньшей мере приблизительно 180%, по меньшей мере приблизительно 190%, по меньшей мере приблизительно 210%, по меньшей мере приблизительно 210%, по меньшей мере приблизительно 210%, по меньшей мере приблизительно 230%, по меньшей мере приблизительно 240%, по меньшей мере приблизительно 260%, по меньшей мере приблизительно 250%, по меньшей мере при

- [642] В некоторых аспектах концентрация фосфолипида, которая поддерживает пиковую активность для биспецифической молекулы по настоящему изобретению, выше, чем концентрация фосфолипида, которая поддерживает пиковую активность для rFVIII.
- [643] В некоторых аспектах биспецифическая молекула относится к изотипу IgG. В некоторых аспектах изотип IgG относится к подклассу IgG1. В некоторых аспектах изотип IgG относится к подклассу IgG4.
- [644] В некоторых аспектах биспецифическая молекула имеет формат биспецифического IgG и выбрана из группы, состоящей из биспецифических антител, представленных в таблице 2. В некоторых аспектах биспецифическая молекула имеет формат биспецифического гетеродимера.
- [645] В некоторых аспектах биспецифическая молекула содержит две разные тяжелые цепи и две разные легкие цепи. В некоторых аспектах биспецифическая молекула содержит две идентичные легкие цепи и две разные тяжелые цепи.
- [646] В некоторых аспектах биспецифическая молекула может обеспечивать контроль или снижение частоты возникновения эпизодов кровотечения у субъекта, имеющего гемофилию. В некоторых аспектах биспецифическая молекула может обеспечивать поддержание гомеостаза у субъекта, имеющего гемофилию.

[647] В некоторых аспектах биспецифическая молекула может обеспечивать рутинную профилактику у субъекта, имеющего гемофилию. В некоторых аспектах у субъекта выработались или предположительно будут вырабатываться нейтрализующие антитела к фактору VIII.

[648] В некоторых аспектах биспецифическая молекула, раскрытая в данном документе (например, антитело), представляет собой (моноклональное) биспецифическое антитело, которое обладает специфичностью связывания для по меньшей мере двух разных сайтов и может иметь любой формат. За последнее время было разработано большое разнообразие форматов рекомбинантных например, двухвалентные, трехвалентные четырехвалентные биспецифические антитела. Примеры включают слияние формата антитела IgG и одноцепочечных доменов различных форматов см., например, Coloma, M.J., et al, Nature Biotech 15 (1997), 159-163; WO 2001/077342; Morrison, S.L., Nature Biotech 25 (2007), 1233-1234; Holliger. P. et. al, Nature Biotech. 23 (2005), 1 126-1 136; Fischer, N., and Leger, O., Pathobiology 74 (2007), 3-14; Shen, J., et. al, J. Immunol. Methods 318 (2007), 65-74; Wu, C, et al., Nature Biotech. 25 (2007), 1290-1297).

[649] Биспецифическое антитело или фрагмент в данном документе также включает бивалентные, трехвалентные или четырехвалентные биспецифические антитела, полученные в соответствии со способами, раскрытыми в W02009/080251; W02009/080252; W0 2009/080253; W02009/080254; W02010/112193; W02010/115589; W02010/136172; W02010/145792; W02010/145793 и W02011/117330, все из которых включены в данный документ посредством ссылки в их полных объемах.

[650] В некоторых аспектах биспецифическая молекула, например, антитело, раскрытое в данном документе, включает в себя Fd, scFv, стабилизированный дисульфидными связями scFv, связанный дисульфидными связями Fv, домен V-NAR, IgNar, интратело, IgG CH2, миниантитело, $F(ab')_3$, тетратело, триатело, диатело, однодоменное антитело, DVD-Ig, Fcab, mAb², (scFv) $_2$ или scFv-Fc.

- [651] Раскрытые в данном документе биспецифические антитела могут являться биспецифическими даже в тех случаях, когда имеется более двух связывающих доменов (т. е. антитело является трехвалентным или поливалентным). Виспецифические антитела включают, например, поливалентные одноцепочечные антитела, диатела и триатела, а также антитела, имеющие структуру константного домена полноразмерных антител, с которыми дополнительно связываются антигенсвязывающие домены (например, одноцепочечный Fv, домен VH и/или домен VL, Fab или (Fab)2,) связаны через один или несколько пептидных линкеров. Антитела могут быть полноразмерными от одного вида, или химеризованными или гуманизированными. Для антитела с более чем двумя антигенсвязывающими доменами некоторые связывающие домены могут быть идентичными, если белок имеет связывающие домены для двух разных антигенов.
- [652] Термин "валентность", используемый в настоящей заявке, обозначает наличие определенного количества связывающих доменов в молекуле антитела. Как таковые, термины "двухвалентный", "четырехвалентный" и "шестивалентный" обозначают наличие соответственно двух доменов связывания, четырех доменов связывания и шести доменов связывания в молекуле антитела. Раскрытые в данном документе биспецифические антитела являются по меньшей мере "двухвалентными" и могут быть "трехвалентными" или "поливалентными" (например, "четырехвалентными" или "шестивалентными"). В некоторых аспектах биспецифическое антитело по настоящему изобретению является двухвалентным, трехвалентным или четырехвалентным.
- [653] Методы получения полиспецифических антител включают без ограничения рекомбинантную совместную экспрессию двух пар тяжелой цепи и легкой цепи иммуноглобулина, имеющих различные специфичности (см. Milstein and Cuello, Nature 305: 537 (1983)), WO 93/08829 и Traunecker et al, EMBO J. 10: 3655 (1991)), а также конструирование "выступ-во-впадине" (см., например., патент США № 5731168; публикация № 201 1/0287009). Мультиспецифические антитела также могут быть получены путем конструирования белков с использованием эффектов

электростатического взаимодействия для получения Fcгетеродимерных молекул антител (WO 2009/089004A1); перекрестного связывания двух или более антител или фрагментов (см., например, патент США № 4676980 и Brennan et al., Science, 229: 81 (1985)); с использованием "лейциновых застежек" или биспиралей получения биспецифических антител (см., например, Kostelny et al., J. Immunol, 148 (5): 1547-1553 (1992) и WO201 1/034605); с применением расщепляемого фурином связывающего элемента между доменом CL и доменом VH в одной единице VH/VL (см., например, WO2013/1 19966 и WO2013/055958); с использованием технологии "диатела" для создания фрагментов биспецифических антител (см., например, Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-(1993)); с использованием кроссинговера иммуноглобулина для получения биспецифических антител например, WO2009/080251); и с использованием одноцепочечных димеров Fv (sFv) (см., например, Gruber et al., J. Immunol., 152:5368 (1994)) и созданием триспецифических антител, описано, например, в Tutt et al. J. Immunol. 147: 60 (1991).

[654] Биспецифические связывающие молекулы в контексте настоящего изобретения могут относиться к молекуле антитела, содержащей два полученных из антитела связывающих домена, где один связывающий домен может представлять собой scFv. Один из связывающих доменов состоит из вариабельных областей (или их частей) антитела, фрагмента антитела или его производного, способных специфически связываться с первой целевой молекулой или взаимодействовать с ней (например, FIXa). Второй связывающий домен состоит из вариабельных областей (или их частей) антитела, фрагмента антитела или его производного, способных специфически связываться/взаимодействовать со второй целевой молекулой (например, FXz).

[655] Два домена/области в молекуле биспецифического антитела предпочтительно ковалентно связаны друг с другом. Эта связь может осуществляться непосредственно, например, домен 1 [специфичный для первой (человеческой) целевой молекулы, например, FIXa]-домен 2 [специфичный для второй (человеческой) целевой молекулы, например, FXz], или наоборот. В других

аспектах эта связь может осуществляться посредством дополнительной полипептидной линкерной последовательности [домен 1]-[линкерная последовательность]-[домен2].

[656] В случае применения линкера этот линкер в контексте настоящего изобретения имеет длину и последовательность, достаточные для обеспечения того, чтобы каждый из первого и второго доменов мог независимо друг от друга сохранять свои специфичности дифференциального связывания. В контексте настоящего изобретения дополнительная полипептидная линкерная последовательность также может представлять собой фрагмент самого антитела, которым может являться, например, часть Fc или один или несколько константных доменов антитела.

[657] В контексте настоящего изобретения связывающий домен 1 также может являться частью плеча 1 антитела, и связывающий домен 2 также может являться частью плеча 2 антитела, или наоборот, где два плеча антитела соединены посредством области контакта. Плечо 1 антитела состоит из вариабельных областей (или их частей) антитела, фрагмента антитела или их производного, способного специфически связываться с/взаимодействовать (человеческой) целевой молекулой 1. Плечо 2 антитела состоит из вариабельных областей (или их частей) антитела, производного, способного специфически антитела ИЛИ ИX с/взаимодействовать с (человеческой) связываться целевой молекулой 2.

"Область контакта" включает [658] те контактные аминокислотные остатки (или другие, отличные от аминокислотных, группы, такие как, например, углеводные группы) в первом плече антитела, которые взаимодействуют с одним ИЛИ несколькими "контактными" аминокислотными остатками (или другими группами, отличными от аминокислотных) на границе второго плеча антитела. Предпочтительной областью контакта является домен иммуноглобулина, такой как константный домен (или его области) тяжелых цепей антитела, где связывание/взаимодействие через область контакта обеспечивает гетеродимеризацию двух плечей антитела. См. например Ridgway et al. (1996) Protein Eng. 9:617-621; International Publ. № WO 96/027011; Merchant et al. (1998)

Nature Biotech. 16:677-681; Atwell et al. (1997) J. Mol. Biol. 270:26-35; заявку на европейский патент EP1870459Al и публикации международных заявок №№ WO2007/147901, WO2009/089004 и WO 2010/129304, все из которых включены в данный документ посредством ссылки в их полных объемах.

[659] Молекулу биспецифического антитела, используемую в соответствии с настоящим изобретением, ОНЖОМ дополнительно модифицировать с применением традиционных методик, известных из уровня техники, например, с применением аминокислотной (-ых) делеции (-й), вставки (-ок), замены (замен), добавления (-й), и/или рекомбинации (-й) и/или любой другой модификации (-й), известной (из уровня техники, отдельно или в комбинации. Способы введения таких модификаций в последовательность ДНК, лежащую в основе аминокислотной последовательности цепи иммуноглобулина, хорошо известны специалисту в данной области техники; например, Sambrook (1989), loc. cit. Фрагменты или производные перечисленных Ід-производных доменов определяют (поли) пептиды, которые являются частями вышеуказанных молекул антител и/или химическими/биохимическими которые модифицированы или молекулярно-биологическими способами. Соответствующие способы уровня техники и описаны, в частности, известны ИЗ лабораторных руководствах (CM. Sambrook et al., Molecular Cloning: A Laboratory Manual: Cold Spring Harbor Laboratory Press, 2nd edition (1989) and 3rd edition (2001); Gerhardt et al., Methods for General and Molecular Bacteriology ASM Press (1994); Lefkovits, Immunology Methods Manual: The Comprehensive Sourcebook of Techniques; Academic Press (1997); Golemis, Protein-Protein Interactions: A Molecular Cloning Manual Cold Spring Harbor Laboratory Press (2002)).

[660] Раскрытые в данном документе биспецифические антитела могут содержать, например, один или несколько из следующих компонентов:

"Одноцепочечные Fvs" или "scFv": фрагменты антител, которые имеют домены VH и VL антитела, где эти домены присутствуют в одной полипептидной цепи. Обычно полипептид scFv дополнительно содержит полипептидный линкер между доменами VH и VL, который

позволяет scFv образовывать требуемую структуру для связывания антигена. Способы, описанные для получения одноцепочечных антител, описаны, например, у Pluckhun в *The Pharmacology of Monoclonal Antibodies*, Rosenburg and Moore eds. Springer-Verlag, N.Y. 113 (1994), 269-315.

"Фрагмент Fab": состоит из одной легкой цепи и СН1 и вариабельных областей одной тяжелой цепи. Тяжелая цепь молекулы Fab не может образовывать дисульфидную связь с другой молекулой тяжелой цепи.

"Фрагмент Fab'": содержит одну легкую цепь и часть одной тяжелой цепи, которая содержит домен VH и домен CH1, а также область между доменами CH1 и CH2, так что межцепочечная дисульфидная связь может образовываться между двумя тяжелыми цепями двух фрагментов Fab' с образованием молекулы $F(ab')_2$.

"Фрагмент $F(ab')_2$ ": содержит две легкие цепи и две тяжелые цепи, содержащие часть константной области между доменами СН1 и СН2, так что между двумя тяжелыми цепями образуется дисульфидная связь между цепями. Таким образом, фрагмент $F(ab')_2$ состоит из двух фрагментов Fab', которые удерживаются вместе дисульфидной связью между двумя тяжелыми цепями. "Область Fv" включает вариабельные области как тяжелой, так и легкой цепей, но не содержит константных областей.

[661] Следует отметить, что биспецифическое антитело, раскрытое в данном документе, может содержать, помимо указанного в данном документе первого (Ід-производного) домена и (Ід-производного) второго домена (-ов) дополнительный (-е) домен (-ы), например, для выделения и/или получения конструкций, полученных рекомбинантно.

IV. Константная область антител

[662] Вариабельная область антитела к FIX (например, вариабельная область антитела к FIXa или вариабельная область антитела к FX (например, вариабельная область антитела к FX (например, вариабельная область антитела к FXa или вариабельная область антитела к FXz), описанные в данном документе, в виде моноспецифических, биспецифических или мультиспецифических молекул могут быть связаны (например, ковалентно связаны или

слиты) с Fc, например, Fc IgG1, IgG2, IgG3 или IgG4, который может быть любого аллотипа или изоаллотипа, например, для IgG1: Glm, Glm1(a), Glm2(x), Glm3(f), Glm17(z); для IgG2: G2m, G2m23(n); для IgG3: G3m, G3m21(g1), G3m28(g5), G3m11(b0), G3m5(b1), G3m13(b3), G3m14(b4), G3m10(b5), G3m15(s), G3m16(t), G3m6(c3), G3m24(c5), G3m26(u), G3m27(v); и для К: Km, Km1, Km2, Km3 (см., например., Jefferies et al. (2009) mAbs 1: 1).

[663] В определенных вариантах осуществления вариабельные области антитела к FIX или антитела к FX, описанные в данном документе, связаны с Fc, который связывается с одним или несколькими активирующими рецепторами Fc (Fcүl, Fcүlla или Fcүllla) и тем самым стимулирует ADCC. В конкретных вариантах осуществления вариабельные области антитела к FIX или антитела к FX, описанные в данном документе, связаны с Fc, не имеющим эффекторных функций или в основном не имеющим эффекторных функций, например, IgG2 или IgG4.

[664] Вариабельные области антитела к FIX или антитела к FX, описанные в данном документе, могут быть связаны с не встречающейся в природе Fc-областью, например Fc, не имеющей эффекторных функций, или Fc с усиленным связыванием с одним или несколькими активирующими рецепторами Fc (Fcγ1, Fcγ11a или Fcγ111a).

[665] Как правило, вариабельные области, описанные в данном документе, могут быть связаны с Fc, содержащей одну ИЛИ несколько модификаций, обычно для изменения ИЛИ нескольких функциональных свойств антитела, таких как время полужизни в сыворотке крови, фиксация комплемента, связывание с рецептором Fc и/или антигензависимая клеточная цитотоксичность. Кроме того, описанное в данном документе антитело может быть химически модифицировано (например, к антителу могут быть присоединены одна или несколько химических групп) или может быть модифицировано для изменения его гликозилирования с изменить одно или несколько функциональных свойств антитела. Каждый из этих вариантов осуществления описан более подробно ниже. Нумерация остатков в области Fc соответствует индексу EU согласно Kabat.

полученные ИЗ константной области иммуноглобулина, предпочтительно иммуноглобулина человека, в TOMчисле фрагмента, варианта, мутанта ИЛИ производного константной области. Подходящие иммуноглобулины включают IgG1, IgG2, IgG3, IgG4 и другие классы, такие как IgA, IqD, IqE и IqM. Константная область иммуноглобулина определяется как встречающийся в природе или синтетически полученный полипептид, гомологичный С-концевой области иммуноглобулина, и может включать домен СН1, шарнир, домен СН2, домен СН3 или домен СН4, отдельно или в комбинации.

[667] Константная область иммуноглобулина ответственна за многие важные функции антител, в том числе за связывание с рецептором Fc (FcR) и фиксацию комплемента. Существует пять областей классов константных тяжелой классифицированных как IqA, IqG, IqD, IqE, IqM, каждый характерными эффекторными функциями, обозначенными изотипом. Например, IgG подразделяют на четыре подкласса, известные как IgG4. Молекулы Ig взаимодействуют с IgG1, IgG2, IgG3 и несколькими классами клеточных рецепторов. Например, молекулы IgG взаимодействуют с тремя классами рецепторов Fcy (FcyR), специфическими для класса антител IgG, а именно, FcyRI, FcyRII и Сообщалось, ЧТО важные последовательности связывания IqG с рецепторами FcyR находятся в доменах CH2 и CH3. полужизни в сыворотке крови антитела способности этого антитела связываться с рецептором Fc (FcR).

[668] В некоторых вариантах осуществления область Fc представляет собой вариант области Fc, например, последовательность Fc, которая была модифицирована (например, путем замены, делеции и/или вставки аминокислоты) относительно исходной последовательности Fc (например, немодифицированного полипептида Fc, который впоследствии модифицируется для получения варианта), чтобы обеспечить требуемые структурные особенности и/или биологическую активность,

[669] Например, можно вносить модификации в область Fc для получения варианта Fc, который (а) имеет повышенную или пониженную антителозависимую клеточно-опосредованную

ЦИТОТОКСИЧНОСТЬ (ADCC), (b) повышенную или пониженную опосредованную комплементом цитотоксичность (CDC), (c) увеличил или уменьшил аффинность к Clq и/или (d) увеличил или уменьшил аффинность к рецептору Fc по сравнению с исходным Fc. Такие варианты области Fc обычно содержат по меньшей мере одну аминокислотную модификацию области Fc. Считается, В модификаций аминокислот является объединение особенно желательным. Например, вариант области FC может включать две, , NGT четыре, пять и т. Д. замен, например, определенных положений области Fc, определенных в данном документе.

[670] Вариант области Fc может также включать изменение последовательности, при котором аминокислоты, участвующие образовании дисульфидной связи, удаляются или заменяются другими аминокислотами. Такое удаление может избежать реакции с другими цистеинсодержащими белками, присутствующими в клетке-хозяине, которые используются для получения антител, описанных в данном документе. Даже когда остатки цистеина удалены, одноцепочечные Fc-домены все еще могут образовывать димерный домен Fc, который удерживается вместе нековалентно. В других вариантах осуществления область Fc можно модифицировать ДЛЯ придания большей совместимости с выбранной клеткой-хозяином. Например, можно удалить последовательность РА рядом с N-концом типичной нативной области Fc, которая может распознаваться пищеварительным ферментом В E . coli, таким как пролиниминопептидаза. В других вариантах осуществления можно удалить один или несколько сайтов гликозилирования в домене Fc. Остатки, которые, как правило, гликозилированы (например, аспарагин), могут вызывать цитолитический ответ. Такие остатки удалить ИЛИ заменить негликозилированными остатками (например, аланином). В других вариантах осуществления сайты, вовлеченные во взаимодействие с комплементом, такие как сайт связывания Clq, можно удалить из области Fc. Например, можно удалить или заменить последовательность ЕКК IgG1 человека. В определенных вариантах осуществления сайты, которые влияют на связывание с рецепторами Гс, могут быть удалены, предпочтительно сайты, отличные от сайтов связывания с рецептором реутилизации.

В других вариантах осуществления область FC можно модифицировать для удаления сайта ADCC. Сайты ADCC известны из уровня техники; см. например, Molec. Immunol. 29 (5): 633-9 (1992) в отношении сайтов ADCC в IgGl. Конкретные примеры вариантов доменов FC раскрыты, например, в WO 97/34631 и WO 96/32478.

[671] В одном варианте осуществления шарнирную область Fc модифицируют таким образом, что количество остатков цистеина в шарнирной области изменяется, например увеличивается ИЛИ уменьшается. Данный подход описан далее в патенте США № 5677425, выданном Bodmer et al. Количество остатков цистеина в шарнирной области Fc изменяется, например, для облегчения сборки легкой и тяжелой цепей или для увеличения или уменьшения стабильности антитела. В одном варианте осуществления шарнирную область Гс подвергают мутации для уменьшения биологического времени полужизни антитела. Более конкретно, одну или несколько аминокислотных мутаций вводят в область контакта домена СН2-СН3 фрагмента Fc-шарнира, так что антитело нарушает связывание стафилококкового белка A (SpA) относительно связывания нативного домена Fc-шарнира SpA. Данный подход более подробно описан в патенте США № 6165745, выданном Ward et al.

[672] В еще других вариантах осуществления область FC изменяют путем замены по меньшей мере одного аминокислотного остатка другим аминокислотным остатком для изменения эффекторной функции (-й) антитела. Например, одну или несколько аминокислот, выбранных из аминокислотных остатков 234, 235, 236, 237, 297, 318, 320 и 322, можно заменить другим аминокислотным остатком так, чтобы антитело имело измененное сродство к эффекторному лиганду, но сохраняло антигенсвязывающую способность исходного антитела. Эффекторный лиганд, к которому изменяется аффинность, может представлять собой, например, рецептор FC или компонент CI комплемента. Данный подход более подробно описан в патентах США

[673] В другом примере одну или несколько аминокислот, выбранных из аминокислотных остатков 329, 331 и 322, можно заменить другим аминокислотным остатком так, чтобы антитело изменило связывание Clq и/или уменьшило или отменило

комплементзависимую цитотоксичность (CDC). Данный подход более подробно описан в патенте США № 6 194 551, выданном Idusogie et al.

[674] В другом примере один или несколько аминокислотных остатков в аминокислотных положениях 231 и 239 изменяют с целью изменить способность антитела фиксировать комплемент. Данный подход описан далее в публикации РСТ WO 94/29351 Bodmer et al.

[675] В еще одном примере область Fc можно модифицировать увеличения антителозависимой клеточной цитотоксичности для (ADCC) и/или для увеличения аффинности к рецептору Есу путем модификации одной или нескольких аминокислот в следующих положениях: 234, 235, 236, 238, 239, 240, 241, 243, 244, 245, 247, 248, 249, 252, 254, 255, 256, 258, 262, 263, 264, 265, 267, 268, 269, 270, 272, 276, 278, 280, 283, 285, 286, 289, 290, 292, 293, 294, 295, 296, 298, 299, 301, 303, 305, 307, 309, 312, 313, 315, 320, 322, 324, 325, 326, 327, 329, 330, 331, 332, 333, 334, 335, 337, 338, 340, 360, 373, 376, 378, 382, 388, 389, 398, 414, 416, 419, 430, 433, 434, 435, 436, 437, 438 или Иллюстративные замены включают 236A, 239D, 239E, 268D, 267E, 268E, 268F, 324T, 332D и 332E. Иллюстративные варианты включают 239D/332E, 236A/332E, 236A/239D/332E, 268F/324T, 267E/268F, 267Е/324Т и 267Е/268Ғ7324Т. Другие модификации для усиления взаимодействия ГсүК и комплемента включают без ограничения замены 298 А, 333А, 334А, 326А, 2471, 339D, 339Q, 280Н, 290S, 298D, 298V, 243L, 292P, 300L, 396L, 3051 и 396L. Эти и другие модификации рассмотрены в Strohl, 2009, Current Opinion Biotechnology 20:685-691.

[676] Модификации Fc, которые увеличивают связывание с рецептором Fcy, включают модификации аминокислот в любом одном или нескольких аминокислотных положениях 238, 239, 248, 249, 252, 254, 255, 256, 258, 265, 267, 268, 269, 270, 272, 279, 280, 283, 285, 298, 289, 290, 292, 293, 294, 295, 296, 298, 301, 303, 305, 307, 312, 315, 324, 327, 329, 330, 335, 337, 3338, 340, 360, 373, 376, 379, 382, 388, 389, 398, 414, 416, 419, 430, 434, 435, 437, 438 или 439 области Fc, где нумерация остатков в области Fc приведена в соответствии с индексом EU согласно Каbat

(W000/42072).

[677] Другими модификациями Fc, которые могут быть внесены в Fes, являются модификации, которые уменьшают или устраняют связывание с Гсү иили комплементарными белками, с уменьшением или устранением Fc-опосредованных эффекторных функций, таких как ADCC, ADCP и CDC. Иллюстративные модификации включают в себя без ограничения замены, вставки и делеции в положениях 234, 235, 236, 237, 267, 269, 325 и 328, причем нумерация соответствует индексу ЕU. Иллюстративные замены включают без ограничения 234G, 267R, 269R, 325L и 236R, 237K, 328R, где нумерация соответствует индексу EU. Вариант Fc может содержать 236R/328R. модификации уменьшения взаимодействия для комплемента включают замены 297А, 234А, 235А, 237А, 318А, 228Р, 236E, 268Q, 309L, 330S, 331 S, 220S, 226S, 229S, 238S, 233P и 234V, также удаление гликозилирования в положении мутационными или ферментативными средствами или путем выработки в организмах, таких как бактерии, которые не гликозилируют белки. Эти и другие модификации рассмотрены в Strohl, 2009, Current Opinion in Biotechnology 20:685-691.

[678] Необязательно, область FC может содержать не встречающийся в природе аминокислотный остаток в дополнительных и/или альтернативных положениях, известных специалисту в данной области техники (см., например, патенты США №№ 5624821; 6277375; 6737056; 6194551; 7317091; 8101720; патентные РСХ публикации WO 00/42072; WO 01/58957; WO 02/06919; WO 04/016750; WO 04/029207; WO 04/035752; WO 04/074455; WO 04/099249; WO 04/063351; WO 05/070963; WO 05/040217, WO 05/092925 и WO 06/0201 14).

[679] Также можно использовать варианты Fc, которые усиливают аффинность к ингибиторному рецептору FcyRllb. Такие варианты могут предусматривать СЛИТЫЙ белок иммуномодулирующими активностями, связанными с клетками FcyRllb+, в том числе например В-клетки и моноциты. В одном варианте осуществления варианты Fc предусматривают селективно повышенную аффинность к FcyRllb относительно одного ИЛИ нескольких активирующих рецепторов. Модификации для изменения связывания с FcyRllb включают одну или несколько модификаций в положении,

выбранном из группы, состоящей из 234, 235, 236, 237, 239, 266, 267, 268, 325, 326, 327, 328 и 332, в соответствии с индексом ЕU. Иллюстративные замены для усиления аффинности к FcyRllb включают без ограничения 234D, 234E, 234F, 234W, 235D, 235F, 235R, 235Y, 236D, 236N, 237D, 237N, 239D, 239E, 266M, 267D, 267E, 268D, 268E, 327D, 327E, 328F, 328W, 328Y, и 332E. Иллюстративные замены включают в себя 235Y, 236D, 239D, 266M, 267E, 268D, 268E, 328F, 328W, и 328Y. Другие варианты Fc для усиления связывания с FcyRllb, включают 235Y/267E, 236D/267E, 239D/268D, 239D/267E, 267E/268D, 267E/268E, и 267E/328F.

[680] Значения аффинности и свойства связывания области Fc по отношению к его лиганду можно определять с помощью известного из уровня техники ряда способов анализа in vitro (биохимические или иммунологические анализы), в том числе без ограничения равновесных способов (например, ферментный иммуносорбентный радиоиммунный (ELISA), анализ или анализ (RIA)), ИЛИ кинетических (например, анализ BIACORE) и других способов, таких непрямые анализы связывания, анализы конкурентного как ингибирования, резонансный перенос энергии флуоресценции (FRET), гель-электрофорез и хроматография (например, гель-фильтрация). В этих и других способах можно использовать метку на одном или нескольких исследуемых компонентах и/или можно использовать разнообразные способы выявления, в том числе без ограничения с применением хромогенных, флуоресцентных, люминесцентных Подробное аффинности ХИНПОТОЕИ меток. описание связывания можно найти В Paul, W. Ε., ed., Fundamental Immunology, 4th Ed., Lippincott-Raven, Philadelphia (1999), где основное внимание уделяется взаимодействиям антитело-иммуноген.

[681] В определенных вариантах осуществления антитело модифицируют для увеличения его биологического времени полужизни. Возможны различные подходы. Например, это может быть достигнуто путем увеличения аффинности связывания области Fc для FcRn. Например, один или несколько из следующих остатков можно подвергнуть мутированию: 252, 254, 256, 433, 435, 436, как описано в патенте США N 6277375. Конкретные иллюстративные замены включают одно или несколько из следующего: T252L, T254S

и/или Т256F. Как альтернатива, для увеличения биологического времени полужизни, антитело можно изменять в области СНІ или CL для того, чтобы оно содержало эпитоп, связывающий рецептор реутилизации, взятый из двух петель домена CH2 области Fc IgG, как описано в патентах США №№ 5869046 и 6121022 Presta et al. Другие иллюстративные варианты, посредством которых увеличивают связывание с FcRn и/или улучшают фармакокинетические свойства, включают замены в положениях 259, 308, 428 и 434, в том числе, например, 2591, 308F, 428L, 428M, 434S, 4341 1. 434F, 434Y, и Другие варианты, посредством которых связывание Fc c FcRn, включают: 250E, 250Q, 428 L, 250Q/428L (Hinton et al, 2004, J. Biol. Chem. 279(8): 6213-6216, Hinton et al. 2006 Journal of Immunology 176:346-356), 272A, 286A, 305A, 307A, 307Q, 31 1A, 312A, 376A, 378Q, 380A, 382A, 434A (Shields et al, Journal of Biological Chemistry, 2001, 276(9):6591-6604), 252F, 252T, 252Y, 252W, 254T, 256S, 256R, 256Q, 256E, 256D, 256T, 309P, 31 1 S, 433R, 433S, 4331, 433P, 433Q, 434H, 434F, 434Y, 252Y/254T/256E, 433K/434F/436H, 308T/309P/311S (Dall'Acqua et al. Journal of Immunology, 2002, 169:5171-5180, Dall'Acqua et al., 2006, Journal of Biological Chemistry 281:23514-23524). Другие модификации для модуляции связывания FcRn описаны в Yeung et al., 2010, J Immunol, 182:7663-7671. В определенных вариантах осуществления можно использовать гибридные изотипы IgG с конкретными биологическими характеристиками. Например, гибридный вариант IgG1/IgG3 можно сконструировать путем замены положений IgG! в области CH2 и/или СНЗ с аминокислотами из IgG3 в положениях, где два изотипа различаются. Таким образом, можно сконструировать вариантное антитело IgG, которое включает одну или несколько замен, например, 274Q, 276K, 300F, 339T, 356E, 358M, 384S, 392N, 397M, 4221, 435R и 436F. В других вариантах осуществления, описанных в данном документе, гибридный вариант IgG1/IgG2 можно сконструировать путем замены положений IgG2 в области CH2 и/или СНЗ аминокислотами из IgG1 в положениях, где эти два изотипа различаются. Таким образом, можно сконструировать вариантное антитело IqG, которое содержит одну или несколько

замен, , например, одну или несколько из следующих аминокислотных замен: 233E, 234L, 235L, -236G (относится к вставке глицина в положении 236) и 321 h.

[682] Кроме того, участки связывания на IgG1 человека для FcyR1, FcyRII, FcyRIII и FcRn были картированы, и были описаны варианты с улучшенным связыванием (см. Shields, RL et al. (2001) J. Biol. Chem. 276:6591-6604). Было показано, что специфические мутации в положениях 256, 290, 298, 333, 334 и 339 улучшают связывание с FcyRIII. Кроме того, было показано, что следующие комбинационные мутанты улучшают связывание FcyRIII: T256A/S298A, S298A/E333A,

[683] S298A/K224A и S298A/E333A/K334A, которые, как было показано, проявляют усиление связывания $Fc\gamma RIIIa$ и активность ADCC (Shields et al., 2001). Выли идентифицированы другие варианты IgG1 с сильно усиленным связыванием с $Fc\gamma RIIIa$, в том числе варианты с мутациями S239D/I332E и

S239D/I332E/A330L, которые продемонстрировали [684] наибольшее увеличение аффинности к FcyRIIIa, снижение связывания FcYRIIb и сильную цитотоксическую активность у макаков-крабоедов (Lazar et al., 2006). Введение тройных мутаций в антитела, такие алемтузумаб (CD52-специфический), трастузумаб (HER2/neuспецифический), ритуксимаб (CD20-специфический) и цетуксимаб (EGFR-специфический), приводило к значительно повышенной in активности ADCC vitro, и вариант S239D/I332E продемонстрировал повышенную способность к истощению В-клеток у обезьян (Lazar et al., 2006). Кроме того, идентифицировали мутанты IgG1, содержащие мутации L235V, F243L, R292P, Y300L и Р396L, которые проявляли усиленное связывание с FcyRIIIa и одновременно повышенную активность ADCC у трансгенных мышей, экспрессирующих FcyRIIIa человека, на моделях злокачественных опухолей В-клеток и рака молочной железы (Stavenhagen et al., 2007; Nordstrom et al., 2011). Другие мутанты Fc, которые могут использоваться, включают: S298A/E333A/L334A, S239D/I332E, S239D/I332E/A330L, L235V/F243L/R292P/Y300L/P396L, и M428L/N434S.

[685] В определенных вариантах осуществления выбран Fc, который имеет пониженное связывание с FcүR. Иллюстративный Fc,

например, Fc IgG1 с пониженным связыванием Fc γ R, содержит следующие три аминокислотные замены: L234A, L235E и G237A.

[686] В определенных вариантах осуществления выбран Fc, который имеет пониженную фиксацию комплемента. Иллюстративный Fc, например Fc IgG1 с пониженной фиксацией комплемента, содержит следующие две аминокислотные замены: A330S и P331S.

[687] В определенных вариантах осуществления выбран Fc, который по существу не имеет эффекторной функции, т. е. он характеризуется пониженным связыванием с FcүR и пониженной фиксацией комплемента. Иллюстративный Fc, например Fc IgG1, который не имеет эффекторных функций, содержит следующие пять мутаций: L234A, L235E, G237A, A330S и P331S.

[688] При использовании константного домена IgG4 обычно предпочтительно включать замену S228P, которая имитирует шарнирную последовательность в IgG1 и тем самым стабилизирует молекулы IgG4.

[689] Следует отметить, ЧТО В определенных аспектах раскрытые в данном документе связывающие молекулы конструировать для слияния домена СНЗ непосредственно шарнирной областью соответствующих модифицированных антител или их фрагментов. В других конструкциях можно вставить пептидный спейсер между шарнирной областью и модифицированными доменами и/или СНЗ. Например, можно экспрессировать совместимые конструкции, где домен СН2 был удален и оставшийся домен СН3 (модифицированный или немодифицированный) соединен с шарнирной областью с помощью спейсера из 5-20 аминокислот. Такой спейсер можно добавлять, к примеру, чтобы убедиться, что регуляторные элементы константного домена остаются свободными и доступными шарнирная область остается гибкой. Однако ИЛИ ЧТО отметить, что аминокислотные спейсеры могут в некоторых случаях оказаться иммуногенными и вызывать нежелательный иммунный ответ в отношении конструкции. Соответственно, в определенных аспектах любой спейсер, добавленный в конструкцию, будет относительно будет включен неиммуногенным ИЛИ даже вовсе не сохранения требуемых биохимических свойств модифицированных антител.

[690] Наряду с делецией целых доменов константной области, следует принять во внимание, что раскрытые в данном документе связывающие молекулы можно получить за счет частичной делеции или замены нескольких или даже одной аминокислоты. Например, мутации одной аминокислоты в выбранных областях домена СН2 может быть достаточно, чтобы существенно ослабить связывание Ес и тем самым усилить локализацию в опухоли. Кроме того, как указывалось выше, константные области раскрытых связывающих молекул можно модифицировать путем мутации или замены одной или нескольких улучшает профиль полученной в результате аминокислот, что конструкции. В связи с этим можно блокировать активность, обеспечиваемую консервативным участком связывания (например, Fcсущественно сохраняя при этом конфигурацию связывания), иммуногенный профиль модифицированного антитела антигенсвязывающего фрагмента. Определенные аспекты МОГУТ добавление одной нескольких включать или аминокислот константную область с улучшением требуемых характеристик, таких как ослабление эффекторной функции или присоединение большего количества терапевтических или диагностических средств. В таких аспектах специфические последовательности, полученные ИЗ выбранных доменов константной области, можно вставить или копировать.

[691] одном варианте гликозилирование В еще антитела модифицированным. Например, ОНЖОМ ПОЛУЧИТЬ негликозилированное антитело (T. е. антитело, У отсутствует гликозилирование). Гликозилирование можно изменить, аффинность антитела например, для того, чтобы повысить антигену. Таких углеводных модификаций можно достичь с помощью, изменения ОДНОГО или нескольких сайтов например, гликозилирования в пределах последовательности антитела. быть осуществлены Например, МОГУТ одна ИЛИ несколько аминокислотных замен, ЧТО приводит к удалению одного нескольких сайтов гликозилирования ИЗ каркаса вариабельной области с устранением таким образом гликозилирования в данном сайте. Такое гликозилирование может повышать аффинность антитела к антигену. Такой подход более подробно описан в патентах США №№ 5714350 и 6350861, выданных Со et al.

[692] Гликозилирование константной области на N297 может быть предотвращено путем мутации одного или нескольких аминокислотных остатков (например, гликозилированных аминокислотных остатков или соседнего аминокислотного остатка) на другой остаток, например, N297A, S298G, T299A или любую их комбинацию.

[693] Дополнительно или альтернативно можно создать антитело, которое имеет измененный тип гликозилирования, антитело, имеющее например, гипофукозилированное количество фукозильных остатков, или антитело, характеризующееся повышенным содержанием структур с GlcNac в точках ветвления. продемонстрировано, что такие измененные ADCC. гликозилирования повышают способность антител к модификации углеводов можно осуществлять, например, путем экспрессии антитела в клетке-хозяине с измененным аппаратом гликозилирования. В уровне техники были описаны клетки измененным аппаратом гликозилирования, и их можно применять в качестве клеток-хозяев, в которых можно экспрессировать рекомбинантные антитела, описанные в данном документе, чтобы образом получить антитело с измененным гликозилирования. Например, в EP 1176195 Hanai et al. описана клеточная линия с функционально нарушенным геном FUT8, который фукозилтрансферазу, так ЧТО для антител, такой клеточной экспрессированных В линии, характерно гипофукозилирование. В публикации РСТ WO 03/035835 Presta описан вариант клеточной линии СНО, клетки Led 3 со сниженной способностью присоединять фукозу к Asn(297)-связанным углеводам, что также приводит в результате к гипофукозилированию антител, экспрессируемых в этой клетке-хозяине (см. также Shields, R.L. et al. (2002) J. Biol. Chem. 277:26733-26740). В публикации РСТ 99/54342 WO Umana et al. описаны клеточные экспрессии гликозилтрансфераз, сконструированные для модифицирующих гликопротеины (например, бета (1, 4) -Nацетилглюкозаминилтрансферазы III (GnTIII)) таким образом, что антитела, экспрессируемые в сконструированных клеточных линиях,

характеризуются повышенным содержанием структур GlcNac в точках ветвления, что приводит к повышенной активности антител при ADCC (см. также Umana et al. (1999) Nat. Biotech. 17: 176-180).

Другая модификация антител, описанных в данном документе, представляет собой пегилирование. Антитело можно пегилированию, например, для увеличения биологического (например, сывороточного) времени полужизни антитела. Для пегилирования антитела антитело или его фрагмент обычно подвергают взаимодействию с полиэтиленгликолем (РЕG), таким как реакционноспособное производное PEG от сложного эфира или альдегида, в условиях, при которых одна или несколько групп K антителу PEG присоединяются ИЛИ фрагменту антитела. Предпочтительно, пегилирование осуществляют посредством реакции ацилирования или реакции алкилирования с реакционноспособной молекулой PEG (или аналогичным реакционноспособным данном документе водорастворимым полимером). Используемый В термин "полиэтиленгликоль" предназначен для охвата любой из форм PEG, которые были использованы для дериватизации других белков, таких как моно (CI-CIO) алкокси- или арилоксиполиэтиленгликоль полиэтиленгликольмалеимид. В определенных ИЛИ вариантах осуществления антитело, подлежащее пегилированию, представляет собой агликозилированное антитело. Способы пегилирования белков известны из уровня техники и могут быть применены к антителам, описанным в данном документе. См., например, ЕР 0 154 316 Nishimura et al. и EP 0401384, Ishikawa et al.

V. Иммуноконъюгаты и слитые белки

[695] изобретении В настоящем также предусмотрены иммуноконъюгаты, содержащие любую ИЗ связывающих (например, антитела), раскрытых в данном документе (например, антитело к FIX, антитело к FX или биспецифическое антитело к FIX/FX, раскрытые В данном документе). В ОДНОМ аспекте иммуноконъюгат содержит антитело или антигенсвязывающую часть, раскрытые в данном документе, связанные со средством. В одном конкретном аспекте иммуноконъюгат содержит раскрытую в данном документе биспецифическую молекулу, связанную со средством, (например, как терапевтическое или диагностическое средство).

[696] Соответственно, в настоящем изобретении предусмотрены иммуноконъюгаты на основе антитела к FIX, раскрытого в данном FX, раскрытого в документе, на основе антитела к документе, или на основе биспецифических антител, раскрытых в биспецифических данном документе, например, антител, FIX характеризующихся специфичностью В отношении И специфичностью в отношении FX.

[697] В некоторых аспектах иммуноконъюгат содержит любую из в данном документе связывающих молекул (например, антитело к FIX, антитело к FX или биспецифическое антитело к FIX/FX, packputue данном документе), конъюгированных В меньшей мере С ОДНИМ терапевтическим или диагностическим В некоторых аспектах иммуноконъюгат дополнительно содержит по меньшей мере один необязательный спейсер, который может быть интеркалирован между боковой цепью или аминокислотой в полипептидной цепи раскрытой в данном документе связывающей молекулы (например, антитела FIX, антитела К FΧ или биспецифического антитела FIX/FX, K раскрытых данном документе), и терапевтический или диагностический фрагмент. В некоторых аспектах по меньшей мере один спейсер представляет В собой пептидный спейсер. других аспектах TOT представляет собой непептидный спейсер. В некоторых аспектах спейсер является нестабильным, таким как кислотонеустойчивый спейсер (например, гидразин). В других аспектах спейсер является ферментативно расщепляемым пептидом, например расщепляемым дипептидом. В некоторых аспектах спейсер является нерасщепляемым (гидролитически стабильным), например, тиоэфирным спейсером или пространственно затрудненным дисульфидным спейсером.

[698] В некоторых аспектах иммуноконъюгат содержит два, пять, шесть, семь, восемь, девять или десять три, четыре, или диагностических фрагментов. В терапевтических некоторых аспектах все терапевтические или диагностические являются одинаковыми. В некоторых аспектах по меньшей мере один терапевтический ИЛИ диагностический фрагмент отличается ОТ В некоторых аспектах все терапевтические остальных. ИЛИ диагностические фрагменты являются разными. В некоторых аспектах все спейсеры (например, пептидные и/или непептидные спейсеры) являются одинаковыми. В некоторых аспектах по меньшей мере один спейсер отличается от остальных. В других аспектах все спейсеры являются разными.

[699] В некоторых аспектах каждый терапевтический или диагностический фрагмент химически конъюгирован с боковой цепью аминокислоты в конкретном положении в области Fc раскрытой в данном документе связывающей молекулы (например, антитела к FIX, антитела к FX или биспецифического антитела к FIX/FX, раскрытых в данном документе).

[700] В некоторых аспектах конкретные положения в области Fc выбраны из группы, состоящей из 239, 248, 254, 258, 273, 279, 282, 284, 286, 287, 289, 297, 298, 312, 324, 326, 330, 335, 337, 339, 350, 355, 356, 359, 360, 361, 375, 383, 384, 389, 398, 400, 413, 415, 418, 422, 435, 440, 441, 442, 443, 446, вставки между положениями 239 и 240 и их комбинаций, где нумерация аминокислотных положений соответствует индексу EU, как изложено в Kabat.

[701] В некоторых аспектах аминокислотная боковая цепь, с которой конъюгирован терапевтический или диагностический фрагмент, представляет собой сульфгидрильную боковую цепь, например сульфгидрильную группу аминокислоты цистеина. В некоторых аспектах по меньшей мере один терапевтический или диагностический фрагмент химически конъюгирован с боковой цепью аминокислоты, расположенной в положении вне области Fc раскрытой в данном документе связывающей молекулы (например, антитела к FIX, антитела к FX или биспецифического антитела к FIX/FX, раскрытых в данном документе).

[702] В некоторых аспектах все терапевтические или диагностические фрагменты химически конъюгированы с боковой цепью аминокислоты, расположенной в положении вне области Гс раскрытой в данном документе связывающей молекулы (например, антитела к FIX, антитела к FX или биспецифического антитела к FIX/FX, раскрытых в данном документе). В некоторых аспектах по меньшей мере один терапевтический или диагностический фрагмент генетически включен в полипептидную цепь раскрытой в данном

документе связывающей молекулы (например, антитела к FIX, антитела к FX или биспецифического антитела к FIX/FX, раскрытых в данном документе) с использованием рекомбинантных методик, известных из уровня техники.

[703] В некоторых вариантах осуществления иммуноконъюгаты, раскрытые в данном документе, могут содержать фрагмент, который направляет антитела или молекулы, раскрытые в данном документе, на сайт повреждения. В конкретном варианте осуществления фрагмент, который нацеливается на антитела или связывающие молекулы с участком повреждения, включает в себя фрагмент, нацеленный на тромбоциты, например фрагмент, нацеленный на тромбоциты.

[704] Иммуноконъюгаты, раскрытые в данном документе, содержат по меньшей мере одну из раскрытых в данном документе связывающих молекул (например, антитело к FIX, антитело к FX или биспецифическое антитело К FIX/FX, раскрытые в данном документе), которые были дериватизированы или связаны (например, химически или рекомбинантно) с другой молекулой (например, пептидом, небольшой молекулой лекарственного средства, выявляемой молекулой и т. д.). Как правило, раскрытые в данном документе связывающие молекулы (например, антитело антитело к FX или биспецифическое антитело к FIX/FX, раскрытые в документе), дериватизированы таким данном образом, что CO специфическим антигенсвязывающим связывание участком (например, эпитопом на FIXa и/или эпитопом на FXz) не подвержено неблагоприятному воздействию, например, химической ферментативной дериватизации, генетическому слиянию или мечению.

[705] Соответственно, подразумевается, что связывающие молекулы по настоящему изобретению включают как интактные, так и модифицированные формы раскрытых в данном документе связывающих (например, FIX, антитела к FX молекул антитела к или биспецифического антитела к FIX/FX, раскрытых документе). Например, раскрытые в данном документе связывающие молекулы (например, антитело K FIX, антитело К FΧ ИЛИ биспецифическое антитело к FIX/FX, раскрытые в данном документе) антигенсвязывающая часть, могут быть функционально

связаны (посредством химического связывания, генетического слияния, нековалентного соединения или иным образом) с одним или несколькими другими молекулярными объектами, такими как фармацевтическое средство, выявляемое средство и/или белок или пептид, которые могут опосредовать соединение раскрытой в данном документе связывающей молекулы (например, антитела к FIX, антитела к FX или биспецифического антитела к FIX/FX, раскрытых в данном документе) с другой молекулой (такой как центральная область стрептавидина или полигистидиновая метка).

[706] Один тип дериватизированной молекулы можно получить путем сшивания двух или более молекулярных объектов, например, раскрытой в данном документе связывающей молекулы (например, антитела к FIX, антитела к FX или биспецифического антитела к FIX/FX, packputux В данном документе) с терапевтическим фрагментом. Подходящие средства для перекрестного связывания включают средства, которые являются гетеробифункциональными, т. содержащими две разные реакционноспособные разделенные подходящим промежуточным звеном (например, сложный дифе м-малеимидобензоил-N-гидроксисукцинимида), или гомобифункциональными (например, дисукцинимидилсуберат). Такие средства для перекрестного связывания доступны, например, от Pierce Chemical Company, Рокфорд, Иллинойс, США. Дополнительные бифункциональные связующие средства включают N-сукцинимидил-3-(2-пиридилдитиол) пропионат (SPDP), сукцинимидил-4-(Nмалеимидометил) циклогексан-1-карбоксилат, иминотиолан бифункциональные производные сложных имидоэфиров (такие как диметиладипимидат НСL), активные сложные эфиры (такие как дисукцинимидилсуберат), альдегиды (такие как глутаровый альдегид), бис-азидосоединения (такие как бис- (пазидобензоил) гександиамин), производные бис-диазония (такие как бис-(п-диазонийбензоил)этилендиамин), диизоцианаты (такие как толуол-2,6-диизоцианат) и бис-активные соединения фтора (такие как 1,5-дифтор-2,4-динитробензол).

[707] Другой тип дериватизированной молекулы можно получить посредством включения выявляемой метки. Пригодные средства для выявления включают флуоресцентные соединения (например,

флуоресцеин, флуоресцеина изоцианат, родамин, 5-диметиламин-1нафталинсульфонилхлорид, фикоэритрин, люминофоры на лантанидов и т. п.), ферменты, пригодные для выявления (например, пероксидаза хрена, β-галактозидаза, люцифераза, щелочная фосфатаза, глюкозооксидаза и т. эпитопы, распознаваемые вторичным репортером (например, парные последовательности "лейциновых застежек", участки связывания для вторичных антител, домены связывания металлов, эпитопные метки и т. д.). В некоторых аспектах выявляемые метки можно присоединять с помощью по меньшей мере одной спейсерной группы. Спейсерные могут быть различной длины с целью уменьшения потенциальных стерических затруднений.

[708] Раскрытая в данном документе связывающая молекула (например, антитело к FIX, антитело к FX или биспецифическое антитело к FIX/FX) также может быть мечена радиоактивной меткой, например для диагностических целей. Раскрытую в данном документе связывающую молекулу можно также дериватизировать с помощью химической группы, например полимера, такого как полиэтиленгликоль (PEG), метильной группы, этильной группы или углеводной группы. Эти группы могут быть полезны для улучшения биологических характеристик связывающей молекулы (например, антитела к FIX, антитела к FX или биспецифического антитела к FIX/FX, раскрытых в данном документе), таких как увеличение времени полужизни в сыворотке крови или для повышения связывания в тканях.

VI. Нуклеиновые кислоты, векторы экспрессии и клетки

[709] В настоящем раскрытии также предусмотрены нуклеиновые кислоты, кодирующие раскрытые в данном документе связывающие молекулы, например, любое из антител или связывающих молекул, раскрытых в данном документе. В некоторых аспектах нуклеиновая кислота кодирует вариабельную область тяжелой и/или легкой цепи В раскрытого данном документе, ИЛИ его антигенсвязывающей части, ИЛИ биспецифической или мультиспецифической молекулы (например, антитела), раскрытой в данном документе. Эти полинуклеотиды по настоящему изобретению могут быть в виде РНК или в виде ДНК. ДНК включает кДНК,

геномную ДНК и синтетическую ДНК и может быть двухнитевой или однонитевой, при MOTE если она однонитевая, представлять собой кодирующую нить ИЛИ некодирующую (антисмысловую) нить. В определенных аспектах ДНК представляет собой кДНК, которую используют для получения не встречающегося в природе рекомбинантного антитела. В некоторых PHK представляет собой mRNA, которая может экспрессировать раскрытую данном документе связывающую молекулу после введения нуждающемуся в этом субъекту. В некоторых аспектах экспрессия mRNA может осуществляться in vivo. Экспрессия mRNA также может осуществляться in vitro или ex vivo. В некоторых аспектах mRNA, кодирующая раскрытую в данном документе связывающую молекулу (например, антитело к FIX, антитело к FX или биспецифическое FIX/FX), может быть химически модифицирована, например, для включения модифицированных межнуклеозидных связей модифицированных оснований (например, фосфоротиоат) ИЛИ (например, псевдоуридин, тиоуридин и т. д.).

определенных аспектах полинуклеотиды выделенными. В определенных аспектах полинуклеотиды являются фактически чистыми. В определенных аспектах полинуклеотиды последовательность, кодирующую зрелый полипептид, той рамке считывания с полинуклеотидом СЛИТУЮ В же природным, либо гетерологичным), который способствует, например, экспрессии и секреции полипептида из клетки-хозяина (например, последовательность, которая функционирует последовательность сигнала секреции для регулирования транспорта Полипептид полипептида клетки). С лидерной ИЗ последовательностью представляет собой белок-предшественник содержать лидерную последовательность, отщепляемую клеткой-хозяином с образованием зрелой формы полипептида. Полинуклеотиды также могут кодировать пробелок связывающей представляет собой зрелый который белок дополнительными аминокислотными остатками, например на 5'-конце. В определенных аспектах полинуклеотиды изменены для оптимизации частоты использования кодона для определенной клетки-хозяина.

[711] В определенных аспектах полинуклеотиды содержат

кодирующую последовательность для зрелой связывающей молекулы, например, раскрытой в данном документе связывающей молекулы (например, антитела к FIX, антитела к FX или биспецифического антитела к FIX/FX, раскрытых в данном документе) или ее антигенсвязывающего фрагмента, слитой в той же рамке считывания с гетерологичной маркерной последовательностью, которая дает возможность, например, очищать кодируемый полипептид.

- [712] Например, маркерная последовательность может являться гексагистидиновой (His6) меткой, обеспечиваемой, например, вектором pQE-9, для обеспечения очистки зрелого полипептида, слитого с маркером, в случае бактериальной клетки-хозяина. В других аспектах маркерная последовательность может являться гемагглютининовой (HA) меткой, полученной, например, из белка гемагглютинина вируса гриппа, в случае если используется клетка-хозяин млекопитающего (например, клетки COS-7).
- [713] Настоящее изобретение дополнительно относится К вариантам описанных полинуклеотидов, кодирующих, фрагменты, аналоги и производные связывающих молекул, раскрытых в данном документе (например, антител к FIX, антител к FX или биспецифических антител к FIX/FX). Варианты полинуклеотидов могут содержать изменения в кодирующих областях, некодирующих областях или как в тех, так и в других. В некоторых аспектах варианты полинуклеотидов содержат изменения, которые приводят к "молчащим" заменам, добавлениям или делециям, однако не изменяют свойства или виды активностей кодируемого полипептида. некоторых аспектах нуклеотидные варианты получены с помощью "молчащих" вырожденности генетического замен из-за Варианты полинуклеотидов можно получать в силу ряда например, для оптимизации экспрессии кодонов для конкретного mRNA хозяина (замена кодонов В человека на кодоны, предпочтительные для хозяина-бактерии, такого как E. coli).
- [714] В некоторых аспектах последовательность ДНК, кодирующая раскрытую в данном документе связывающую молекулу или ее антигенсвязывающий фрагмент, может быть сконструирована с помощью химического синтеза, например, с использованием синтезатора олигонуклеотидов. Такие олигонуклеотиды можно

на основе аминокислотной последовательности конструировать требуемого полипептида и отбирая те кодоны, которые являются предпочтительными для клетки-хозяина, в которой будут получать рекомбинантный полипептид, представляющий интерес. Для синтеза полинуклеотидной последовательности, выделенной кодирующей выделенный полипептид, представляющий интерес, можно применять способы. Например, полную стандартные аминокислотную последовательность можно применять для конструирования гена с возможной последовательностью, восстановленной по полипептиду. Затем можно синтезировать ДНК-олигомер, содержащий нуклеотидную последовательность, кодирующую конкретный выделенный полипептид. синтезировать Например, ОНЖОМ несколько олигонуклеотидов, кодирующих части требуемого полипептида, затем лигировать их. Отдельные олигонуклеотиды, как содержат 5' или 3' "липкие" концы для комплементарной сборки.

- [715] Также представлен вектор экспрессии или комбинация экспрессии, включающая одну или несколько нуклеиновой кислоты, раскрытых в данном документе. Сразу после сборки (посредством синтеза, сайт-направленного мутагенеза или другого способа) полинуклеотидные последовательности, кодирующие конкретный выделенный полипептид, представляющий интерес, будут экспрессии и функционально вставлены вектор связаны контролирующей экспрессию последовательностью, соответствующей экспрессии белка в требуемом хозяине. Правильность сборки можно проверить, например, С ПОМОЩЬЮ секвенирования нуклеотидов, рестрикционного картирования и экспрессии биологически активного полипептида в подходящем хозяине. Как хорошо известно из уровня техники, ДЛЯ того чтобы получить высокие уровни экспрессии трансфицированного гена в хозяине, ген должен быть функционально связан С контролирующими транскрипцию трансляцию И последовательностями, которые являются функциональными В выбранном для экспрессии хозяине.
- [716] В определенных аспектах используются рекомбинантные векторы экспрессии для амплификации и экспрессии ДНК, кодирующей связывающие молекулы. Рекомбинантные векторы экспрессии представляют собой реплицируемые ДНК-конструкции, которые

содержат синтетические или кДНК-производные фрагменты ДНК, кодирующие, например, полипептидную цепь раскрытой в данном документе связывающей молекулы или ее антигенсвязывающий фрагмент, функционально связанные с подходящими регулирующими транскрипцию или трансляцию элементами, полученными из генов млекопитающих, микроорганизмов, вирусов или насекомых.

[717] В основном транскрипционная единица содержит сборку MΥ (1)генетического элемента ИЛИ элементов, имеющих регуляторную роль в экспрессии генов, например, промоторы или энхансеры транскрипции, (2) структурной ИЛИ кодирующей последовательности, которая транскрибируется mRNA В транслируется в белок, и (3) соответствующих последовательностей инициации транскрипции и трансляции, а также последовательностей терминации, подробно описанных ниже. Такие регуляторные элементы МОГУТ включать последовательность оператора для контроля транскрипции.

[718] Способность ĸ репликации В SHNREOX обычно обеспечивается точкой начала репликации, при ЭТОМ ОНЖОМ дополнительно встроить ген селекции для облегчения распознавания трансформантов. Области ДНК являются функционально связанными, когда они функционально зависят друг от друга. Например, ДНК для сигнального пептида (секреторный лидер) функционально связана с полипептида, ΠНК для если она экспрессируется виде предшественника, который участвует в секреции полипептида; промотор функционально связан с кодирующей последовательностью, если он контролирует транскрипцию последовательности; или сайт связывания рибосомы функционально кодирующей связан С последовательностью, если он расположен так, чтобы обеспечивать трансляцию. Структурные элементы, предназначенные для применения экспрессионных системах, B дрожжевых включают лидерную последовательность, обеспечивающую секрецию ИЗ клетки транслируемого белка клеткой-хозяином. Как альтернатива, если рекомбинантный белок экспрессируется без лидерной или транспортной последовательности, то он может включать в себя остаток метионина на N-конце. Этот остаток может впоследствии быть необязательно отщеплен от экспрессируемого рекомбинантного белка с получением конечного продукта.

[719] Выбор контролирующей экспрессию последовательности и вектора экспрессии будет зависеть от выбора хозяина. Можно использовать большое разнообразие комбинаций хозяин/вектор для экспрессии. Пригодные векторы экспрессии для эукариотических хозяев включают, например, контролирующие экспрессию векторы, содержащие последовательности, из SV40, вируса папилломы крупного рогатого скота, аденовируса и цитомегаловируса. Применимые векторы экспрессии для хозяев-бактерий включают в себя известные бактериальные плазмиды, такие как плазмиды из Е. соli, в том числе pCR1, pBR322, pMB9 и их производные, плазмиды для более широкого круга хозяев, такие как М13 и нитевидные фаги, содержащие однонитевую ДНК.

[720] Настоящее изобретение также относится к клетке, содержащей нуклеиновую кислоту или нуклеиновые кислоты, раскрытые в данном документе, или вектор или векторы экспрессии, данном документе. В некоторых аспектах трансформируют посредством вектора экспрессии или векторов, раскрытых в данном документе. В некоторых аспектах клетка для рекомбинантной является клеткой-хозяином экспрессии. Например, в некоторых аспектах клетка-хозяин представляет собой прокариотическую клетку, эукариотическую клетку, простейшего, животную клетку, растительную клетку, дрожжевую клетку, клетку Sf9, клетку млекопитающего, клетку птицы, клетку насекомого, клетку СНО, клетку НЕК или клетку COS. Прокариоты включают грамотрицательные грамположительные организмы, например E. Coli или бацилл. Клетки высших эукариот включают устойчивые линии клеток, полученные от млекопитающих. Можно также использовать бесклеточные системы трансляции. Соответствующие векторы ДЛЯ клонирования экспрессии для применения в клетках-хозяевах бактерий, грибов, дрожжей и млекопитающих описаны у Pouwels et al. (Cloning Vectors: Laboratory Manual, Elsevier, N.Y., соответствующее изобретение которых включено в данный документ с помощью ссылки. Дополнительную информацию касательно способов получения белков, в том числе получения антител, можно найти,

например, в публикации заявки на патент США № 2008/0187954, патентах США №№ 6413746 и 6660501 и публикации международной заявки на патент США № WO 04009823, каждая из которых включена в данный документ посредством ссылки во всей своей полноте.

[721] Экспрессию рекомбинантных белков можно осуществлять в млекопитающих, поскольку такие белки В основном правильно свернуты, соответствующим образом модифицированы полностью функциональны. Примеры подходящих линий клеток-хозяев млекопитающих включают НЕК-293 и НЕК-293Т, линии клеток почки обезьяны COS-7, описанные Gluzman (Cell 23:175, 1981), и другие клеточные линии, в том числе, например, клеточные линии Lклеток, C127, 3T3, яичника китайского хомяка (CHO), NSO, HeLa и Векторы экспрессии для млекопитающих могут нетранскрибируемые элементы, такие как точка начала репликации, подходящий промотор и энхансер, связанные с геном, подлежащим 5 **'** И 3'-концевые экспрессии, И другие фланкирующие нетранскрибируемые последовательности, а также 5'-концевые или 3'-концевые нетранслируемые последовательности, такие как необходимые сайты связывания рибосомы, сайт полиаденилирования, донорные и акцепторные сайты сплайсинга и последовательности транскрипции. Бакуловирусные системы терминации получения гетерологичных белков в клетках насекомых рассматриваются Luckow & Summers, BioTechnology 6:47 (1988).

[722] Раскрытые в данном документе связывающие молекулы или ИX антигенсвязывающие фрагменты, вырабатываемые трансформированным хозяином, ОНЖОМ очищать в соответствии любым подходящим способом. Такие стандартные способы включают, например, хроматографию (например, ионообменную, аффинную ЭКСКЛЮЗИОННУЮ колоночную хроматографию), центрифугирование, очистку на основе различной растворимости или любую другую стандартную методику очистки белков. Аффинные метки, такие как гексагистидин, домен связывания мальтозы, последовательность оболочки вируса гриппа, глутатион-S-трансфераза, присоединять к белку для обеспечения возможности легкой очистки пропускания через соответствующую аффинную колонку. Выделенные белки можно также физически характеризовать

помощью, например, протеолиза, ядерного магнитного резонанса и рентгеноструктурной кристаллографии.

[723] Например, надосадочные жидкости из систем, которые секретируют рекомбинантный белок в культуральную среду, можно сперва сконцентрировать с коммерчески ПОМОЩЬЮ доступного концентрирующего белок, например, установки ПЛЯ ультрафильтрации AMICON® или Millipore PELLICON®. После стадии концентрирования концентрат можно наносить на подходящую матрицу для очистки. Как альтернатива, можно использовать анионообменную смолу, например, матрицу или субстрат, содержащие подвешенные **РИНАПИТЕОНИМБЛИТЕИД** (DEAE) группы. Матрицы МОГУТ быть акриламидными, агарозными, декстрановыми, целлюлозными ИЛИ относиться к другим типам, обычно используемым в очистке белков. Как альтернатива, можно использовать стадию катионного обмена.

[724] Подходящие катионообменники включают в себя различные нерастворимые матрицы, содержащие сульфопропильные ИЛИ карбоксиметильные группы. В заключение, ДЛЯ дополнительной очистки раскрытой в данном документе связывающей молекулы или ее антигенсвязывающей части можно использовать одну или несколько стадий высокоэффективной жидкостной хроматографии с обращенными фазами (RP-HPLC) с использованием гидрофобных сред для RP-HPLC, С боковыми метильными например, силикагеля ИЛИ другими алифатическими группами. Некоторые или все из вышеизложенных стадий очистки в различных комбинациях можно также использовать для получения однородного рекомбинантного белка.

[725] Раскрытую В данном документе рекомбинантную связывающую молекулу ее антигенсвязывающий ИЛИ фрагмент, вырабатываемые В бактериальной культуре, ОНЖОМ выделить, например, с помощью изначального выделения из клеточных осадков с последующей одной или несколькими стадиями концентрирования, высаливания, ионообменной или эксклюзионной хроматографии водной среде. На конечных стадиях очистки можно использовать высокоэффективную жидкостную хроматографию (HPLC). микроорганизмов, используемые для экспрессии рекомбинантного белка, можно разрушать с помощью любого удобного способа, в том числе проведения циклов замораживания-размораживания, обработки

ультразвуком, механического разрушения или применения средств пля лизиса клеток.

[726] Известные из уровня техники способы очистки антител и других белков также включают, например, таковые, описанные в публикациях заявок на патент США №№ US20080312425, US20080177048 и US20090187005, каждая из которых включена в данный документ посредством ссылки во всей своей полноте.

VII. Способы создания и определение характеристик

[727] В настоящем раскрытии также предусмотрены способы получения раскрытых в данном документе связывающих молекул, например антител. В некоторых аспектах способ получения (i) антитела к FIX или его антигенсвязывающей части, (ii) антитела к FX или его антигенсвязывающей части или (iii) биспецифической молекулы, раскрытой В данном документе, предусматривает антигенсвязывающей экспрессию антигена, его части и.ли биспецифической молекулы в клетке (например, клетке-хозяине) и антигенсвязывающей выделение антитела, его части или биспецифической молекулы из клетки.

[728] В настоящем изобретении предусмотрен способ получения биспецифической молекулы, включающий культивирование клетки-хозяина, раскрытой в данном описании, в условиях, которые обеспечивают экспрессию биспецифической молекулы. Также предусмотрен способ получения биспецифической молекулы, раскрытой в данном документе, дополнительно предусматривающий условия, которые обеспечивают гетеродимеризацию.

[729] Раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) можно получать в соответствии со способами, известными из уровня техники. Например, раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) могут образовываться с применением гибридомных способов, таких как описанные в Kohler & Milstein (1975) Nature 256:495.

[730] При применении гибридомного способа мышь, хомяка или другое подходящее животное-хозяина иммунизируют, как описано выше, чтобы вызвать выработку лимфоцитами антител, которые будут

специфически связываться с иммунизирующим антигеном. Лимфоциты также можно иммунизировать in vitro. После иммунизации лимфоциты и сливают с подходящей линией клеток применением, например, полиэтиленгликоля, С образованием гибридомных клеток, \circ T которые затем ОНЖОМ отделить подвергшихся слиянию лимфоцитов и клеток миеломы. Гибридомы, вырабатывают моноклональные антитела, специфически которые направленные против выбранного антигена, как определяется с помощью иммунопреципитации, иммуноблоттинга или с применением анализа связывания in vitro (например, радиоиммунологического анализа (RIA); твердофазного иммуноферментного анализа (ELISA)), затем можно размножать либо в культуре in vitro с применением стандартных способов (Goding, Monoclonal Antibodies: Principles Practice, Academic Press, 1986), либо in vivo в асцитных опухолей в организме животного. Затем моноклональные антитела можно очистить от культуральной среды или асцитической жидкости, как описано выше для поликлональных антител.

[731] Раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) также можно получать с применением способов в патенте США № рекомбинантной ДНК, как описано 4816567. Полинуклеотиды, кодирующие моноклональное антитело, выделяют из зрелых В-клеток или гибридомных клеток, как например, с помощью RT-PCR с использованием олигонуклеотидных праймеров, специфически амплифицируют гены, кодирующие тяжелую и легкую антитела, и их последовательность определяют с помощью обычных процедур. Выделенные полинуклеотиды, кодирующие тяжелую и легкую цепи, затем клонируют в подходящие векторы экспрессии, которые при трансфекции в клетки-хозяева, такие как клетки Е. coli, клетки COS обезьяны, клетки яичника китайского хомяка (СНО) или клетки миеломы, которые в других случаях не производят белок иммуноглобулин, образовывают моноклональные антитела помощью клеток-хозяев.

[732] Также рекомбинантные моноклональные антитела или молекулы, содержащие их антигенсвязывающие фрагменты требуемых видов, можно выделить с использованием библиотек фагового

дисплея, экспрессирующих CDR требуемых видов, как описано (McCafferty et al., Nature 348:552-554 (1990); Clarkson et al., Nature 352:624-628 (1991) и Marks et al., J. Mol. Biol. 222:581-597 (1991)).

[733] Полинуклеотид (-ы), кодирующие раскрытые в данном документе связывающие молекулы (например, антитела FIX, антитела к FX или биспецифические антитела к FIX/FX) можно дополнительно модифицировать различными способами использованием технологии рекомбинантных ДНК с получением связывающих молекул. В некоторых альтернативных константные домены легкой и тяжелой цепей, например моноклонального антитела мыши, можно заменить (1) на таковые области, например, антитела человека, с получением химерного антитела или (2) на отличный от иммуноглобулина полипептид с получением гибридного антитела. В некоторых аспектах константные области усекают или удаляют с получением требуемого фрагмента антитела. Сайт-направленный антитела ИЗ моноклонального мутагенез или мутагенез высокой плотности в для оптимизации вариабельной области можно применять специфичности, аффинности и т. д. моноклонального антитела.

[734] В определенных аспектах связывающая раскрытая в данном документе (например, антитело к FIX, антитело к FX или биспецифическое антитело к FIX/FX), представляет собой человеческое антитело или его антигенсвязывающий Человеческие антитела можно получать непосредственно с помощью известных различных методик, ENуровня техники. В-лимфоциты, образовываться иммортализованные человеческие иммунизированные in vitro или выделенные из иммунизированного индивидуума, которые вырабатывают антитело, направленное против антигена-мишени (см., например, Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985); Boemer et al., J. Immunol. 147:86-95 (1991); и патент США № Одну или несколько кДНК, кодирующих антитело иммортализированном В-лимфоците, можно затем получить и вставить в вектор экспрессии и/или гетерологичную клетку-хозяина экспрессии не встречающейся в природе рекомбинантной версии антитела.

[735] Также связывающие молекулы (например, антитело к FIX, антитело к FX или биспецифическое антитело к FIX/FX), раскрытые в данном документе, могут быть отобраны из фаговой библиотеки, при этом в такой фаговой библиотеке экспрессируются антитела человека или их фрагменты в виде слитых белков с гетерологичными белками фага, как описано, например, в Vaughan et al., Nat. Biotech. 14:309-314 (1996); Sheets et al., Proc. Natl. Acad. Sci. 95:6157-6162 (1998); Hoogenboom and Winter, J. Mol. Biol. 227:381 (1991) и Marks et al., J. Mol. Biol. 222:581 (1991)). Методики создания и применения фаговых библиотек антител также описаны в патентах США №№ 5969108, 6172197, 5885793, 6521404, 6544731, 6555313, 6582915, 6593081, 6300064, 6653068, 6706484 и 7264963, каждый из которых включен в данный документ посредством ссылки во всей своей полноте.

[736] Стратегии созревания аффинности и стратегии перестановки цепей (Marks et al., BioTechnology 10:779-783 (1992), включенная посредством ссылки во всей своей полноте) известны из уровня техники и могут использоваться для получения высокоаффинных антител человека или их антигенсвязывающих фрагментов.

[737] В некоторых аспектах связывающая молекула, раскрытая в данном документе (например, антитело к FIX, антитело к FX или биспецифическое антитело к FIX/FX), может представлять собой гуманизированное антитело. Также можно применять способы конструирования, гуманизации или изменения поверхности антител, отличных от антител человека, или антител человека, и они хорошо известны из уровня техники. Гуманизированное, с измененной поверхностью или подобным образом сконструированное антитело может содержать один или несколько аминокислотных остатков из источника, отличного от человека, например, без ограничения мыши, крысы, кролика, отличного от человека примата или другого млекопитающего. Эти аминокислотные остатки, отличные человеческих, заменяют остатками, часто называемыми "импортированными" остатками, которые, как правило, взяты из "импортированного" вариабельного, константного или другого

известной последовательности человека. домена Такие импортированные последовательности можно применять для снижения иммуногенности ИЛИ снижения, повышения или модификации связывания, аффинности, скорости ассоциации, скорости авидности, специфичности, времени полужизни или диссоциации, других подходящих характеристик, известных уровня техники. Как правило, остатки CDR непосредственно и наиболее существенно участвуют во влиянии на связывание со специфическим антигенсвязывающим участком (например, . (MONOTNIE Соответственно, часть или все из отличных от человеческих или человеческих последовательностей CDR сохраняются, тогда последовательности вариабельных и константных областей, отличные от человеческих, могут быть заменены человеческими или другими аминокислотами. В определенных аспектах CDR человека вставлены в каркасные области антител, ОТЛИЧНЫХ от человеческих, ДЛЯ получения антитела со сниженной иммуногенностью в системе животной модели, например, "муринизированное" антитело.

[738] В некоторых аспектах связывающая молекула, раскрытая в данном документе (например, антитело к FIX, антитело к FX или биспецифическое антитело к FIX/FX), может быть гуманизированной, с измененной поверхностью или сконструированной с сохранением высокой аффинности к антигенсвязывающему участку (например, другими благоприятными биологическими N (YNOTNNE обладать свойствами. Для достижения данной цели гуманизированные человеческие) сконструированные или с измененной поверхностью связывающие молекулы можно необязательно получать с помощью способа С анализом ИСХОДНЫХ последовательностей гуманизированных И сконструированных посредством различных подходов продуктов с использованием трехмерных моделей исходных, сконструированных гуманизированных последовательностей. И Трехмерные модели иммуноглобулинов являются общедоступными известны специалистам в данной области техники.

[739] Существуют компьютерные программы, в которых иллюстрируются и отображаются возможные трехмерные конформационные структуры выбранных кандидатных последовательностей иммуноглобулина. Рассмотрение этих

изображений позволяет проанализировать вероятную роль остатков в функционировании кандидатной последовательности иммуноглобулина, т. е. проанализировать остатки, которые влияют на способность кандидатного иммуноглобулина связывать его антиген. остатки каркасных областей образом, ОНЖОМ выбирать консенсусной импортированной комбинировать ИЗ И последовательностей так, что обеспечиваются требуемые характеристики антитела, такие как повышенная аффинность к целевому антигену (-am).

[740] Гуманизацию, изменение поверхности или конструирование раскрытых в данном документе связывающих молекул (например, антитела к FIX, антитела к FX или биспецифического антитела к FIX/FX, раскрытых в данном документе) можно выполнять с помощью любого известного способа, такого как без ограничения описанные в Jones et al., Nature 321:522 (1986); Riechmann et al., Nature 332:323 (1988); Verhoeyen et al., Science 239:1534 (1988)), Sims et al., J. Immunol. 151: 2296 (1993); Chothia and Lesk, J. Mol. Biol. 196:901 (1987), Carter et al., Proc. Natl. Acad. Sci. U.S.A. 89:4285 (1992); Presta et al., J. Immunol. 151:2623 (1993), патентах США №№ 5639641, 5723323; 5976862; 5824514; 5817483; 5814476; 5763192; 5723323; 5766886; 5714352; 6204023; 6180370; 5693762; 5530101; 5585089; 5225539; 4816567, 7557189; 7538195 и 7342110; WO90/14443; WO90/14424; WO90/14430 и ЕР229246, каждый из которых в полном объеме включен в данный документ посредством ссылки, включая ссылки, цитируемые в них.

[741] В определенных аспектах предусмотрен фрагмент антитела, полученный из раскрытой в данном документе связывающей молекулы (например, антитела к FIX, антитела к FX или биспецифического антитела к FIX/FX). Известны различные методики получения фрагментов антител. Традиционно эти фрагменты получают посредством протеолитического расщепления интактных антител (например, Morimoto et al., J. Biochem. Biophy. Methods 24:107–117 (1993); Brennan et al., Science, 229:81 (1985)).

[742] В определенных аспектах фрагменты антитела получают рекомбинантным путем. Все Fab-, Fv- и scFv-фрагменты антител могут экспрессироваться и секретироваться из $E.\ coli$ или других

клеток-хозяев, что обеспечивает таким образом получение больших количеств этих фрагментов. Такие фрагменты антител также можно выделять из фаговых библиотек антител, обсуждаемых выше. Фрагменты антител также могут быть линейными антителами, как описано в патенте США № 5641870. Другие методики получения фрагментов антител будут очевидны практикующему специалисту.

Методы МОГУТ быть адаптированы для получения одноцепочечных антител, специфических в отношении ТОГО же эпитопа (-ов), что и раскрытые в данном документе связывающие FIX, (например, антитела K антитела биспецифические антитела к FIX/FX). Кроме того, способы можно адаптировать для создания экспрессионных библиотек Fab Science 246:1275-1281 Huse et al., (1989)), возможностью быстрой и эффективной идентификации моноклональных Fab-фрагментов с требуемой специфичностью в отношении FIX и/или или их производных, фрагментов, аналогов или гомологов. Фрагменты антител можно получать с помощью методик, известных из уровня техники, в том числе без ограничения: (a) фрагмент, полученный посредством расщепления молекулы антитела (b) Fab-фрагмент, полученный пепсином; посредством восстановления дисульфидных мостиков $F(ab')_2$ -фрагмента, (c) Fabфрагмент, полученный посредством обработки молекулы антитела папаином и восстановителем, и (d) Fv-фрагменты.

[744] Раскрытые в данном документе связывающие молекулы и их антигенсвязывающая часть, варианты или их производные можно анализировать на предмет иммуноспецифического связывания помощью любого способа, известного ИЗ уровня техники. Иммунологические анализы, которые можно применять, включают без ограничения системы конкурентного и неконкурентного анализа с использованием таких методик, как вестерн-блоттинг, радиоиммунологические ELISA (твердофазный анализы, "сэндвич"-анализы, иммуноферментный анализ), иммунологические анализы иммунопреципитации, реакции преципитации, диффузионной преципитации в геле, анализы иммунодиффузии, агглютинации, анализы фиксации анализы комплемента, иммунорадиометрические анализы, флуоресцентные иммунологические

анализы, иммунологические анализы с белком A и многие другие. Такие анализы являются обычными и известны из уровня техники (см., например, Ausubel et al., eds, (1994) Current Protocols in Molecular Biology (John Wiley & Sons, Inc., NY) Vol. 1, который включен в данный документ посредством ссылки во всей своей полноте).

[745] Активность связывания данной партии раскрытой в данном документе связывающей молекулы или ее антигенсвязывающей части, варианта или производного, можно определить в соответствии с хорошо известными способами. Специалисты в данной области техники смогут определить рабочие и оптимальные условия анализа для каждого определения с использованием стандартных экспериментов.

[746] Способы и реагенты, подходящие для определения характеристик связывания раскрытой в данном документе связывающей молекулы или ее антигенсвязывающей части, известны техники и/или $\mathbb{R}^{\mathbb{N}}$ уровня являются коммерчески доступными. Оборудование и программное обеспечение, разработанные для таких анализов, кинетических являются коммерчески доступными (например, BIACORE®, программное обеспечение BIAevaluation, GE Healthcare; программное обеспечение KinExa, Sapidyne Instruments).

[747] При осуществлении настоящего изобретения на практике будут применяться, если не указано иное, традиционные методики клеточной биологии, культивирования клеток, молекулярной биологии, биологии трансгенных организмов, микробиологии, рекомбинантной ДНК и иммунологии, которые находятся в пределах компетентности специалиста в данной области техники. Такие методики в полном объеме объясняются в литературе. например, Sambrook et al., ed. (1989) Molecular Cloning A Laboratory Manual (2nd ed.; Cold Spring Harbor Laboratory Press); Sambrook et al., ed. (1992) Molecular Cloning: A Laboratory Manual, (Cold Springs Harbor Laboratory, NY); D. N. Glover ed., (1985) DNA Cloning, Volumes I and II; Gait, ed. (1984) Oligonucleotide Synthesis; Mullis et al., патент США № 4683195; Hames and Higgins, eds. (1984) Nucleic Acid Hybridization; Hames and Higgins, eds. (1984) Transcription And Translation; Freshney (1987) Culture Of Animal Cells (Alan R. Liss, Inc.); Immobilized Cells And Enzymes (IRL Press) (1986); Perbal (1984) A Practical Guide To Molecular Cloning; научный трактат, Methods In Enzymology (Academic Press, Inc., N.Y.); Miller and Calos eds. (1987) Gene Transfer Vectors For Mammalian Cells, (Cold Spring Harbor Laboratory); Wu et al., eds., Methods In Enzymology, Vols. 154 and 155; Mayer and Walker, eds. (1987) Immunochemical Methods In Cell And Molecular Biology (Academic Press, London); Weir and Blackwell, eds., (1986) Handbook Of Experimental Immunology, Volumes I-IV; Manipulating the Mouse Embryo, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1986) и в Ausubel et al. (1989) Current Protocols in Molecular Biology (John Wiley and Sons, Baltimore, Md.).

[748] Общие принципы конструирования антител изложены в Borrebaeck, ed. (1995) Antibody Engineering (2nd ed.; Oxford Univ. Press). Общие принципы конструирования белков изложены в Rickwood et al., eds. (1995) Protein Engineering, A Practical Approach (IRL Press at Oxford Univ. Press, Oxford, Eng.). Общие принципы касательно антител и связывания антител с гаптенами изложены в: Nisonoff (1984) Molecular Immunology (2nd ed.; Sinauer Associates, Sunderland, Mass.) и Steward (1984) Antibodies, Their Structure and Function (Chapman and Hall, New York, N.Y.). Кроме того, стандартные способы, применяемые в иммунологии, известные ИЗ уровня техники И не специально, как правило, соответствуют изложенным в Protocols in Immunology, John Wiley & Sons, New York; Stites et al., eds. (1994) Basic and Clinical Immunology (8th ed; Appleton & Lange, Norwalk, Conn.) и Mishell and Shiigi (eds) (1980) Selected Methods in Cellular Immunology (W.H. Freeman and Co., NY).

[749] Авторитетные справочные издания, в которых изложены общие принципы иммунологии, включают Current Protocols in Immunology, John Wiley & Sons, New York; Klein (1982) J., Immunology: The Science of Self-Nonself Discrimination (John Wiley & Sons, NY); Kennett et al., eds. (1980) Monoclonal

Antibodies, Hybridoma: A New Dimension in Biological Analyses (Plenum Press, NY); Campbell (1984) "Monoclonal Antibody Technology" in Laboratory Techniques in Biochemistry Molecular Biology, ed. Burden et al., (Elsevier, Amsterdam); Goldsby et al., eds. (2000) Kuby Immunology (4th ed.; H. Freemand & Co.); Roitt et al. (2001) Immunology (6th ed.; London: Mosby); Abbas et al. (2005) Cellular and Molecular Immunology (5th ed.; Elsevier Health Sciences Division); Kontermann and Dubel (2001) Antibody Engineering (Springer Verlag); Sambrook and Russell (2001) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Press); Lewin (2003) Genes VIII (Prentice Hall 2003); Harlow and Lane (1988) Antibodies: A Laboratory Manual (Cold Spring Harbor Press); Dieffenbach and Dveksler (2003) PCR Primer (Cold Spring Harbor Press).

VIII. Фармацевтические композиции

- [750] В настоящем изобретении также предусмотрены фармацевтические композиции, содержащие, например, (i) антитело или его антигенсвязывающую часть, раскрытые в данном документе, биспецифическую молекулу (например, биспецифическое антитело), раскрытую в данном документе, или иммуноконъюгат, раскрытый в данном документе, и (ii) носитель.
- [751] В частности, в настоящем изобретении предусмотрены фармацевтические композиции (например, терапевтические или диагностические композиции), содержащие
- (1) по меньшей мере один терапевтически или диагностически активный компонент, выбранный из группы, состоящей из

связывающих молекул, раскрытых в данном документе, например, антител к FIX или их антигенсвязывающих частей, антител к FX или их антигенсвязывающих частей, биспецифических молекул, содержащих специфичность к FIX и/или специфичность в отношении FX;

их производных, например иммуноконъюгатов, слитых белков или производных с гетерологичными фрагментами, которые придают требуемое свойство связывающим молекулам, раскрытым в данном документе (например, увеличенное время полужизни в плазме);

полинуклеотидов, кодирующих связывающие молекулы (i) и/или

производные (іі);

векторов, содержащих полинуклеотиды (iii);

клеток, содержащих полинуклеотиды (iii) или векторы (iv); или

их комбинации; и

- (2) один или несколько носителей, вспомогательных веществ и/или разбавителей.
- [752] Фармацевтические композиции, раскрытые В данном для путей документе, MOTYT быть пригодны применения В ветеринарии или для фармацевтических путей применения у людей. Фармацевтические композиции, раскрытые в данном документе, как или терапевтически содержат ОДИН несколько ИЛИ диагностически раскрытых активных компонентов, и один или несколько носителей, вспомогательных веществ и/или разбавителей. Форма фармацевтической композиции порошок, т. (например, сухой и кицисопмоз кьяциж д.) используемые наполнители, вспомогательные вещества и/или носители будут зависеть от предполагаемых путей применения композиций, терапевтического или диагностического путей применения и способа введения.
- [753] Фармацевтические композиции, содержащие терапевтически или диагностически активные компоненты, описанные в данном документе, предназначены для применения без ограничения для диагностики, выявления или мониторинга нарушения, для предупреждения, лечения, контроля или ослабления нарушения или одного или нескольких его симптомов, и/или для применения в исследовании.
- [754] Для терапевтических путей применения фармацевтические композиции могут поставляться как часть стерильной фармацевтической композиции, которая включает фармацевтически приемлемый носитель. Такая фармацевтическая композиция может находиться в любой подходящей форме (в зависимости от требуемого способа введения ее пациенту). Способы осуществления введения известны специалистам в данной области техники. Фармацевтическую композицию можно вводить пациенту различными путями, такими как перорально, чрескожно, подкожно, интраназально, внутривенно,

внутрь интратекально, местно внутримышечно, опухоли, ипи локально. Наиболее подходящий путь введения в любом конкретном конкретных терапевтически случае будет зависеть \circ T диагностически активных компонентов, субъекта, а также природы и физического состояния субъекта. Как тяжести заболевания и правило, фармацевтическая композиция будет вводиться подкожно.

Фармацевтические композиции могут быть представлены в единичных лекарственных формах, содержащих определенное количество терапевтически заранее ИЛИ диагностически активного компонента, описанного документе, на дозу. Количество терапевтически или диагностически активного компонента, включенного в единичную дозу, от заболевания, которое лечат или диагностируют, зависеть других факторов, которые хорошо известны из уровня техники. Такие единичные дозы могут быть В форме лиофилизированного сухого порошка, содержащего количество терапевтически ИЛИ диагностически активного компонента, подходящего для однократного введения, или в форме жидкости. Единичные лекарственные формы сухого порошка могут быть упакованы в набор со шприцем, подходящим количеством разбавителя и/или других компонентов, полезных для введения. Единичные дозы в жидкой форме удобно вводить в форме шприца, предварительно терапевтически заполненного количеством или диагностически активного компонента, подходящего для однократного введения.

[756] Фармацевтические композиции могут также поставляться в нерасфасованной форме, содержащей количества терапевтически или диагностически активного компонента, подходящего для многократных введений.

[757] Фармацевтические композиции также могут быть заключены в контейнер, упаковку или дозирующее устройство вместе с инструкциями для введения.

[758] Фармацевтические композиции могут быть получены для хранения в виде лиофилизированных составов или водных растворов путем смешивания описанного в данном документе терапевтически или диагностически активного компонента, характеризующегося требуемой степенью чистоты, с необязательными фармацевтически

носителями, вспомогательными веществами приемлемыми илли стабилизаторами, обычно используемыми в данной области техники (все из которых в данном документе называются "носителями"), т. е. буферными средствами, стабилизирующими средствами, консервантами, изотонирующими добавками, неионными детергентами, антиоксидантами и прочими добавками различного назначения. См., Remington's Pharmaceutical Sciences, 16th edition (Osol, 1980) и Remington: The Science and Practice of Pharmacy, 22nd Edition (Edited by Allen, Loyd V. Jr., 2012). Такие добавки для реципиентов в ДОЛЖНЫ быть нетоксичными дозировках и концентрациях.

[759] Растворы или суспензии, применяемые для внутрикожного подкожного применения, как правило, включают один или ИЛИ несколько следующих компонентов: стерильный разбавитель, такой как вода для инъекций, физиологический раствор, нелетучие масла, полиэтиленгликоли, пропиленгликоль глицерин, ИЛИ другие синтетические растворители; антибактериальные средства, как бензиловый спирт или метилпарабены; антиоксиданты, такие как аскорбиновая кислота или бисульфит натрия; комплексообразующие средства, такие как этилендиаминтетрауксусная кислота; буферы, ацетаты, цитраты или фосфаты; И такие как средства регулирования тоничности, такие как хлорид натрия или декстроза. Значение рН можно регулировать с помощью кислот или оснований, таких как хлористоводородная кислота или гидроксид натрия. Такие препараты могут быть заключены в ампулах, одноразовых шприцах или многодозовых флаконах, изготовленных из стекла или пластика.

[760] Фармацевтические композиции, пригодные для инъекции, включают стерильные водные растворы или дисперсии, а также стерильные порошки для экстемпорального получения стерильных инъецируемых растворов или дисперсий. В случае внутривенного введения подходящие носители включают физиологический раствор, бактериостатическую воду, Cremophor EL (BASF, Парсиппани, Нью-Джерси, США) или фосфатно-солевой буфер. Во всех случаях композиция должна быть стерильной и должна быть текучей до такой степени, чтобы сохранялась возможность ее легкого введения через шприц. Она должна быть стабильной в условиях производства и

хранения и должна быть защищена от загрязняющего действия микроорганизмов, таких как бактерии и грибы. Носитель может собой растворитель или дисперсионную представлять среду, содержащую, например, воду, этанол, полиол (например, глицерин, пропиленгликоль и жидкий полиэтиленгликоль и т. п.) Надлежащую текучесть подходящие смеси. ОНЖОМ поддерживать, например, путем использования покрытия, такого как лецитин, путем поддержания необходимого размера частиц в случае дисперсии и путем использования поверхностно-активных веществ.

[761] Консерванты можно добавлять для замедления роста микробов и их можно добавлять в количествах, находящихся диапазоне от приблизительно 0,2% - 1% (вес/об.). Подходящие консерванты для применения по настоящему изобретению включают бензиловый спирт, метакрезол, метилпарабен, пропилпарабен, октадецилдиметилбензиламмонийхлорид, галогениды бензалкония (например, хлорид, бромид и йодид), дидопх гексаметония и алкилпарабены, такие как метил или пропилпарабен, катехол, резорцин, циклогексанол и 3-пентанол. Изотонирующие добавки, иногда известные как "стабилизаторы", можно добавлять для обеспечения изотоничности жидких композиций по настоящему изобретению, и они включают многоатомные сахарные например, трехатомные или высшие сахарные спирты, такие как глицерин, эритрит, арабит, ксилит, сорбит и маннит.

[762] Стабилизаторы OTHOCATCA K широкой категории вспомогательных веществ, которые могут варьироваться, зависимости \circ T функции, от объемообразующего средства ДО добавки, которая растворяет терапевтическое средство ИЛИ денатурацию помогает предотвратить ИЛИ адгезию K стенке контейнера. Типичными стабилизаторами могут быть многоатомные сахарные спирты (перечисленные выше); аминокислоты, такие как аргинин, лизин, глицин, глутамин, аспарагин, гистидин, аланин, орнитин, L-лейцин, 2-фенилаланин, глутаминовая кислота, др., органические сахара или сахарные спирты, такие как лактоза, трегалоза, стахиоза, маннит, сорбит, ксилит, миоинозит, галактит, глицерин и т. п., в том числе циклитолы, такие как инозит; полиэтиленгликоль; аминокислотные полимеры;

серосодержащие восстанавливающие средства, такие как мочевина, глутатион, тиоктовая кислота, тиогликолят натрия, тиоглицерин, α-монотиоглицерин И тиосульфат натрия; низкомолекулярные полипептиды (например, пептиды с 10 или меньше остатками); белки, такие как сывороточный альбумин человека, бычий сывороточный альбумин, желатин или иммуноглобулины; гидрофильные полимеры, такие как поливинилпирролидоновые моносахариды, такие как ксилоза, манноза, фруктоза, глюкоза; дисахариды, такие как лактоза, мальтоза, сахароза и трегалоза; и трисахариды, такие как рафиноза; и полисахариды, такие как декстран.

[763] Буферные средства помогают поддерживать рН в диапазоне, который стабилизирует белок. Они могут присутствовать в широком диапазоне концентраций, однако, как правило, они присутствуют в концентрациях, находящихся в диапазоне от приблизительно 2 мМ до приблизительно 50 мМ.

[764] Подходящие буферные средства для применения В настоящем изобретении включают как органические, И неорганические кислоты и их соли, такие как цитратные буферы (например, смесь мононатрия цитрат-динатрия цитрат, смесь лимонная кислота-тринатрия цитрат, смесь лимонная кислотамононатрия цитрат и т. д.), сукцинатные буферы (например, смесь янтарная кислота-мононатрий-сукцинат, смесь янтарная кислотагидроксид натрия, смесь янтарная кислота-динатрий-сукцинат и т. д.), тартратные буферы (например, смесь винная кислота-тартрат смесь винная кислота-тартрат калия, смесь кислота-гидроксид натрия и т. д.), фумаратные буферы (например, смесь фумаровая кислота-мононатрия фумарат, смесь фумаровая кислота-динатрия фумарат, смесь фумарат мононатрия-динатрия фумарат и т. д.), глюконатные буферы (например, смесь глюконовая кислота-глюконат натрия, смесь глюконовая кислота-гидроксид натрия, смесь глюконовая кислота-глюконат калия И т. д.), оксалатный буфер (например, смесь щавелевая кислота-оксалат натрия, смесь щавелевая кислота-гидроксид натрия, смесь T . д.), лактатные щавелевая кислота-оксалат калия и буферы (например, смесь молочная кислота-лактат натрия, смесь молочная кислота-гидроксид натрия, смесь молочная кислота-лактат калия и

- т. д.) и ацетатные буферы (например, смесь уксусная кислотаацетат натрия, смесь уксусная кислота-гидроксид натрия и т. д.). Кроме того, можно использовать фосфатные буферы, гистидиновые буферы и соли триметиламина, такие как Tris.
- [765] Дополнительные вспомогательные вещества различного назначения включают объемообразующие средства (например, крахмал), комплексообразующие средства (например, EDTA), антиоксиданты (например, аскорбиновую кислоту, метионин, витамин E) и сорастворители.

IX. Способы лечения и диагностики

[766] В настоящем раскрытии также предусмотрены способы лечения и диагностики, включающие применение раскрытых в данном документе связывающих молекул (например, антител к FIX, антител к FX или биспецифических антител к FIX/FX) или других композиций по настоящему изобретению (например, нуклеиновых кислот, векторов, клеток).

(а) Терапевтические пути применения

- ОДНОМ аспекте раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) или другие композиции по настоящему изобретению (например, нуклеиновые кислоты, векторы, клетки) можно применять для предупреждения, лечения или отмены нарушения, связанного со свертываемостью или кровотечением. В аспекте способ предусматривает введение нуждающемуся в этом, раскрытой в данном документе связывающей молекулы (например, антитела к FIX, антитела K биспецифического антитела к FIX/FX) или другой композиции по настоящему изобретению (например, нуклеиновой кислоты, вектора, клеток). Субъектом может быть млекопитающее, такое как без ограничения человек, мышь, крыса, морская свинка, домашнее животное, такое как без ограничения корова, лошадь, овца, свинья, коза, кошка, собака, хомяк, осел. В одном аспекте субъектом является человек.
- [768] В различных аспектах нарушение, связанное со свертываемостью или кровотечением, обусловлено отсутствием фактора свертывания крови. Специалист в данной области техники

типы нарушений, связанных со свертываемостью оценит или с отсутствием кровотечением, ассоциированных фактора свертывания. В некоторых аспектах нарушение, связанное свертываемостью или кровотечением, представляет собой гемофилию или болезнь Виллебранда. В другом аспекте нарушение, связанное свертываемостью кровотечением, представляет ИЛИ гемофилию А или приобретенную гемофилию. В конкретном аспекте нарушение, связанное со свертываемостью или кровотечением, представляет собой гемофилию А. В другом аспекте нарушение, связанное со свертываемостью или кровотечением, представляет собой приобретенную гемофилию, когда субъект больше не продуцирует FVIII.

[769] В различных аспектах раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) или другие композиции по настоящему изобретению (например, нуклеиновые кислоты, векторы, могут быть введены субъекту с легкой гемофилией А, клетки) умеренной гемофилией А или тяжелой гемофилией А. другом аспекте раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические FIX/FX) или другие композиции ПО антитела к изобретению (например, нуклеиновые кислоты, векторы, клетки) вводить субъекту С уровнями фактора плазме, составляющими от 6% до 30%, от 2% до 5% или 1% или меньше.

[770] В некоторых аспектах раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) или другие композиции по настоящему изобретению (например, нуклеиновые кислоты, векторы, клетки) можно вводить субъекту с гемофилией А или с подозрением на наличие гемофилии А в случае, если у субъекта имеется внешняя рана. В другом аспекте раскрытые в данном документе связывающие (например, антитела K FIX, молекулы антитела FΧ ИЛИ биспецифические антитела к FIX/FX) или другие композиции по настоящему изобретению (например, нуклеиновые кислоты, векторы, клетки) можно вводить субъекту с гемофилией А или с подозрением на наличие гемофилии А при наличии внешней раны у субъекта. В

другом аспекте раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) или другие композиции по настоящему изобретению (например, нуклеиновые кислоты, векторы, клетки) можно вводить субъекту с внешней раной до заживления раны. В некоторых аспектах рана может включать без ограничения истирание, разрыв, прокол или отрыв.

[771] В некоторых аспектах раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) или другие композиции по настоящему изобретению (например, нуклеиновые кислоты, векторы, клетки) можно вводить субъекту с гемофилией А или с подозрением на наличие гемофилии А до, во время или после операции, серьезной травмы или стоматологических действий.

[772] В некоторых аспектах раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) или другие композиции по настоящему изобретению (например, нуклеиновые кислоты, векторы, клетки) можно вводить субъекту с гемофилией А или с подозрением на наличие гемофилии А, испытывающему спонтанные кровотечения. В другом аспекте раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) или другие композиции по изобретению (например, нуклеиновые кислоты, векторы, клетки) можно вводить субъекту с гемофилией А или с подозрением на наличие гемофилии А, испытывающему кровотечение один, два или больше раз в неделю.

[773] В различных аспектах раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) или другие композиции по настоящему изобретению (например, нуклеиновые кислоты, векторы, клетки) вводить субъекту любой возрастной группы, ОНЖОМ страдающему гемофилией А, или с подозрением на наличие таковой. В некоторых аспектах раскрытые в данном документе связывающие молекулы (например, антитела K FIX, антитела К FΧ ИЛИ биспецифические антитела к FIX/FX) или другие композиции по настоящему изобретению (например, нуклеиновые кислоты, векторы,

клетки) можно водить ребенку возрастом 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,15, 16, или 17 лет, страдающему гемофилией А, или с подозрением на наличие таковой. В другом аспекте раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) или другие композиции по настоящему изобретению (например, нуклеиновые кислоты, векторы, клетки) можно вводить младенцу, страдающему гемофилией А, или с подозрением на наличие таковой.

[774] В еще других аспектах раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) или другие композиции по настоящему изобретению (например, нуклеиновые кислоты, векторы, клетки) можно вводить субъекту, который является ребенком возрастом 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, или 12 месяцев, страдающим гемофилией A, или с подозрением на наличие таковой.

[775] В некоторых аспектах раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) или другие композиции по настоящему изобретению (например, нуклеиновые кислоты, векторы, клетки) можно вводить субъекту в раннем возрасте до первого эпизода кровотечения.

[776] В других аспектах раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) или другие композиции по настоящему изобретению (например, нуклеиновые кислоты, векторы, клетки) при введении до первого эпизода кровотечения защищают от дальнейшего кровотечения и развития повреждения суставов в будущем.

[777] В некоторых вариантах осуществления введение субъектам раскрытой в данном документе связывающей молекулы (например, антитела к FIX, антитела к FX или биспецифических антител к FIX/FX) или другой композиции по настоящему изобретению (например, нуклеиновых кислот, векторов, клеток) может характеризоваться следующими эффектами, без ограничения, гемостазом, уменьшением боли и улучшением подвижности.

[778] Также предусмотрен способ стимулирования активации FX у субъекта, нуждающегося в этом, включающий введение субъекту терапевтически эффективного количества антитела, биспецифической молекулы, иммуноконъюгата, фармацевтической композиции, нуклеиновой кислоты (например, ДНК или mRNA), вектора или клетки (например, клетки-хозяина), раскрытых в данном документе, или их комбинации.

[779] Также предусмотрен способ снижения частоты или степени тяжести эпизода кровотечения у субъекта, нуждающегося в этом, включающий введение субъекту эффективного количества антитела, биспецифической молекулы, иммуноконъюгата, фармацевтической композиции, нуклеиновой кислоты (например, ДНК или mRNA), вектора или клетки (например, клетки-хозяина), раскрытых в данном документе, или их комбинации.

[780] В некоторых аспектах у субъекта вырабатывается, имеется тенденция к выработке и существует риск выработки ингибитора фактора VIII ("FVIII"). В некоторых аспектах ингибитор FVIII представляет собой нейтрализующее антитело к FVIII. В некотором аспекте субъект подвергается лечению посредством FVIII или является кандидатом на лечение посредством FVIII, например, с помощью заместительной терапии FVIII.

[781] В некоторых аспектах эпизод кровотечения является результатом гемартроза, мышечного кровотечения, орального кровотечения, кровоизлияния, кровоизлияния в мышцы, кровоизлияния, травмы, травмы головы, желудочно-кишечного кровотечения, внутричерепного кровоизлияния, внутрибрюшного кровоизлияния, внутригрудного кровоизлияния, перелома костей, кровотечения в центральной нервной системе, кровотечения заглоточном пространстве, кровотечения в забрюшинном пространстве, кровотечения во влагалище подвздошно-поясничной мышцы или любых их комбинаций.

[782] В настоящем изобретении также предусмотрен способ лечения нарушения свертываемости крови у субъекта, нуждающегося в этом, включающий введение субъекту эффективного количества биспецифической молекулы, иммуноконъюгата, фармацевтической композиции, нуклеиновой кислоты (например, ДНК или mRNA),

вектора или клетки (например, клетки-хозяина), раскрытых в данном документе, или их комбинации.

[783] В некоторых аспектах нарушением свертывания крови является гемофилия А или гемофилия В. В некоторых аспектах субъектом является субъект-человек.

[784] В некоторых аспектах субъект подвергается или подвергался заместительной терапии FVIII. В некоторых аспектах биспецифическую молекулу вводят в комбинации с терапией гемофилии. В некоторых аспектах терапия гемофилии представляет собой заместительную терапию FVIII. В некоторых аспектах биспецифическую молекулу вводят до, во время или после введения терапии гемофилии. В некоторых аспектах биспецифическую молекулу вводят внутривенно или подкожно.

[785] В некоторых аспектах введение биспецифической молекулы снижает частоту эпизодов прорывного кровотечения, эпизодов спонтанного кровотечения или острого кровотечения. В некоторых аспектах введение биспецифической молекулы снижает годовой показатель частоты кровотечения на 5%, 10%, 20%, 30% или 50%.

[786] Раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) можно вводить любым путем, подходящим для состояния, подлежащего лечению. Раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX), как правило, будут вводиться парентерально, т. е. с помощью инфузии, подкожно, внутримышечно, внутривенно или внутрикожно. В некоторых аспектах описываемые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) вводят подкожно.

[787] В определенных аспектах описываемые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) вводят периодически или с перерывами. В различных аспектах уровни доз раскрытых в данном документе связывающих молекул (например, антител к FIX, антител к FX или биспецифических антител к

FIX/FX), например, вводят посредством инъекции, такой как диапазон подкожных инъекций, составляющий от приблизительно 0,0001 мг/кг до приблизительно 100 мг/кг массы тела.

[788] В некоторых аспектах описываемые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические антитела к FIX/FX) вводят до прогрессирования заболевания или неприемлемой токсичности.

(b) Диагностические пути применения

[789] В настоящем изобретении дополнительно предусмотрены способы диагностики, применимые для диагностики заболеваний, характеризующихся аномальной или дефектной экспрессией факторов свертывания крови, таких как FIX и FX. В некоторых аспектах диагностика предусматривает измерение уровня экспрессии FIX (например, FIXa) и/или FX (например, FXz) в тканях или жидкостях организма от индивидуума и сравнение измеренного уровня экспрессии со стандартным уровнем экспрессии FIX (например, FXz) в нормальной ткани или жидкости организма, вследствие чего увеличение или уменьшение уровня экспрессии по сравнению со стандартом указывает на нарушение.

[790] Связывающиеся молекулы по настоящему изобретению и их антигенсвязывающие фрагменты, варианты и производные можно применять для анализа уровней белка FIX (например, FIXa) и/или FX (например, FXz) в биологическом образце с использованием классических иммуногистологических способов, известных специалистам в данной области техники (например, см. Jalkanen, et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen et al., J. Cell Biol. 105:3087-3096 (1987)).

[791] Другие способы на основе антител, пригодные для обнаружения экспрессии белка FIX (например, FIXa) и/или FX (например, FXz), включают иммунологические анализы, такие как твердофазный иммуноферментный анализ (ELISA), иммунопреципитация или вестерн-блоттинг. Подходящие анализы более подробно описаны в другом месте данного документа.

[792] Под анализом уровня экспрессии полипептида FIX (например, FIXa) или FX (например, FXz) подразумевается как качественное, так и количественное измерение или оценка уровня

полипептида FIX (например, FIXa) или FX (например, FXz) в первом биологическом образце либо непосредственно (например, определения ИЛИ оценки абсолютного уровня белка), либо относительно (например, путем сравнения С уровнем C заболеванием полипептида втором ассоциированного во биологическом образце).

[793] Уровень экспрессии полипептида FIX (например, FIXa) или FX (например, FXz) в первом биологическом образце можно или атифемки оценить и сравнить со стандартным уровнем полипептида FIX (например, FIXa) или FX (например, FXz), при берут из второго стандарт биологического образца, полученного от индивидуума, не имеющего нарушения, определяют путем усреднения уровней от группы индивидуумов, не имеющих нарушения. Как будет понятно из уровня техники, после того как "стандартный" уровень полипептида FIX (например, FIXa) или FX (например, FXz) становится известным, его можно применять многократно в качестве стандарта для сравнения.

Также в настоящем изобретении предусмотрен способ измерения уровня активированного FIX У субъекта при необходимости TOPO, включающий приведение В контакт В приемлемых условиях антитела к FIXa, описываемого или антигенсвязывающей части документе, его C образцом, полученным от субъекта, и измерение связывания антитела к FIXa или его антигенсвязывающей части с FIXa в образце.

[795] В одном варианте осуществления антитело к FIXa или его антигенсвязывающую часть из класса I можно использовать для измерения уровня активированного FIX в теназном комплексе по сравнению со свободным зимогеном FIXa или FIX. В другом варианте осуществления антитело к FIXz или его антигенсвязывающую часть из класса IV можно использовать для измерения уровня зимогена FIX по сравнению CO свободным FIXa или FTXa В теназном комплексе. В других вариантах осуществления антитело к FIXa или его антигенсвязывающую часть из класса II можно использовать для измерения уровня свободных FIX по сравнению с FIXa в теназном комплексе или зимогене FIX. В некоторых вариантах осуществления антитело к FIXa или его антигенсвязывающую часть из класса III

можно использовать для измерения уровня активированного FIX (т. е. свободного FIXa и FIXa в теназном комплексе) по сравнению с зимогеном FIX.

[796] Также предусмотрен способ измерения зимогена FX (FXz) субъекта, необходимости TOPO, предусматривающий ицп приведение в контакт в приемлемых условиях антитела к FX или его антигенсвязывающей части из класса V с образцом, полученным от субъекта, И измерение связывания антитела к FΧ ИЛИ его антигенсвязывающей части с FXz в образце. В других вариантах осуществления антитело к FXa или его антигенсвязывающую часть из класса VI ОНЖОМ использовать ДЛЯ измерения активированного FX по сравнению с зимогеном FX. В некоторых аспектах образцом является кровь или сыворотка крови.

4.

Х. Комбинированные виды лечения

[797] Раскрытые в данном документе связывающие молекулы (например, антитела к FIX, антитела к FX или биспецифические FIX/FX) антитела к можно вводить в качестве единственного активного средства или также можно вводить в комбинации с одним или несколькими дополнительными лекарственными препаратами или терапевтическими средствами, полезными при лечении различных заболеваний, например в виде комбинированной терапии. Например, дополнительное средство может представлять собой терапевтическое средство, признанное в данной области техники как применимое для заболевания ИЛИ состояния, поддающихся посредством биспецифического антитела, представленного в данном Комбинация также документе. может включать более дополнительного средства, например, два или три дополнительных средства.

[798] В некоторых вариантах осуществления дополнительный лекарственный препарат или терапевтическое средство представляет собой средство, стандартно применяющееся для лечения нарушений, связанных со свертываемостью или кровотечением. Специалистам в данной области техники будут известны стандартные терапевтические средства. В некоторых вариантах осуществления дополнительное терапевтическое средство представляет собой

средство для лечения гемофилии. Иллюстративное средство для включает без ограничения заместительную лечения гемофилии терапию концентратом фактора. В конкретных вариантах осуществления кофакторная заместительная терапия представляет собой заместительную терапию FVIII. Специалистам в данной области техники известно, что заместительная терапия может представлять собой полученную из плазмы и/или рекомбинантную фактора VIII. В некоторых вариантах осуществления замену заместительная терапия FVIII представляет собой рекомбинантный FVIII. В другом варианте осуществления заместительная терапия FVIII представляет собой полученный из плазмы FVIII. В различных вариантах осуществления дополнительный лекарственный препарат или терапевтическое средство могут включать, например, ацетат десмопрессина, консервирующие сгусток лекарственные препараты (например, антифибринолитики) или фибриновые герметики.

[799] В определенных вариантах осуществления дополнительный препарат или лекарственный терапевтическое средство вводить субъекту до, во время или после введения антител, описанных В данном документе. В различных вариантах осуществления дополнительный лекарственный препарат ИЛИ терапевтическое средство и антитела, представленные в данном документе, можно вводить в одной и той же схеме дозирования. В некоторых вариантах осуществления дополнительный лекарственный препарат или терапевтическое средство вводят одновременно антителами, описанными в данном документе.

[800] В различных вариантах осуществления дополнительный лекарственный препарат или терапевтическое средство вводят профилактически или по необходимости. В другом варианте осуществления дополнительный лекарственный препарат или терапевтическое средство вводят как основное лечение. В других вариантах осуществления дополнительный лекарственный препарат или терапевтическое средство вводят как вторичное лечение.

[801] В некоторых вариантах осуществления, в случае если раскрытую в данном документе связывающую молекулу (например, антитело к FIX и антитело к FX, биспецифическое антитело к FIX/FX или иммуноконъюгат) вводят вместе со стандартами лечения

или в дополнение к ним, лечение с помощью раскрытой в данном документе связывающей молекулы может быть начато до начала стандартной терапии, например, за день, несколько дней, неделю, несколько недель, месяц или даже несколько месяцев до начала стандартной терапии.

XI. Наборы

[802] В настоящем изобретении также предусмотрены наборы, которые содержат раскрытую в данном документе связывающую молекулу или ее антигенсвязывающую часть, которые можно использовать для осуществления способов, раскрытых в данном документе. В определенных аспектах набор включает раскрытые в антитело, биспецифическую молекулу, данном документе (i)иммуноконъюгат, фармацевтическую композицию, нуклеиновую кислоту (например, ДНК или mRNA), вектор или клетку (например, клеткухозяина) или их комбинацию и (ii) инструкции по применению. В некоторых аспектах набор включает раскрытые в данном документе антитело, биспецифическую молекулу, иммуноконъюгат, фармацевтическую композицию, нуклеиновую кислоту (например, ДНК или mRNA), вектор или клетку (например, клетку-хозяина) или их комбинацию в одном или нескольких контейнерах.

[803] В некоторых аспектах наборы содержат все компоненты, необходимые и/или достаточные для выполнения анализа на выявление, в том числе все контрольные образцы, указания для выполнения анализов и любое необходимое программное обеспечение для анализа и представления результатов.

[804] Специалист в данной области техники легко поймет, что раскрытые в данном документе антитела, биспецифические молекулы (например, биспецифические антитела), иммуноконъюгаты, фармацевтические композиции, нуклеиновые кислоты (например, ДНК или mRNA), векторы или клетки (например, клетка-хозяин) или их комбинации могут быть легко включены в один из установленных форматов набора, которые хорошо известны из уровня техники.

5.

Примеры

Пример 1

Получение антител, которые предпочтительно связываются с

FIXa, a he c FIX

[805] Разработка способов селекции антител и получение антител: выбирали серию антител человека к активированному FIX человека из дрожжевой библиотеки человеческих антител Adimab (ADIMAB, 7 Lucent Drive, Ливан, NH 03766). Отбор антител осуществляли с использованием трех различных вариантов фактора IX:

"неактивируемый FIX" (также сокращенно обозначаемый как FIXn), который представляет собой фактор IX, несущий аргинин к аланиновой мутации в положении 180 (нумерация на основании зрелых белков), с предотвращением его активации и поддержанием фактора IX в форме зимогена (FIXz);

"свободный FIXa", который является формой активированного FIX и, как полагают, находится в конформации активированного FIX, в случае, если он не связан с FVIIIa в теназном комплексе); и

"FIXa-SM", который представляет собой форму активированного FIX с имитатором субстрата (например, L-Glu-Gly-Arg хлорметилкетон, т. е. EGR-CMK), ковалентно связанным с активным центром, который предназначен для имитации наиболее активной конформации активированного FIX.

[806] Схематические диаграммы зимогена FIX (например, неактивируемого FIX), свободного активированного FIX и FIXa-SM (например, фактора IXa+EGR-CMK) показаны на фиг. 1A.

[807] В каждом случае за последовательностью FIX следовал GS-линкер и метка биотинилирования на С-конце молекул. При совместной экспрессии с биотин-лигазой BirA в присутствии биотина полученная в результате молекула FIX будет нести одну биотиновую метку для обеспечения возможности выбора с помощью библиотеки дисплея Adimab.

[808] Неактивируемый FIX рекомбинантно экспрессировали с BirA в присутствии биотина и очищали в соответствии со способами, известными из уровня техники. Свободный FIXa, также совместно экспрессируемый с BirA в присутствии биотина, получали после экспрессии неактивированного предшественника (зимогена FIX), который очищали так же, как неактивируемый FIX. Затем

неактивированный предшественник FIX активировали добавлением рекомбинантного фактора коагуляции XIа в молярном соотношении 1:500 в присутствии кальция, а затем очищали с помощью эксклюзионной хроматографии по размеру в соответствии со способами, известными из уровня техники.

- [809] Добавление трипептида хлорметилкетона (т. е. EGR-CMK) к свободной FIXa приводило к ковалентной связи пептида или имитатора субстрата и активного сайта FIXa. Хотя необратимая связь с пептидом нейтрализует активность FIXa, считается, что комплекс имитирует связанную с субстратом или наиболее активную конформацию FIXa. Для получения активированного фактора IX с имитатором субстрата, ковалентно связанным с активным сайтом (т. е. FIXa-SM), свободный FIXa инкубировали с 5-кратным молярным избытком пептида в присутствии кальция и 30% этиленгликоля в течение шести часов. Избыток пептида удаляли либо методом эксклюзионной хроматографии, либо путем диализа, и насыщение активного сайта подтверждали масс-спектрометрией.
- [810] Белки FIX, используемые в вышеописанном примере, были получены рекомбинантным способом в соответствии со способами, известными из уровня техники. Последовательности факторов свертывания представляют собой: неактивируемый FIX (SEQ ID NO: 773), свободный FIXa (47-191 из SEQ ID NO: 764 и аминокислоты 227-461 из SEQ ID NO: 764), и FIXa-SM представляет собой (47-191 из SEQ ID NO: 764 и аминокислоты 227-461 из SEQ ID NO: 764 с EGR-CMK, ковалентно связанным с активным сайтом), показаны в таблице 4.
- [811] Все белки FIX заменяли буфером на трис-буферный солевой раствор с 5 мМ $CaCl_2$ в качестве добавки в соответствии со способами, известными из уровня техники.
- [812] Описан полученный набор антител к FIXa, которые способны связываться предпочтительно с FIXa, а не с FIX, способом, сходным с таковым у FVIIIa. Для получения антител этих классов библиотеки экспрессии Adimab подвергали скринингу в соответствии со способами, раскрытыми в публикациях США $\mathbb{N}^{\mathbb{N}}$ 2010/0056386 и 2009/0181855, которые включены в данный документ посредством ссылки в их полных объемах. См., например, Van

Deventer and Wittrup (2014) Methods Mol. Biol. 1319:3-36; Chao et al. (2006), Nature Protocols 1(2):755-768; Feldhaus et al. (2003) Nature Biotechnology 21(2):163-170; Boder and Wittrup (1997) Nature Biotechnology 15(6):553-557, все из которых включены в данный документ посредством ссылки в их полных объемах.

[813] После нескольких итерационных циклов положительного селективного давления в отношении целевого свободного антигена FIXa и/или FIXa-SM и отрицательного селективного давления FIX, неактивируемого колонии секвенировали идентификации уникальных клонов с применением методов, известных из уровня техники. После отбора антител, 658 антител их этих отобранных антител экспрессировали и очищали на смоле белка А из дрожжей в соответствии со стандартной методологией. Затем 658 антител снова подвергали скринингу на их преимущественное связывание со свободным FIXa и/или имитирующим связанный FIXa по сравнению с неактивируемым FIX, на этот раз с помощью биослойной интерферометрии (BLI).

[814] Если не указано иное, то все антигены в экспериментах BLI, раскрытых в данном документе, приобретали у Haematologic Technologies, Inc. (HTI, 57 River Road, Essex Junction, VT, USA):): FIXz (кат. № HCIX-0040), свободный FIXa (кат. № HCIXA-0050) и FIXa-SM (кат. № HCIXA-EGR). Для всех экспериментов BLI использовали систему OctetRed94, Ocetet QK 384 или Octet HTX. Все способы, касающиеся концентрации антител и антигенов, времени инкубации для различных стадий, основаны на рекомендациях производителя. Исходные стадии составляли 60 Антитела загружали в зонды для количественного определения антитела K IqG человека В концентрациях, составляющих от 100-200 нМ или от 10-15 мкг/мл в течение 180секунд. Концентрации антигена варьировали от 10-250 связывание антигена с загруженными антителами зондами - от 90-180 секунд. Стадии диссоциации осуществляли в одном буфере в течение 90-180 секунд. Все эксперименты BLI осуществляли буферами, включающими 100-200 нМ NaCl, 25-50 мМ Tris, pH 7,4-8,0, или 25-50 мМ Hepes, pH 7,4-8,0, с 0,1% BSA или без него, с

- 2,5-5 мM CaCl2 или без него. Дополнительные подробности для конкретных экспериментов приведены в примерах относительном связывании различных антител с конкретным "ответ" антигеном обычно сообщают как ИЛИ изменение нанометрового сдвига от начала до конца фазы связывания. Ответ антигена Γ O количества связывание зависит загруженного в зонд во время фазы загрузки. Следовательно, если количество антитела, загруженного в зонд, одинаково, и концентрация антигенов и длина фазы связывания одинаковы, то эти В других случаях для расчета K_D можно сравнимы. использовать программное обеспечение ForteBio Data Analysis. Во случаях было подтверждено отсутствие неспецифического связывания антигенов с зондами АНQ антитела к IgG человека.
- [815] Схема экспериментальной сортировки для идентификации антител, которые предпочтительно связывают свободный FIXa и FIXa-SM, показана на фиг. 2. Детали схемы сортировки представлены ниже в разделах "Определение характеристик связывания антител с целевым антигеном" и "Скрининг антител в отношении биофизического состояния".
- [816] С помощью такой дополнительной сортировки антител получили набор из 93 антител, которые могут предпочтительно связываться со свободными FIXa и/или FIXa-SM. Последовательности аминокислот и нуклеиновых кислот вариабельных областей представлены ниже. Последовательности зародышевого типа и CDR VH и VL этих 93 антител показаны на фиг. 3A, 3B, 3C и фиг. 3D (кроме ВІІВ-9-1335 и ВІІВ-9-1336, которые были получены с помощью способа, показанного в примере 5 ниже).
- [817] Определение характеристик связывания антитела целевым антигеном κ FIXa: для идентификации обнаруженных в ходе предварительных отборов, и демонстрирующих преимущественное связывание со свободным FIXa по сравнению с 658 антител, очищенных неактивируемым FIX, ВN библиотеки Adimab, подвергали скринингу с использованием BLI в 150 формате моновалентного анализа CO Мн антитела использованием биосенсоров для количественного определения антител к IgG человека dip and read anti-Human IgG Quantitation

- (Pall ForteBio: номер по каталогу 18-5005). BLI (AHO) осуществляли в системе OctetRed94 или Octet HTX в соответствии со стандартной процедурой. Вкратце, биосенсоры уравновешивали в трис-буферном солевом растворе с добавлением 5 мМ $CaCl_2$ и 0,1% бычьего сывороточного альбумина (TBSFCa). Затем планшеты переносили в устройство. Стадию замачивания осуществляли на устройстве с инкубацией биосенсоров в течение 60 секунд Затем биосенсоры переносили в лунки, содержащие TBSFCa. репрезентативный IgG (150 нМ в TBSFCa) в течение 180 секунд. После этого биосенсоры инкубировали в TBSFCa в течение 60 секунд для установления исходного уровня. Затем биосенсоры переносили в лунки, содержащие требуемый антиген (100 нМ В TBSFCa), инкубировали в течение 90 секунд. Наконец, датчики переносили только на TBSFCa в течение 90 секунд инкубации.
- [818] Почти все из 658 антител, идентифицированных в ходе первоначальных отборов в дрожжевой библиотеке, направленных на специфичность в отношении свободного FIXa, демонстрировали более высокую приблизительную аффинность связывания со свободным FIXa, чем с неактивируемым FIX. Четыре антитела (т. е. ВIIB-9-397, ВIIB-9-578, ВIIB-9-612 и ВIIB-9-631) обладали большей аффинностью связывания с неактивируемым FIX, чем со свободным FIXa в анализе BLI.
- [819] Максимальное значение ответа (MM) после фазы связывания антигена для либо 100 нМ свободного FIXa, либо неактивируемого FIX наносили на график для каждого из 93 антител, определенных в отборах (фиг. 4А и фиг. 4В).
- [820] Антитела, у которых аффинность связывания CO свободным FIXa, измеренная посредством BLI, была выше, чем у неактивируемого FIX, вероятно, предпочтительно связываются со свободным FIXa, например, из-за селективного связывания эпитопом на FIXa человека, который является уникальным для FIXa, или с эпитопом на FIXa, который значительно отличается соответствующего эпитопа на зимогене FIX. Другими словами, преимущественное связывание FIXa антител C может быть обусловлено, например, связыванием С эпитопом, который отсутствует в зимогене FIX, или более высокой аффинностью

связывания с тем же эпитопом или его вариантом (например, перекрытием эпитопа или конформационно другим эпитопом).

[821] На фиг. 5 показана таблица со значениями кажущейся моновалентной аффинности (K_D) в отношении свободного FIXa для каждого из перечисленных антител, определенными с помощью алгоритмов подгонки 1:1, реализованных в программном обеспечении ForteBio Data Analysis 9.0.

[822] Профили связывания ВLI для отобранной подгруппы анализируемых антител представлены на фиг. 6A-6E. Приблизительные значения моновалентной аффинности в отношении свободного FIXa или неактивируемого FIX для отобранного набора тестов на антитела, как определено с помощью BLI, перечислены на фиг. 6F.

[823] Предсказуемо, что биспецифические антитела, которые предпочтительно распознают более активную конформацию FIXa (т. е. FXa-SM), будут обладать более высокой активностью, чем те, которые предпочтительно связываются со свободным FIXa.

[824] Как показано на фиг. 7, подмножество из 93 антител, которые проявляли более высокую аффинность связывания CO с неактивируемым свободным FIXa, чем FIX, дополнительно оценивали в отношении их связывания со 100 нМ свободного FIXa и со 100 нМ FIXa-SM в анализе моновалентного связывания BLI со 150 нМ антитела в системе OctetRed94 или Octet HTX в соответствии с процедурами производителя. Вкратце, биосенсоры количественного определения антител к IgG человека dip and read anti-Human IgG Quantitation (Pall Fortebio: номер по каталогу 18-5005) уравновешивали в TBSFCa. Затем планшеты переносили в устройство. Стадию замачивания осуществляли на устройстве инкубацией биосенсоров в течение 60 секунд в TBSFCa. Затем биосенсоры переносили в лунки, содержащие репрезентативный IgG (150 нМ в TBSFCa) в течение 180 секунд. После этого биосенсоры инкубировали в TBSFCa в течение 60 секунд для установления исходного уровня. Затем биосенсоры переносили содержащие требуемый антиген (100 нМ в TBSFCa), и инкубировали в течение 90 секунд. Наконец, датчики переносили только в TBSFCa в течение 90 секунд инкубации.

[825] Для некоторого количества антител наблюдали большее связывание с FIXa-SM, чем со свободным FIXa. Иллюстративные примеры профилей связывания ВLI для связывания с каждым целевым антигеном представлены на фиг. 8A-8E. В таблице на фиг. 8F перечислены значения кажущейся аффинности для исследуемых антител в отношении каждого целевого антигена в соответствии с алгоритмами подгонки, реализованными в программном обеспечении ForteBio Data Analysis 9.0.

[826] Из экспериментов BLI идентифицировали четыре класса антител, предназначенных для определения специфичности антител, обнаруженных в отборах:

класс I: антитела предпочтительно связываются с FIXa-SM, а не со свободным FIXa или неактивируемым FIX. Примерами данного класса являются BIIB-9-460 и BIIB-9-484, как показано на фиг. 9A:

класс II: антитела предпочтительно связываются со свободным FIXa, а не с FIXa-SM или неактивируемым FIX, как представлено с помощью BIIB-9-885 и BIIB-9-416 (фиг. 9B);

класс III: антитела связываются либо с FIXa-SM, либо со свободным FIXa с почти равной эквивалентностью, но не связываются существенно с неактивируемым FIX. Примером данного класса служит BIIB-9-1287 (ϕ ur. 9C); и

класс IV: Антитела предпочтительно связываются с неактивируемым FIX, а не со свободным FIXa или FIXa-SM (фиг. 9D). Примером данного класса служит BIIB-9-397.

[827] Таблица с перечислением классов для всех антител к FIX (например, антитела к FIXa или антитела к FIXz), раскрытых в данном документе, представлена на фиг. 10.

[828] Скрининг антител в отношении биофизического состояния: 93 антитела к FIX исследовали с помощью спектроскопии самовзаимодействия наночастиц с аффинным захватом (AC-SINS), анализа, в котором микроконцентрируют целевые антитела на поверхности наночастиц для оценки самоассоциации. Скрининг АС-SINS для выявления антител с плохими биофизическими свойствами, например самоагрегацией, в отношении их аналогов осуществляли в соответствии со способами, описанными в литературе. См.,

например, Liu et al. (2014) MAbs. 6(2):483-92 и Wu et al. (2015) Protein Engineering, Design and Selection 28: 403-414, оба из которых включены в данный документ посредством ссылки в полных объемах. Каждое антитело захватывали на поверхности наночастиц золота с начальной концентрацией 40 мкг/мл в объеме 100 мкл и инкубировали при комнатной температуре в течение двух часов. После инкубации определяли поглощение в спектре длин волн. В случаях самоассоциации антител расстояние между частицами уменьшалось, что приводило к более высоким длинам волн максимального поглощения. По сравнению с внутренними стандартами биофизического состояния максимальные длины волн более 540 нм указывали на наличие антител, которые склонны к самовоздействию. Таблица, в которой перечислены рассчитанные максимальные длины волн для 93 антител к FIX, определенные с помощью AC-SINS, показана на фиг. 11.

Пример 2

Получение антител, которые предпочтительно связываются с FX, а не с FXа

[829] Разработка способов селекции антител и получение антител: С целью получения антител, которые селективно связываются с зимогеном FX (например, неактивируемый фактор X (FX)) по сравнению с активированным фактором X (FXa), отбирали антитела из дрожжевой библиотеки человеческих антител Adimab с использованием трех различных вариантов фактора X:

"неактивируемый фактор X" ("FXn"), который представляет собой FX, несущий аргинин к аланиновой мутации в положении 194 (нумерация на основании зрелых белков), с предотвращением его активации и поддержанием FX в форме зимогена. Это был FXz (зимоген FX), который использовали для экспериментов BLI. FXn получали и биотинилировали на месте, как описано ниже;

"свободный FX" ("FXa"), который представляет собой форму активированного FX без какой-либо имитации субстрата и, как полагают, находится в конформации активированного FX дикого типа (HTI, номер по кат. HCXA-0060); и

"FXa-SM", который представляет собой форму активированного фактора X с имитатором субстрата (например, EGR-CMK), ковалентно

связанным с активным центром (HTI, номер по кат. HCXA-EGR). В некоторых случаях имитатор субстрата биотинилировали (BEGR-CMK) и ковалентно связывали с активным сайтом (HTI, номер по кат. HCXA-BEGR).

- [830] Схематические диаграммы зимогена FX, свободного FXa и FXa-SM (фактор Xa+EGR-CMK) показаны на фиг. 1B.
- [831] За последовательностью FX следовал GS-линкер и метка биотинилирования на С-конце молекулы. При совместной экспрессии с биотин-лигазой BirA в присутствии биотина полученная молекула FIX несет одну биотиновую метку для обеспечения возможности выбора с помощью библиотеки дисплея Adimab.
- [832] Неактивируемый FX рекомбинантно экспрессировали с BirA в присутствии биотина и очищали в соответствии со способами, известными из уровня техники.
- [833] Как и в случае FIXa, трипептид хлорметилкетон (т. е. EGR-CKM) из последовательности EGR мог ковалентно модифицировать активный сайт FXa, имитируя связанную с субстратом конформацию FXa.
- [834] Для целей отрицательного отбора, свободный FXa (HTI, номер по кат. HCXA-0060) и FXa-SM человека (HTI, номера по каталогу HCXA-EGR и HCXA-BEGR) приобретали у Haematologic Technologies Incorporated (HTI).
- [835] Все FX-белки, независимо от того, произведены ли они для внутреннего пользования или приобретены, заменяли буфером на трис-буферный солевой раствор с 5 мМ $CaCl_2$ в качестве добавки в соответствии со способами, известными из уровня техники. В настоящем описании описан набор антител, полученных против неактивируемого FX, которые демонстрировали большее связывание с неактивируемым FX, чем с FX (например, свободным FX или имитатором FX (способом, аналогичным способу FVIIIa).
- [836] Как и в случае раскрытых выше антител к FIX, библиотеки экспрессии Adimab подвергали скринингу в соответствии со способами, раскрытыми в публикациях США $\mathbb{N}\mathbb{N}$ 20100056386 и 20090181855. После нескольких итеративных циклов положительного селективного давления в отношении целевого антигена FX, т. е. неактивируемого FX, а также отрицательного селективного давления

в отношении свободных FXa или FXa-SM колонии секвенировали для идентификации уникальных клонов с использованием методов, известных из уровня техники. После отбора антител более 800 антител экспрессировали и очищали на смоле белка A из дрожжей в соответствии со стандартной методологией. Экспериментальная сортировка для идентификации антител, которые селективно связываются с неактивируемым FX, показана на фиг. 2.

[837] Детали второй стадии схемы сортировки представлены в разделах "Определение характеристик связывания антител с целевым антигеном" и "Скрининг антител в отношении биофизического состояния", см. ниже. В результате второй стадии сортировки антител получили набор из 94 антител к FXn, которые могли предпочтительно связываться с FXn, а не с активным FXa типа или FXa-SM). Последовательности (например, FXa дикого аминокислот И нуклеиновых кислот вариабельных областей представлены выше. Таблица зародышевого типа и CDR каждого из 94 антител представлена на фиг. 12A, 12B и 12C.

Определение характеристик связывания антитела целевым антигеном κ фактору X (FX): Чтобы дополнительно обнаруженных антител определить, какое из демонстрировало большее связывание с зимогеном FX, чем с FXa-SM, более 800 антител, очищенных \circ T дрожжей, подвергали СКРИНИНГУ биослойной интерферометрии (BLI) применением формате моновалентного анализа с 200 нМ антитела. Неактивируемые FX и FXa-SM получали от HTI. Свободные FXa и FXa-SM одинаково в экспериментах по связыванию и могли использоваться взаимозаменяемо; поэтому результаты касательно свободного FXa не показаны. Поскольку данные, представленные для свободного FXa, соответствуют FXa-SM, то наблюдения с использованием FXa-SM в равной степени применимы к свободному FXa.

[839] BLI осуществляли в системе OctetRed94 или Octet HTX в соответствии со стандартной процедурой. Вкратце, биосенсоры для количественного определения антител к IgG человека dip and read anti-Human IgG Quantitation (Pall Fortebio: номер по каталогу 18-5005) уравновешивали в TBSFCa. Затем планшеты переносили в устройство. Стадию замачивания осуществляли на устройстве с

инкубацией биосенсоров в течение 60 секунд в TBSFCa. Затем биосенсоры переносили в лунки, содержащие репрезентативный IgG (200 нМ в TBSFCa) в течение 180 секунд. После этого биосенсоры инкубировали в TBSFCa в течение 60 секунд для установления Затем биосенсоры переносили исходного уровня. содержащие требуемый антиген (200 нМ в TBSFCa), и связывание происходило в течение 90 секунд. Наконец, датчики переносили только в TBSFCa в течение 90 секунд инкубации. Максимальное значение ответа (нм) после фазы связывания для либо 200 нМ FXn, график для каждого из 94 антител, либо FXa-SM наносили на определенных в отборах. Почти все антитела, идентифицированные в ходе отборов, направленных на специфичность в отношении FXn, продемонстрировали большую аффинность связывания с FX, чем с ковалентно модифицированным FXa (фиг. 13).

[840] Только ВІІВ-12-894, ВІІВ-12-925, ВІІВ-12-1320 и ВІІВ-12-1321 продемонстрировали большее связывание с FXa-SM. Ожидалось, что антитела, которые предпочтительно связывались с FXn по сравнению с активированным FX (например, свободным FXa или FXa-SM), предпочтительно связывались с зимогеном FX, чем с FXa. Следовательно, антитела к FIXn также можно называть антителами к FXz. На фиг. 14 показана таблица, в которой перечисляются выявленные аффинности к исследуемым антителам к FXn в соответствии с алгоритмами подгонки, реализованными в программном обеспечении ForteBio Data Analysis 9.0.

[841] Скрининг антител Bотношении биофизического антитела состояния: 94 K FXzисследовали С анализа самовзаимодействия наночастиц спектроскопического аффинным захватом (AC-SINS), как описано для раскрытых выше антител к FIXa. Скрининг AC-SINS для выявления антител с плохими биофизическими свойствами (например, СКЛОННОСТЬ K самоассоциации) отношении ИX аналогов осуществляли В В соответствии со способами, описанными В литературе. например, Liu et al. (2014)MAbs 6(2):483-92. Антитело поверхности наночастиц золота С начальной захватывали на концентрацией 40 мкг/мл в объеме 100 мкл и инкубировали при комнатной температуре в течение двух часов. После

определяли поглощение в спектре длин волн. В случаях самоассоциации антител расстояние между частицами уменьшалось, приводило К более высоким длинам волн максимального поглощения. По сравнению С внутренними стандартами биофизического состояния максимальные длины волн более 540 нм указывали на наличие антител, которые склонны к самовоздействию. На фиг. 15 показана таблица, в которой перечислены рассчитанные максимальные длины волн для 94 антител к FXz, как определено с помощью AC-SINS.

Пример 3

Конструирование биспецифических антител и

Оценка FVIIIa-подобной активности в хромогенном анализе

- [842] Биспецифические антитела, состоящие из двух разных Fab, одно из которых предпочтительно связывается активированным FIX ("FXa"), а не с зимогеном FIX (антитела II и III), и второе из которых предпочтительно классов І, связывается с зимогеном FX, а не с FXa (класс V антител), получали из отдельных антител, описанных в примерах 1 и 2. Получали дополнительные биспецифические антитела, состоящие из предпочтительно связывается первого плеча Fab, которое С зимогеном FIX, а не с FIXa (антитела класса IV), и второго плеча Fab, которое предпочтительно связывается с FXz, а не с FXa (антитела класса V) или которое предпочтительно связывается с FXa, а не с FXz (антитела класса VI). Также получали другие биспецифические антитела, состоящие ИЗ первого которое предпочтительно связывается С FIXa, а не FIXz (антитела классов I, II и III), и второго плеча Fab, которое предпочтительно связывается с FXa, а не с FXz (антитела класса VI).
- [843] Раскрытые биспецифические антитела можно получать с применением способов, известных из уровня техники, без излишнего экспериментирования. См., например, Kontermann & Brinkmann (2015) Drug Discovery Today 20:838-847 и ссылки, цитируемые там; Spies et al. (2015) Molecular Immunology 67:95-106 и ссылки, цитируемые там; Byrne et al. (2013) Trends in Biotechnology 31:621-632 и ссылки, цитируемые там; Strop et al. (2012) J. Mol.

Biol. 420:204-219 и ссылки, цитируемые там; все из которых включены в данный документ посредством ссылки в их полных объемах. См. также те, которые включены в данный документ посредством ссылки в их полных объемах.

[844] Биспецифические антитела либо состояли из двух разных тяжелых цепей и двух разных легких цепей, либо двух разных тяжелых цепей и общей легкой цепи в IgG1-подобном формате. В дополнительной подгруппе биспецифические антитела принадлежали к подклассу IgG4. Такие биспецифические антитела подвергали скринингу в отношении их способности заменять активность FVIIIa (т. е. способность имитировать FVIIIa) сначала в хромогенном анализе, а затем в анализе коагуляции на основе плазмы.

[845] Буфер для анализа, фосфолипиды, $CaCl_2$ и хромогенный субстрат FXa S-2765 приобретали у Diapharma в составе набора Chomogenix Coatest SP Factor VIII (номер по кат. K824086). Все белки разбавляли с применением 1X препарата буфера для анализа. Каждое биспецифическое антитело (25 мкл) смешивали с 20 мкл FX (HTI, номер по кат. HCX-0050), разбавленным до 750 нМ, 20 мкл FIXa (HTI, номер по кат. HCIXA-0050), разбавленным до 75 нМ, и 10 мкл фосфолипидов при комнатной температуре. Через 5 минут добавляли 25 мкл $CaCl_2$.

[846] Еще через 10 минут добавляли 50 мкл субстрата S-2765 и измеряли оптическую плотность при 405 нМ в планшет-ридере Biotek Synergy2 каждые 15 секунд в течение одного Начальные скорости определяли по изменению OD 405 нМ с течением времени от линейной части каждой кривой поглощения. В отсутствие FVIIIa, hFIXa является слабым ферментом, который образовывает только небольшое количество FXa, что приводило к исходному уровню расщепления субстрата FXa, как измерено по изменению OD при 405 нм с течением времени (мОD/минута). Увеличение скорости расщепления субстрата FXa при добавлении биспецифического антитела указывало на его способность облегчать активацию FX с помощью FIXa (заменяя тем самым FVIIIa-подобную функцию) анализе образования FXa. C применением данного идентифицировали 202 антитела, которые имитировали активность FVIIIa, т. е. имели скорость расщепления субстрата FXa, на по

меньшей мере три стандартных отклонения выше средней исходной скорости в отсутствие добавленного биспецифического антитела $(5,88\ \text{MOD/MUHyTa})$.

[847] Изменение OD со временем в отсутствие биспецифического антитела (исходное состояние), а также изменение OD с течением времени для 3 разных биспецифических антител: BIIB-9-484/BIIB-12-915, BIIB-9-619/BIIB-12-925 и BIIB-9-578/BIIB-12-917, которые способны заменить FVIIIa-подобную функцию, показаны на фиг. 16A-16D.

[848] Показатели для всех 202 биспецифических антител IgG1, способных заменить FVIIIa-подобную функцию, показаны на фиг. 16A-16D. Показатели для подгруппы этих антител в формате шарнира IgG4 показаны на фиг. 17.

ТАБЛИЦА 2.

Иллюстративные

биспецифические антитела

Биспецифи		VH	VL
ческое		SEQ	SEQ
антитело	Описание	ID	ID
Nº		NO.	NO.
	BIIB-9-484	31	221
1	BIIB-12-	4.67	655
	1288	467	655
	BIIB-9-578	185	371
2	BIIB-12-	467	655
	1288		
	BIIB-9-484	31	221
3	BIIB-12-	469	657
	1289		
	BIIB-9-484	31	221
4	BIIB-12-	471	659
	1290		
	BIIB-9-578	185	371
5	BIIB-12-	471	659
	1290		
	BIIB-9-484	31	221
6	BIIB-12-	473	661
	1291		
_	BIIB-9-484	31	221
7	BIIB-12-	475	663
	1292	0.1	0.01
	BIIB-9-484	31	221
8	BIIB-12-	477	665
	1293 BIIB-9-484	31	221
9	BIIB-12-	31	221
	1294	479	667
	BIIB-9-578	185	371
10	BIIB-12-		- ' -
	1294	479	667
	BIIB-9-484	31	221
11	BIIB-12-		
	1295	481	669
	BIIB-9-578	185	371
12	BIIB-12-	4.0.7	
	1295	481	669
1.0	BIIB-9-484	31	221
13	BIIB-12-	483	671
	<u> </u>		<u> </u>

Биспецифи		VH	VL
ческое	Описание	SEQ	SEQ
антитело		ID	ID
Nº		NO.	NO.
	1296		
	BIIB-9-578	185	371
14	BIIB-12-	483	671
	1296	405	071
	BIIB-9-619	45	235
15	BIIB-12-	483	671
	1296	403	071
	BIIB-9-484	31	221
16	BIIB-12-	485	673
	1297	100	0,3
	BIIB-9-578	185	371
17	BIIB-12-	485	673
	1297	400	075
	BIIB-9-484	31	221
18	BIIB-12-	487	675
	1298	407	075
	BIIB-9-578	185	371
19	BIIB-12-	487	675
	1298	10 /	
	BIIB-9-484	31	221
20	BIIB-12-	489	677
	1299		
	BIIB-9-578	185	371
21	BIIB-12-	489	677
	1299		
	BIIB-9-484	31	221
22	BIIB-12-	491	679
	1300		
	BIIB-9-484	31	221
23	BIIB-12-	493	681
	1301		
24	BIIB-9-484	31	221
	BIIB-12-	495	683
	1302		
	BIIB-9-425	17	207
25	BIIB-12-	497	685
	1303		
26	BIIB-9-484	31	221

Биспецифи		VH	VL
ческое	_	SEQ	SEQ
антитело	Описание	ID	ID
Nº		NO.	NO.
	BIIB-12-	407	605
	1303	497	685
	BIIB-9-578	185	371
27	BIIB-12-	497	685
	1303	497	003
	BIIB-9-484	31	221
28	BIIB-12-	499	687
	1304		
	BIIB-9-578	185	371
29	BIIB-12-	499	687
	1304		
	BIIB-9-484	31	221
30	BIIB-12-	501	689
	1305		
	BIIB-9-578	185	371
31	BIIB-12-	501	689
	1305		201
	BIIB-9-484	31	221
32	BIIB-12-	503	691
	1306 BIIB-9-578	185	371
33	BIIB-9-576 BIIB-12-	103	3/1
	1306	503	691
	BIIB-9-484	31	221
34	BIIB-12-	31	
	1307	505	693
	BIIB-9-578	185	371
35	BIIB-12-		
	1307	505	693
	BIIB-9-484	31	221
36	BIIB-12-	F 6 7	605
	1308	507	695
	BIIB-9-578	185	371
37	BIIB-12-	507	695
	1308] 30 /	093
	BIIB-9-484	31	221
38	BIIB-12-	509	697
	1309		
		1	

Биспецифи		VH	VL
ческое	Описание	SEQ	SEQ
антитело		ID	ID
N₂		NO.	ио.
	BIIB-9-578	185	371
39	BIIB-12-	509	697
	1309		
	BIIB-9-484	31	221
40	BIIB-12-	511	699
	1310		
	BIIB-9-578	185	371
41	BIIB-12-	511	699
	1310		
	BIIB-9-484	31	221
42	BIIB-12-	513	701
	1311	105	0.71
4.2	BIIB-9-578	185	371
43	BIIB-12- 1311	513	701
	BIIB-9-484	31	221
44	BIIB-9-404 BIIB-12-	21	221
11	1312	515	703
	BIIB-9-578	185	371
45	BIIB-12-		
	1312	515	703
	BIIB-9-484	31	221
46	BIIB-12-	E 1 7	705
	1313	517	705
	BIIB-9-484	31	221
47	BIIB-12-	519	707
	1314		
	BIIB-9-578	185	371
48	BIIB-12-	519	707
	1314		
49	BIIB-9-484	31	221
	BIIB-12-	521	709
	1315 BIIB-9-578	185	371
50	BIIB-9-376	100	3/1
	1315	521	709
	BIIB-9-480	9	199
51	BIIB-12-	523	711

Биспецифи		VH	VL
ческое		SEQ	SEQ
антитело	Описание	ID	ID
Nº		NO.	NO.
	1316		
52	BIIB-9-484	31	221
	BIIB-12-	500	D11
	1316	523	711
53	BIIB-9-469	33	223
	BIIB-12-	523	711
	1316	323	/ ± ±
54	BIIB-9-578	185	371
	BIIB-12-	523	711
	1316		
55	BIIB-9-484	31	221
	BIIB-12-	527	715
	1318		
56	BIIB-9-484	31	221
	BIIB-12-	529	717
57	1319 BIIB-9-578	185	371
37	BIIB-9-578	100	3/1
	1319	529	717
58	BIIB-9-484	31	221
00	BIIB-12-	31	
	1320	561	749
59	BIIB-9-425	17	207
	BIIB-12-		
	1321	563	751
60	BIIB-9-484	31	221
	BIIB-12-	563	751
	1321	363	/31
61	BIIB-9-484	31	221
	BIIB12-1322	531	719
62	BIIB-9-484	31	221
	BIIB-12-	533	721
	1323		
63	BIIB-9-484	31	221
	BIIB-12-	537	725
	1325	1.5-	
64	BIIB-9-578	185	371
	BIIB-12-	537	725

Биспецифи		VH	VL
ческое		SEQ	SEQ
антитело	Описание	ID	ID
N º		NO.	NO.
	1325		
65	BIIB-9-484	31	221
	BIIB-12-	539	727
	1326		
66	BIIB-9-578	185	371
	BIIB-12-	539	727
	1326		
67	BIIB-9-484	31	221
	BIIB-12-	541	729
	1327		
68	BIIB-9-578	185	371
	BIIB-12-	543	731
	1327		
69	BIIB-9-484	31	221
	BIIB-12-	545	733
	1329	0.1	004
70	BIIB-9-484	31	221
	BIIB-12-	547	735
7.1	1330	107	272
71	BIIB-9-631 BIIB-12-	187	373
	1330	547	735
72	BIIB-9-484	31	221
12	BIIB-12-	31	221
	1331	549	737
73	BIIB-9-484	31	221
, 0	BIIB-12-		
	1332	551	739
74	BIIB-9-484	31	221
	BIIB-12-		
	1333	553	741
75	BIIB-9-416	93	279
	BIIB-12-		7.40
	1334	555	743
76	BIIB-9-484	31	221
	BIIB-12-	555	740
	1334	555	743
77	BIIB-9-578	185	371

Биспецифи		VH	VL
ческое		SEQ	SEQ
антитело	Описание	ID	ID
Nº		NO.	NO.
	BIIB-12-		
	1334	555	743
78	BIIB-9-484	31	221
	BIIB-12-891	377	565
79	BIIB-9-484	31	221
	BIIB-12-892	379	567
80	BIIB-9-484	31	221
	BIIB-12-893	381	569
81	BIIB-9-484	31	221
	BIIB-12-894	557	745
82	BIIB-9-578	185	371
	BIIB-12-894	557	745
83	BIIB-9-484	31	221
	BIIB-12-895	383	571
84	BIIB-9-484	31	221
	BIIB-12-896	385	573
85	BIIB-9-484	31	221
	BIIB-12-897	387	575
86	BIIB-9-578	185	371
	BIIB-12-897	387	575
87	BIIB-9-619	45	235
	BIIB-12-897	387	575
88	BIIB-9-628	113	299
	BIIB-12-897	387	575
89	BIIB-9-484	31	221
	BIIB-12-898	389	577
90	BIIB-9-484	31	221
	BIIB-12-899	391	579
91	BIIB-9-484	31	221
	BIIB-12-900	393	581
92	BIIB-9-484	31	221
	BIIB-12-901	395	583
93	BIIB-9-484	31	221
	BIIB-12-902	397	585
94	BIIB-9-484	31	221
	BIIB-12-903	399	587
95	BIIB-9-578	185	371

Биспецифи		VH	VL
ческое	0	SEQ	SEQ
антитело	Описание	ID	ID
Nº		NO.	NO.
	BIIB-12-903	399	587
96	BIIB-9-619	45	235
	BIIB-12-903	399	587
97	BIIB-9-484	31	221
	BIIB-12-904	401	589
98	BIIB-9-484	31	221
	BIIB-12-905	403	591
99	BIIB-9-578	185	371
	BIIB-12-905	403	591
100	BIIB-9-484	31	221
	BIIB-12-906	405	593
101	BIIB-9-578	185	371
	BIIB-12-906	405	593
102	BIIB-9-619	45	235
	BIIB-12-906	405	593
103	BIIB-9-484	31	221
	BIIB-12-907	407	595
104	BIIB-9-484	31	221
	BIIB-12-908	409	597
105	BIIB-9-484	31	221
	BIIB-12-909	411	599
106	BIIB-9-484	31	221
	BIIB-12-910	413	601
107	BIIB-9-484	31	221
	BIIB-12-911	415	603
108	BIIB-9-484	31	221
	BIIB-12-912	417	605
109	BIIB-9-484	31	221
	BIIB-12-913	419	607
110	BIIB-9-484	31	221
	BIIB-12-914	421	609
111	BIIB-9-484	31	221
110	BIIB-12-915	423	611
112	BIIB-9-578	185	371
112	BIIB-12-915	423	611
113	BIIB-9-619	45	235
	BIIB-12-915	423	611

Биспецифи		VH	VL
ческое	_	SEQ	SEQ
антитело	Описание	ID	ID
Nº		NO.	NO.
114	BIIB-9-484	31	221
	BIIB-12-916	425	613
115	BIIB-9-578	185	371
	BIIB-12-916	425	613
116	BIIB-9-607	99	285
	BIIB-12-917	427	615
117	BIIB-9-484	31	221
	BIIB-12-917	427	615
118	BIIB-9-578	185	371
	BIIB-12-917	427	615
119	BIIB-9-619	45	235
	BIIB-12-917	427	615
120	BIIB-9-484	31	221
	BIIB-12-918	429	617
121	BIIB-9-578	185	371
	BIIB-12-918	429	617
122	BIIB-9-484	31	221
	BIIB-12-920	433	621
123	BIIB-9-484	31	221
	BIIB-12-921	435	623
124	BIIB-9-484	31	221
	BIIB-12-922	437	625
125	BIIB-9-484	31	221
	BIIB-12-923	439	627
126	BIIB-9-578	185	371
	BIIB-12-923	439	627
127	BIIB-9-484	31	221
	BIIB-12-924	441	629
128	BIIB-9-578	185	371
	BIIB-12-924	441	629
129	BIIB-9-607	99	285
	BIIB-12-925	559	747
130	BIIB-9-439	105	291
	BIIB-12-925	559	747
131	BIIB-9-564	29	219
	BIIB-12-925	559	747
132	BIIB-9-484	31	221

Биспецифи		VH	VL
ческое	0	SEQ	SEQ
антитело	Описание	ID	ID
Nº		NO.	NO.
	BIIB-12-925	559	747
133	BIIB-9-578	185	371
	BIIB-12-925	559	747
134	BIIB-9-615	111	297
	BIIB-12-925	559	747
135	BIIB-9-619	45	235
	BIIB-12-925	559	747
136	BIIB-9-628	113	299
	BIIB-12-925	559	747
137	BIIB-9-484	31	221
	BIIB-12-926	443	631
138	BIIB-9-484	31	221
	BIIB-12-927	445	633
139	BIIB-9-484	31	221
	BIIB-12-927	445	633
140	BIIB-9-484	31	221
	BIIB-12-929	449	637
141	BIIB-9-484	31	221
	BIIB-12-930	451	639
142	BIIB-9-484	31	221
	BIIB-12-931	453	641
143	BIIB-9-484	31	221
	BIIB-12-933	457	645
144	BIIB-9-484	31	221
	BIIB-12-936	463	651
145	BIIB-9-484	31	221
	BIIB-12-937	465	653
146	BIIB-9-1284	175	361
	BIIB-12-892	379	567
147	BIIB-9-451	53	243
	BIIB-12-907	407	595
148	BIIB-9-1265	137	323
	BIIB-12-908	409	597
149	BIIB-9-1275	157	343
	BIIB-12-908	409	597
150	BIIB-9-419	51	241
	BIIB-12-910	413	601

Биспецифи		VH	VL
ческое		SEQ	SEQ
антитело	Описание	ID	ID
Nº		NO.	NO.
151	BIIB-9-473	55	245
	BIIB-12-910	413	601
152	BIIB-9-573	59	249
	BIIB-12-910	413	601
153	BIIB-9-581	63	253
	BIIB-12-910	413	601
154	BIIB-9-582	65	255
	BIIB-12-910	413	601
155	BIIB-9-592	73	263
	BIIB-12-910	413	601
156	BIIB-9-608	77	267
	BIIB-12-910	413	601
157	BIIB-9-612	189	375
	BIIB-12-910	413	601
158	BIIB-9-616	79	269
	BIIB-12-910	413	601
159	BIIB-9-1265	137	323
	BIIB-12-910	413	601
160	BIIB-9-1268	143	329
	BIIB-12-910	413	601
161	BIIB-9-1269	145	331
	BIIB-12-910	413	601
162	BIIB-9-1272	151	337
	BIIB-12-910	413	601
163	BIIB-9-1273	153	339
	BIIB-12-910	413	601
164	BIIB-9-1274	155	341
	BIIB-12-910	413	601
165	BIIB-9-1275	157	343
	BIIB-12-910	413	601
166	BIIB-9-1276	159	345
	BIIB-12-910	413	601
167	BIIB-9-1279	165	351
	BIIB-12-910	413	601
168	BIIB-9-1282	171	357
	BIIB-12-910	413	601
169	BIIB-9-1284	175	361

Биспецифи		VH	VL
ческое		SEQ	SEQ
антитело	Описание	ID	ID
Nº		NO.	NO.
	BIIB-12-910	413	601
170	BIIB-9-1285	177	363
	BIIB-12-910	413	601
171	BIIB-9-1278	163	349
	BIIB-12-913	419	607
172	BIIB-9-1285	177	363
	BIIB-12-913	419	607
173	BIIB-9-590	71	261
	BIIB-12-914	421	609
174	BIIB-9-612	189	375
	BIIB-12-921	435	623
175	BIIB-9-621	81	271
	BIIB-12-925	559	747
176	BIIB-9-1265	137	323
	BIIB-12-925	559	747
177	BIIB-9-1275	157	343
	BIIB-12-925	559	747
178	BIIB-9-1279	165	351
	BIIB-12-925	559	747
179	BIIB-9-1265	137	323
	BIIB-12-	467	655
	1288	107	
180	BIIB-9-1275	157	343
	BIIB-12-	467	655
	1288		
181	BIIB-9-451	53	243
	BIIB-12-	475	663
	1292		
182	BIIB-9-573	59	249
	BIIB-12-	475	663
	1292		
183	BIIB-9-581	63	253
	BIIB-12-	475	663
	1292		
184	BIIB-9-582	65	255
	BIIB-12-	475	663
	1292		

Биспецифи		VH	VL
ческое		SEQ	SEQ
антитело	Описание	ID	ID
<i>N</i> ō		NO.	NO.
185	BIIB-9-585	67	257
	BIIB-12-	475	663
	1292	1,0	000
186	BIIB-9-608	77	267
	BIIB-12-	479	667
105	1294	105	222
187	BIIB-9-1265	137	323
	BIIB-12- 1294	479	667
188	BIIB-9-1265	137	323
100	BIIB-12-	137	323
	1297	485	673
189	BIIB-9-608	77	267
	BIIB-12-		
	1300	491	679
190	BIIB-9-1265	137	323
	BIIB-12-	491	679
	1300	491	019
191	BIIB-9-608	77	267
	BIIB-12-	493	681
	1301		
192	BIIB-9-1265	137	323
	BIIB-12-	493	681
193	1301 BIIB-9-1265	137	323
193	BIIB-9-1203	137	323
	1312	515	703
194	BIIB-9-433	127	313
	BIIB-12-		
	1314	519	707
195	BIIB-9-1265	137	323
	BIIB-12-	519	707
	1314	010	' '
196	BIIB-9-1275	157	343
	BIIB-12-	519	707
	1314		
197	BIIB-9-1276	159	345
	BIIB-12-	519	707

Биспецифи ческое антитело №	Описание	VH SEQ ID NO.	VL SEQ ID NO.
	1314		
198	BIIB-9-1276	159	345
	BIIB-12- 1315	521	709
199	BIIB-9-1268	143	329
	BIIB-12- 1318	527	715
200	BIIB-9-1265	137	323
	BIIB-12- 1319	529	717
201	BIIB-9-1284	175	361
	BIIB-12- 1327	541	729
202	BIIB-9-1273	153	339
	BIIB-12- 1334	555	743

Пример 4

Оценка биспецифических антител в анализах коагуляции на основе плазмы

[849] Биспецифические антитела, которые были способны заменять и/или имитировать активность FVIIIа в хромогенном анализе, дополнительно исследовали в отношении их способности заменять FVIIIa-подобную активность в одностадийном анализе свертывания в плазме крови. Для данного исследования отбирали только те биспецифические антитела, которые проявляли наибольшую активность в вышеописанном хромогенном анализе.

Биспецифические антитела (5 мкл) различных плазмы с дефицитом FVIII смешивали с 50 мкл концентрациях в течение 60 секунд. Для активации реакции реакционной смеси добавляли 50 мкл эллаговой кислоты Actin FSL в течение 240 секунд, а затем 50 мкл $CaCl_2$. Время свертывания измеряли в течение 300 секунд с помощью оптического выявления с применением системы Sysmex CA-1500 (Siemens). Снижение времени свертывания присутствии биспецифического частности, уменьшение времени свертывания от исходного уровня до приблизительно 126 секунд и дозозависимый ответ, указывающий на уменьшение времени свертывания, считался показателем способности антитела заменять функцию FVIIIa и облегчать образование сгустка.

[851] На фиг. 19 показан пример трех таких биспецифических антител: BIIB-9-484/BIIB-12-917, BIIB-9-484/BIIB-12-915 и BIIB-9-484/BIIB-12-1306. С целью показать, что FVIIIa-подобная активность являлась результатом биспецифического формата антитела, выполняли тот же эксперимент либо с одним гомодимером антитела к FIXa и антитела к FX, либо в виде смешанной популяции гомодимеров по сравнению с биспецифическим антителом. Результаты для пары BIIB-9-484 и BIIB-12-917 показаны на фиг. 20.

[852] С целью убедиться, что биспецифическая активность, наблюдаемая в анализах образования FXa и коагуляции на основе плазмы, вовлекает одновременное связывание каждого из целевых антигенов, выполняли эксперимент на основе BLI на системе ForteBio HTX с использованием биосенсоров стрептавидина

streptavidin dip and read (Pall ForteBio; номер по каталогу 18-5021). После инкубации в трис-буферном солевом растворе с добавлением 0,1% бычьего сывороточного альбумина и 5 мM CaCl₂ (называемого буфером на фиг. 21), биосенсоры затем инкубировали биотинилированным FIXa-SM, полученным внутреннего ДЛЯ пользования. Затем биосенсоры переносили в лунки, содержащие 100 BIIB-9-484/BIIB-12-917. Наконец, те же биосенсоры инкубировали с 200 нМ небиотинилированного FX (неактивированный фактор X). Как показано в настоящем изобретении, биспецифическое BIIB-9-484/BIIB-12-917 способно связываться с каждым из целевых антигенов, представленных в качестве примера на фиг. 21. Это поддерживает и согласуется с наблюдаемой функциональной активностью.

Пример 5

Конструирование и оптимизация биспецифической активности

целью определить, ли биспецифическая может активность быть улучшена путем конструирования взаимодействия области CDR1 VH антитело:антиген, И CDR2 BIIB-9-484 модифицировали с введением аминокислотного пичип по 106 последовательность зародьшевого типа. Библиотеку ИЗ производных последовательности BIIB-9-484 затем вносили платформу Adimab.

[854] С целью идентифицировать производные с улучшенной аффинностью к FIXa (т. е. свободному FXa) и FIXa-SM относительно неактивируемого FIX, библиотеки экспрессии подвергали нескольким итеративным раундам отбора с селективным давлением, примененным клонам с более высокой аффинностью, в соответствии способами, раскрытыми в публикации патентов США №№ 20100056386 и 20090181855, которые включены в данный документ посредством ссылки в их полных объемах. См., также, Van Deventer and Wittrup (2014) Methods Mol. Biol. 1319:3-36; Chao et al. (2006), Nature 1(2):755-768; Feldhaus al. Protocols et (2003) Biotechnology 21(2):163-170; Boder and Wittrup (1997) Biotechnology 15(6):553-557, все из которых включены в данный документ посредством ссылки в их полных объемах.

[855] Впоследствии колонии секвенировали для идентификации

уникальных производных в соответствии со способами, известными из уровня техники. С помощью данной процедуры идентифицировали по меньшей мере 76 уникальных последовательностей VH. 76 антител экспрессировали И очищали \circ T дрожжей путем очистки С использованием белка Α соответствии со стандартными В процедурами в данной области техники.

[856] Затем 76 уникальных производных антител из исходного BIIB-9-484 подвергали повторному скринингу В отношении улучшенного связывания с целевым антигеном, свободным FIXa (HTI) или FIXa-SM (HTI), на этот раз с использованием BLI в формате моновалентного анализа с 200 нМ антитела. BLI осуществляли в системе Octet HTX в соответствии с процедурами производителя. Вкратце, биосенсоры для количественного определения антител к IgG человека dip and read anti-Human IgG Quantitation (Pall Fortebio: номер по кат. 18-5005) уравновешивали в TBSFCa. Затем планшеты устройство. переносили В Стадию замачивания осуществляли на устройстве с инкубацией биосенсоров в течение 60 секунд в TBSFCa. Затем биосенсоры переносили в лунки, содержащие репрезентативный IgG (100 нМ в TBSFCa) в течение 180 секунд. После этого биосенсоры инкубировали в TBSFCa в течение 60 секунд для установления исходного уровня. Затем биосенсоры переносили в лунки, содержащие требуемый антиген (10)Мн TBSFCa), связывание происходило в течение 90-180 секунд. Наконец, датчики переносили только на TBSFCa в течение 180 секунд инкубации.

[857] По меньшей мере два производных BIIB-9-484, названные соответственно ВІІВ-9-1335 и ВІІВ-9-1336, продемонстрировали значительно улучшенное связывание С целевым антигеном относительно исходного при концентрации антитела, составляющей 10 нМ. Отклонения от областей CDR1 и CDR2 тяжелой цепи BIIB-9-484 отмечены на фиг. 22A. Раскрыты профили связывания BLI двух производных, проявляющих более сильное связывание с наблюдаемым антигеном (т. е. свободным FIXa) (фиг. 22B-22D). целевым Последовательности аминокислот И нуклеиновых кислот модифицированных областей VH BIIB-9-484, BIIB-9-1335 и BIIB-9-1336 представлены ниже.

[858] Эффект увеличения аффинности плеча биспецифического

антитела к FIXa исследовали путем сравнения способности каждого (содержащего либо биспецифического антитела исходное FIXa, либо плечо антитела FIXa K зрелой аффинностью с константным плечом к FX) заменять активность FVIIIa в одностадийном анализе свертывания крови. Эксперименты проводили, как описано в примере 4. Один такой пример показан на фиг. 23, в котором плечо биспецифического антитела к FX (BIIB-12-917) было спарено либо с плечом антитела к FIXa BIIB-9-484, либо с дочерними плечами антитела к FIXa со зрелой аффинностью (BIIB-9-1335 и BIIB-9-1336) (фиг. 23). Дальнейшее уменьшение показателя времени свертывания крови В присутствии биспецифических антител, содержащих плечи антитела к FIXa со зрелой аффинностью, по сравнению с таковыми с исходным плечом антитела к FIXa указывает на то, что увеличение аффинности в Присутствии плеча антитела K FIXa приводит к увеличению активности полученного в результате биспецифического антитела.

Пример 6

Сравнительный анализ FVIIIа-имитирующих биспецифических антител к FVIII для лечения гемофилии A

[859] С использованием ряда анализов активности сравнивали эталонное биспецифическое антитело (bsAb) и биспецифическое антитело по настоящему изобретению BS-027125 с рекомбинантным FVIII (rFVIII). BsAb BS-027125 содержало BIIB-9-1336 и BIIB-12-Эталонное биспецифическое антитело последовательность, идентичную АСЕ910/эмицизумаб ("биоэквивалент эмицизумаба"); ACE910 представляет собой рекомбинантное гуманизированное биспецифическое антитело, которое связывается с активированным фактором IX и фактором X и имитирует кофакторную функцию фактора VIII (FVIII). АСЕ910 раскрыт в патенте США № 8062635, который включен в данный документ посредством ссылки. Биоэквивалент эмицизумаба и BS-027125 изображены соответственно на фиг. 24А и фиг. 24В. Виоэквивалент эмицизумаба связывается с каждым из зимогена фактора IX, фактора IXa, зимогена фактора X и фактора Ха с K_d , составляющей примерно 1 мкМ (фиг. 24A). BS-027125 также связывается с зимогеном фактора IX ($K_D=8$ нМ), фактором IXa $(K_D=2 \text{ HM})$ и зимогеном фактора X $(K_D=20 \text{ HM})$, но не

связывается с фактором Ха (ϕ иг. 24В). Соответственно, BS-027125 обладает более высокой аффинностью и большей специфичностью в отношении активированного фактора IX и/или зимогена фактора X, чем биоэквивалент эмицизумаба.

[860] BS-027125 разработали, как описано выше, использованием платформы для презентации дрожжей Adimab in vitro с отбором на основе FACS с последующим созреванием аффинности. Первоначальный пул bsAb получали путем форматирования в bsAb >200 уникальных антител, специфических в отношении FIXa, и >250 антител, специфических в отношении идентифицировали с применением Adimab. BS-027025, исходное антитело для BS-027125, обладало самой высокой FVIIIa-подобной активностью среди указанного начального пула bsAb, значительную активность в одностадийном анализе крови. Как показано на фиг. 25, BS-027025 значительно сократило время свертывания, приближаясь к активности рекомбинантного фактора VIII в том же анализе. BS-027025 связывалось с зимогеном фактора XI $(K_D=370\ \text{HM})$, фактором IXa $(K_D=67\ \text{HM})$, фактором IXa-LTR $(K_D=10,5\,$ нМ) и зимогеном фактора X $(K_D=20\,$ нМ), но не с фактором ІХа, как показано в таблице 3.

таблица 3.

Фактор	BS-025
Зимоген фактора IX	370 нм
Фактор IXa	67 нм
Фактор IXa-LTR	10,5 нм
	BS-027
Зимоген фактора Х	20 нм
Фактор Ха	Не обнаружено

[861] Созревание аффинности плеча антитела к FIXa BS-027025 привело к bsAb BS-027125. Увеличение аффинности плеча антитела к FIXa (от BS-025 до BS-125) увеличивало скорость образования FXa полученного в результате биспецифического антитела, особенно в сочетании с компонентами BS-027 или BS-007 в биспецифическом антителе (данные не показаны). Дальнейшее исследование показало, что BS-027125 достигало примерно 90% FVIIIa-подобной активности,

как определено в ходе одностадийного анализа свертывания крови $(\mathbf{\phi ur.}\ \mathbf{26})$.

[862] Активность BS-027125, его соответствующих двухвалентных гомодимеров и rFVIII измеряли с помощью анализа образования хромогенного фактора Xa (FXa) (ϕ ur. 27), анализа образования тромбина, запускаемого с помощью фактора XIa (ϕ ur. 28A и 28B), и анализа активированного частичного тромбопластинового времени (aPTT), запускаемого с помощью Actin FSL (ϕ ur. 26).

[863] Принимая во внимание, что эталонное bsAb было очень всех анализах, концентрация, при которой достигло пиковой активности, была разной между анализами. BS-027125 также проявляло активность во всех анализах и было очень активным в aPTT. Для обоих bsAb время задержки и высота пика в анализе образования тромбина коррелировали с различными уровнями активности rFVIII. Оба эталонных двухвалентных гомодимера bsAb проявляли значительную активность в нескольких анализах, в то время как только двухвалентный гомодимер BS-027125 FIXa сохранял умеренную активность в анализе образования FXa. Как и ожидалось, rFVIII утрачивал всю активность в отсутствие фосфолипидов в анализе образования FXa. BS-027125 также продемонстрировало фосфолипид-независимую активность. Напротив, минимальную эталонное bsAb обладало очень значительной активностью отсутствие фосфолипидов.

Пример 7

Эффект фосфолипидной композиции в отношении активности FVIIIa-имитирующих биспецифических антител

[864] В составе теназного комплекса активированный фактор VIII (FVIIIa) связывается с экспонированным фосфатидилсерином клеточных мембранах и собирается с активированным (PS) фактором IXa и фактором X. Было показано, что FVIIIa связывается предпочтительно с фосфолипидами, содержащими PS (фосфатидилсерины), так и фосфатидилэтаноламин (PE). ЧТО фосфатидилэтаноламина (PE) показано, присутствие фосфолипидных везикулах фосфатидилхолина (РС) снижает количество РЅ, необходимое для оптимальной активности фактора свертывания,

тогда как везикулы, состоящие только из PS и PC, требуют более высоких уровней PS для оптимальной активности. Недавно качестве потенциального средства для лечения пациентов гемофилией A с ингибиторами и без них было разработано FVIIIaимитирующее биспецифическое антитело (эмицизумаб). FVIIIбиспецифическое BS-027125 имитирующее антитело обладает улучшенной целевой специфичностью по сравнению с эмицизумабом. Учитывая, что фосфолипидная композиция влияет на активность что антитела не теназы M связываются С фосфолипидами непосредственно, неясно, будут ли FVIIIa-имитирующие антитела проявлять сходные предпочтения в отношении фосфолипидов.

[865] Сравнивали эффект различных фосфолипидных композиций и концентраций в отношении активности эталонного bsAb, показанного в примере 6, биспецифического антитела по настоящему изобретению BS-027125 и рекомбинантного FVIII (rFVIII).

[866] Прокоагулянтную активность эталонных bsAb, BS-027125 и rFVIII оценивали с помощью анализа образования тромбина, инициированной фактором XIa. Однослойные фосфолипидные везикулы получали путем экструзии, как описано в Mui B, et al. Methods Enzymol, 2003. Исследуемые синтетические фосфолипидные везикулы состояли из PS (фосфатидилсерин)/PE (фосфатидилэтаноламин)/PC (фосфатидилхолин) (20%/40%/40%) или PS/PC (20%/80%).

[867] Как и ожидалось, активность rFVIII была в 2,5 раза выше по отношению к РЕ-содержащим фосфолипидам, и активность была утрачена по отношению к обоим фосфолипидам при ограничении или крайнем избытке. Примечательно, ЧТО RTOX эталонная активность bsAb была одинаковой для обоих фосфолипидов, 027125 характеризовалось примерно в 3 раза большей активностью в отношении РЕ-содержащих фосфолипидов. Концентрация фосфолипидов, которая поддерживала пиковую активность, была выше для эталонных bsAb И BS-027125, чем для rFVIII. Эти результаты дают эталонные bsAb и предположить, BS-027125 возможность ЧТО функционируют посредством различных механизмов.

[868] Для rFVIII и BS-027125 тенденция повышенной активности в отношении PE-содержащих фосфолипидов сохраняется между анализом образования FXа и анализом образования тромбина.

См. фиг. 29. Однако Emi-bsim обладал повышенной активностью при выработке FXa, но не при образовании тромбина. См. фиг. 30. Различная относительная активность rFVIII и FVIIIa-имитирующих биспецифических антител на разных фосфолипидных поверхностях усложняет непосредственное сравнение между этими молекулами и подчеркивает влияние схемы анализа в случае сравнительного анализа активности rFVIII и FVIIIa-имитирующих биспецифических антител. Эти данные также предполагают различия в механизме действия между Emi-bsim и BS-027125.

Пример 8

Эпитоп-специфическая сортировка антител к FIXa

- Чтобы определить, связываются ли различные FIXa c уникальными сайтами, авторы антител к провели эксперимент с применением интерферометрии В системе Octet HTX, следуя инструкциям производителя. Вкратце, биосенсоры для количественного определения антител к IgG человека dip and read anti-Human IgG (Pall Fortebio: $N_{\bar{0}}$ Quantitation ПО каталогу уравновешивали в TBSFCa в течение 60 секунд. Затем первое антитело (при 200 Мн В TBSFCa) загружали на наконечник биосенсора в течение 180 секунд с последующей исходной стадией в одном буфере в течение 60 секунд.
- [870] Любые свободные участки связывания, оставшиеся на зонде, блокировали неспецифическими IgG в течение 180 секунд, после чего следовала еще одна исходная стадия в одном буфере в течение 60 секунд. Затем обеспечивали связывание FIXa+SM (100 нМ в TBSFCa) с зондами, нагруженными антителами к FIXa, в течение 90 секунд. Наконец, комплекс между первым антителом и FIXa+SM подвергали воздействию второго антитела к FIXa (при 200 нМ в TBSFCa).
- [871] Дальнейшее увеличение сигнала указывало на то, что антитело 1 и антитело 2 могли связываться с антигеном одновременно и что они неконкурентны, что означало то, что они не попадали в одну и ту же ячейку (фиг. 31A). Однако, если дальнейшего увеличения сигнала не наблюдалось, то это указывало на то, что антитело 1 и антитело 2 не могли связываться с

антигеном одновременно, и поэтому было сказано, что они конкурируют, что означало то, что они попадали в одну и ту же ячейку (фиг. 31B).

[872] Если одновременное связывание антител 1 и 2 наблюдалось только в одном направлении (т. е. антитело 1-антиген-антитело 2 против антитела 2-антиген-антитело 1), то это считалось однонаправленным конфликтом.

[873] Для этого анализа выбирали подгруппу из 48 антител, и результаты суммированы на фиг. 31С. Несколько антител исключили из анализа из-за ошибок в сборе данных или потому, что данное антитело не связывалось с FIXa+SM (например потому, что оно было специфическим в отношении FIXa).

[874] Сеть сортировки подвергали узловому анализу для обеспечения визуального представления о том, насколько тесно каждое из антител FIXa связано с их профилями сортировки (фиг. 31D). Большинство антител очень тесно связаны друг с другом, в то время как существовали несколько отдельных групп. ВIIB-9-484 оказалось в уникальной ячейке.

Пример 9

Кальцийзависимое связывание BIIB-9-484 и BIIB-9-1336

[875] Благодаря уникальному профилю сортировки ВІІВ-9-484, авторы настоящего изобретения исследовали дополнительные свойства этого антитела, а также дочернего ВІІВ-9-1336 со зрелой аффинностью. Поскольку активность и свойства связывания многих факторов коагуляции, в том числе для ГІХа, зависят от кальция, то авторы настоящего изобретения сначала исследовали с помощью биослойной интерферометрии (ВLI), влияло ли на связывание этих двух антител присутствие или отсутствие кальция.

[876] Использование системы биосенсоров Octet QK384 для количественного определения антител к IgG человека dip and read anti-Human IgG Quantitation (AHQ) (Pall Fortebio: \mathbb{N}° по каталогу 18-5005) уравновешивали в HBS в течение 60 секунд с последующей 180-секундной стадией загрузки антител при 10 мкг/мл на зонды. После 60-секундной исходной стадии в HBS нагруженные антителами зонды подвергали воздействию 200 нМ FIXa в HBS или HBS с 5 мМ СаС12 в течение 180 секунд с последующей стадией диссоциации в

HBS или HBS с 5 мМ только CaCl2 в течение 180 секунд.

[877] Данные связывания, показанные на фиг. 32A и 32B указывают, что связывание BIIB-9-484 и BIIB-9-1336 с FIX является кальцийзависимым. BIIB-9-484 полностью зависит от присутствия кальция, в то время как связывание BIIB-9-1336 с FIX значительно снижается, но все же поддается измерению в отсутствие кальция.

Пример 10

$9 \phi \Phi$ ВІІВ-9-1336 в отношении протеолитической активности FIXa

[878] Для определения того, проявляет ли ВІІВ-9-1336 эффект в отношении ферментативной функции FIXa, авторы настоящего изобретения инкубировали различные количества антител с $250\,$ нМ FIXa в TBSCa в течение $5\,$ минут. Затем добавляли пептидный субстрат ADG299 до конечной концентрации, составляющей $0,8\,$ мМ, и скорость расщепления субстрата с помощью FIXa измеряли по изменению OD с течением времени (фиг. 33A).

[879] Для сравнения, другое антитело к FIXa, BIIB-9-579, также исследовали в отношении его способности проявлять эффект в отношении амидолитической активности FIXa, а также антитела к FX, BIIB-12-917, в качестве отрицательного контроля. BIIB-9-1336 характеризовалось способностью 3-кратно увеличивать скорость расщепления субстрата с помощью FIXa, в то время как BIIB-9-579 и BIIB-12-917 не проявляли какого-либо эффекта.

ВІІВ-9-1336, так как антитела с одним плечом и биспецифические антитела, которые содержат только одно плечо ВІІВ-9-1336, продемонстрировали одинаковое 3-кратное увеличение скорости. Поскольку ВІІВ-9-1336 являлось дочерним по отношению к ВІІВ-9-484 и попадало в ту же уникальную ячейку, то авторы настоящего изобретения продолжили исследовать другие антитела в этой ячейке в отношении способности увеличивать амидолитическую активность ГІХа. Используя ту же схему анализа, что и описанная выше, но с использованием 500 нМ ГІХа, авторы исследовали 15 антител из ячейки ВІІВ-9-484/1336 и дополнительные 11 дочерних антител из ВІІВ-9-619 и ВІІВ-9-578, которые попадали в разные ячейки.

[881] Кратное увеличение амидолитической активности FIXa в присутствии этих антител показано на фиг. 33B, и оно указывает на то, что способность увеличивать амидолитическую активность FIXa является уникальной для антител из ячейки BIIB-9-484/BIIB-9-1336, достигая 5-кратного увеличения при исследуемых условиях. Затем авторы настоящего изобретения определили кинетические параметры КМ и Vmax FIXa по отношению к ADG299 в присутствии BIIB-9-1336. При этом 500 нМ FIXa инкубировали с 1000 нМ BIIB-9-1336 в TBSCa плюс 33% этиленгликоля. Концентрация субстрата ADG299 варьировалась от 10 мМ до 0,078 мМ. Добавление BIIB-9-1336 привело к уменьшению КМ с 4,4 мМ до 3,4 мМ и увеличению Vmax с 500 мОD/мин. до 588 мОD/мин. (фиг. 33C и 33D).

[882] Способность BIIB-9-1336/BIIB-12-917 и BIIB-9-1336 с одним плечом увеличивать амидолитическую активность до уровня, аналогичного гомодимерному двухвалентному BIIB-9-1336, указывает на то, что эта активность является результатом одновалентного взаимодействия между одним плечом BIIB-9-1336 и FIXa.

Пример 11

Эффект BIIB-9-1336 в отношении ингибирования ATIII FIXa

[883] Антитромбин III является ингибитором протеазы и приводит к образованию необратимой связи между ATIII серином активного сайта FIXa. Следовательно, механизм ингибирования зависит от реактивности активного сайта Поскольку BIIB-9-1336 способно увеличивать амидолитическую активность FIXa, то очевидно, что оно также должно увеличивать скорость ингибирования FIXa с помощью ATIII. Для подтверждения этого предположения инкубировали 500 нМ FIXa с 5000 нМ ATIII в TBSCa в отсутствие 1500 нМ ВІІВ-9-1336 или ВІІВ-9-1335, другого антитела к FIXa, которое идентифицировали во время созревания аффинности BIIB-9-484. Образцы удаляли через 1, 30, 60 и 120 минут, и смешивали с невосстанавливающим загрузочным буфером SDS, и наносили на 4-20% BioRad, неокрашивающий гель (фиг. 34A).

[884] Появление полосы, проходящей вблизи маркера молекулярной массы 75 кДа, указывало на образование комплекса ATIII-FIXa. Относительную интенсивность полосы количественно определяли и наносили на график в зависимости от времени (фиг.

34B) и продемонстрировали, что BIIB-9-1335 и BIIB-9-1336 способны приблизительно 3-кратно увеличивать скорость ингибирования ATIII FIXa.

Пример 12

Определение характеристик эпитопа для BIIB-9-1336 на FIXa

[885] С целью углубления понимания взаимодействия BIIB-9-484 BIIB-9-1336 c FIXa авторы настоящего изобретения попытались определить точный эпитоп этих антител. Для этого изобретения сначала клонировали, экспрессировали авторы Fab-часть каждого XNTC очищали только ИЗ использованием стандартных способов. Затем авторы смешали каждый Fab в молярном соотношении 1,5:1 с FIXa в кальцийсодержащем буфере и полученный комплекс от избытка ОЧИСТИЛИ использованием эксклюзионной хроматографии по размеру.

[886] Полученные комплексы 1:1 подвергали скринингу посредством коммерчески доступных наборов для скрининга условий кристаллизации с использованием способа диффузии паров. Хотя оба комплекса приводили к образованию кристаллов, только комплексные кристаллы ВІІВ-9-1336 давали дифракционные данные высокого качества. Полученная структура между Fab ВІІВ-9-1336 и FIXa была раскрыта путем молекулярной замены с использованием стандартных способов и показана на фиг. 35.

[887] Остатки на FIXa, которые составляют эпитоп для ВIIB-9-1336, показаны черным на фиг. 36 и, для сравнения, также показаны остатки, которые составляют участок связывания FVIIIa на FIXa. Эти же остатки перечислены в таблице на фиг. 37.

[888] Эти данные показывают, что BIIB-9-1336 и FVIIIа имеют общий перекрывающийся эпитоп на FIXa. Остатки, которые являются общими, выделены белым на фиг. 36, подчеркнуты и показаны жирным шрифтом на фиг. 37.

Пример 13

Определение характеристик эпитопа BIIB-12-917 на FX

[889] Авторы настоящего изобретения стремились охарактеризовать эпитоп BIIB-12-917 на FX, так как он образует продуктивное биспецифическое антитело с высокой FVIIIa-подобной активностью в сочетании с BIIB-9-484 или BIIB-9-1336. С

применением BLI, авторы исследовали связывание BIIB-12-917 с панелью различных рекомбинантных вариантов FX, включая зимоген дикого типа FX (FXz), активированный FX дикого типа (FXa), активированный FX, который сохранял пептид активации (FXa+AP), зимоген FX с отсутствующим активационным пептидом (FX-AP), и зимоген FIX, который содержал активационный пептид из FX (FIX+FX AP). Схематическое представление вариантов изображено на фиг. 38B.

[890] С использованием Octet ОК384 для количественного определения антител к IgG человека dip and read anti-Human IgG Quantitation (AHQ) уравновешивали в HBSCa в течение 60 секунд с последующей 180-секундной стадией загрузки 15 мкг/мл антител на зонды. После 60-секундной исходной стадии в HBSCa нагруженные антителами зонды подвергали воздействию 250 нМ каждого варианта HBSCa В течение 300 секунд с последующей диссоциации в HBSCa в течение 180 секунд. Данные связывания на что ВІІВ-12-917 связывался 38A показывают, СО всеми конструкциями, содержащими активационный пептид FX, но не с пептид. теми, В которых отсутствовал активационный Таким образом, эпитоп BIIB-12-917 находился в активационном пептиде FX.

Пример 14

Новые антитела к FIXa

[891] Серию антител, полученных из ВІІВ-9-484, ВІІВ-9-1336, ВІІВ-9-578 или ВІІВ-9-619, получали путем введения различных аминокислот в CDR H1 и CDR H2; или CDR H3; или CDR L1, CDR L2 и CDR L3; или их комбинации. Антитела с повышенной специфичностью и/или аффинностью к FІХа идентифицировали из указанных библиотек с применением способов, описанных в примерах 1 и 5. Последовательности доменов VH и VL этих антител, а также их CDR представлены ниже в таблицах 6 и 7.

Пример 15

Фармакокинетика и фармакодинамика биспецифических антител на гуманивированной мышиной модели гемофилии А

[892] Доклиническую фармакокинетическую оценку биспецифических антител осуществляли на гуманизированной мышиной

модели гемофилии А. Гены FIX человека и FX человека подвергались активации отдельно для каждого локуса соответствующего гена мыши посредством гомологичной рекомбинации использованием С нацеливания на эмбриональные стволовые клетки. Ген FVIII мышей с нокином FIX человека, впоследствии редактировали по технологии CRISPR/Cas9 для получения нокаутов по гену FVIII. Селекционные скрещивания между нокинами FIX человека и нокинами FX человека привели к тому, что мыши были гомозиготными как по FIX человека, так и по FX (FIX-X-KI) человека. Эта модель мыши полезна для выполнения моделей тромбоза, таких как модель стазиса нижней полой вены или модель повреждения хлоридом железа в артерии. Селекционное скрещивание между нокинами FIX человека, лишенными гена мыши FVIII и нокинами FX человека, приводило в результате к тому, что мыши были гомозиготны по FIX человека, FX человека и дефицитны по FVIII (FIX-X-KI/FVIII-def). Эта мышиная модель применима для выполнения моделей гемостаза, таких как модель зажима хвоста и модель рассечения хвостовой вены.

[893] В этих экспериментах мышам FIX-X-KI/FVIII-def вводили дозы посредством диапазона количеств биспецифических антител, контрольных антител, rFVIII и/или препаратов для шунтирующей терапии, таких как rFVIIa или активированные концентраты комплексного протромбина (aPCC). Группам мышей вводили дозу на молекулу и в каждый момент времени. В каждый момент времени после введения дозы мышей умерщвляли и собирали кровь. Часть крови использовали для ротационной тромбоэластометрии (ROTEM) или другого анализа, основанного на активности, а оставшуюся кровь перерабатывали в плазму для определения циркулирующих уровней биспецифических антител с помощью ELISA.

Пример 16

Эффективность биспецифических антител на гуманизированной мышиной модели гемофилии A

[894] Эффективность в острой фазе биспецифических антител определяли с помощью модели кровотечения из зажима хвоста, в которой ампутировали кончик хвоста, и общей потери крови у мышей FIX-X-KI/FVIII-def, вводили дозы посредством диапазона количеств биспецифических антител, контрольных антител, rFVIII и/или

препаратов для шунтирующей терапии, таких как rFVIIa или aPCC, измеряли, как описано paнee (Dumont et al., 2012, Blood, 119(13):3024-3030). Пролонгированную эффективность биспецифических антител определяли с помощью модели рассечения хвостовой вены, как описано ранее (Pan et al., 2009, Blood, 114(13):2802-2811). Вкратце, мышам FIX-FX-KI/FVIII-def вводили дозы посредством диапазона количеств биспецифических антител, контрольных антител, rFVIII и/или препаратов для шунтирующей терапии, таких как rFVIIa или aPCC, и через 24 часа после введения дозы анестезировали и подвергали рассечению хвостовой вены. Время кровотечения регистрировали и мышей возвращали в клетки на срок до 24 часов, после чего их оценивали в отношении повторного кровотечения, общей реакции, активности и процента выживания.

Пример 17

Оценка безопасности биспецифических антител на гуманизированной мышиной модели

Модели тромбоза использовали ДЛЯ оценки биспецифических антител В отношении потенциальных протромботических свойств. Использовали модель стазиса нижней полой вены (Aleman et al., 2014, J Clin Invest, 124 (8): 3590или модель повреждения сонной артерии хлоридом железа (Machlus et al., 2011, Blood, 117(18):4953-4963). Вкратце, для модели нижней полой вены мышей FIX-FX-KI анестезировали, вводили дозы посредством диапазона количеств биспецифических антител, контрольных антител, rFVIII и/или препаратов для шунтирующей терапии, таких как rFVIIa или aPCC, и подвергали асептической лапаротомии для полного лигирования нижней полой вены. Через 24 часа мышей умерщвляли и измеряли значения массы тромба. Для модели повреждения сонной артерии хлоридом железа мышей FIX-FX-KI анестезировали и вводили дозы посредством диапазона количеств биспецифических антител, контрольных антител, rFVIII препаратов для шунтирующей терапии, таких как rFVIIa или aPCC. артерию повреждали 10% раствором хлорида Сонную кровотока контролировали с помощью ультразвукового доплеровского исследования, и время до окклюзии сонной артерии

записывали.

Пример 18

Фармакокинетика и фармакодинамика биспецифических антител у макаков-крабоедов

[896] Фармакокинетическую и фармакодинамическую оценку биспецифических антител у макаков-крабоедов также осуществляли, как описано (Dumont et al., 2015, Thromb Res, 136(6):1266-1272). Вкратце, разрабатывали модель приобретенной гемофилии А, как описано в Muto et al., 2014, Blood, 124(20):3165-3171. Обезьянам гемофилией вводили дозы посредством диапазона биспецифических антител, контрольных антител, rFVIII препаратов для шунтирующей терапии, таких как rFVIIa или aPCC. Образцы крови собирали в различные моменты времени введения дозы. Часть крови использовали для анализа ROTEM или другого анализа на основе активности, а оставшуюся перерабатывали в плазму для определения уровней биспецифических антител в циркулирующей крови с помощью ELISA.

* * *

[897] Следует понимать, что для толкования формулы изобретения предназначен раздел "Подробное описание", а не "Реферат" и не "Краткое описание". В разделах "Краткое описание" и "Реферат" могут быть изложены один или несколько, но не все предусмотренные изобретателем (-лями) иллюстративные варианты осуществления настоящего изобретения, и таким образом не предназначены для ограничения каким-либо образом настоящего изобретения.

[898] Настоящее изобретение описано было выше с помощью функциональных структурных элементов, иллюстрирующих воплощение указанных функций и взаимосвязей между ними. Границы этих функциональных структурных элементов были определены в данном документе произвольно для удобства описания. Альтернативные границы могут быть определены при условии, что указанные функции и взаимосвязи между ними выполняются надлежащим образом.

[899] Предыдущее описание конкретных вариантов осуществления настолько полно раскрывает общий характер настоящего изобретения, что другие, используя знания в пределах

компетентности в данной области, могут легко модифицировать и/или адаптировать для различных путей применения такие конкретные варианты осуществления без проведения излишнего экспериментирования, не отступая от общей идеи настоящего изобретения. Следовательно, такие адаптации и модификации предназначены для того, чтобы находиться в пределах значения и диапазона эквивалентов раскрытых вариантов осуществления, основанных на идее и принципе, представленных в данном документе. Следует понимать, что формулировки или терминология в данном документе предназначены для целей описания, а не ограничения, вследствие этого терминологию или формулировки в настоящем описании квалифицированному специалисту следует интерпретировать в свете этих идей и принципов.

[900] Широта и объем настоящего изобретения не должны ограничиваться ни одним из вышеописанных иллюстративных вариантов осуществления, но должны определяться только в соответствии с нижеследующими пунктами формулы изобретения и их эквивалентами.

[901] Содержимое всех цитируемых ссылок (в том числе ссылки на литературу, патенты, патентные заявки и веб-сайты), которые могут цитироваться в настоящей заявке, настоящим прямо включено в качестве ссылки во всей их полноте для любых целей, как и ссылки, цитируемые в ней.

ТАБЛИЦА 4. Последовательности

SEQ	Описание	Последовательность
NO		
	Антитела клас	сса I - последовательности VH
1	Аминокислотная последовательность ВІІВ-9-605_VH	EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVR QAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSK NTLYLQMNSLRAEDTAVYYCAKKRKYYGSHNPWGQGTL VTVSS
2	Последовательность нуклеиновой кислоты ВІІВ-9-	GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACA GCCTGGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG GATTCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGC

	605_VH	CAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTAT
		TAGTGGTAGTGGTAGCACATACTACGCAGACTCCG
		TGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAG
		AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCTAAAAAGAGAAAGT
		ACTACGGTTCACATAACCCATGGGGACAGGGTACATTG
		GTCACCGTCTCCA
	7	QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIR
3	Аминокислотная	QPPGKGLEWIGSIYYSGSTNYNPSLKSRVTISVDTSKN
	последовательность	QFSLKLSSVTAADTAVYYCARDVGGYDYGVGAFDIWGQ
	BIIB-9-475_VH	GTMVTVSS
		CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
		GTGGCTCCATCAGTAGTTACTACTGGAGCTGGATCCGG
	Последовательность	CAGCCCCAGGGAAGGGACTGGAGTGGATTGGGTCAAT
1	нуклеиновой	CTATTACAGTGGGAGCACCAACTACAACCCCTCCCTCA
4	кислоты ВІІВ-9-	AGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAAC
	475_VH	CAGTTCTCCCTGAAGCTGAGTTCTGTGACCGCCGCAGA
		CACGGCGGTGTACTACTGCGCCAGAGATGTGGGCGGAT
		ACGACTACGGAGTGGGAGCCTTCGACATATGGGGTCAG
		GGTACAATGGTCACCGTCTCCTCA
	Аминокислотная	EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYAMSWVR
5	последовательность	QAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSK
	BIIB-9-477 VH	NTLYLQMNSLRAEDTAVYYCARGGVYSSSWMRFWGQGT
	DIID 3 477_VII	LVTVSS
		GAGGTGCAGCTGTTGGAGTCTGGGGGGAGGCTTGGTACA
6		GCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG
		GATTCACCTTTAGCAATTATGCCATGAGCTGGGTCCGC
	Последовательность	CAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTAT
	нуклеиновой	TAGTGGTAGTGGTAGCACATACTACGCAGACTCCG
	кислоты ВІІВ-9-	TGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAG
	477_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGTGGCGTGT
		ACAGCAGCTCGTGGATGAGATTCTGGGGACAGGGTACA
		TTGGTCACCGTCTCCTCA

	71	QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIR
	Аминокислотная	QPPGKGLEWIGSIYYSGSTNYNPSLKSRVTISVDTSKN
	последовательность	QFSLKLSSVTAADTAVYYCAREHYGDYPLFDIWGQGTM
	BIIB-9-479_VH	VTVSS
		CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
		GTGGCTCCATCAGTAGTTACTACTGGAGCTGGATCCGG
	Последовательность	CAGCCCCAGGGAAGGGACTGGAGTGGATTGGGTCAAT
	нуклеиновой	CTATTACAGTGGGAGCACCAACTACAACCCCTCCCTCA
8	кислоты ВІІВ-9-	AGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAAC
	479_VH	CAGTTCTCCCTGAAGCTGAGTTCTGTGACCGCCGCAGA
		CACGGCGGTGTACTACTGCGCCAGAGAGCACTACGGAG
		ACTACCCACTATTCGACATATGGGGTCAGGGTACAATG
		GTCACCGTCTCCA
	Аминокислотная	QVQLQESGPGLVKPSETLSLTCAVSGYSISSGYYWGWI
		RQPPGKGLEWIGSSYHSGSTYYNPSLKSRVTISVDTSK
	последовательность ВІІВ-9-480 VH	NQFSLKLSSVTAADTAVYYCARDQQDYGAFDIWGQGTM
	D11D-9-400_VII	VTVSS
		CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCGCTGTCTCTG
		GTTACTCCATCAGCAGTGGTTACTACTGGGGCTGGATC
	Последовательность	CGGCAGCCCCAGGGAAGGGGCTGGAGTGGATTGGGAG
10	нуклеиновой	TTCCTATCATAGTGGGAGCACCTACTACAACCCGTCCC
	кислоты BIIB-9-	TCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAG
	480_VH	AACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGCCGC
		AGACACGGCGGTGTACTACTGCGCCAGGGACCAGCAAG
		ACTACGGGGCCTTCGACATATGGGGTCAGGGTACAATG
		GTCACCGTCTCCA
	Аминокислотная	EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVR
		QAPGKGLEWVSSISSSSSYIYYADSVKGRFTISRDNAK
	последовательность ВІІВ-9-558 VH	NSLYLQMNSLRAEDTAVYYCARSYGYGYHDFDLWGRGT
	720_411	LVTVSS
	Последовательность	GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAA
12	нуклеиновой	GCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG
14		

	558_VH	CAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCAT
		TAGTAGTAGTAGTTACATATACTACGCAGACTCAG
		TGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAG
		AACTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGATCTTACGGAT
		ACGGATACCACGACTTCGACCTATGGGGGAGAGGTACC
		TTGGTCACCGTCTCCTCA
	7	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
1 2	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
13	последовательность ВІІВ-9-414_VH	STVYMELSSLRSEDTAVYYCARDPYSYGMYYFDYWGQG
		TLVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
14	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
14	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	414_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGACCCTTACT
		CCTACGGAATGTATTACTTTGATTACTGGGGACAGGGT
		ACATTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
15	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-9-415 VH	STVYMELSSLRSEDTAVYYCARDGLSSGYYWDNWGQGT
	BIID 2 412_411	LVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
16	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	415_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGATGGGTTGA
		GCAGCGGATACTACTGGGATAATTGGGGACAGGGTACA
		TTGGTCACCGTCTCCTCA
	1	ı

17	Аминокислотная последовательность ВІІВ-9-425_VH	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCAREPTWDVAYDYWGQGTL VTVS
18	Последовательность нуклеиновой кислоты ВІІВ-9- 425_VH	CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG AGCACAGTCTACATGGAGCTGAGCAGAGCCTGAGATCTGA GGACACGGCGGTGTACTACTGCGCCAGAGAGCCTACCT GGGACGTCGCCTACGATTATTGGGGACAGGGTACATTG GTCACCGTCTCCTCA
19	Аминокислотная последовательность ВІІВ-9-440_VH	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSDYYWGW IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS KNQFSLKLSSVTAADTAVYYCARSPRHKVRGPNWFDPW GQGTLVTVSS
20	Последовательность нуклеиновой кислоты ВІІВ-9-440_VH	CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG GTGGCTCCATCAGCAGTAGTGACTACTACTGGGGCTGG ATCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGG GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT CCCTCAAGAGTCGAGTC
21	Аминокислотная последовательность ВІІВ-9-452_VH	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARDGRLSYTWDRWGQGTL VTVSS
22	Последовательность нуклеиновой кислоты ВІІВ-9-	CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA

CAACCCTAGTGGTGGTAGCACAGCTACGCACAGAAGT TCCAGGGCAGAGTCACCATGACCATGACCAGGACACGTCCACG AGCACAGTCTACATGAGCTGAGC
AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA GGACACGGCGGTGTACTACTGCGCCAGAGACGGCAGAC TAAGCTACACCTGGGACAGATGGGGACAGTGTACTACTG GTCACCGTCTCCTCA AMMINOKUCJOTHAS GOCAGOBATEJBHOCTB BIIB-9-460_VH CAGGTGAGCTGGTGCAGTCTGGGGCTGAGGTGAGATTG GTCACCGTCTCTCA QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARDISTDGESSLYYYMDV WGKGTTVTVSS CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA HYKJREHOBOЙ KUCJOTB BIIB-9- 460_VH AGCACAGTCTACATGGAGCTGAGCAGGCACAGGAATATT CCAGGGCGAGGGTACTACATGACCAGGGACACGTCCACG GGACACGGCGGTGTACTACATGACCAGGGACACGTCACG GGACACGGCGGTGTACTACATGACCAGGGACACGTCACG GGACACGGCGGTGTACTACATTACTACTACATGGACGTA TGGGGCAAGGGTACAACTGTCACCGTCTCCTCA QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHVVR QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARGPTDSSGYLDMDVWGK
GGACACGGCGGTGTACTACTGCGCCAGAGACGGCAGAC TAAGCTACACCTGGGACAGATGGGGACAGGGTACATTG GTCACCGTCTCCTCA AMMHOKUCJOTHAS GOCJEGOBATEJЬНОСТЬ BIIB-9-460_VH CAGGTGCAGCTGGGGCAGGGTGAGGTGAGGTGAGGAGAGAGA
TAAGCTACACCTGGGACAGATGGGGACAGGGTACATTG GTCACCGTCTCCTCA AMMINOKUCJOTHAS GOUNT OF THE STORY OF TH
GTCACCGTCTCCTCA AMMUHOKUCЛОТНАЯ DAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARDISTDGESSLYYYMDV WGKGTTVTVSS CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA RUCЛОТЫ BIIB-9- 460_VH CAGCCCTAGTGGTGCAGCTAGGACAAGGCACCAGGAACCGTCCACG 460_VH AGCACAGTCTACACTGAGCCAAGGACACGTACTATTTCTA CCGACGGGGAATCATCACTTTACTACTACTACTACTACTAC GGACACGGGGAATCATCACTTTACTACTACTACTACTACTACTACTACTA
23 AMMHORUCJOTHAЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—9—460_VH CAGGTGCAGCTGGTGCAGTCTGGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG GATACACCTTCACCAGCTACTATATGCACTGGTGCGA HYKЛЕИНОВОЙ RUCJOTH BIIB—9— 460_VH CAGCCCTGGGCAGAGGTCTGGGGACAAGGCACAGGAAGT TCCAGGGCAGAGGTCACCATGACCAGGAACGTCCACG GACACCCTAGTGATAGCACAGGGACACGTCCACG AGCACAGTCTACATGACCAGGGACACGTCCACG GGACACGGCGGTGTACTACTACTACATGACCAGGAATTTCTA CCGACGGGGAATCATCACTTTACTACTACATGACCTA CCGACGGGGAATCATCACTTTACTACTACATGACGTA TGGGGCAAGGGTACAACTGTCACCGTCTCCTCA AMMHORUCJOTHAЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—9—461 VH CVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWR QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARGPTDSSGYLDMDVWGK
23Аминокислотная последовательность ВІІВ-9-460_VHQAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARDISTDGESSLYYYMDV WGKGTTVTVSS24САGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA CAGCCCTGGACAAGGCTTGAGTGGAATGATAT CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT TCCAGGGCAGAGGTCACCATGACCAGGGACACGTCCACG 460_VHCAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT TCCAGGGCAGAGGTCACCATGACCAGGGACACGTCCACG AGCACAGTCTACATGGAGCTGAGCACAGGATATTTCTA CCGACGGGGAATCATCACTTTACTACTACATAGGACGTA TGGGGCAAGGGTACAACTGTCACCGTCTCCTCA25AMUHOKUCJOTHAЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ-9-461 VHQVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARGPTDSSGYLDMDVWGK
23 последовательность ВIIВ-9-460_VH STYYMELSSLRSEDTAVYYCARDISTDGESSLYYYMDV WGKGTTVTVSS CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGATCTG GATACACCTTCACCAGCTACTATATGCACTGGGTGCAA TATA TCACACCTTCACCAGCTACTATATGCACTGGGAAAAAT CAACCCTAGTGAGAAGAAGT TCCAGGGCAAAGGTACCAAGAAGT TCCAGGGCAAGGGCATCTG AGCACAGAAGT TCCAGGGCAGAAGTACCACTGACCAGGAACAGTCACACAGAAGT TCCAGGGCAGAGGCAAGGGCACAGAAGT TCCAGGGCAGAGGCAACGTCCACG AGCACAGGAACTTACATGGAGCTGAGAACCTGAACACGGGAACAGTCTACATGGAGCTGAGAACTGTACACTGGAGCAAAGCTACCATGACCAGGAAACTTACATACA
BIIB-9-460_VH STVYMELSSLRSEDTAVYYCARDISTDGESSLYYYMDV WGKGTTVTVSS CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA Hykлеиновой CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT Kислоты BIIB-9- 460_VH AGCACAGTCTACATGGAGCAGGGACACGTCCACG GGACACGGCGGTGTACTACATGCACCAGGAATATTCTA CCGACGGGGAATCATCACTTTACTACTACATGGACGTA TGGGGCAAGGGTACAACTGTCACCGTCTCCTCA AMMHOKUCЛОТНАЯ DOCJOROBATEJBHOCTB BIIB-9-461 VH STVYMELSSLRSEDTAVYYCARGPTDSSGYLDMDVWGK
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA GCCTGGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA Последовательность Нуклеиновой Кислоты ВІІВ-9- 460_VH ССВССССТВСВСВСТВСВСВСВСВСВСВСВСВСВСВСВ
GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA Последовательность САGGCCCCTGGACAAGGGCTTGAGTGGATGGAATAAT нуклеиновой СААСССТАGTGGTGGTAGCACAAGCTACGCACAGAAGT ТССАGGGCAGAGTCACCATGACCAGGGACACGTCCACG 460_VH AGCACAGTCTACATGGAGCTGAGCAGGATCTGA GGACACGGCGGTGTACTACTGCGCAAGGGATATTTCTA CCGACGGGGAATCATCACTTTACTACTACATGGACGTA TGGGGCAAGGGTACAACTGTCACCGTCTCCTCA AMMHOKUCJOTHAA QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARGPTDSSGYLDMDVWGK
GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA Последовательность нуклеиновой сарасста в в в в в в в в в в в в в в в в в в в
Последовательность нуклеиновой саассстадтадтадтадтадтадтадтадтадтадтадтадтадт
24 нуклеиновой кислоты віів-9- тссадода достасов доста дост
24 кислоты BIIB-9- TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG 460_VH AGCACAGTCTACATGGAGCTGAGACCTGAGATCTGA GGACACGGCGGTGTACTACTGCGCAAGGGATATTTCTA CCGACGGGGAATCATCACTTTACTACTACATGGACGTA TGGGGCAAGGGTACAACTGTCACCGTCTCCTCA AMMHOKUCЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ BIIB-9-461 VH TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG AGCACAGTCTACATGGACGTA CCGACGGGGAATCATCACTTTACTACTACATGGACGTA TGGGGCAAGGGTACAACTGTCACCGTCTCCTCA QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARGPTDSSGYLDMDVWGK
кислоты BIIB-9- TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG 460_VH AGCACAGTCTACATGGAGCTGAGCAGGCTGAGATCTGA GGACACGGCGGTGTACTACTGCGCAAGGGATATTTCTA CCGACGGGGAATCATCACTTTACTACTACATGGACGTA TGGGGCAAGGGTACAACTGTCACCGTCTCCTCA AMMHOKUCЛОТНАЯ QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST BIIB-9-461 VH TCCAGGGCAGGTCACCATGACCAGGGACACGTCCACA AGCACAGTCTACATGGACCTGAGATCTTCAC GGACACGGCGGTGTACTACTACTACTACATGGACGTA CCGACGGGGAATCATCACTTTACTACTACTACATGGACGTA CCGACGGGGAATCATCACTTTACTACTACTACATGGACGTA TGGGGCAAGGGTACAACTGTCACCGTCTCCTCA AMMHOKUCЛОТНАЯ QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARGPTDSSGYLDMDVWGK
GGACACGGCGGTGTACTACTGCGCAAGGGATATTTCTA CCGACGGGGAATCATCACTTTACTACTACATGGACGTA TGGGGCAAGGGTACAACTGTCACCGTCTCCTCA QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARGPTDSSGYLDMDVWGK
CCGACGGGGAATCATCACTTTACTACTACATGGACGTA TGGGGCAAGGGTACAACTGTCACCGTCTCCTCA QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARGPTDSSGYLDMDVWGK
TGGGGCAAGGGTACAACTGTCACCGTCTCCTCA QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARGPTDSSGYLDMDVWGK
25 Последовательность BIIB-9-461 VH QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARGPTDSSGYLDMDVWGK
Аминокислотная QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARGPTDSSGYLDMDVWGK
25 последовательность BIIB-9-461 VH QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARGPTDSSGYLDMDVWGK
STVYMELSSLRSEDTAVYYCARGPTDSSGYLDMDVWGK
DIID 9 401 VII
- GTTVTVSS
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
Последовательность CAGGCCCCTGGACAAGGGCTTGAGTGGAATAAT
нуклеиновой СААСССТАGTGGTGGTAGCACAAGCTACGCACAGAAGT
кислоты BIIB-9- TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
461_VH AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
GGACACGGCGGTGTACTACTGCGCCAGAGGACCCACTG
ACAGCAGCGGATACTTGGACATGGACGTATGGGGCAAG
GGTACAACTGTCACCGTCTCCTCA

27	Аминокислотная последовательность ВІІВ-9-465_VH	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMVWVR QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARSPTDGYYFDLWGRGTL VTVSS
28	Последовательность нуклеиновой кислоты ВІІВ-9-465_VH	CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG GATACACCTTCACCAGCTACTATATGGTCTGGGTGCGA CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA GGACACGGCGGTGTACTACTGCGCCAGATCACCTACGG ACGGATACTATTTCGACCTATGGGGGAGAGGTACCTTG GTCACCGTCTCCTCA
29	Аминокислотная последовательность ВІВ-4-564_VH	QVQLQESGPGLVKPSETLSLTCAVSGYSISSGYYWAWI RQPPGKGLEWIGSIYHSGSTYYNPSLKSRVTISVDTSK NQFSLKLSSVTAADTAVYYCARDPGYSWEYFDYWGQGT LVTVSS
30	Последовательность нуклеиновой кислоты ВІІВ-9-564_VH	CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA GCCTTCGGAGACCCTGTCCCTCACCTGCGCTGTCTCTG GTTACTCCATCAGCAGTGGTTACTACTGGGCTTGGATC CGGCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGGGAG TATCTATCATAGTGGGAGCACCTACTACAACCCGTCCC TCAAGAGTCGAGTC
31	Аминокислотная последовательность ВІІВ-9-484_VH	EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVR QAPGKGLEWVSSISSSSSYIYYADSVKGRFTISRDNAK NSLYLQMNSLRAEDTAVYYCARDVGGYAGYYGMDVWGQ GTTVTVSS
32	Последовательность нуклеиновой кислоты ВІІВ-9-	GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAA GCCTGGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG GATTCACCTTCAGTAGCTATAGCATGAACTGGGTCCGC

	484 VH	CAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCAT
	_	TAGTAGTAGTAGTTACATATACTACGCAGACTCAG
		TGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAG
		AACTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGAGATGTAGGAG
		 GATACGCAGGGTACTACGGCATGGATGTATGGGGCCAG
		GGAACAACTGTCACCGTCTCCTCA
		QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
33	последовательность	STVYMELSSLRSEDTAVYYCARDLGYGRSYDFDLWGRG
	BIIB-9-469_VH	TLVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
34	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	469 VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
	_	 GGACACGGCGGTGTACTACTGCGCCAGAGACTTGGGAT
		ACGGCAGAAGTTATGACTTCGACCTATGGGGGAGAGGT
		ACCTTGGTCACCGTCTCCTCA
		QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMVWVR
35	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	последовательность	STVYMELSSLRSEDTAVYYCARVPTYRYSYLAFDIWGQ
	BIIB-9-566_VH	GTMVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
36		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGGTCTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	566_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGTCCCTACAT
		ACAGATACAGCTACTTAGCCTTCGATATCTGGGGTCAG
		GGTACAATGGTCACCGTCTCCTCA
	1	

	70	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
37	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	последовательность	STVYMELSSLRSEDTAVYYCARLGRRYYAYDGMDVWGQ
	BIIB-9-567_VH	GTTVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGAATGGGAATAAT
38	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
30	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	567_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGATTGGGAAGAA
		GGTACTACGCCTATGATGGGATGGATGTTTGGGGCCAG
ļ		GGAACAACTGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
39		QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
39	последовательность ВІІВ-9-569 VH	STVYMELSSLRSEDTAVYYCARDGSGYSPYSFDPWGQG
	B11B 9 309_v11	TLVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
40	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
10	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	569_VH	AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGACGGATCTG
		GATACAGTCCATACAGCTTCGACCCATGGGGACAGGGT
		ACATTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
41	Аминокислотная Последовательность	QAPGQGLEWMGIINPSGGSTTYAQKFQGRVTMTRDTST
 		STVYMELSSLRSEDTAVYYCARDGGGSYDYWSGYWYDV
	1 B 1 1 B - 9 - 5 8 8 7 B	
	BIIB-9-588_VH	WGQGTTVTVSS
	Последовательность	WGQGTTVTVSS CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
42	_	

	588 VH	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	_	CAACCCTAGTGGTGGTAGCACAACCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGATGGTGGCG
		GATCCTACGACTACTGGAGCGGATACTGGTACGACGTA
		TGGGGTCAGGGTACAACTGTCACCGTCTCCTCA
	_	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
43	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	последовательность	STVYMELSSLRSEDTAVYYCAREVISRVSYFDLWGRGT
	BIIB-9-611_VH	LVTVSS
		CAGGTGCAGCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
44	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
44	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	611_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGAGGTGATAT
		CCAGGGTTAGCTACTTCGACCTATGGGGGAGAGGTACC
		TTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
45	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-9-619 VH	STVYMELSSLRSEDTAVYYCARDGPRVSDYYMDVWGKG
		TTVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
46		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	619_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGACGGACCAA
		GAGTCAGTGACTACATGGACGTATGGGGCAAGGGT
		ACAACTGTCACCGTCTCCTCA

	7	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
47	Аминокислотная	QAPGQGLEWMGVINPSGGSTSYAQKFQGRVTMTRDTST
	последовательность	STVYMELSSLRSEDTAVYYCARDLQYSMTYFDYWGQGT
	BIIB-9-626_VH	LVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAGTCAT
48	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
40	кислоты BIIB-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	626_VH	AGCACAGTCTACATGGAGCTGAGCCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGACTTGCAGT
		ATAGCATGACATACTTCGACTACTGGGGACAGGGTACA
		TTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
49	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
49	BIIB-9-883 VH	STVYMELSSLRSEDTAVYYCARDGRLSYTWDRWGQGTL
	DIID 9 003_VII	VTVSS
		CAGGTGCAGCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
50	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	883_VH	AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGACGGCAGAC
		TAAGCTACACCTGGGACAGATGGGGACAGGGTACATTG
		GTCACCGTCTCCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
51	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-9-419 VH	STVYMELSSLRSEDTAVYYCAREPTFYASYFDLWGRGT
		LVTVS
	Последовательность	CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
1 50		
52	нуклеиновой	GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG

	419_VH	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
		CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGAGCCTACCT
		TCTACGCCAGCTACTTCGACCTATGGGGGAGAGGTACC
		TTGGTCACCGTCTCCTCA
	Anguarda da mara d	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGW
53	Аминокислотная	IRQPPGKGLEWIGSISYSGSTYYNPSLKSRVTISVDTS
	последовательность ВІІВ-9-451_VH	KNQFSLKLSSVTAADTAVYYCARDSGGYYYQGFDYWGQ
		GTLVTVSS
		CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
		GTGGCTCCATCAGCAGTAGTAGTTACTACTGGGGCTGG
	Последовательность	ATCCGCCAGCCCCAGGGAAGGGGCTGGAGTGGATTGG
54	нуклеиновой	GAGTATCTCCTATAGTGGGAGCACCTACTACAACCCGT
J4	кислоты BIIB-9-	CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
	451_VH	AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGAGACTCAG
		GAGGATACTACCAGGGATTCGATTACTGGGGACAG
		GGTACATTGGTCACCGTCTCCTCA
	Аминокислотная	VQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQ
55	последовательность	APGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKN
	BIIB-9-473 VH	TLYLQMNSLRAEDTAVYYCAKDRLRYSRWYDGMDVWGQ
	B11B 3 1/0_VII	GTTVTVSS
		GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACA
56		GCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG
		GATTCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGC
	Последовательность	CAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTAT
	нуклеиновой	TAGTGGTAGTGGTAGCACATACTACGCAGACTCCG
	кислоты ВІІВ-9-	TGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAG
	473_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCAAAAGACAGGTTGA
		GATACAGCAGATGGTACGATGGGATGGATGTTTGGGGC
		CAGGGAACAACTGTCACCGTCTCCTCA

57	Аминокислотная последовательность ВІІВ-9-565_VH	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGW IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS KNQFSLKLSSVTAADTAVYYCARAGMYSSYANWFDPWG QGTLVTVSS
58	Последовательность нуклеиновой кислоты ВІІВ-9-565_VH	CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG GTGGCTCCATCAGCAGTAGTAGTTACTACTGGGGCTGG ATCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGG GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT CCCTCAAGAGTCGAGTC
59	Аминокислотная последовательность ВІІВ-9-573_VH	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGW IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS KNQFSLKLSSVTAADTAVYYCARESKTKGYLDLWGRGT LVTVSS
60	Последовательность нуклеиновой кислоты ВІІВ-9- 573_VH	CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG GTGGCTCCATCAGCAGTAGTAGTTACTACTGGGGCTGG ATCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGG GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT CCCTCAAGAGTCGAGTC
61	Аминокислотная последовательность ВІІВ-9-579_VH	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMVWVR QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARGPWYSYYYMDVWGKGT TVTVSS
62	Последовательность нуклеиновой кислоты ВІІВ-9-	CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG GATACACCTTCACCAGCTACTATATGGTCTGGGTGCGA

	579 VH	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	_	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGGCCTTGGT
		ACAGTTATTACTACATGGACGTATGGGGCAAGGGTACA
		ACTGTCACCGTCTCCTCA
	_	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
63	последовательность	STVYMELSSLRSEDTAVYYCARDPLYYREGYVFDYWGQ
	BIIB-9-581_VH	GTLVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
64	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
04	кислоты BIIB-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	581_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGATCCTTTGT
		ACTACAGAGAAGGATACGTTTTCGATTACTGGGGACAG
		GGTACATTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMVWVR
65	последовательность ВІІВ-9-582_VH	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
		STVYMELSSLRSEDTAVYYCARAPTYFYSYGMDVWGQG
		TTVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGGTCTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
66	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
	кислоты BIIB-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	582_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGCCCCTACAT
		ACTTCTACAGCTACGGAATGGACGTATGGGGCCAGGGA
		ACAACTGTCACCGTCTCCTCA

67	Аминокислотная последовательность ВІІВ-9-585_VH	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSDYYWGW IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS KNQFSLKLSSVTAADTAVYYCAREVGTYYYGLDFWFDP WGQGTLVTVSS
68	Последовательность нуклеиновой кислоты ВІІВ-9-585_VH	CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG GTGGCTCCATCAGCAGTAGTGACTACTACTGGGGCTGG ATCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGG GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT CCCTCAAGAGTCGAGTC
69	Аминокислотная последовательность ВІІВ-9-587_VH	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARGPPGYEYYMDVWGKGT TVTVSS
70	Последовательность нуклеиновой кислоты ВІІВ-9-587_VH	CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA GGACACGGCGGTGTACTACTGCGCCAGAGGACCGCCTG GATACGAGTACTACATGGACGTATGGGGCAAGGGAACA ACTGTCACCGTCTCCTCA
71	Аминокислотная последовательность ВІІВ-9-590_VH	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARDQEWAYYGMDVWGQGT TVTVSS
72	Последовательность нуклеиновой кислоты ВІІВ-9-	CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA

	590_VH	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
		CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGACCAGGAGT
		GGGCCTACTACGGCATGGACGTATGGGGCCAGGGAACA
		ACTGTCACCGTCTCCTCA
	Аминокислотная	QLQLQESGPGLVKPSETLSLTCTVSGGSISSNSYYWGW
73		IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
13	последовательность ВІІВ-9-592 VH	KNQFSLKLSSVTAADTAVYYCARDSNYDSSGYALYYYG
	B11B-9-392_VH	MDVWGQGTTVTVSS
		CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
		GTGGCTCCATCAGCAGTAACAGTTACTACTGGGGCTGG
	Посполовальный после	ATCCGCCAGCCCCAGGGAAGGGGCTGGAGTGGATTGG
	Последовательность	GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT
74	нуклеиновой кислоты BIIB-9- 592_VH	CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
		AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGAGACTCTA
		ACTACGACAGCAGCGGATACGCCTTATACTACTATGGG
		ATGGATGTATGGGGCCAGGGAACAACTGTCACCGTCTC
		CTCA
	Аминокислотная последовательность ВІІВ-9-606_VH	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
75		QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
, 5		STVYMELSSLRSEDTAVYYCARTKWSSSPYGMDVWGQG
		TTVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
	Последовательность	GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	нуклеиновой кислоты ВІІВ-9-606_VH	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
76		CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAACTAAATGGT

		ACAACTGTCACCGTCTCCTCA
	Аминокислотная	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGW
77		IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
/ /	последовательность	KNQFSLKLSSVTAADTAVYYCARDRLETSEAGMDVWGQ
	BIIB-9-608_VH	GTTVTVSS
		CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
		GTGGCTCCATCAGCAGTAGTAGTTACTACTGGGGCTGG
	Последовательность	ATCCGCCAGCCCCAGGGAAGGGGCTGGAGTGGATTGG
78	нуклеиновой	GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT
70	кислоты BIIB-9-	CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
	608_VH	AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGAGACAGGT
		TGGAAACAAGCGAGGCAGGAATGGACGTATGGGGCCAG
		GGAACAACTGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
79	последовательность ВІІВ-9-616_VH	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
, 5		STVYMELSSLRSEDTAVYYCARGGSKYFFDLWGRGTLV
		TVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
80	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	616_VH	AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGCGGTTCTA
		AATACTTCTTCGACCTATGGGGGAGAGGTACCTTGGTC
		ACCGTCTCCTCA
81	Аминокислотная	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGW
	последовательность	IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
	BIIB-9-621 VH	KNQFSLKLSSVTAADTAVYYCARDGSISGSRFDYWGQG
		TLVTVSS
82	Последовательность	CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
	нуклеиновой	GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG

	кислоты ВІІВ-9-	GTGGCTCCATCAGCAGTAGTAGTTACTACTGGGGCTGG
	621_VH	ATCCGCCAGCCCCAGGGAAGGGGCTGGAGTGGATTGG
		GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT
		CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
		AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGAGACGGAT
		CTATATCCGGATCTAGATTCGACTACTGGGGACAGGGT
		ACATTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
83		QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
0.5	последовательность ВІІВ-9-622 VH	STVYMELSSLRSEDTAVYYCARDGATTVSYLSFDIWGQ
	B11B-9-022_vii	GTMVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
84	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
04	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	622_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGATGGCGCTA
		CCACAGTAAGCTATTTGTCATTCGACATATGGGGTCAG
		GGTACAATGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
85	последовательность ВІІВ-9-627_VH	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
		STVYMELSSLRSEDTAVYYCARADYDYWSGYGGLGMDV
		WGQGTTVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
	Поспаповащань ность	GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность нуклеиновой кислоты ВІІВ-9- 627_VH	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
86		CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGCTGACTACG
		ACTACTGGAGCGGATACGGAGGTCTCGGAATGGACGTA

		TGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
	Аминокислотная	EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYDMHWVR
0.7		QAPGKGLEWVSSISSGSSYIYYADSVKGRFTISRDNAK
87	последовательность	NSLYLQMNSLRAEDTAVYYCARDVGGYAGYYGMDVWGQ
	BIIB-9-1335_VH	GTTVTVSS
		GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAA
		GCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG
		GATTCACCTTCAGTAGCTATGATATGCATTGGGTCCGC
	Последовательность	CAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCAT
88	нуклеиновой	TAGTAGTGGTAGTAGTTACATATACTACGCAGACTCAG
	кислоты BIIB-9-	TGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAG
	1335_VH	AACTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGAGATGTAGGAG
		GATACGCAGGGTACTACGGCATGGATGTATGGGGCCAG
		GGAACAACTGTCACCGTCTCCTCA
	Аминокислотная	EVQLVESGGGLVKPGGSLRLSCAASGFTFGSYDMNWVR
89	последовательность ВІІВ-9-1336_VH	QAPGKGLEWVSSISSGESYIYYAESVKGRFTISRDNAK
		NSLYLQMNSLRAEDTAVYYCARDVGGYAGYYGMDVWGQ
		GTTVTVSS
		GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAA
		GCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG
		GATTCACCTTCGGGAGCTATGATATGAACTGGGTCCGC
	Последовательность	CAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCAT
90	нуклеиновой	TAGTAGTGGTGAGAGTTACATATACTACGCAGAGTCAG
	кислоты ВІІВ-9-	TGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAG
	1336_VH	AACTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGAGATGTAGGAG
		GATACGCAGGGTACTACGGCATGGATGTATGGGGCCAG
		GGAACAACTGTCACCGTCTCCTCA
	Антитела клас	ca II - последовательности VH
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
91	последовательность	QAPGQGLEWMGIINPSGGSTTYAQKFQGRVTMTRDTST
	BIIB-9-408 VH	STVYMELSSLRSEDTAVYYCARDPGAYDDWSGYDDYGM
		DVWGQGTTVTVSS
92	Последовательность	CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA

	нуклеиновой	GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
	кислоты ВІІВ-9-	GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	408_VH	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
		CAACCCTAGTGGTGGTAGCACAACCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGATCCAGGAG
		CCTACGACGACTGGAGCGGATATGATGATTATGGAATG
		GACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTC
		A
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
93		QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
93	последовательность	STVYMELSSLRSEDTAVYYCAREGPMLDYPTYSNWFDP
	BIIB-9-416_VH	WGQGTLVTVS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
94	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	416_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGAAGGTCCTA
		TGCTAGACTACCCAACCTACAGCAACTGGTTCGACCCA
		TGGGGACAGGGTACATTGGTCACCGTCTCCTCA
	7	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
	Аминокислотная	QAPGQGLEWMGVINPSGGSTSYAQKFQGRVTMTRDTST
95	последовательность	STVYMELSSLRSEDTAVYYCARDPSQDYATGTGWFDPW
	BIIB-9-629_VH	GQGTLVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
	По ано но во на на сели	GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
	Последовательность нуклеиновой кислоты ВІІВ-9- 629_VH	GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
96		CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAGTCAT
		CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA

		GGACACGGCGGTGTACTACTGCGCCAGAGATCCCTCTC
		AAGACTACGCAACCGGAACCGGTTGGTTCGATCCCTGG
		GGACAGGGTACATTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
97	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-9-885 VH	STVYMELSSLRSEDTAVYYCAREGPMLDYPTYSNWFDP
		WGQGTLVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
98	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	885_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGAAGGTCCTA
		TGCTAGACTACCCAACCTACAGCAACTGGTTCGACCCA
		TGGGGACAGGGTACATTGGTCACCGTCTCCTCA
	Антитела класс	са III - последовательности VH
	Аминокислотная	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGW
99	последовательность ВІІВ-9-607 VH	IRQPPGKGLEWIGSISYSGSTYYNPSLKSRVTISVDTS
		KNQFSLKLSSVTAADTAVYYCARDRGYSYEDFDLWGRG
		TLVTVS
		CAGCTGCAGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
		GTGGCTCCATCAGCAGTAGTAGTTACTACTGGGGCTGG
	Последовательность	ATCCGCCAGCCCCAGGGAAGGGGCTGGAGTGGATTGG
100	нуклеиновой	GAGTATCTCCTATAGTGGGAGCACCTACTACAACCCGT
	кислоты ВІІВ-9-	CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
	607_VH	AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGAGATCGTG
		GATACAGCTACGAGGACTTCGACCTATGGGGGAGAGGT
		ACCTTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSW
101	последовательность	IRQHPGKGLEWIGYIYYSGSTYYNPSLKSRVTISVDTS
1		

		GQGTTVTVSS
		CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCACAGACCCTGTCCCTCACCTGTACTGTCTCTG
		GTGGCTCCATCAGCAGTGGTGGTTACTACTGGAGCTGG
	Последовательность	ATCCGCCAGCACCCAGGGAAGGGCCTGGAGTGGATTGG
102	нуклеиновой	GTACATCTATTACAGTGGGAGCACCTACTACAACCCGT
102	кислоты ВІІВ-9-	CCCTCAAGAGTCGAGTTACCATATCAGTAGACACGTCT
	471_VH	AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGATCAGGAG
		TGAGCGGATCGGGATCTGATAATTGGTTCGATCCATGG
		GGACAGGGTACAACTGTCACCGTCTCCTCA
	Аминокислотная	EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVR
103	последовательность	QAPGKGLEWVSSISSSSSYIYYADSVKGRFTISRDNAK
103	BIIB-9-472 VH	NSLYLQMNSLRAEDTAVYYCARGGRYSGSWSWNIWGQG
	B11B 3 472_VII	TMVTVSS
		GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAA
		GCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG
		GATTCACCTTCAGTAGCTATAGCATGAACTGGGTCCGC
	Последовательность	CAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCAT
104	нуклеиновой	TAGTAGTAGTAGTTACATATACTACGCAGACTCAG
	кислоты ВІІВ-9-	TGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAG
	472_VH	AACTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGAGGTAGAT
		ACAGCGGCTCGTGGAGCTGGAACATATGGGGTCAGGGT
		ACAATGGTCACCGTCTCCTCA
	Аминокислотная последовательность	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
105		QAPGQGLEWMGIINPSGGSTTYAQKFQGRVTMTRDTST
	BIIB-9-439 VH	STVYMELSSLRSEDTAVYYCAREATESYYYMDVWGKGT
		TVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
	Последовательность	GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
106	нуклеиновой	GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	кислоты ВІІВ-9-	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	439_VH	CAACCCTAGTGGTGGTAGCACAACCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG

		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGAGGCTACAG
		AAAGCTACTACATGGACGTATGGGGCAAGGGTACA
		ACTGTCACCGTCTCCTCA
		QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVR
	Аминокислотная	QAPGQGLEWMGGIIPIFGTASYAQKFQGRVTITADEST
107	последовательность	
	BIIB-9-446_VH	STAYMELSSLRSEDTAVYYCARGLEVGYYGYFDYWGQG
		TLVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGTCCTCGGTGAAGGTCTCCTGCAAGGCTTCTG
		GAGGCACCTTCAGCAGCTATGCTATCAGCTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAGGGAT
108	нуклеиновой	CATCCCTATCTTTGGTACAGCAAGCTACGCACAGAAGT
	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACGATTACCGCGGACGAATCCACG
	446_VH	AGCACAGCCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGGTTGGAAG
		TGGGATATTATGGATACTTTGATTACTGGGGACAGGGT
		ACATTGGTCACCGTCTCCTCA
	Аминокислотная	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGW
109	последовательность ВІІВ-9-568_VH	IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
		KNQFSLKLSSVTAADTAVYYCARDLGYAATYFDLWGRG
		TLVTVSS
		CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
		GTGGCTCCATCAGCAGTAGTAGTTACTACTGGGGCTGG
	Последовательность	ATCCGCCAGCCCCAGGGAAGGGGCTGGAGTGGATTGG
110	нуклеиновой	GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT
110	кислоты ВІІВ-9-	CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
	568_VH	AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGAGACTTGG
		GATACGCAGCTACCTACTTCGACCTATGGGGGAGAGGT
		ACCTTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
111	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-9-615_VH	STVYMELSSLRSEDTAVYYCARDSPSSSSYWSLDLWGR
L	<u> </u>	

		GTLVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
112	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
112	кислоты BIIB-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	615_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGACTCTCCTA
		GCAGCAGCTCGTACTGGAGTTTAGACCTATGGGGGAGA
		GGTACCTTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
113	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
113	BIIB-9-628 VH	STVYMELSSLRSEDTAVYYCAREPIAYGATLDLWGRGT
	B11B 9 020_VII	LVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
114	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	628_VH	AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGAGCCTATAG
		CCTACGGTGCTACCTTAGACCTATGGGGGAGAGGTACC
		TTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
115	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-9-882 VH	STVYMELSSLRSEDTAVYYCARGPTDSSGYLDMDVWGK
		GTTVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
	Последовательность	GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
116	нуклеиновой	GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	кислоты ВІІВ-9-	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	882_VH	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG

		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGACCCACTG
		ACAGCAGCGGATACTTGGACATGGACGTATGGGGCAAG
		GGTACAACTGTCACCGTCTCCTCA
		QLQLQESGPGLVKPSETLSLTCTVSGGSISSSDYYWGW
	Аминокислотная	 IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
117	последовательность	KNQFSLKLSSVTAADTAVYYCARSPRHKVRGPNWFDPW
	BIIB-9-884_VH	GQGTLVTVSS
		CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
		GTGGCTCCATCAGCAGTAGTGACTACTACTGGGGCTGG
		ATCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGG
110	Аминокислотная	GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT
118	последовательность	CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
	BIIB-9-884_VH	AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGATCACCTA
		GGCACAAAGTGCGTGGCCCCAATTGGTTTGATCCATGG
		GGACAGGGTACATTGGTCACCGTCTCCTCA
	Аминокислотная последовательность ВІІВ-9-886_VH	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
119		QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
		STVYMELSSLRSEDTAVYYCARDPAHSYLDAFDIWGQG
		TMVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
120	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	886_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGATCCCGCTC
		ACTCCTACCTAGACGCCTTTGATATTTGGGGTCAGGGT
		ACAATGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMVWVR
121	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-9-887_VH	STVYMELSSLRSEDTAVYYCARDAEAHWIPGMDVWGQG

		TTVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGGTCTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
100	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
122	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	887_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGATGCTGAAG
		CACACTGGATCCCCGGAATGGACGTATGGGGCCAGGGA
		ACAACTGTCACCGTCTCCTCA
	Anatalo mara do mara d	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
123	Аминокислотная последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
123	BIIB-9-888 VH	STVYMELSSLRSEDTAVYYCARGPTDSSGYLDMDVWGK
	B11B-9-000_VH	GTTVTVSS
		CAGGTGCAGCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
124	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
124	кислоты BIIB-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	888_VH	AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGACCCACTG
		ACAGCAGCGGATACTTGGACATGGACGTATGGGGCAAG
		GGTACAACTGTCACCGTCTCCTCA
	Аминокислотная последовательность	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGW
125		IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
120	BIIB-9-889 VH	KNQFSLKLSSVTAADTAVYYCARDVGWYTEYFDLWGRG
		TLVTVSS
		CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
	Последовательность	GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
126	нуклеиновой	GTGGCTCCATCAGCAGTAGTAGTTACTACTGGGGCTGG
	кислоты ВІІВ-9-	ATCCGCCAGCCCCAGGGAAGGGGCTGGAGTGGATTGG
	889_VH	GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT
		CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC

		AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGAGATGTAG
		GATGGTACACCGAATACTTCGACCTATGGGGGAGAGGT
		ACCTTGGTCACCGTCTCCTCA
	Аминокислотная	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSRYYWGW
127	последовательность	IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
	BIIB-9-433_VH	KNQFSLKLSSVTAADTAVYYCARDAGYSAELFDYWGQG
		TLVTVSS
		CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
		GTGGCTCCATCAGCAGTAGTCGCTACTACTGGGGCTGG
	Последовательность	ATCCGCCAGCCCCAGGGAAGGGGCTGGAGTGGATTGG
128	нуклеиновой	GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT
120	кислоты BIIB-9-	CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
	433_VH	AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGAGACGCAG
		GATACAGCGCAGAGTTGTTCGACTACTGGGGACAGGGT
		ACATTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIHWVR
129	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
129	BIIB-9-445_VH	STVYMELSSLRSEDTAVYYCARDVGQDYWFDLWGRGTL
		VTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATCCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
100	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
130	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	445_VH	AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGATGTAGGAC
		AAGACTACTGGTTCGACCTATGGGGGAGAGGTACCTTG
		GTCACCGTCTCCTCA
	Аминокислотная	EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMSWVR
131	последовательность	QAPGKGLEWVANIKQDGSEKYYVDSVKGRFTISRDNAK
	BIIB-9-470 VH	NSLYLQMNSLRAEDTAVYYCARDAGIAWALDYWGQGTL
	_	

		VTVS
		GAGGTGCAGCTGGTGGAGTCTGGGGGGAGGCTTGGTCCA
		GCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG
		GATTCACCTTTAGTAGCTATTGGATGAGCTGGGTCCGC
	Последовательность	CAGGCTCCAGGGAAGGGGCTGGAGTGGCCAACAT
132	нуклеиновой	AAAGCAAGATGGAAGTGAGAAATACTATGTGGACTCTG
132	кислоты ВІІВ-9-	TGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAG
	470_VH	AACTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGAGATGCTGGCA
		TAGCCTGGGCCTTAGATTACTGGGGACAGGGTACATTG
		GTCACCGTCTCCA
	Аминокислотная	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYAWGW
133		IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
133	последовательность ВІІВ-9-625 VH	KNQFSLKLSSVTAADTAVYYCARDRGWYTEVLDIWGQG
	B11B 9 023_VII	TMVTVSS
		CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
		GTGGCTCCATCAGCAGTAGTAGTTACGCATGGGGCTGG
	Последовательность	ATCCGCCAGCCCCAGGGAAGGGGCTGGAGTGGATTGG
134	нуклеиновой	GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT
	кислоты ВІІВ-9-	CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
	625_VH	AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGAGATCGTG
		GATGGTACACCGAAGTGTTAGACATATGGGGTCAGGGT
		ACAATGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
135	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-9-1264 VH	STVYMELSSLRSEDTAVYYCARDGDSSVYAFDYWGQGT
		LVTVSS
		CAGGTGCAGCTGGGGCTGAGGTGAAGAA
	Последовательность	GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
136	нуклеиновой	GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	кислоты ВІІВ-9-	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	1264_VH	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG

		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GCAGCGTGTACGCCTTCGATTATTGGGGACAGGGTACA
		TTGGTCACCGTCTCCTCA
		QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGW
	Аминокислотная	IROPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
137	последовательность	KNQFSLKLSSVTAADTAVYYCARDGRHYYELFDYWGQG
	BIIB-9-1265_VH	TLVTVSS
		CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
		GTGGCTCCATCAGCAGTAGTAGTTACTACTGGGGCTGG
	Последовательность	ATCCGCCAGCCCCAGGGAAGGGGCTGGAGTGGATTGG
138	нуклеиновой	GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT
	кислоты ВІІВ-9-	CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
	1265_VH	AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGAGACGGCA
		GACACTACTACGAGTTGTTCGACTACTGGGGACAGGGT
		ACATTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
139	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
133	BIIB-9-1266_VH	STVYMELSSLRSEDTAVYYCARDHGWAIYGMDVWGQGT
		TVTVSS
		CAGGTGCAGCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
1 40	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
140	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1266_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCAAGAGACCACGGAT
		GGGCCATCTACGGAATGGACGTATGGGGCCAGGGAACA
		ACTGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
141	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-9-1267 VH	STVYMELSSLRSEDTAVYYCARDHGWAIYGMDVWGQGT
	_	

		TVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
142	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
142	кислоты BIIB-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1267_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCAAGAGACCACGGAT
		GGGCCATCTACGGAATGGACGTATGGGGCCAGGGAACA
		ACTGTCACCGTCTCCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
143		QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
143	последовательность	STVYMELSSLRSEDTAVYYCARDPPSWYVFDIWGQGTM
	BIIB-9-1268_VH	VTVSS
		CAGGTGCAGCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
144	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
111	кислоты BIIB-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1268_VH	AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGACCCACCTA
		GTTGGTACGTATTCGACATATGGGGTCAGGGTACAATG
		GTCACCGTCTCCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
145	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-9-1269 VH	STVYMELSSLRSEDTAVYYCARDRGQYYHFDLWGRGTL
	B11B	VTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
	Последовательность	GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
146	нуклеиновой	GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	кислоты BIIB-9-	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	1269_VH	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG

		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		 GGACACGGCGGTGTACTACTGCGCCAGAGATCGTGGAC
		AATACTACCACTTCGACCTATGGGGGAGAGGTACCTTG
		GTCACCGTCTCCA
		QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
	Аминокислотная	 QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
147	последовательность	 STVYMELSSLRSEDTAVYYCARDTGGYAFDIWGQGTLV
	BIIB-9-1270_VH	TVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		 GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		 GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	 CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	нуклеиновой	 CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
148	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1270 VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
	_	 GGACACGGCGGTGTACTACTGCGCCAGAGACACGGGAG
		 GATACGCCTTTGATATTTGGGGACAGGGTACATTGGTC
		ACCGTCTCCTCA
	_	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
149	последовательность ВІІВ-9-1271_VH	STVYMELSSLRSEDTAVYYCARDTGGYAFDIWGQGTLV
		TVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
150	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
150	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1271_VH	AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGACACGGGAG
		GATACGCCTTTGATATTTGGGGACAGGGTACATTGGTC
		GATACGCCTTTGATATTTGGGGACAGGGTACATTGGTC ACCGTCTCCTCA
	Аминокислотная	
151	Аминокислотная последовательность	ACCGTCTCCTCA

		TVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
1	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
152	кислоты BIIB-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1272_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGACACGGGAG
		GATACGCCTTTGATATTTGGGGACAGGGTACATTGGTC
		ACCGTCTCCTCA
	лициония пошио <u>п</u>	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
153	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
133	последовательность	STVYMELSSLRSEDTAVYYCARDTGGYAFDIWGQGTLV
	BIIB-9-1273_VH	TVSS
		CAGGTGCAGCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
154	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
134	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1273_VH	AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGACACGGGAG
		GATACGCCTTTGATATTTGGGGACAGGGTACATTGGTC
		ACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
155	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-9-1274 VH	STVYMELSSLRSEDTAVYYCARDTGGYAFDIWGQGTLV
		TVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
	Последовательность	GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
156	нуклеиновой	GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	кислоты ВІІВ-9-	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	1274_VH	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG

	T	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGTGTACTACTGCGCCAGAGACACGGGAG
		GATACGCCTTTGATATTTGGGGACAGGGTACATTGGTC
		ACCGTCTCCTCA
	Аминокислотная	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGW
157	последовательность	IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
	BIIB-9-1275 VH	KNQFSLKLSSVTAADTAVYYCARDVGRTYELFDIWGQG
	D11D	TMVTVSS
		CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
		GTGGCTCCATCAGCAGTAGTAGTTACTACTGGGGCTGG
	Последовательность	ATCCGCCAGCCCCAGGGAAGGGGCTGGAGTGGATTGG
1 5 0	нуклеиновой	GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT
158	кислоты ВІІВ-9-	CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
	1275_VH	AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGAGATGTAG
		GAAGAACCTACGAGCTATTCGACATATGGGGTCAGGGT
		ACAATGGTCACCGTCTCCTCA
	_	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGW
4 5 0	Аминокислотная	IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
159	последовательность ВІІВ-9-1276_VH	KNQFSLKLSSVTAADTAVYYCARDVGRTYELFDIWGQG
		TMVTVSS
		CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
		GTGGCTCCATCAGCAGTAGTAGTTACTACTGGGGCTGG
	Последовательность	ATCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGG
	нуклеиновой	GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT
160	кислоты ВІІВ-9-	CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
	1276 VH	AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
	_	 CGCAGACACGGCGGTGTACTACTGCGCCAGAGATGTAG
		GAAGAACCTACGAGCTATTCGACATATGGGGTCAGGGT
		ACAATGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
161	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
T 0 T	BIIB-9-1277 VH	STVYMELSSLRSEDTAVYYCARGGTGYYYGSGSRDGYH
	DIID 2 12//—VII	21.1111110011(01111111111111111111111111

		YYYGMDVWGQGTTVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	П	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	Последовательность	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
162	нуклеиновой	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	кислоты BIIB-9-	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
	12//_\\	GGACACGGCGGTGTACTACTGCGCCAGAGGTGGAACTG
		GGTACTACGGAAGCGGAAGCAGAGACGGCTACCAC
		TATTACTACGGCATGGACGTATGGGGCCAGGGAACAAC
		TGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMVWVR
163	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
100	BIIB-9-1278 VH	STVYMELSSLRSEDTAVYYCARGPGELGYYLAFDIWGQ
	B11B	GTMVTVSS
		CAGGTGCAGCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGGTCTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
164	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1278_VH	AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGACCTGGAG
		AATTGGGATATTATTTAGCCTTCGATATCTGGGGTCAG
		GGTACAATGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
165	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-9-1279 VH	STVYMELSSLRSEDTAVYYCARGPTDSSGYLDMDVWGK
	B11B	GTTVTVSS
	Последовательность	CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
	нуклеиновой вІІВ-9- 1279 VH	GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
166		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
		CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
		CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT

		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGACCCACTG
		ACAGCAGCGGATACTTGGACATGGACGTATGGGGCAAG
		GGTACAACTGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMVWVR
167		QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
107	последовательность ВІІВ-9-1280 VH	STVYMELSSLRSEDTAVYYCARGPWYSYYYMDVWGKGT
	B11B-9-1200_VH	TVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGGTCTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
1.00	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
168	кислоты BIIB-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1280_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGGCCTTGGT
		ACAGTTATTACTACATGGACGTATGGGGCAAGGGTACA
		ACTGTCACCGTCTCCTCA
	ликио мистопио с	QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIR
169	Аминокислотная	QPPGKGLEWIGEIDHSGSTNYNPSLKSRVTISVDTSKN
109	последовательность	QFSLKLSSVTAADTAVYYCARTTRSKYYGMDVWGQGTM
	BIIB-9-1281_VH	VTVSS
		CAAGTACAATTACAACAGTGGGGAGCTGGTTTATTAAA
		GCCTTCAGAAACTTTAAGTTTGACCTGTGCTGTTTACG
		GTGGATCATTTCTGGTTATTACTGGAGTTGGATTCGT
	Последовательность	CAACCACCAGGCAAAGGATTGGAGTGGATCGGTGAGAT
170	нуклеиновой	AGACCATTCAGGCTCCACTAACTACAATCCAAGTTTAA
170	кислоты ВІІВ-9-	AATCCAGGGTTACTATCTCCGTAGACACGTCCAAGAAC
	1281_VH	CAGTTCTCCCTGAAGCTGAGTTCTGTGACCGCCGCAGA
		CACGGCGGTGTACTACTGCGCCAGAACTACAAGATCCA
		AATACTACGGCATGGATGTATGGGGCCAGGGTACAATG
		GTCACCGTCTCCA
171	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMVWVR
171	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST

	BIIB-9-1282_VH	STVYMELSSLRSEDTAVYYCARVPTYRYSYLAFDIWGQ
		GTMVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGGTCTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
172	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
1/2	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1282_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGTCCCTACAT
		ACAGATACAGCTACTTAGCCTTCGATATCTGGGGTCAG
		GGTACAATGGTCACCGTCTCCTCA
	Anguarda da mua d	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMVWVR
173	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
1/3	последовательность ВІІВ-9-1283 VH	STVYMELSSLRSEDTAVYYCARVPTYRYSYLAFDIWGQ
	B11B-9-1203_VII	GTMVTVSS
		CAGGTGCAGCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGGTCTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
174	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
1,4	кислоты BIIB-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1283_VH	AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGTCCCTACAT
		ACAGATACAGCTACTTAGCCTTCGATATCTGGGGTCAG
		GGTACAATGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMVWVR
175	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
175	BIIB-9-1284 VH	STVYMELSSLRSEDTAVYYCARVPTYRYSYLAFDIWGQ
		GTMVTVSS
	Последовательность	CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
	нуклеиновой	GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCAG
176	кислоты ВІІВ-9-	GATACACCTTCACCAGCTACTATATGGTCTGGGTGCGA
	1284 VH	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
		CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT

		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGTCCCTACAT
		ACAGATACAGCTACTTAGCCTTCGATATCTGGGGTCAG
		GGTACAATGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMVWVR
177	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-9-1285 VH	STVYMELSSLRSEDTAVYYCARVPTYRYSYLAFDIWGQ
		GTMVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGGTCTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
178	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
170	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1285_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGTCCCTACAT
		ACAGATACAGCTACTTAGCCTTCGATATCTGGGGTCAG
		GGTACAATGGTCACCGTCTCCTCA
	Аминокислотная	KPGASVKVSCKASGYTFTSYYMVWVRQAPGQGLEWMGI
179	последовательность	INPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSLRS
	BIIB-9-1286_VH	EDTAVYYCARVPTYRYSYLAFDIWGQGTMVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGGTCTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
100	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
180	кислоты ВІІВ-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1286_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGTCCCTACAT
		ACAGATACAGCTACTTAGCCTTCGATATCTGGGGTCAG
		GGTACAATGGTCACCGTCTCCTCA
	Аминокислотная	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSDYYWGW
181	последовательность	IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
	BIIB-9-1287 VH	KNQFSLKLSSVTAADTAVYYCARSPRHKVRGPNWFDPW
	_	

		GQGTLVTVSS
		CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
		GTGGCTCCATCAGCAGTAGTGACTACTACTGGGGCTGG
	Последовательность	ATCCGCCAGCCCCAGGGAAGGGGCTGGAGTGGATTGG
182	нуклеиновой	GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT
102	кислоты BIIB-9-	CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
	1287_VH	AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGATCACCTA
		GGCACAAAGTGCGTGGCCCCAATTGGTTTGATCCATGG
		GGACAGGGTACATTGGTCACCGTCTCCTCA
	Антитела клас	са IV - последовательности VH
	Аминокислотная	QVQLQESGPGLVKPSETLSLTCAVSGYSISSGYYWAWI
183	последовательность	RQPPGKGLEWIGSIYHSGSTYYNPSLKSRVTISVDTSK
100	BIIB-9-397 VH	NQFSLKLSSVTAADTAVYYCARDVWYVGGFDPWGQGTL
	B11B 3 337_VII	VTVSS
		CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCGCTGTCTCTG
		GTTACTCCATCAGCAGTGGTTACTACTGGGCTTGGATC
	Последовательность	CGGCAGCCCCCAGGGAAGGGGCTGGAGTTGGGAG
184	нуклеиновой	TATCTATCATAGTGGGAGCACCTACTACAACCCGTCCC
	кислоты BIIB-9-	TCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAG
	397_VH	AACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGCCGC
		AGACACGGCGGTGTACTACTGCGCCAGAGATGTGTGGT
		ACGTCGGCGGTTTCGATCCCTGGGGACAGGGTACATTG
		GTCACCGTCTCCA
	Аминокислотная	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGW
185	последовательность	IRQPPGKGLEWIGSISYSGSTYYNPSLKSRVTISVDTS
100	BIIB-9-578 VH	KNQFSLKLSSVTAADTAVYYCARDKYQDYSFDIWGQGT
	7 2 1 1 D 3 0 7 0 _ VII	MVTVSS
	Последовательность	CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
	нуклеиновой	GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
186	кислоты ВІІВ-9-	GTGGCTCCATCAGCAGTAGTAGTTACTACTGGGGCTGG
	578 VH	ATCCGCCAGCCCCAGGGAAGGGGCTGGAGTGGATTGG
	· · · · · · · · · · · · · · · · · · ·	GAGTATCTCCTATAGTGGGAGCACCTACTACAACCCGT

		CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
		AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCTAGAGATAAGT
		ACCAAGACTATTCATTCGACATATGGGGTCAGGGTACA
		ATGGTCACCGTCTCCA
	ANGALO MAG HO HALO G	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
187	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
10/	последовательность	STVYMELSSLRSEDTAVYYCARAENRGDYEAWGQGTLV
	BIIB-9-631_VH	TVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
188	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
100	кислоты BIIB-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	631_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGCCGAGAACA
		GAGGAGACTACGAGGCATGGGGACAGGGTACATTGGTC
		ACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
189	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
100	BIIB-9-612 VH	STVYMELSSLRSEDTAVYYCARDAGYHWYGMDVWGQGT
	D11D 9 012_VII	TVTVSS
		CAGGTGCAGCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
190	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
	кислоты BIIB-9-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	612_VH	AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGACGCAGGAT
		ACCACTGGTACGGAATGGACGTATGGGGCCAGGGAACA
		ACTGTCACCGTCTCCTCA
	Лишишона инас	сса I - последовательности VL
	Anthitelia kliac	оса т последовательности vв

	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-9-605_VL	SLQPEDFATYYCQQADVFPFTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	Последовательность	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
192	кислоты ВІІВ-9-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
	605 VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCAGACGTCTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSLSASVGDRVTITCQASQDITNYLNWYQQ
193	последовательность	KPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTIS
	BIIB-9-475_VL	SLQPEDIATYYCQQSSNFPLTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
	Последовательность нуклеиновой кислоты ВІІВ-9-475_VL	ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA
		GTCAGGACATTACCAACTATTTAAATTGGTATCAGCAG
		AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC
194		ATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTG
		GAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGC
		AGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCA
		GCAGTCCTCCAATTTCCCTCTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSSLAWYQQ
195	последовательность	KPGQAPRLLIFGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-9-477_VL	SLQSEDFAVYYCQQDVNWPITFGGGTKVEIK
		GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGCAGCAGCTTAGCCTGGTACCAGCAG
	нуклеиновой кислоты BIIB-9- 477_VL	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTTTGGTGC
196		ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGGACGTCAATTGGCCTATCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA

	Аминокислотная	DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ
197	последовательность	 KPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTIS
	BIIB-9-479_VL	SLQPDDFATYYCQQYRILSPTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA
	_	GTCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAG
	Последовательность	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAAGC
198	нуклеиновой кислоты ВІІВ-9-	CTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGCG
		GCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGC
	479_VL	AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA
		GCAGTACCGCATCCTCTCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIVMTQSPLSLPVTPGEPASISCRSSQSLLYSNGYNYL
199	последовательность	DWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDF
	BIIB-9-480_VL	TLKISRVEAEDVGVYYCMQARQPPWTFGGGTKVEIK
	Последовательность нуклеиновой кислоты BIIB-9- 480_VL	GATATTGTGATGACTCAGTCTCCACTCTCCCTGCCCGT
		CACCCTGGAGAGCCGGCCTCCATCTCCTGCAGGTCTA
		GTCAGAGCCTCCTGTATAGTAATGGATACAACTATTTG
		GATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCT
200		CCTGATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCC
		CTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTT
		ACACTGAAAATCAGCAGAGTGGAGGCTGAGGATGTTGG
		GGTTTATTACTGCATGCAGGCACGACAGCCCCCTTGGA
		CTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSTLSASVGDRVTITCRASQSIGSWLAWYQQ
201	последовательность	KPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTIS
	BIIB-9-558_VL	SLQPDDFATYYCQQAGSYSFTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA
	Последовательность	GTCAGAGTATTGGTAGCTGGTTGGCCTGGTATCAGCAG
202	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAAGC
	кислоты BIIB-9-	CTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGCG
	558_VL	GCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGC
		AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA
		GCAGGCCGGAAGCTACTCTTTCACTTTTGGCGGAGGGA

		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
203	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-9-414_VL	SLQPEDFATYYCQQGDVFPFTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	Последовательность	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
204	кислоты ВІІВ-9-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
	414 VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGGAGACGTCTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGIDSWLAWYQQ
205	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-9-415_VL	SLQPEDFATYYCQQGDAFPFTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	Последовательность	GTCAGGGTATTGACAGCTGGTTAGCCTGGTATCAGCAG
	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
206	кислоты ВІІВ-9-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
	415_VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
	410	AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGGAGACGCCTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPGTLSLSPGERATLSCRASQSVSSDYLAWYQ
207	последовательность	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI
	BIIB-9-425_VL	SRLEPEDFAVYYCQQYDSHPYTFGGGTKVEIK
		GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT
	Последовательность нуклеиновой кислоты ВІІВ-9- 425_VL	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCGACTACTTAGCCTGGTACCAG
208		CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG
		TGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCA
		GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATC
		AGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTG

		TCAGCAGTACGACAGTCACCCTTACACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	Аминокислотная	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNY
209	последовательность	LAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTD
	BIIB-9-440_VL	FTLTISSLQAEDVAVYYCQQYALDPPTFGGGTKVEIK
		GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGT
		GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCA
	Последовательность	GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC
	нуклеиновой	TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA
210	кислоты ВІІВ-9-	GCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGG
	440 VL	TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGAT
		TTCACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGT
		GGCAGTTTATTACTGTCAGCAGTACGCCCTCGACCCTC
		CTACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
211	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-9-452_VL	SLQSEDFAVYYCQQANNFPFTFGGGTKVEIK
		GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
	Последовательность нуклеиновой кислоты BIIB-9- 452_VL	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
		AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
212		ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGGCCAATAATTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
213	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-9-460_VL	SLQSEDFAVYYCQQHDNFPFTFGGGTKVEIK
		GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
	Последовательность	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
214	нуклеиновой	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
	кислоты ВІІВ-9-	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
	460_VL	ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC

		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGCACGACAATTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSSLAWYQQ
215	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-9-461_VL	SLQSEDFAVYYCQQHHHWPPTFGGGTKVEIK
		GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	П	GTCAGAGTGTTAGCAGCAGCTTAGCCTGGTACCAGCAG
	Последовательность	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
216	нуклеиновой кислоты ВІІВ-9-	ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
	461_VL	AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGCACCACTGGCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSTLSASVGDRVTITCRASQSINSWLAWYQQ
217	последовательность	KPGKAPKLLISDASSLESGVPSRFSGSGSGTEFTLTIS
	BIIB-9-465_VL	SLQPDDFATYYCQQYEIFPFTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA
	Поспонованования	GTCAGAGTATTAATAGCTGGTTGGCCTGGTATCAGCAG
	Последовательность нуклеиновой кислоты ВІІВ-9-465_VL	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTCCGATGC
218		CTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGCG
		GCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGC
		AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA
		GCAGTACGAAATCTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ
219	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIB-4-564_VL	SLQPEDFATYYCQQSVAVPPTFGGGTKVEIK
	Последовательность нуклеиновой кислоты ВІІВ-9- 564_VL	GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAA
220		GTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAG
		AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
		ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG
		ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG

		GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCA
		GCAAAGCGTCGCCGTCCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQ
221		BIQMIQSISSESASVGERVIIICQASQEIANTENWIQQ KPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTIS
221	последовательность	
	BIIB-9-484_VL	SLQPEDIATYYCQQYANFPYTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA
	Последовательность	GTCAGGACATTGCCAACTATTTAAATTGGTATCAGCAG
	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC
222	кислоты ВІІВ-9-	ATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTG
	484 VL	GAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGC
	_	AGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCA
		GCAGTACGCCAACTTCCCTTACACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
223	последовательность	KPGQAPRLLIFGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-9-469_VL	SLQSEDFAVYYCQQSNNFPFTFGGGTKVEIK
		GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
		AAACCTGGCCAGGCTCCCAGGCTCCTCATCTTTGGTGC
224	нуклеиновой кислоты BIIB-9- 469_VL	ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGTCCAATAATTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSSLAWYQQ
225	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-9-566_VL	SLQSEDFAVYYCQQHDNWPPTFGGGTKVEIK
	Последовательность	GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
_	нуклеиновой	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
226	кислоты ВІІВ-9-	GTCAGAGTGTTAGCAGCAGCTTAGCCTGGTACCAGCAG
	566 VL	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
	_	

GCAGTGGGTCTGGGACAGAGTTCACCTCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGCACGACAATTGGCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 227 ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—9-567_VL SLQPDDFATYYCQQYRIYSPTFGGGTKVEIK GACATCCAGAGTATAGTAGCTCACCTGGTCTG ATCTGTAGGAGACAGAGTCACCTTGCTGCGGCCCA ATCTGTAGGAGACAGAGTCACCATCACCTGGCCCA AAACCAGGAAAAGCCCCTAAGCTTCCTGCAGCCTGTTGC AACCAGGTTGAGATCACACA AAACCAGGAAAAGCCCCTAAGCTTCACCATCAGC GCAGTTGAGATCACACA ACCAGGTTGAGATCACACA ACCAGGTTGAGATCACACA ACCAGGTTGAGATCACACA ACCAGGTTGAGATCACACAC ACCTGCAGCTGATTTTGCAACTTTTGCAGCGTCCACCATCAGC GCAGTTGAGATCACACA ACCAGGTTGAGATCACACACTACTCCC GCAGGTTGAGATCACACAC ACCTGCAGCTGATTTTGCAACTTTTTGCAACTTCACCATCAGC GCAGTTGAGATCACACA ACCAGGTTGAGATCACAC ACCTGCAGCTGATGATTTTGCAACTTTTTGCAACTTCACCATCAGC GCAGTTGAGATCACAA 229 ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—9-569_VL SLQEDIATYYCQQADDFFFTFGGTKVEIK GACATCCAGATTGCCACCATCAGCGAGGGA ACCAGGGAAAGCCCCTAAGCTCCCTGCTCTCC ATCTGTAGGAGACACTATTTAAATTGGTATCAGCAG AACCAGGAGAACCAGTCCATCACCTTCCCTGTCTC ATCTGTAGGAGACAGATTTTAAATTGGTATCAGCAG AACCAGGATGACCCATAACACTTTCCCTTCCTGCAGGGGA ACCAGGTTGAGACCAACTATTTAAATTGGTATCAGCAG AACCAGGAGAACCACTATTTTAAATTGGTATCAGCAG AACCAGGAGAACCACTATTTTAACTTTCACCATCAGC ACCTGCAGCCCTAAGCCCTAACCTTCACCTTCCCTGTCTC ATCTGTAGGAGACACTATTTTAACTTTCACCATCAGC ACCTGCAGCCTAAGAGTTCAGATTCAGATTC ACCAGGTTAGAACAACTATTTAACTTTCACCATCAGC ACCTGCAGCCTAAGAGTTCAGATTTTAACTTTCACACTCAGC ACCTGCAGCCTAAGAGTTCAGATTTTAACTTTCACCATCAGC ACCTGCAGCCTAAGCTCCTACACTTTCACTTTCACCATCAGC ACCTGCAGCCTAAGATCTTTCACTTTTCACCATCAGC ACCTGCAGCCTAAGATCTTTAACTTTCACCATCAGC ACCTGCAGCCTAAGATCTTTAACTTTTCACCATCAGC ACCTGCAGCCTAAGATCTTTCACTTTTCACCATCAGC ACCTGCAGCCTAAGATCTTTCACTTTTCACCATCAGC ACCTGCAGCTTAAGCTAAAA AACCAGGTTGAACATTTTAACTTTCACCATCAGC ACCTGCAGCCTAAGATTTTAACTTTCACCATCAGC ACCTGCAGCCTAAGATTTTAACTTTCACCATCAGC ACCTGCAGCTTAACCTTTCACTTTTCACTTTTCACTTTTCACTTTTCACTTTTCACTTTTCACTTTTCACTTTTCACTTTTCACTTTTCACTTTTCACT			ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG
AGCCTGCAGTCTGAAGATTTTGCAGTTTATACTGTCA GCAGCACGACAATTGGCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 227 последовательность ВІВ-9-567_VL SLQPDDFATYYCQQYRIYSPTFGGGTKVEIK ВОТОВЕНЬ ВІВ-9-567_VL SLQPDDFATYYCQQYRIYSPTFGGTKVEIK ВОТОВЕНЬ ВІВ-9-567_VL GACCAGATGACCAGTCTCCTTCCACCCTGTCTGC АТСТGТАGGAGACAGAGTCACCATCACTTGCCGGGCCA БОТОВЕНЬ ВІВ-9-567_VL GACCAGGATGACCCAGTCTCCTTCCACCCTGTCTGC АТСТGТАGGAGACAGAGTCACCATCACTTGCCGGGCCA ВОТОВЕНЬ ВІВ-9-567_VL GACCAGGATGACCCAGTCTCCTGCACCCTGTCTGC АТСТGТАGGAGACAGAGTCACCATCACTTGCCGGGCCA ВОТОВЕНЬ ВІВ-9-567_VL GACCTGCAGCTGATCTAGCAGCAGAAACCAGGGAAATTCACTCTCACCATCAGC АССТGCAGCCTGATGATTTTGCAACTTATACTGCCA GCAGTGATCAGAA 229 ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ-9-569_VL SLQPEDIATYYCQQADDFFFTFGGTKVEIK GACATCCAGATGACCAGTCTCCATCCTCCCTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGAAACCCAGTCACTTGCCAGGCGAAACCCAGGGAAGATTTAAATTGGTATCAGCAG AACCAGGGAAAGCCCCTAAGCTCCTCCCTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGAAACCCAGGGAAACCAACTATTTAAATTGGTATCAGCAG AACCAGGAGAAGCCCCTAAGCTCCCTGTCTCCCCTGTCTGC ATCCAGATTAGCAACTATTTAAATTGGTATCAGCAG AACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC ATCCAGATTAGCAACTATTTAAATTGGTATCAGCAG AACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC ACCCAGGACAACAGGGGTCCCATCAAGGTTCAGCAG AACCAGGGAAAGCCCCTAAGCTCCTGATCTACCATCAGC ACCCAGGACAACAGGGGTCCCATCAAGGTTCAGCAG AACCAGGGAAAGCCCCTAAGCTCCTGCTTCCAGGAGAACCCAGGGGAAAGCCCCTTTCCAGGAGGAAACCAGGGGAAGATTTTACTTTCACCATCAGC ACCCAGGACAGAGATCACCTTGCAAGGATCACTTGCAGGAGAACCAGGGAAACCAGGAGATCTTCACTTTTCACCATCAGC ACCCAGGACAGAACTACTTTACACTTTCACCATCAGC ACCCAGGACAACAGAGATATTACTTTCACCATCAGC ACCCAGGACAACAGAGATATTACTTTCACCATCAGC ACCCAGGACAACAGAGATATTTACTTTCACCATCAGC ACCCAGGACACAGAGATATTTACTTTCACCATCAGC ACCCAGGACACAGAGATCTTCCCTTTCACTTTTTGACTTTCACCATCAGC ACCCAGGACATTGACTACTTTCACTTTTTGACTTTCACCATCAGC ACCCAGGATGACTTCCCTTTCCCTTTCACTTTTTGACTTTCACTTTTCACTTTTCACCATCAGC ACCCAGGACATTGACTACTTTCACTT			GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
ССААДСТТДАДАТСАВА АМИНОКИСЛОТНАЯ DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ ПОСЛЕДОВАТЕЛЬНОСТЬ BIIB-9-567_VL SLQPDDFATYYCQQYRIYSPTFGGTKVEIK ПОСЛЕДОВАТЕЛЬНОСТЬ HYKЛЕИНОВОЙ KUCJOTE BIIB-9-567_VL EGACATCCAGATGACCCATCACTTGCCGGGCCA ТОСЛЕДОВАТЕЛЬНОСТЬ HYKЛЕИНОВОЙ KUCJOTE BIIB-9-567_VL EGACATCAGAGAGTCCCATCACTTGCCGGGCCA ТОСЛЕДОВАТЕЛЬНОСТЬ HYKЛЕИНОВОЙ CTCCAGTTGGAAGTGGCTCCATCAGCTCACCATCAGC СССАДСТТОВВАТЕЛЬНОСТЬ BIIB-9-569_VL EGACATCAGAGAGATCTACTCTCCTGCTGCTGCCAGGCGAGAGATCACACTTTTGCAGGGAGAGAGA			
227 Аминокислотная DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ 228 последовательность KFGKAPKLLIYDASSLESGVPSRFSGSGSTEFTLTIS 228 БВІВ-9-567_VL SLQPDDFATYYCQQYRIYSPTFGGTKVEIK 228 Последовательность нуклеиновой кислоты в последовательность вызывания в последовательность нуклеиновой кислотная Стссабттаданатадстадстадстатадстадс дадстадантадстадстадстальность нуклеиновой кислотная Оримпра в последовательность нуклеиновой кислоты в последовательность нуклеиновой кислоты в последовательность нуклеиновой кислоты в выв-9-569_VL ВОСЛЕДОВАТЕЛЬНОСТЬ нуклеиновой кислоты в выв-9-569_VL БОСЛЕДОВАТЕЛЬНОСТЬ нуклеиновой кремпра в последовательность в выв-9-588_VL БОСЛЕДОВАТЕЛЬНОСТЬ нуклеиновой кремпра в последовательность выследовательность			GCAGCACGACAATTGGCCTCCTACTTTTGGCGGAGGGA
227 последовательность ВІІВ-9-567_VL КРЯКАРКЬІІ YDASSLESGVPSRFSGSGSGTEFTLTIS 228 ВІВ-9-567_VL SLQPDDFATYYCQQYRIYSPTFGGTKVEIK 228 АТСТБТАБДАВДСКАДАТСАССТТССАСССТВТСТВС 4 АТСТБТАБДАВДСКАДАТТАДСТАДСТВЕТОСТВЕТОТА АТСТВТАДСАДВЕТАТ ТАДСАДВЕТАТ ТАДСАТ ТАДСАДВЕТАТ			CCAAGGTTGAGATCAAA
BIIB-9-567_VL SLQPDDFATYYCQQYRIYSPTFGGGTKVEIK GACATCCAGATGACCAGTCTCCTTCCACCCTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA GTCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAG GTCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAG AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGATGC CTCCAGTTTGGAAAGTCGGGTCCCATCAAGGTTCAGCG CAGGTGGATCTGGGACAGAATTCACTCTCACCATCAGC AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA GCAGTTCAGAGATCTACTCTCCACCATCAGC AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA GCAGTTCAGAATCTACTCTCCTACTTTTTGGCGGGAGGGA		Аминокислотная	DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ
GACATCCAGATGACCCAGTCTCCTCCACCCTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA GTCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAG AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGATGC CTCCAGTTTGGAAAGTTGGCACCATCACTCACCATCAGC CTCCAGTTTGGAAAGTTGGACAGAGTTCACCG GCAGTGGATCTAGGATCACACTCACTCACCATCAGC AGCCTGCAGCCTGATGATTTTGCAACCTTATTACTGCCA GCAGTACAGAATCTACTCTCCTACCTATTTACTGCCA GCAGTACAGAATCTACTCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 229 ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ КИСЛОТЫ ВІІВ-9- 569_VL GACATCCAGATGACCCAGTCTCCCTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA ATCCAGTTTGGCAACCATCACTTGCCAGGCGA ATCCAGTTTGGCAACCAGTCTCCCTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA ATCCAGTTTGGCAACCAGTCTCCATCACTGCCAGGCGA ATCCAATTTGGCAACCAGTTTTACATTTCACCAGCAG AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC ATCCAATTTGGCAACAGGGGTCCCATCAAGGTTCAGTG GAAGTGGATCTAGGAACAGGGGTCCCATCAAGGTTCAGCAG AGCCTGCAGCCTGAAGATTATTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTTACTTTCACCATCACCAC AGCCTGCAGCCTGAAGATATTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTTACTTTCACTATTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTTACTTTCACTATTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTTCACTTTTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTTCACTTTTTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTTCACTTTTTTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTTCACTTTTTTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTTCACTTTTTTTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTTCACTTTTTTTTTT	227	последовательность	KPGKAPKLLIYDASSLESGVPSRFSGSGSGTEFTLTIS
228 Последовательность нуклеиновой кислоты віїв-9- 229 Последовательность нуклеиновой кислоты віїв-9- 229 Последовательность нуклеиновой кислоты віїв-9- 230 Последовательность нуклеиновой кислоты віїв-9- 240 Последовательность нуклеиновой кислоты віїв-9- 256 у L 256 у L 26 Аминокислотная віїв-9- 26 Актемательность нуклеиновой кислоты віїв-9- 26 Кислоты віїв-9- 26 Актемательность нуклеиновой кислоты віїв-9- 26 Кислоты віїв-9- 27 Аминокислотная віїв-9- 28 Кислоты віїв-9- 29 Кислоты віїв-9- 20 Кродорательность нужней куродорательность нужней куродорательность віїв-9- 20 Кродорательность куродорательность віїв-9- 20 Кродорательность нуждейной куродорательность нуждейном куродорательность нуждейность		BIIB-9-567_VL	SLQPDDFATYYCQQYRIYSPTFGGGTKVEIK
228 Последовательность нуклеиновой кислоты ВІІВ-9- 567_VL СССАСТТЕССАССТСТССТАССТТТЕСССАССТСАССАСТСАССА АССАССАСТЕСАСА ССААССТЕСАССТЕСТТТЕСССАТТТЕСССА ССААССТЕСАССТЕСТТЕССАССТЕССА ССААССТЕСТТЕССАССА ССААССТЕСАССТЕСТТЕССАССА ССААССТЕСАССТЕСТТЕСТТЕССАСА ССААССТЕСАССТЕСТТЕСТТЕССАСАСАСАСАСАСАСАС			GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC
228 Последовательность нуклеиновой кислоты віїв-9-567_VL Віїв-9-567_VL СТССАБТТТБДАААДТТДЕСТСТДАСТАТДАГТСАДСЕД ДОСАДТТТДЕДАДДТТТТДЕДАДДТТТТДЕДАДДТТТТТДЕДАДДТТТТТДЕДАДДТТТТТДЕДАДДТТТТТДЕДАДДТТТТТДЕДАДДТТТТТДЕДАДДТТТТТДЕДАДДТТТТТДЕДЕДАДДТТТТТТДЕДЕДАДДТТТТТТТТ			ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA
AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGATGC KUCЛOTH BIIB-9- 567_VL BIIB-9- 567_VL AGCCTGCAGCTGATGATTTTGCACCA GCAGTGGATCTGGACAGATTCACTCTCACCATCAGC AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA GCAGTACAGAATCTACTCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKUCЛOTHAЯ DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQ BIIB-9-569_VL SLQPEDIATYYCQQADDFPFTFGGTKVEIK GACATCCAGATGACCCAGTCTCCATCCTCCTGCTGCATCTTGCAGGCGA ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA ATCCAATTTGGCAACAGGGTCCCATCACTGCCAGGCGA AACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC ATCCAATTTGGCAACAGGGGTCCCATCAGGTTCAGTG AACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC AGCCTGCAGCCTGAAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTCACTTTTGCCGGGAGGA CCAAGGTTGAGATCAAA AMMHOKUCЛOTHAЯ EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ CCAAGGTTGAGTCAGACATCTCCTTTCACTTTTTGCGGGAGGAA CCAAGGTTGAGATCAAA AMMHOKUCЛOTHAЯ EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS BIIB-9-588_VL SLQSEDFAVYYCQQAYNWPFTFGGGTKVEIK BICCLEGOBATEJBHOCTB GAAATAGTGATGACGCACCCTTGTCTGT HyKJREHOBOЙ GTCTCCAGGGGAAAGAGCCCACCCTTCCTCTCGCAGGGCCA		_	GTCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAG
230 кислоты віїв-9- Б67_VL Аминокислотная Віїв-9- Б69_VL Віїв-9- Б69_VL Аминокислотная Віїв-9- Б10Следовательность Віїв-9- Віїв			AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGATGC
S67_VL GCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGC	228		CTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGCG
AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA GCAGTACAGAATCTACTCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCTACTCTCCTACTTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQ ROCAEQOBATEALHOCTE BIIB-9-569_VL GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA GTCAGGACATTAGCAACTATTTAAATTGGTATCAGCAG AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC ATCCAATTTGGCAACAGGGGTCCCATCAAGGTTCAGTG AAACCAGGGAAAGCCCCTAAGCTCCTTACACTTGCCAGGCGA ACCAGGTTGAGATCTTTACATTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTCACTTTTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTCACTTTTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTCACTTTTTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTCACTTTTTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTCACTTTTTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTCACTTTTTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTCACTTTTTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTCACTTTTTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTCACTTTTTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTCACTTTTTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTACTTTCACCATCAGC AGCCTGCAGGCCAAAA AMMHOKUCJOTHA ELVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ AMMHOKUCJOTHA BIIB-9-588_VL SLQSEDFAVYYCQQAYNWPFTFGGGTKVEIK GAAATAGTGATGACGCAGCCCTCTCCTGCAGGGCCA CCCAAGGTTGAAA AMMHOKUCJOTHA AACCAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA			GCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGC
239АминокислотнаяDIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQ230последовательность ВІІВ-9-569_VLКРБКАРКЬLІYDASNLATGVPSRFSGSGSGTDFTFTIS SLQPEDIATYYCQQADDFPFTFGGTKVEIK230Последовательность нуклеиновой кислоты кислоты 569_VLGACATCCAGATGACCCAGTCTCCATCCTGCCAGGCGA GTCAGGACATTAGCAACTATTTAAATTGGTATCAGCAG AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC ATCCAATTTGGCAACAGGGGTCCCATCAAGGTTCAGTG GAAGTGGATCTGGGACAGAGTTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTACTGTCA GCAGGCCGATGACTTCCCTTTCACTTTTGGCGGAGGGA231Аминокислотная ВІІВ-9-588_VLEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQAYNWPFTFGGGTKVEIK232нуклеиновойGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA		26/_VL	AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA
229АминокислотнаяDIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQ229последовательность ВІІВ-9-569_VLКРБКАРКЬЬІУДОАЛДЕТТЕГОЕТТЕГ			GCAGTACAGAATCTACTCTCCTACTTTTGGCGGAGGGA
229последовательность ВІІВ-9-569_VLКРGKAPKLLIYDASNLATGVPSRFSGSGSGTDFTFTIS SLQPEDIATYYCQQADDFPFTFGGTKVEIK230GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA GTCAGGACATTAGCAACTATTTAAATTGGTATCAGCAG AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC ATCCAATTTGGCAACAGGGGTCCCATCAAGGTTCAGTG GAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCA GCAGGCCGATGACTTCCCTTTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA231AMMHOKUCJOTHASEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS BIIB-9-588_VLKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQAYNWPFTFGGGTKVEIK232НуклеиновойGAAATAGTGATGACGCAGCCTCTCCTGCAGGGCCA			CCAAGGTTGAGATCAAA
BIIB-9-569_VLSLQPEDIATYYCQQADDFPFTFGGGTKVEIK230GACATCCAGATGACCCAGTCTCCATCCTCCTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA GTCAGGACATTAGCAACTATTTAAATTGGTATCAGCAG AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC ATCCAATTTGGCAACAGGGTCCCATCAAGGTTCAGGTG GAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTACTGTCA GCAGGCCGATGACTTCCCTTTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA231AMMHOKUCJOTHAR BIIB-9-588_VLEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQAYNWPFTFGGGTKVEIK232НуклеиновойGTCTCCAGGGGAAAGAGCCACCCTGTCTGT GAAATAGTGATGACGCAGCTCTCCAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA		Аминокислотная	DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQ
GACATCCAGATGACCCAGTCTCCATCCTCCTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA GTCAGGACATTAGCAACTATTTAAATTGGTATCAGCAG HYKЛЕИНОВОЙ KИСЛОТЫ BIIB-9- 569_VL AGCCTGCAGCCTGAAGATTACCTTCCATCAGTTCAGTGC AGCCTGCAGCCTGAAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCA GCAGGCCGATGACTTCCCTTTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKUCЛОТНАЯ EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS BIIB-9-588_VL SLQSEDFAVYYCQQAYNWPFTFGGGTKVEIK Последовательность GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT 432 HYKЛЕИНОВОЙ GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA	229	последовательность	KPGKAPKLLIYDASNLATGVPSRFSGSGSGTDFTFTIS
230 Последовательность нуклеиновой кислоты віїв-9- 569_VL Адсстара да		BIIB-9-569_VL	SLQPEDIATYYCQQADDFPFTFGGGTKVEIK
ССААGGTTGAGATCATTTTAAATTGGTATCAGCAG АААССАGGGAAAGCCCCTAAGCTCCTGATCTACGATGC АААССАGGGAAAGCCCCTAAGCTCCTGATCTACGATGC АССАТТТТGGCAACAGGGGTCCCATCAAGGTTCAGTG GAAGTGGATCTTGGGACAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTACTGTCA GCAGGCCGATGACTTCCCTTTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA АМИНОКИСЛОТНАЯ ЕІVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ КРБQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS ВІІВ—9—588_VL БОСЛЕДОВАТЕЛЬНОСТЬ БОСЛЕДОВАТЕЛЬНОСТЬ ОСЛЕДОВАТЕЛЬНОСТЬ			GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
Последовательность нуклеиновой нуклеиновой атссаатттассаа (СССТААСССССТСТССТСТАССТСТСТСТСТСТСТСТСТ			ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA
АААССАGGGAAAGCCCCTAAGCTCCTGATCTACGATGC Нуклеиновой кислоты ВIIВ-9- 569_VL АССТБСАБССТБАВБЕТЕТТЕТСАСТТТСАССТТТСАСТТТСАССТСАБС АССТБСАБССТБАВБЕТЕТТТТСАСТТТТСАССТТТТСАСТТТТББССБАББЕТЕТТТ ССАВБЕТТБАВБЕТЕТТТЕТТТТТТТТТТТТТТТТТТТТТТТ		Поспеловательность	GTCAGGACATTAGCAACTATTTAAATTGGTATCAGCAG
ATCCAATTTGGCAACAGGGGTCCCATCAAGGTTCAGTG KUCJOTH BIIB-9- 569_VL GAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCA GCAGGCCGATGACTTCCCTTTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKUCJOTHAЯ EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ ROCJEGOBATEJHOCTH KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS BIIB-9-588_VL SLQSEDFAVYYCQQAYNWPFTFGGGTKVEIK ROCJEGOBATEJHOCTH GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT 432 НУКЛЕИНОВОЙ GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA			AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC
569_VLGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCA GCAGGCCGATGACTTCCCTTTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA231АминокислотнаяEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ231последовательностьKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISВІІВ-9-588_VLSLQSEDFAVYYCQQAYNWPFTFGGGTKVEIKПоследовательностьGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT232нуклеиновойGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA	230		ATCCAATTTGGCAACAGGGTCCCATCAAGGTTCAGTG
AGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCA GCAGGCCGATGACTTCCCTTTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA Аминокислотная EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ 10 последовательность КРGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS BIIB-9-588_VL SLQSEDFAVYYCQQAYNWPFTFGGGTKVEIK Последовательность GAAATAGTGATGACGCAGCCACCCTGTCTGT 1232 нуклеиновой GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA			GAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGC
231Аминокислотная последовательность ВІІВ-9-588_VLКРБQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQAYNWPFTFGGGTKVEIK232НуклеиновойGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA			AGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCA
231АминокислотнаяEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ231последовательностьKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISBIIB-9-588_VLSLQSEDFAVYYCQQAYNWPFTFGGGTKVEIKПоследовательностьGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT232нуклеиновойGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA			GCAGGCCGATGACTTCCCTTTCACTTTTGGCGGAGGGA
231последовательностьKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISBIIB-9-588_VLSLQSEDFAVYYCQQAYNWPFTFGGGTKVEIKПоследовательностьGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT232нуклеиновойGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA			CCAAGGTTGAGATCAAA
BIIB-9-588_VLSLQSEDFAVYYCQQAYNWPFTFGGGTKVEIKПоследовательностьGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT232нуклеиновойGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA		Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
— Последовательность GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT 232 нуклеиновой GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA	231	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
232 нуклеиновой GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA		BIIB-9-588_VL	SLQSEDFAVYYCQQAYNWPFTFGGGTKVEIK
		Последовательность	GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
кислоты BIIB-9- GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG	232	нуклеиновой	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
<u> </u>		кислоты ВІІВ-9-	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG

ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG CCAGTGGGTCTGGGACAGAGTTCACTTCAC		588_VL	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
AGCCTGCAGTCTGAAGATTTTGCAGTTTATACTGTCA GCAGGCCTACAATTGGCCTTTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 233			ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG
AMMHORUCJOTHAN ELVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ AMMHORUCJOTHAN ELVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ COLORIDOBATEJBHOCTB SLQSEDFAVYYCQQDNIHPYTFGGGTKVEIK GAAATAGTGATGAGCAGCCCCCTGCCTGCTGT GTCTCCAGGGGAAAGAGCCACCCTGCCAGCCAGCCAGGCAGG			GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
CCAAGGTTGAGATCAAA			AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
233 Аминокислотная EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ 234 последовательность KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS 234 БІІВ-9-611_VL SLQSEDFAVYYCQQDNIHPYTFGGGTKVEIK 234 СТССАСАGGGAAAGAGCCACCCTGTCCTGGTGGGCCA GTCTCCAGGGGAAAGAGCCACCCTGTCCTGCAGGCCAGGTCCAGCAGGTCCAGCAGGTCCAGCAGGTCCAGCAGGTCCAGCAGGTCCAGCAGGTCCAGCAGGTCCAGCAGGTCAGTGGTGCAGTGGTACAGCAGGTCAGCAGGTCCCAGGCAGG			GCAGGCCTACAATTGGCCTTTCACTTTTGGCGGAGGGA
233 ПОСЛЕДОВАТЕЛЬНОСТЬ KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQDNIHPYTFGGGTKVEIK GAAATAGTGATGACGCACCCTGTCTGT GTCTCCAGGGGCAACCCTGTCTGT GTCTCCAGGGGCAACCCTGCTGTAGT GTCACACCAGGGCCACCCTGTCTGT GTCACCAGGGCCACCCTGTCTGT GTCACCAGGGCCACCCTGCTCGTAGGGCCA AAACCTGGCCAGGCTCCCAGCCAGGTTCCAGCAGGT AAACCTGGCCAGGCTCCCAGCCAGGTTCAGTG AAACCTGGCCAGGCTCCCAGCCAGGTTCAGTG CCAGGGTCGGACACTTAGGTGC AGCCTGCAGGTCAGTGAGAGTTAGAGT GCAGGGACAATATCCACCATCAGC AGCCTGCAGTTAGAGTTTATTACTGTCA GCAGGACAATATCCACCCTTACACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ CCAAGGTTGAGATCAAA EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ GAAATTGTGTTGACACAGTTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTGTCTCTTCAGCAGGGCCA GTCAACAGGGCCACGGGTTCCAGCCAGGGTCCAACAG AAACCTGGCCAGGGTTCAGTG GCAGTGGGTTGAGGACAACAGG AAACCTGGCCAGGCTCCCAGCCAGGTTCAGC AGCCTAGAGCCAGCTTGAGCTGGCACCCAGGTTCAGC AGCCTAGAGCCAGGTTCAGCTGAGGAGACTTCACTCTACCATCAGC AGCCTAGAGCCTGAGAGATTTTGCAGTTTATTACTGTCA ACCAACAGGGCCACCTGGCATCCCAGCCAGGTTCAGC AGCCTAGAGCCTGAGAGATTTTGCAGTTTATTACTGTCA ACCAACAGGGCCACGCTTGAGAGCTTCACTCTCACCATCAGC AGCCTAGAGCCTGAGAGATTTTGCAGTTTATTACTGTCA ACCAGAGAGACAACTGGCCTTCACTCTACCATCAGC AGCCTAGAGCCTGAGAGATTTTGCAGTTTATTACTGTCA ACCAGAGGAGACAACTGGCCTTCACTCTACCACTCAGC AGCCTAGAGCCTGAGACTTCACTCTCACCCAGCCAGGTTCCAGCCAG			CCAAGGTTGAGATCAAA
BITB-9-611_VL SLQSEDFAVYYCQQDNIHPYTFGGGTKVEIK GAAATAGTGATGACGCAGCCCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTGCCTGCAGGCCAC GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCTATCTATGGTGC ATCCACCAGGGCCACTGGTATCCCAGCAGGTTCCAGT ATCCACCAGGGCCACTGGTATCCCAGCAGGTTCCAGT AGCCTGCAGTCTGAGAGTTCCCAGCCAGGTTCCAGT AGCCTGCAGTCTGAGAGTTTATACTGTCA GCAGGACAATATCCACCCTTACACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 235 ПОСЛЕДОВАТЕЛЬНОСТЬ ВIB-9-619_VL SLEPEDFAVYYCQQRDNWPFTFGGGTKVEIK GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCTACTCTAGCCTGGTACCAACAG AAACCTGGCCAGGCTCCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTTCCTCTGCAGGGCCA GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG AAACCTGGCCAGGGTCCCAGGCTCCCAGCCAGGTTCAGC ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGC AGCCTAGAGCTTGAGAAGATTTTGCAGTTCATCTATGATGC ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCCAGC AGCCTAGAGCCTGAGAATTTTGCAGTTTATTACTGTCA GCAGAGAGACAACTGGCCTTTCACTCTACCATCAGC AGCCTAGAGCCTGAGAATTTTGCAGTTTATTACTGTCA GCAGAGGAGACAACTGGCCTTTCACTCTCACCATCAGC AGCCTAGAGCCTGAGAATTTTGCAGTTTATTACTGTCA GCAGAGGAGACAACTGGCCTTTCACTTTTTGCCGGGAGGGA		Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
GAAATAGTGATGACGCAGCTCTCAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTGTCTGT GTCTCCAGGGGAAAGACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCTATCATTAGGTGC AAACCTGGCCAGGCTCCCAGGCTCCCAGCTTCACTATGGTGC AAACCTGGCCAGGCTCCCAGGCTCCCAGCTTCACTATGGTGC ACCCACAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGAGAGATTTTGCAGTTTATTACTGTCA GCAGGACAATATCCACCCTTACACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 235 AMMHOKUCJOTHA BIIB-9-619_VL GAAATTGTGTTGACACCAGCCAGCTCTCTTTT GTCTCCAGGGGAAAGACCCACCTTCCTGCAGGCCA GCAGGACAATATCCACCCTTACACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA EIVLTOSPATLSLSPGERATLSCRASQSVSSYLAWYQQ KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGACCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG AAACCTGGCCAGGCTCCCAGCCAGCTTCATTATGATGC GCAGAGAGACAACTGGCCACTGTCATCTATGATGC AGCCTAGAGCCTGAAGATTTTGCAGTTCACCATCAGC AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA GCAGAGAGACAACTGGCCTTTCACTTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKUCJOTHA DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ CCAAGGTTGAGATCAAA AMMHOKUCJOTHA DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ ROCAGGGAGACAACTGGCCTTTCCTCTCACCCTGTCTGC GCAGAGAGACAACTGGCCTTTCACTTTTTGGCTGGAGGAC CCAAGGTTGAGATCAAA AMMHOKUCJOTHA DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ ROCAGGGAGACAACTGGCCTTTCCTTCCACCCTGTCTGC GCAGAGAGACAACTGGCCTTTCACTTTTTTTTTT	233	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
GTCTCCAGGGGAAAGACCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGGACAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCTATCATTAGGTGC AAACCTGGCCAGGCTCCCAGGCTCCCAGCTTCAGTG AAACCTGGCCAGGCTCCCAGCCTCATCATTAGGTGC AACCTGGCCAGGCTCCCAGCCTCATCATTAGGTGC AACCTGCCAGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGAAGATTTTGCAGTTTATTACTGTCA GCAGGACAATATCCACCCTTACACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 235 BIIB-9-619_VL GAAATTGTGTTGACACCAGCCAGCTCTCTTCTCTCAGCACCAGGAACATTGTGAACACAGTTCCAGCAGCACCCTTTTT GTCTCCAGGGGAAAGACCCACCCTTCCTGCAGGCCCA GTCAGAGTTTAGCAGCAACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG AAACCTGGCCAGGCTCCCAGCCAGCTTCTAGTAGTG AAACCTGGCCAGGCTCCCAGCCAGGTTCAGTG GCAGAGAGACACTGGCATCCCAGCCAGGTTCAGTG GCAGAGAGACAACTGGCCTTTTCACCTTTTGGCGGAGGGA CCAAGGTTGAGATTTTGCAGTTTATTACTGTCA GCAGAGAGACAACTGGCCTTTTTTGCCGGAGGGA CCAAGGTTGAGATTTTGCAGTTTATTACTGTCA GCAGAGAGACAACTGGCCTTTTTTTTTT		BIIB-9-611_VL	SLQSEDFAVYYCQQDNIHPYTFGGGTKVEIK
Последовательность нуклеиновой кислоты ВІІВ-9-611_VL			GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
Последовательность нуклеиновой кислоты віїв-9-611_VL абстадатт састоровательность нуклеиновой кислоты віїв-9-611_VL абстадатт састоровательность віїв-9-619_VL абстадатт састоровательность нуклеиновой кислоты віїв-9-619_VL абстадатт састоровательность нуклеиновой кислоты віїв-9-619_VL абстада састоровательность носта нуклеиновой кислоты віїв-9-619_VL абстада састоровательность носта на последовательность носта на последовательность віїв-9-626_VL абстада састоровательность віїв-9-626_VL абстада састоровательность носта на последовательность віїв-9-626_VL абстада састоровательность віїв-9-626_VL абстада састоровательность носта на последовательность носта на последовательность носта на последовательность віїв-9-626_VL абстада на последовательность носта на последовательность на последов на последов на последов на последов на последов на последов на п			GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
AAACCTGGCCAGGCTCCTCATCTATGGTGC RUCJOTH BIIB-9- 611_VL AGCCTGCAGGCTCCTCAGCCAGGCTCCAGCTCAGCG AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGGACAATATCCACCCTTACACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 235 ПОСЛЕДОВАТЕЛЬНОСТЬ BIIB-9-619_VL SLEPEDFAVYYCQQRDNWPFTFGGGTKVEIK GAAATTGTGTGAACACAGTCTCCAGCCAGCCAGGTTCATT GTCTCCAGGGGAACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAAGAGCCACCCTCTCCTGCAGGGCCA AAACCTGGCCAGGCTCCCAGGCTCCCTGCAGGGCCA GTCAGAGTTTAGCAGCTACTTTAGCCTGTACCAACAG AAACCTGGCCAGGCTCCCAGGCTCCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAAGAGCCACCCTCTCCTGCAGGGCCA AAACCTGGCCAGGCTCCCAGCCACCCTGTCTTT GCAGACAGGGCCACCGCTCCCAGCCACCCTGCAGCCACCCTGCAGCCACCCTGCAGCCACCCTGCAGCCAGGCTCCCAGGCTCCCAGCCAG		По спо по рожени и сели	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
234 кислоты BIIB-9-611_VL ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGAGAGAGTTCACTCTCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGGACAATATCCACCCTTACACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 235 Последовательность ВIIB-9-619_VL EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ SAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT GCCAGGGGAAAGAGCCACCCTGTCTTT GTCCAGGGGAAAGAGCCACCCTGTCTTT GTCCAGGGGAAGAGGCCACCCTGTCTTT GTCCAGGGGAAGAGGCCACCCTGTCCTGCAGGGCCA GTCCAGGAGACACAG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC ACCCAGCAGGCTCCCAGGCTCCCAGCCACCATCAGG ACCCTGGCATCCAGCAGCTGGCATCCAGCAGCAGCTCCAGGCAGCACCAGGTTCAGTG GCAGAGAGACAACTGGCCAGGCTCCCAGCCAGCTCCAGCCAG			AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
611_VL GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGGACAATATCCACCCTTACACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 235	234		ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGGACAATATCCACCCTTACACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 35 ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—9—619_VL ВІІВ—9—619_VL ВІІВ—9—619_VL САВОВТЕТВОВОЙ КИСЛОТЫ ВІІВ—9—619_VL ВІІВ—9—619_VL ВІІВ—9—619_VL ВІІВ—9—619_VL ВІІВ—9—619_VL САВОВТЕТВОВОЙ КИСЛОТЫ ВІІВ—9—619_VL ВІІВ—9			GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
236AминокислотнаяEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ236последовательность ВІІВ-9-619_VLKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS236GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT GTCAGGGGCA GTCCAGGGGCA GTCCAGGGGCA GTCAGAGAGTCTCCAGCCAGCCAACAG AAACCTGGCCAGGCTCCCAGCCAGCTACTATGATGC AAACCTGGCCAGGCTCCCAGCCAGGTTCAGTG GCAGTGGGTCCTAGTGAGGGCA ACCAGGGGGAAAGAGCTCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC AGCCTAGAGACATTTAGATGC AGCCTAGAGACAGAGACTTCACTCTCACCATCAGC AGCCTAGAGACAACTGGCCTTTCACTATTATTACTGTCA GCAGAGAGACAACTGGCCTTTCACTTTTTTTTTT		011_11	AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
235АминокислотнаяEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ236последовательность ВІІВ-9-619_VLКРGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS SLEPEDFAVYYCQQRDNWPFTFGGGTKVEIK236GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC ATCCAACAGGGCCACCTGCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGACTTCACTCTACCATCAGC AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA GCAGAGGAGCACCTGGCATCCCAGCCAGGGAGGGA ACCCAAGGTTGAGATCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCTACATTTTGCAGTTTATTACTGTCA GCAGAGAGACAACTGGCCTTTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA237Аминокислотная последовательность ВІІВ-9-626_VLDIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ KPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTIS SLQPDDFATYYCQQDGSYPPLTFGGGTKVEIK238Последовательность GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC			GCAGGACAATATCCACCCTTACACTTTTGGCGGAGGGA
235последовательность ВІІВ-9-619_VLКРGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS SLEPEDFAVYYCQQRDNWPFTFGGGTKVEIK236GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGGTGTTAGCAGGTACCAACAG AAACCTGGCCAGGCTCCCAGGCTCCTATCTATGATGC AAACCTGGCCAGGCTCCCAGGCTCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC AGCCTAGAGCCTGGAGACTTTATTACTGTCA GCAGAGAGACAACTGGCCTTTCACTTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA237AMMHOKUCJOTHAR BIIB-9-626_VLDIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ KPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTIS SLQPDDFATYYCQQDGSYPPLTFGGGTKVEIK238ПоследовательностьGACATCCAGATGACCCAGTCTCCTCCCCCTGTCTGC			CCAAGGTTGAGATCAAA
236 BIIB-9-619_VL SLEPEDFAVYYCQQRDNWPFTFGGGTKVEIK 236 Последовательность нуклеиновой кислоты ВIIB-9-619_VL AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC AAACCTGGCCAGGCCA		Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGACTTCACCTCTCACCATCAGC AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA GCAGAGGAGACAACTGGCCTTTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKUCJOTHA DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ CAAGGTTGAGATCAAA AMMHOKUCJOTHA BIIB-9-626_VL SLQPDDFATYYCQQDGSYPPLTFGGGTKVEIK GACATCCAGATGACCCAGTCTCCTCCACCCTGTCTGC GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTTCCACCCTGTCTGC GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTTCTCACCCTGTCTGC GACATCCAGAGGATGACCCAGTCTCCTTCCACCCTGTCTTCCACCCTGTCTGC GTCAGAGGGCCACTGTCTCTTCCACCCTGTCTTCTTCACTTTCTTT	235	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA GCAGAGAGACAACTGGCCTTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHORMCЛОТНАЯ DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ ROCJEGOBATEЛЬНОСТЬ KPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTIS BIIB-9-626_VL SLQPDDFATYYCQQDGSYPPLTFGGGTKVEIK GACATCCAGATGACCCAGTCTCCTCCACCCTGTCTGC GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC		BIIB-9-619_VL	SLEPEDFAVYYCQQRDNWPFTFGGGTKVEIK
ВІІВ—9—626_VL Оследовательность нуклеиновой кислотная последовательность нуклеиновой кислотная последовательность нуклеиновой кислотная последовательность выпь—9—619_VL Амминокислотная регульность куркарки карама куркарки карама карама карама карама карама куркарки куркарки карама куркарка ку			GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
Последовательность нуклеиновой кислоты BIIB-9- 619_VL			GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
АААССТGGCCAGGCTCCCAGGCTCCTCATCTATGATGC нуклеиновой кислоты BIIB-9- 619_VL		нуклеиновой	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG RUCJOTH BIIB-9- 619_VL GCAGTGGGTCTGGGACAGACTTCACCTCTCACCATCAGC AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA GCAGAGAGACAACTGGCCTTTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA CCAAGGTTGAGATCAAA DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ RPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTIS BIIB-9-626_VL SLQPDDFATYYCQQDGSYPPLTFGGGTKVEIK ATCCAACAGGGCCACTGGCCATCCCACCCTGTCTGC AGCCTAGAGCCTGAAGACTTTCACTTCTACCATCACCATCAGC AGCCTAGAGCCTGAAGATTTTCCACCTTTCCACCCTGTCTGC AGCCTAGAGCCTAGACACAGATTTTCCACCCAGCCAGTCTCCACCCTGTCTGC AGCCTAGAGCCCAGATGACCCAGTCTCCACCCAGTCTCACCCTGTCTGC AGCCTAGAGGCCTGAAGACTTTCCACCCAGTCTCACCCAGTCTCCACCCTGTCTGC AGCCTAGAGCCCAGTCTCCACCCAGTCTCCACCCTGTCTGC AGCCTAGAGAGACCCAGTCTCCACCCAGTCTCCACCCTGTCTGC AGCCTAGAGAGACCCAGTCTCCACCAGTCTCCTTCCACCCTGTCTGC AGCCTAGAGAGACACCCAGTCTCCTTCCACCCTGTCTGCACCAGTCTCCTTCCACCCTGTCTGCACCAGTCTCCTTCCACCCTGTCTGCACCAGTCTCCTTCCACCCTGTCTGCACAAAAAAAA			AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA GCAGAGAGACAACTGGCCTTTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA Аминокислотная DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ ROCледовательность КРGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTIS BIIB-9-626_VL SLQPDDFATYYCQQDGSYPPLTFGGGTKVEIK ВОСЛЕДОВАТЕЛЬНОСТЬ GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC 238	236		ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA GCAGAGAGACAACTGGCCTTTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA Aминокислотная DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ ROCледовательность KPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTIS BIIB-9-626_VL SLQPDDFATYYCQQDGSYPPLTFGGGTKVEIK ROCледовательность GACATCCAGATGACCCAGTCTCCTCCACCCTGTCTGC 238			GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
237АминокислотнаяDIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ237последовательностьKPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTISBIIB-9-626_VLSLQPDDFATYYCQQDGSYPPLTFGGGTKVEIK238ПоследовательностьGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC		019_\[\]	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
АминокислотнаяDIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ237последовательностьKPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTISBIIB-9-626_VLSLQPDDFATYYCQQDGSYPPLTFGGGTKVEIK238ПоследовательностьGACATCCAGATGACCCAGTCTCCTCCACCCTGTCTGC			GCAGAGAGACAACTGGCCTTTCACTTTTGGCGGAGGGA
237последовательностьKPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTISBIIB-9-626_VLSLQPDDFATYYCQQDGSYPPLTFGGGTKVEIK238ПоследовательностьGACATCCAGATGACCCAGTCTCCTCCACCCTGTCTGC			CCAAGGTTGAGATCAAA
BIIB-9-626_VL SLQPDDFATYYCQQDGSYPPLTFGGGTKVEIK Последовательность GACATCCAGATGACCCAGTCTCCTCCACCCTGTCTGC		Аминокислотная	DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ
— Последовательность GACATCCAGATGACCCAGTCTCCTCCACCCTGTCTGC 238	237	последовательность	KPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTIS
238		BIIB-9-626_VL	SLQPDDFATYYCQQDGSYPPLTFGGGTKVEIK
	238	Последовательность	GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC
i i	250	нуклеиновой	ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA

	кислоты BIIB-9-	GTCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAG
	626_VL	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAAGC
		CTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGCG
		GCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGC
		AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA
		GCAGGACGGAAGTTACCCTCCTCTCACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSLSASVGDRVTITCQASQDITNYLNWYQQ
239	последовательность	KPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTIS
	BIIB-9-883_VL	SLQPEDIATYYCQQADHFPFTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA
	Подполовони иоди	GTCAGGACATTACCAACTATTTAAATTGGTATCAGCAG
	Последовательность	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC
240	нуклеиновой	ATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTG
	кислоты BIIB-9- 883_VL	GAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGC
		AGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCA
		GCAGGCCGATCACTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
241	последовательность	KPGQAPRLLIYDSSNRATGIPARFSGSGSGTDFTLTIS
	BIIB-9-419_VL	SLEPEDFAVYYCQQVSTHPYTFGGGTKVEIK
		GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT
	Последовательность нуклеиновой	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
		AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATTC
242	кислоты ВІІВ-9-	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
	419 VL	GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
	412	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGGTCAGTACCCACCCTTACACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNY
243	последовательность	LAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTD
	BIIB-9-451_VL	FTLTISSLQAEDVAVYYCQQYYFPPWTFGGGTKVEIK
1		

	нуклеиновой	GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCA
	кислоты ВІІВ-9-	GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC
	451_VL	TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA
		GCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGG
		TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGAT
		TTCACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGT
		GGCAGTTTATTACTGTCAGCAGTACTACTTCCCCCCTT
		GGACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
245	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-9-473_VL	SLEPEDFAVYYCQQRSFLPYTFGGGTKVEIK
		GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
	нуклеиновой кислоты ВІІВ-9-	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
246		ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
4	17 _ 1	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGAGAAGTTTCCTCCCTTACACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
247	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-9-565_VL	SLEPEDFAVYYCQQDSNLPFTFGGGTKVEIK
		GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
	нуклеиновой	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
248	кислоты ВІІВ-9-	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
	565_VL	GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
		AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGGACAGTAATCTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSFLAWYQ
249	последовательность	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI
	BIIB-9-573_VL	SRLEPEDFAVYYCQQSHSPPYTFGGGTKVEIK

GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAG GTCAGAGTGTTAGCAGCAGCTTCTTAGCCTGGT CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATC HYKЛеИНОВОЙ KИСЛОТЫ BIIB-9- 573_VL GTGGCAGTGGGTCTGGGACAGCTTCCATCCAGACAG GTGGCAGTGGGTCTGGGACAGACTTCACTCTCA AGCAGACTGGAGCCTGAAGATTTTGCAGTGTAT TCAGCAGTCCCACAGTCCCCCTTACACTTTTGG GGACCAAGGTTGAGATCAAA AMMHОКИСЛОТНАЯ DIQMTQSPSSLSASVGDRVTITCRASQSISSYL BIIB-9-579_VL SLQPEDFATYYCQQAFSFPFTFGGGTKVEIK GACATCCAGATGACCCAGTCTCCCTG ATCTGTAGGAGACAGAGTCACCATCACTTGCCG	ACCAG TATGG GTTCA CCATC TACTG CGGAG NWYQQ
Последовательность нуклеиновой кислоты BIIB-9- 573_VL	TATGG GTTCA CCATC TACTG CGGAG NWYQQ
САGAAACCTGGCCAGGCTCCCAGGCTCCTCATC НУКЛЕИНОВОЙ КИСЛОТЫ ВІІВ-9- 573_VL ТСАGCAGTCCAGCAGGCTCCCAGACAG АGCAGACTGGCATCCCAGACAG АGCAGACTGGACAGACTTCACTCTCA АGCAGACTGGAGCCTGAAGATTTTGCAGTGTAT ТСАGCAGTCCCACAGTCCCCCTTACACTTTTGG GGACCAAGGTTGAGATCAAA РОВИНОВНИКИ ВІІВ-9- ВІІВ-9-579_VL ВІІВ-9-579_VL БАСАТССАGATGACCAGTCTCCATCCTCCTG ATCTGTAGGAGACAGAGTCACCATCACTTGCCG ВТОТОТОТОТОТОТОТОТОТОТОТОТОТОТОТОТОТОТ	GTTCA CCATC TACTG CGGAG NWYQQ
ТСАТССАGCAGGGCCACTGGCATCCCAGACAG ST3_VL TGCATCCAGCAGGGCCACTGGCATCCCAGACAG GTGGCAGTGGGTCTGGGACAGACTTCACTCTCA AGCAGACTGGAGCCTGAAGATTTTGCAGTGTAT TCAGCAGTCCCACAGTCCCCCTTACACTTTTGG GGACCAAGGTTGAGATCAAA AMИНОКИСЛОТНАЯ DIQMTQSPSSLSASVGDRVTITCRASQSISSYL KPGKAPKLLIYGASSLQSGVPSRFSGSGSGTDF BIIB-9-579_VL GACATCCAGATGACCCAGTCTCCATCCTCCTG ATCTGTAGGAGACCAGAGTCACCATCACTTGCCG	CCATC TACTG CGGAG NWYQQ
GTGGCAGTGGGTCTGGGACAGACTTCACTCTCA AGCAGACTGGAGCCTGAAGATTTTGCAGTGTAT TCAGCAGTCCCACAGTCCCCCTTACACTTTTGG GGACCAAGGTTGAGATCAAA Аминокислотная DIQMTQSPSSLSASVGDRVTITCRASQSISSYL BIIB-9-579_VL SLQPEDFATYYCQQAFSFPFTFGGGTKVEIK GACATCCAGATGACCCAGTCTCCCTG ATCTGTAGGAGACAGAGTCACCATCACTTGCCG	TACTG CGGAG NWYQQ
AGCAGACTGGAGCCTGAAGATTTTGCAGTGTAT TCAGCAGTCCCACAGTCCCCCTTACACTTTTGG GGACCAAGGTTGAGATCAAA AMMHOKMCЛОТНАЯ DIQMTQSPSSLSASVGDRVTITCRASQSISSYL KPGKAPKLLIYGASSLQSGVPSRFSGSGSGTDF BIIB-9-579_VL GACATCCAGATGACCCAGTCTCCATCCTCCTG ATCTGTAGGAGACAGAGTCACCATCACTTGCCG	CGGAG NWYQQ
GGACCAAGGTTGAGATCAAA Аминокислотная DIQMTQSPSSLSASVGDRVTITCRASQSISSYL ROCЛедовательность КРGKAPKLLIYGASSLQSGVPSRFSGSGSGTDF BIIB-9-579_VL SLQPEDFATYYCQQAFSFPFTFGGGTKVEIK GACATCCAGATGACCCAGTCTCCATCCTCCTG ATCTGTAGGAGACAGAGTCACCATCACTTGCCG	NWYQQ
Аминокислотная DIQMTQSPSSLSASVGDRVTITCRASQSISSYL ROCЛЕДОВАТЕЛЬНОСТЬ КРGKAPKLLIYGASSLQSGVPSRFSGSGSGTDF BIIB-9-579_VL SLQPEDFATYYCQQAFSFPFTFGGGTKVEIK GACATCCAGATGACCCAGTCTCCATCCTCCTG ATCTGTAGGAGACAGAGTCACCATCACTTGCCG	
251 последовательность KPGKAPKLLIYGASSLQSGVPSRFSGSGSGTDF ВIIB-9-579_VL SLQPEDFATYYCQQAFSFPFTFGGGTKVEIK GACATCCAGATGACCCAGTCTCCATCCCTG ATCTGTAGGAGACAGAGTCACCATCACTTGCCG	
BIIB-9-579_VL SLQPEDFATYYCQQAFSFPFTFGGGTKVEIK GACATCCAGATGACCCAGTCTCCATCCCTG ATCTGTAGGAGACAGAGTCACCATCACTTGCCG	TLTIS
GACATCCAGATGACCCAGTCTCCATCCCTG ATCTGTAGGAGACAGAGTCACCATCACTTGCCG	
ATCTGTAGGAGACAGAGTCACCATCACTTGCCG	
	TCTGC
	GGCAA
GTCAGAGCATTAGCAGCTATTTAAATTGGTATC. Последовательность	AGCAG
AAACCAGGGAAAGCCCCTAAGCTCCTGATCTAT нуклеиновой	GGTGC
252 ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTT	CAGTG
GCAGTGGATCTGGGACAGATTTCACTCTCACCA	TCAGC.
AGTCTGCAACCTGAAGATTTTGCAACTTACTAC	TGTCA
GCAAGCATTCAGTTTCACTTTTGGCGG.	AGGGA
CCAAGGTTGAGATCAAA	
Аминокислотная DIQMTQSPSSLSASVGDRVTITCRASQSISSYL	NWYQQ
253 последовательность КРGKAPKLLIYAASSLQSGVPSRFSGSGSGTDF	TLTIS
BIIB-9-581_VL SLQPEDFATYYCQQSDLFPFTFGGGTKVEIK	
GACATCCAGATGACCCAGTCTCCATCCTCCTG	TCTGC
ATCTGTAGGAGACAGAGTCACCATCACTTGCCG	GGCAA
GTCAGAGCATTAGCAGCTATTTAAATTGGTATC.	AGCAG
AAACCAGGGAAAGCCCCTAAGCTCCTGATCTAT	GCTGC
т т н v к:леиновои — Т	C7 CMC
нуклеиновой АТССАGTTTGCAAAGTGGGGTCCCATCAAGGTT	CAGIG
254 кислоты BIIB-9- GCAGTGGGACAGATTTCACTCTCACCA	
254 ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTT	TCAGC
254 кислоты BIIB-9- GCAGTGGACAGATTTCACTCTCACCA	TCAGC TGTCA
254 кислоты BIIB-9- GCAGTTTGCAAAGTGGGGTCCCATCAAGGTT 581_VL AGTCTGCAACCTGAAGATTTTGCAACTTACTAC	TCAGC TGTCA
254 кислоты BIIB-9- 581_VL GCAGTGGATCTGGGACAGATTTCACTCTCACCA AGTCTGCAACCTGAAGATTTTGCAACTTACTAC GCAAAGCGACCTCTTCCCTTTCACTTTTGGCGG	TCAGC TGTCA AGGGA

	BIIB-9-582_VL	SLQPEDIATYYCQQADILPPTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
	Последовательность нуклеиновой кислоты ВІІВ-9-	ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA
		GTCAGGACATTAGCAACTATTTAAATTGGTATCAGCAG
		AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC
256		ATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTG
		GAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGC
	582_VL	AGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCA
		GCAGGCCGATATCCTCCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
257	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-9-585_VL	SLQPEDFATYYCQQANSYPITFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
	Последовательность нуклеиновой кислоты ВІІВ-9- 585_VL	ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
		GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
		AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
258		ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
		GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCAAATAGTTACCCTATCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
259	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-9-587_VL	SLQPEDFATYYCQQADSFPFTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	Последовательность	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
260	кислоты BIIB-9- 587_VL	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
		GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCAGACAGTTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
261	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ

	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-9-590_VL	SLEPEDFAVYYCQQVDNFPLTFGGGTKVEIK
		GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность нуклеиновой кислоты ВІІВ-9-590_VL	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
		AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
262		ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
		AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGGTCGACAATTTCCCTCTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ
263	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-9-592_VL	SLQPEDFATYYCQQPYDTPITFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
	Последовательность нуклеиновой кислоты BIIB-9- 592_VL	ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAA
		GTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAG
		AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
264		ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG
		GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCA
		GCAACCATACGACACTCCTATCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQ
265	последовательность	KPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTIS
	BIIB-9-606_VL	SLQPEDIATYYCQQSDLFPFTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA
	Последовательность	GTCAGGACATTAGCAACTATTTAAATTGGTATCAGCAG
	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC
266	кислоты BIIB-9-	ATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTG
		GAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGC
	_	AGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCA
		GCAGTCCGATCTCTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA

	Аминокислотная	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNY
267	последовательность	LAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTD
	BIIB-9-608_VL	FTLTISSLQAEDVAVYYCQQFLYTPTFGGGTKVEIK
		GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGT
268	Подполовани изди	GTCTCTGGGCGAGAGGCCCACCATCAACTGCAAGTCCA
		GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC
	Последовательность	TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA
	нуклеиновой вIIВ-9-	GCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGG
		TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGAT
	608_VL	TTCACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGT
		GGCAGTTTATTACTGTCAGCAGTTCCTCTACACTCCTA
		CTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSSLAWYQQ
269	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-9-616_VL	SLQSEDFAVYYCQQADNFPFTFGGGTKVEIK
		GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
	Последовательность нуклеиновой кислоты ВІІВ-9-616_VL	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCAGCTTAGCCTGGTACCAGCAG
		AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
270		ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGGCCGACAATTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNY
271	последовательность	LAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTD
	BIIB-9-621_VL	FTLTISSLQAEDVAVYYCQQFYLPPWTFGGGTKVEIK
		GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGT
		GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCA
	Последовательность	GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC
272	нуклеиновой	TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA
212	кислоты ВІІВ-9-	GCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGG
	621_VL	TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGAT
		TTCACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGT
		GGCAGTTTATTACTGTCAGCAGTTCTACCTCCCCCTT

		GGACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSSLAWYQQ
273	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-9-622_VL	SLQSEDFAVYYCQQHSTWPPTFGGGTKVEIK
		GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
	Последовательность нуклеиновой кислоты ВІІВ-9-	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCAGCTTAGCCTGGTACCAGCAG
		AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
274		ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
	кислоты B11B-9- 622 VL	GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
	022_VI	AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGCACTCCACCTGGCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYL
275	последовательность	DWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDF
	BIIB-9-627_VL	TLKISRVEAEDVGVYYCMQARERPWTFGGGTKVEIK
	Последовательность нуклеиновой кислоты BIIB-9- 627_VL	GATATTGTGATGACTCAGTCTCCACTCTCCCTGCCCGT
		CACCCTGGAGAGCCGGCCTCCATCTCCTGCAGGTCTA
		GTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTG
		GATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCT
276		CCTGATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCC
		CTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTT
		ACACTGAAAATCAGCAGAGTGGAGGCTGAGGATGTTGG
		GGTTTATTACTGCATGCAGGCACGAGAACGCCCTTGGA
		CTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
	Антитела клас	са II - последовательности VL
	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
277	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-9-408_VL	SLEPEDFAVYYCQQAFVWPPITFGGGTKVEIK
		GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
	Последовательность	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
278	нуклеиновой	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
	кислоты ВІІВ-9-	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
	408_VL	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC

		AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGGCCTTCGTCTGGCCTCCTATCACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
279	последовательность	 KPGQAPRLLIYDSSNRATGIPARFSGSGSGTDFTLTIS
	BIIB-9-416_VL	SLEPEDFAVYYCQQRVVWPPTFGGGTKVEIK
		GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT
	Последовательность нуклеиновой	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
		AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATTC
280		ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
	кислоты ВІІВ-9-	GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
	416_VL	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGAGAGTCGTCTGGCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQLTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQ
281	последовательность	KPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTIS
	BIIB-9-629_VL	SLQPEDIATYYCQQLDSLPPTFGGGTKVEIK
	Последовательность нуклеиновой кислоты BIIB-9- 629_VL	GACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA
		GTCAGGACATTAGCAACTATTTAAATTGGTATCAGCAG
		AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC
282		ATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTG
		GAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGC
		AGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCA
		GCAGCTCGATTCCCTCCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
283	последовательность	KPGQAPRLLIYDASKRATGIPARFSGSGSGTDFTLTIS
	BIIB-9-885_VL	SLEPEDFAVYYCQQRVIWPPTFGGGTKVEIK
	Последовательность	GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
284	нуклеиновой	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
	кислоты BIIB-9- 885_VL	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
		ATCCAAAAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
<u> </u>	L	<u>l</u>

		GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
		AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGAGAGTCATCTGGCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Class III	Antibodies _VL Sequences
	Аминокислотная	DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ
285	последовательность	KPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTIS
	BIIB-9-607_VL	SLQPDDFATYYCQQAGRYPLTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC
	Последовательность	ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA
		GTCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAG
		AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAAGC
286	нуклеиновой	CTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGCG
	кислоты ВІІВ-9-	GCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGC
	607_VL	AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA
		GCAGGCCGGACGCTACCCTCTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSRYLAWYQQ
287	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-9-471_VL	SLEPEDFAVYYCQQDYNYPFTFGGGTKVEIK
		GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Послованови ность	GTCAGAGTGTTAGCAGGTACTTAGCCTGGTACCAACAG
	Последовательность	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
288	нуклеиновой кислоты ВІІВ-9-	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
	471_VL	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGGACTACAATTACCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
289	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-9-472_VL	SLEPEDFAVYYCQQRSDWPTFGGGTKVEIK
	Последовательность	GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
290	нуклеиновой	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	кислоты ВІІВ-9-	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
L	I	

	472_VL	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
		ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
		AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGAGATCCGACTGGCCTACTTTTGGCGGAGGGACCA
		AGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
291	последовательность	KPGQAPRLLIYDSSNRATGIPARFSGSGSGTDFTLTIS
	BIIB-9-439_VL	SLEPEDFAVYYCQQRDNWPFTFGGGTKVEIK
		GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT
	Последовательность нуклеиновой	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
		AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATTC
292		ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
	кислоты ВІІВ-9-	GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
	439_VL	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGAGACAACTGGCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQ
293	последовательность	QKPGQAPRLLIYGASRRATGIPDRFSGSGSGTDFTLTI
	BIIB-9-446_VL	SRLEPEDFAVYYCQQYGNSPLTFGGGTKVEIK
		GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT
	Последовательность нуклеиновой	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAG
		CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG
294		TGCATCCAGAAGGGCCACTGGCATCCCAGACAGGTTCA
	кислоты ВІІВ-9-	GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATC
	446_VL	AGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTG
		TCAGCAGTACGGAAACAGTCCTCTCACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQ
295	последовательность	KPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTIS
	BIIB-9-568_VL	SLQPEDIATYYCQQYDDYLTFGGGTKVEIK
296	Последовательность	GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
290	нуклеиновой	ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA
	ı	ı

	кислоты ВІІВ-9-	GTCAGGACATTAGCAACTATTTAAATTGGTATCAGCAG
	568_VL	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC
		ATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTG
		GAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGC
		AGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCA
		GCAGTACGATGACTACCTCACTTTTGGCGGAGGGACCA
		AGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
297	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-9-615_VL	SLEPEDFAVYYCQQSCHWPWTFGGGTKVEIK
		GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	H	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
	Последовательность	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
298	нуклеиновой кислоты ВІІВ-9-	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
	615_VL	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGTCCTGTCACTGGCCTTGGACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPGTLSLSPGERATLSCRASQSVSSDYLAWYQ
	1 Milliorologio Illan	 EIATIÕSEGITSTSEGEKAITSCKASÕSASSDITAMIÕ
299	последовательность	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI
299		
299	последовательность	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI
299	последовательность	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI SRLEPEDFAVYYCQQYVVFPFTFGGGTKVEIK
299	последовательность ВІІВ-9-628_VL	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI SRLEPEDFAVYYCQQYVVFPFTFGGGTKVEIK GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT
299	последовательность ВІІВ-9-628_VL Последовательность	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI SRLEPEDFAVYYCQQYVVFPFTFGGGTKVEIK GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
299	последовательность ВІІВ-9-628_VL Последовательность нуклеиновой	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI SRLEPEDFAVYYCQQYVVFPFTFGGGTKVEIK GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCGACTACTTAGCCTGGTACCAG
	последовательность ВІІВ-9-628_VL Последовательность нуклеиновой кислоты ВІІВ-9-	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI SRLEPEDFAVYYCQQYVVFPFTFGGGTKVEIK GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCGACTACTTAGCCTGGTACCAG CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG
	последовательность ВІІВ-9-628_VL Последовательность нуклеиновой	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI SRLEPEDFAVYYCQQYVVFPFTFGGGTKVEIK GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCGACTACTTAGCCTGGTACCAG CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG TGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCA
	последовательность ВІІВ-9-628_VL Последовательность нуклеиновой кислоты ВІІВ-9-	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI SRLEPEDFAVYYCQQYVVFPFTFGGGTKVEIK GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCGACTACTTAGCCTGGTACCAG CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG TGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCA GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATC
	последовательность ВІІВ-9-628_VL Последовательность нуклеиновой кислоты ВІІВ-9-	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI SRLEPEDFAVYYCQQYVVFPFTFGGGTKVEIK GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCGACTACTTAGCCTGGTACCAG CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG TGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCA GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATC AGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTG
	последовательность ВІІВ-9-628_VL Последовательность нуклеиновой кислоты ВІІВ-9-	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI SRLEPEDFAVYYCQQYVVFPFTFGGGTKVEIK GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCGACTACTTAGCCTGGTACCAG CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG TGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCA GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATC AGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTG TCAGCAGTACGTCGTCTTCCCTTTCACTTTTGGCGGAG
	последовательность ВІІВ-9-628_VL Последовательность нуклеиновой кислоты ВІІВ-9- 628_VL	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI SRLEPEDFAVYYCQQYVVFPFTFGGGTKVEIK GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCGACTACTTAGCCTGGTACCAG CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG TGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCA GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATC AGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTG TCAGCAGTACGTCGTCTTCCCTTTCACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA
300	последовательность ВІІВ-9-628_VL Последовательность нуклеиновой кислоты ВІІВ-9- 628_VL Аминокислотная	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI SRLEPEDFAVYYCQQYVVFPFTFGGGTKVEIK GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCGACTACTTAGCCTGGTACCAG CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG TGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCA GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATC AGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTG TCAGCAGTACGTCGTCTTCCCTTTCACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ

	нуклеиновой	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	кислоты ВІІВ-9-	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
	882_VL	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTTTGGTGC
		ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGCACGACAATTTCCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQ
303	последовательность	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI
	BIIB-9-884_VL	SRLEPEDFAVYYCQQYHLLPPTFGGGTKVEIK
		GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAG
	Аминокислотная	CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG
304	последовательность	TGCATCCAGCAGGCCACTGGCATCCCAGACAGGTTCA
	BIIB-9-884_VL	GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATC
		AGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTG
		TCAGCAGTACCACCTCCTCCTCCTACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
305	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-9-886_VL	SLQPEDFATYYCQQASSFPFTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	Последовательность	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
306	кислоты ВІІВ-9-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
	886 VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
	000_1	AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCATCCAGTTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
307	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-9-887_VL	SLQPEDFATYYCQQASSFPFTFGGGTKVEIK

атстдтадададасададтсассатсастт доследовательность нуклеиновой кислоты BIIB-9-887_VL AGCCTGCAGCTGATCACTT доследовательность нуклеиновой атссадттдсаададтстадададтстадададтадададт доследовательность дамассаддадададттдсаадстсадададттдсаадстсадададттдсаадсттадададад	TATCAGCAG CTATGCTGC
Последовательность нуклеиновой нуклеиновой кислоты BIIB-9-887_VL AAACCAGGGAAAGCCCCTAAGCTCCTGAT GCAGTTTGCAAGATTTCACTCTC AGCCTGCAGCCTGAAGATTTTGCAACTTA	CTATGCTGC
АААССАGGGAAAGCCCCTAAGCTCCTGAT НУКЛЕИНОВОЙ КИСЛОТЫ BIIB-9- 887_VL AGCCTGCAGCCTGAAGTTCCACTCTC AGCCTGCAGCCTGAAGCTCCTGAT AAACCAGGGAAAGCCCCTAAGCTCCTGAT ATCCAGTTTGCAAAGTTGGGACAGATTTCACTCTC AGCCTGCAGCCTGAAGATTTTGCAACTTA	GGTTCAGCG
308 кислоты BIIB-9- 887_VL GCAGTGGATCTGGGACAGATTTCACTCTC AGCCTGCAGCCTGAAGATTTTGCAACTTA	
GCAGTGGATCTGGGACAGATTTCACTCTC 887_VL AGCCTGCAGCCTGAAGATTTTGCAACTTA	.,,
AGCCTGCAGCCTGAAGATTTTGCAACTTA	ACCATCAGC
GCAGGCATCCAGTTTCCCTTTTG	TTACTGTCA
	GCGGAGGGA
CCAAGGTTGAGATCAAA	
Аминокислотная EIVMTQSPATLSVSPGERATLSCRASQSV	SSNLAWYQQ
309 последовательность KPGQAPRLLIYGASTRATGIPARFSGSGS	GTEFTLTIS
BIIB-9-888_VL SLQPEDFAVYYCQQAFNWPPTFGGGTKVE	IK
GAAATAGTGATGACGCAGTCTCCAGCCAC	CCTGTCTGT
GTCTCCAGGGGAAAGGGCCACCCTCTCCT	'GCAGGGCCA
GTCAGAGTGTTAGCAGCAACTTAGCCTGG	TACCAGCAG
АААССТGGCCAGGCTCCCAGGCTCCTCAT	'CTATGGTGC
310 кислоты BIIB-9- ATCCACCAGGGCCACTGGTATCCCAGCCA	GGTTCAGTG
GCAGTGGGTCTGGGACAGAGTTCACTCTC	:ACCATCAGC
AGCCTGCAGCCTGAAGATTTTGCAGTTTA	TTACTGTCA
GCAGGCCTTCAACTGGCCTCCTACTTTTG	GCGGAGGGA
CCAAGGTTGAGATCAAA	
Аминокислотная EIVMTQSPATLSVSPGERATLSCRASQSV	SSNLAWYQQ
311 последовательность KPGQAPRLLIYGASTRATGIPARFSGSGS	GTEFTLTIS
BIIB-9-889_VL SLQSEDFAVYYCQQAFNWPPTFGGGTKVE	IK
GAAATAGTGATGACGCAGTCTCCAGCCAC	CCTGTCTGT
GTCTCCAGGGGAAAGAGCCACCCTCTCCT	'GCAGGGCCA
GTCAGAGTGTTAGCAGCAACTTAGCCTGG	TACCAGCAG
АААССТGGCCAGGCTCCCAGGCTCCTCAT	'CTATGGTGC
312 ATCCACCAGGGCCACTGGTATCCCAGCCA	GGTTCAGTG.
GCAGTGGGTCTGGGACAGAGTTCACTCTC	:ACCATTAGC
	TTACTGTCA
AGCCTGCAGTCTGAAGATTTTGCAGTTTA	
AGCCTGCAGTCTGAAGATTTTGCAGTTTA GCAGGCCTTCAACTGGCCTCCTACTTTTG	GCGGAGGGA
AGCCTGCAGTCTGAAGATTTTGCAGTTTA	GGCGGAGGGA
AGCCTGCAGTCTGAAGATTTTGCAGTTTA GCAGGCCTTCAACTGGCCTCCTACTTTTG	

	BIIB-9-433_VL	SLEPEDFAVYYCQQSSAYPPTFGGGTKVEIK
		GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
	Последовательность	AAACCTGGCCAGGCTCCAGGCTCCTCATCTATGATGC
314	нуклеиновой	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
	кислоты ВІІВ-9-	GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
	433_VL	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGTCCAGTGCCTACCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
315	последовательность	KPGQAPRLLIYSASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-9-445_VL	SLQSEDFAVYYCQQYDNFPFTFGGGTKVEIK
		GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
	нуклеиновой вIIB-9-	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATAGCGC
316		ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
	445 VL	GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
	110	AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGTACGACAATTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ
317	последовательность	KPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTIS
	BIIB-9-470_VL	SLQPDDFATYYCQHPHSWTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC
318 нуклеинов		ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA
	Последовательность нуклеиновой кислоты BIIB-9-470_VL	GTCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAG
		AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAAGC
		CTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGCG
		GCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGC
		AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA
		GCATCCCCACTCTTGGACTTTTGGCGGAGGGACCAAGG
		TTGAGATCAAA
319	Аминокислотная	DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ

	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-9-625_VL	SLQPEDFATYYCQQSDTDPPTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAA
	Последовательность	GTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAG
	последовательность нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
320	кислоты ВІІВ-9-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG
	625 VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCA
		GCAAAGCGACACCGACCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSLSASVGDRVTITCQASQDITNYLNWYQQ
321	последовательность	KPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTIS
	BIIB-9-1264_VL	SLQPEDIATYYCQQVDDYPFTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA
	Последовательность	GTCAGGACATTACCAACTATTTAAATTGGTATCAGCAG
	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC
322	кислоты ВІІВ-9-	ATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTG
	1264 VL	GAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGC
		AGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCA
		GCAGGTCGATGACTACCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
323	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-9-1265_VL	SLQPEDFATYYCQQGNSFPITFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	Последовательность нуклеиновой кислоты ВІІВ-9-1265_VL	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
		AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
324		ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
		GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGGAAATAGTTTCCCTATCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA

325 ПОСЛЕДОВАТЕЛЬНОСТЬ BIIB-9-1266_VL SLEPEDFAVYYCQQRLNFPFTFGGGTKVEIK GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCCCCAGGGGAAAGAGCCACCCTGTCTTT GTCCCCAGGGGAAAGAGCCACCCTGCCTACTTT GTCCCCAGGGGAAAGAGCCACCCTGCCTACTTT GTCCCCAGGGGCACCCTGCCTACTTT GTCCCCAGGGGCACCCTGCCTACCAACAG AAACCTGGCCAGGCTCCCAGGCCACCAGGTCAACAG AAACCTGGCCAGGCTCCCAGCCAGGTTCAGTG AAACCTGGCCAGGCTCCCAGCCAGGTTCAGTG ACCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG GCAGTGGACACAGTTTTCCCTTTCACCTTTAGCTTCA GCAGAGACTCAATTTCCCTTTCACCTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA	BIIB—9-1266_VL SLEPEDFAVYYQQRINFFFFFGGTKVEIK GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTT GTCCCCAGGGGAAAGAGCCACCCTTCCTGCAGGGCCA GTCCAGAGTGTTAGCAGCACCCTGTCTT GTCCCCAGGGGAAAGAGCCACCCTTCCTGCAGGGCCA AAACCTGGCCAGGCTCCCAGGCTCCTATCTATGATT AAACCTGGCCAGGCTCCCAGGCTCCAGCCAGGTTCAGT AAACCTGGCCAGGCTCCCAGGCTCCAGCAGGTTCAGT GCAGAGAGTTAGCATCTACTATTATCTGTC GCAGAGAGTCAATTTCCCTTTCACTTTTTATCTGTC GCAGAGATCAATTTCCCTTTCACTTTTTTACTGTC GCAGAGATCAATTTCCCTTTCACTTTTTTACTGTC GCAGAGACTCAATTTCCCTTTCACTTTTTTACTGTC GCAGAGACTCAATTTCCCTTTCACTTTTTTTACTGTC GCAGAGACTCAATTTCCCTTTCACTTTTTTTACTGTC GCAGAGACCAAATTTCCCTTTCACTTTTTTACTGTC GCAGAGACCAAATTTCCCTTTCACTTTTTTACTGTC GCAGAGACTCAAATTTCCCTTTCACTTTTTTACTGTC GCAGAGACCAAATTACACAA AMMHOKUCHOTHAR BIIB—9-1267_VL FTLTISSLQAEDVAVYYCQQHYVFFFFFGGGTKVEIK GCAGAGTGTTTTATACAGCTCCAACCAATAAGAACTAC GCCAGAGTGTTTTATACAGCTCCAACCAATAAGAACTAC GCCAGAGTGTTTTATACAGCTCCAACCAATAAGAACTAC GCCAGAGTGTTTTATACAGCTCCAACCAATAAGAACTAC GCCAGAGTGTTTTATACAGCTCCAACCAATAAGAACTAC GCCAGAGTGTTTTATACAGCTCCAACCAATAAGAACTAC TTAGCTTGGGCAGAGAGACCAGGACAGCCTCCTAG GCCAGAGTGTTTTATACAGCTCCAACCAATAAGAACTAC GCCAGAGTGTTTTATACAGCTCCAACCAATAAGAACTAC GCCAGAGTGTTTTATACAGCTCCAACCAACAATAAGAACTAC GCCAGAGTGTTTTATACAGCTCCAACCAACAAACAAACAA		Аминокислотная	EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
GAAATTGTGATGACACAGTCTCCAGCCACCTGTCTTT GTCCCCAGGGGAAAGAGCCACCCTTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCTACCTTCTTTCACCTAGCACAGG AAACCTGGCCAGGCTCCCAGGCTCCTCATCATAGATTC ATCCACACAGGGCCACTGCCAGGTTCCAGCAGGTTCAGTG CAGCTAGAGGCTCCGAGGCTCCCAGGTTCAGTG ACCTAGAGGCCACTGGCATCCAGCAGGTTCAGTG GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC AGCCTAGAGCCTGGAGATTTTGCAGTTTATTACTGTCA GCAGAGACTCAATTTCCCTTTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHORMCAOTHAR 100.Педовательность ВІВ-9-1267_VL ВООТОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВ	GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTT GTCCCCAGGGGAAAGAGCCACCCTGTCTTCTGCAGGGCC GTCAGAGTGTTAGCAGGCTACTTAGCCTGGTACACACA AAACCTGGCCAGGCTCCCAGGCTCCTACTAGTATTA ATCCAACAGGGCCACTGCCAGCCAGGCTCCAGCCAGCT AGCCTAGAGACTTCACTCTCACCATCAGC AGCCTAGAGACTCCAGCCAGCCAGGCTCCACCACCACCACCACCACCAGGCTCCAGCCAG	325	последовательность	KPGQAPRLLIYDSSNRATGIPARFSGSGSGTDFTLTIS
GTCCCCAGGGGAAAGAGCCACCCTCTCTGCAGGGCCA GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG AAACCTGGCCAGGCTCCCAGGCTCCTATCTATGATTC ATCCAACAGGGCCACTGCCAGGCTCCCAGGTTCACTATGATTC ATCCAACAGGGCCACTGGCAGCTCCCAGGTTCCACTAGCT GCAGTGGTCTGGGACAGACTTCCACCACCAGTTCCACCACCAGC AGCCTAGAGCCTGAGACTTTCACTTCTCACCACCAGCAGGACCCCCTCCAGCAGGTTCCAGC AGCCTAGAGCCTGAGACTTTCCACTTTTGCCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKUCJOTHAS BIIB-9-1267_VL BIIB-9-1267_VL BIIB-9-1267_VL GACATCGTGAGACCCAGTCCCAGACACCCCTGGCTGT GTCTCTGGGCGAGAGACCCCACCACAACTACACCCAGC GCCAGAGTTTTTATACAGCTCCAGACTCCCTAA GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACCAG GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACCAC GCCAGAGTGTTTTATACAGCTCCAACAACAATAAGAACCAC TTAGCTTGGTACCAGCAGCAGCACCACCACAACTCCCTGGGG GCCAGAGTGTTTTATACAGCTCCAACCAACAACAACAACACAG GCCAGAGTGTTTTATACAGCTCCAGCACCCCCCTAA GCCAGCTTTTATTACTGGGCAACCACCCTGCAGGT TCCCTGACCGATTCAGCAGCAGCACCACACAATAACAACACAG TCCCTGACCGATTCAGCAGCAGCACCACACAACAACAACAACAACAACAACAA	Последовательность нуклеиновой кислоты ВІІВ-9- 1266_VL		BIIB-9-1266_VL	SLEPEDFAVYYCQQRLNFPFTFGGGTKVEIK
Последовательность нуклеиновой кислоты віів—9— 1266_VL асстадаєтства ветельность нуклеиновой кислоты віів—9— 1266_VL асстадаєтства ветельность віів—9— 1266_VL асстадаєтства ветельность нуклеиновой кислотная последовательность нуклеиновой кислоты віів—9— 1267_VL віїв—9— 1267_VL асстадаєтства ветельность нуклеиновой кислоты віів—9— 1267_VL асстадаєтства ветельность нуклеиновой кислотная віїв—9— 1267_VL асстадаєтства ветельность нуклеиновой кислотная віїв—9— 1267_VL асстадаєтства ветельность нуклеиновой кислотная віїв—9— 1267_VL асстадаєт ветельность нуклеиновой кислотная віїв—9— 1267_VL асстадаєт ветельность нуклеиновой кислотная віїв—9— 1267_VL асстадаєт ветельность віїв—9— 1268_VL асстадаєт ветельность нуклеиновой кредарта ветельность нуклеиновой адаста в віїв—9— 1268_VL асстада в віїв—9— 1268_VL адаста в віїв—9— 1268_VL адаста в віїв—9— 1267 в віїв—9— 1268_VL адаста в віїв— 1267 в віїв—9— 1268_VL адаста в віїв— 1267 в віїв—9— 1268_VL адаста в віїв— 1267 в віїв— 1268 в віїв	Последовательность нуклеиновой кислоты вів—9— 1267_VL Последовательность нуклеиновой кислоты вів—9— 1266_VL Барательность візв—9— 1266_VL Последовательность нуклеиновой кислоты вів—9— 1267_VL Гастттаста басса баста			GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT
Последовательность нуклеиновой кислоты віів-9- 1266_vl асстадаєста да	Последовательность нуклеиновой кислоты вітв-9- 1266_VL Аминокислотная римпериновой кислоты вітв-9- 1267_VL Гасттата вітв-9- 1267_VL Тасттата да соста да			GTCCCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
AAACCTGGCCAGGCTCCCAGCTCCTCATCTATGATTC RUCJOTH BIIB-9- 1266_VL ACCTAGACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGACTTCACCTCTCACCATCAGC AGCCTAGAGCCTGAAGATTTTCCATTTTTGCCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKUCJOTHAR DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNY BIIB-9-1267_VL FTLTISSLQAEDVAVYYCQQHYVFPFTFGGGTKVEIK GCAGAGTGTATGACCCAGCTCCCAGCCTGGCTGT GTCTCTGGGCGAGAGGCCACCATCAACTGCAAGTCCA GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC TTAGCTTGGTACCAGCAGCACCACCATCAACTGCAAGTCCA GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC TTAGCTTGGTACCAGCAGCAGCACCACCATCACGGGG TCCCTGACCGATTCAGTGCAGCCTGCAGGATCCCTTAA GCTGCTCATTTACTGGCAGCAGCACCATCACGTCTCCCTT TCACTTTTGGCGGAGGGACCACCTCTCCTT TCACTTTTGGCGGAGGGACCACCATCACGTCTCCCTT TCACTTTTGGCGGAGGGACCACCATCACGTCTCCCTT TCACTTTTGGCGGAGGGACCACCATCACGTCTCCCTT TCACTTTTGGCGGAGGGACCACCAGCTTCCCCTT TCACTTTTGGCGGAGGGACCACCATCACGTCTTCCCTT TCACTTTTGGCGGAGGGACCACCACCATCACGTCTTCCCTT TCACTTTTTGGCGGAGGGACCACCACCACCATCACGCTCCCTTCCCTT TCACTTTTGGCGGAGGGACCACCACCCTTCCCTT	AAACCTGGCCAGGCTCCCAGGCTCCTATCATGATTC RUCJOTH BIIB-9- 1266_VL GCAGGGCCACTGGCATCACCACCAGCACTCAGCACACACA		Подполовони иоди	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG RUCJOTH BIIB-9- 1266_VL AGCCTAGAGCCTGAAGATTTCACTCTCACCATCAGC AGCCTAGAGCCTGAGAGATTTTGCAGTTTATTACTGTCA GCAGAGACTCAATTTCCCTTTCACTTTTGGCGGAGGA CCAAGGTTGAGATCAAA DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNY LAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTD BIIB-9-1267_VL FTLTISSLQAEDVAVYYCQQHYVFFFTFGGGTKVEIK GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGT GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCA GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA GCTGCTCATTTACTGGGCATCTACCCGGGGAATCCGGGG TCCCTGACCGATTCAGTGGCAGCTGCAGGATCCCTT TCACTTTTGGCGGAGGGCCACCATCAACTTCCCTT TCACTTTTGGCGGAGGGCCACCATCAACTCCCTT TCACTTTTGGCGGAGGGCCACCATCAACTCCCTT TCACTTTTGGCGGAGGACCCTGCAGGCTGAGATCT TCACTTTTGGCGGAGGGCCACCATCAACAATAAGAACTAC TTCACTTTTTGGCGGAGAACCAGGACCTCCCTTAA TTCACTTTTTGGCGGAGGACCACCAGGATCCCCTT TCACTTTTTGGCGGAGGGCCACCACCAGGATCAACAA AMMHOKUCJOTHAS BIIB-9-1268_VL SLEPEDFAVYYCQQATVWPFTFGGGTKVEIK GAAATTGTGATGACACAGGTCCCAGCCACCCTGTCTTT GTCCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GCCAGAGTGTTTATACTGTCAGCAGCACCACCCTGTCTTT GTCCCTGCCGGGAGAACCAGGTTCAGCCACCCTGTCTTT GTCTCCAGGGGAAACCAGGTCCCAGCCACCCTGTCTTT GTCCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GCCAGAGTGTTATACTGTCAGCAGCACCCTCTCCTTC TCACTTTTGGCGGAGGACCACCCTCTCCTGCAGGGCCA AAACCTGGCCAGGCTCCCAGGCTCCCAGCCACCCTGTCTTT GTCCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA HVKJREUHOBOЙ AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC	326 кислоты BIIB-9-1266_VL ATCCAACAGGGCCACTGGCATCCCAGCCAGCTTCAGTCAG			AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATTC
GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA GCAGAGACTCAATTTCCCTTTCACTTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKUCJOTHAЯ 327 ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—9—1267_VL ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ КИСЛОТЫ ВІІВ—9— 1267_VL АМИНОКИСЛОТНАЯ З28 АМИНОКИСЛОТНАЯ ВІІВ—9—1267_VL БТЕТІЗЬ QAEDVAVYYCQQHYVFFFTFGGGTKVEIK GCAGAGTGTTTATACAGCTCCAGCACTCCTGGCTGT TTAGCTTGGGCAGAGAAACCAGGACAACTACACTCCAA GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC TTAGCTTGGTACCAGCAGCAGCACCATCCAACTACACTGCA GCCAGAGTGTTTTACTGGCAGCAGCAGCACCATCAAC TTAGCTTGGTACCAGCAGAAACCAGGAAACCAGGGACAGCTCCTAA GCTGCTCATTTACTGGCAGCAGCAGCAGCAGAT TTCACTCTCACCATCAGCAGCAGCAGCAGAT TTCACTCTCACCATCAGCAGCAGCACTACACTTCCCTT TCACTTTTGGCGGAGGGGCCAAGGTTGAGATCAA AMMHOKUCJOTHAЯ EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ TOCJEQOBATEJЬНОСТЬ BIIB—9—1268_VL GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGACCAGCCTCCTCCTGCAGGGCCA ПОСЛЕДОВАТЕЛЬНОСТЬ HVKJENHOBOЙ AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC	1266_VL GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGG	326		ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA GCAGAGACTCAATTTCCCTTTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKUCJOTHAЯ DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNY LAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTD BIIB-9-1267_VL FTLTISSLQAEDVAVYYCQQHYVFPFTFGGGTKVEIK GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGT GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCA GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA GCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGG TCCCTGACCGATTCAGTGGCAGCGTGCAGGAT TTCACTTTTACAGCTCCAGCAGCAGAACAGAT TTCACTTTTACTGTGCAGCAGCAGCAGATCACT TCACTTTTTGCCGGAGGGCCACCATCACATCA	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA GCAGAGACTCAATTTCCCTTTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKUCJOTHAЯ JUVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKN BIIB-9-1267_VL GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTG GTCTCTGGGCGAAGGGCCACCATCAACTGCAAGTCCA GCCAGAGTGTTTATACAGCTCCAACAATAAGAACTAC HYKJACHOBOЙ KUCJOTH BIIB-9- 1267_VL TCACTTTTGCGGAGGCAGCAGCACCATCACCTGGCTG GCCAGAGTGTTTATACAGCTCCAACAATAAGAACTAC TTCACTTTTGCGGGATCTCCCGGGAATCCGGG GCAGTTTATTACTGGCAGCACCATCACCTCACA TCACTTTTGCGGGAGGCCTGCAGGCTGAAGATC GGCAGTTTATTACTGTCAGCAGCACAACAATAAGAACTC TCACTTTTGGCGGAGGGCCTCCTAGGGCAGCAGCTGCAGACAATAAGAACTC GGCAGTTTATTACTGTCAGCAGCACCACAATAAGAACTC TCACTTTTGGCGGAGGGCCTGCAGGCTGAAGATC GGCAGTTTATTACTGTCAGCAGCACCACACAATAAGAACTC TCACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA AMMHOKUCJOTHAЯ EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ TCACTTTTGGCGGAAGACTTCCAGCCACCCTGTCTT GTCACTTTTGGCGAAGACACACACACACACACACACACAC			GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
Aминокислотная 327 последовательность ВІІВ-9-1267_VL ВОСТОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВ	ССААGGTTGAGATCAAA AMИНОКИСЛОТНАЯ ВІІВ—9—1267_VL БІІВ—9—1267_VL ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ КИСЛОТЫ ВІІВ—9— АМИНОКИСЛОТНАЯ АМИНОКИСЛОТНАЯ АМИНОКИСЛОТНАЯ ВІІВ—9—1268_VL ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—9—1268_VL ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—9—1268_VL ССАБАGTTGTAGACCAGCTACCAGCCACCTTCCTGCTTTTTGGTAGATCACTTCCAGGGCCACCTTCCTT		1700_1	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
Aминокислотная DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNY 327 последовательность LAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTD BIIB-9-1267_VL FTLTISSLQAEDVAVYYCQQHYVFPFTFGGGTKVEIK GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGT GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCA GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA Hykлеиновой GCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGG KUCЛОТЫ BIIB-9- 1267_VL TCCCTGACCGATTCAGCGGGGTCTGGGACAGAT TCCCTGACCGATTCAGCGGGGTCTGGGACAGAT TTCACTCTCACCATCAGCAGCAGCACTACGTCTTCCCTT TCACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ 329 ПОСЛЕДОВАТЕЛЬНОСТЬ KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS BIIB-9-1268_VL SLEPEDFAVYYCQQATVWPFTFGGGTKVEIK GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA ПОСЛЕДОВАТЕЛЬНОСТЬ GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG НУКЛЕИНОВОЙ AAACCTGGCCAGGCTCCCCAGGCTCCTCATCTATGATGC	З27 Последовательность ВІІВ-9-1267_VL IAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTI FTLTISSLQAEDVAVYYCQQHYVFPFTFGGGTKVEIK 328 Последовательность Нуклеиновой Кислоты ВІІВ-9-1267_VL GACATCGTGATGACCCAGCTCCCAGACTCCCTGGCTGCTGCTGGTGGTGGGGGGGG			GCAGAGACTCAATTTCCCTTTCACTTTTGGCGGAGGGA
327 последовательность LAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTD ВІІВ-9-1267_VL FTLTISSLQAEDVAVYYCQQHYVFFFTFGGGTKVEIK ЗАВ ВІВ-9-1267_VL GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGT ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕЙНОВОЙ GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC ТТАGСТТGGTACCAGCAGAAACCAGGACAGCCTCCTAA GCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGG КИСЛОТЫ ВІІВ-9-1267_VL TCCCTGACCGATTCAGTGGCAGCGTCTGGGACAGAT ТТСАСТСТСАССАТСАGCAGCAGCACTACGTCTTCCCTT TCACTTTTGGCGGAGGGGACCAAGGTTGAGATCAAA АМИНОКИСЛОТНАЯ EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ 329 ПОСЛЕДОВАТЕЛЬНОСТЬ КРGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS ВІІВ-9-1268_VL SLEPEDFAVYYCQQATVWPFTFGGGTKVEIK GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA ПОСЛЕДОВАТЕЛЬНОСТЬ ГОТСАGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG НУКЛЕЙНОВОЙ AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATCTATGATGC	327 последовательность ВІІВ-9-1267_VL LAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTT FTLTISSLQAEDVAYYCQQHYVFPTTFGGGTKVEIK 328 GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGGTGGTGGTGGGGGGGG			CCAAGGTTGAGATCAAA
BIIB—9—1267_VL FTLTISSLQAEDVAVYYCQQHYVFPFTFGGGTKVEIK GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGT GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCA GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA HYKЛеиновой RUCЛОТЫ BIIB—9— 1267_VL TCACTCTCACCATCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGAATCCGGGG TCCCTGACCGATTCAGCAGCAGCAGCAGCAGAATCCGGGG TCCCTGACCGATTCAGCAGCAGCAGCAGCAGATCCGGGG TCCCTGACCGATTCAGCAGCAGCAGCAGCAGATCCCTT TCACTTTTGGCGGAGGGAACCAGGCTGCAGGATCAGAT TTCACTTTTGGCGGAGGGAACCAAGGTTGAGATCAAA AMMHOKUCЛОТНАЯ EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ RCAGATTTATTACTGTCAGCAACAAGAGTTTAGATGCAGCACCCTCTCCTGCAGGGCCA GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA HOCЛедовательность GTCAGAGTGTTAGCAGCTACCTTAGCACCACCAGC HYKЛеиновой AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC	BIIB-9-1267_VL FTLTISSLQAEDVAVYYCQQHYVFPFTFGGGTKVEIK GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTG GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCC GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA RUCJOTЫ BIIB-9- 1267_VL TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGA TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGA TTCACTTTTGGCGGAGGACCAACGTTGCCTT TCACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA AMMHOKUCJOTHAR BIIB-9-1268_VL SLEPEDFAVYYCQQATVWPFTFGGGTKVEIK GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCCCAGGGGAAAGAGCCACCCTGTCTTT GTCCCAGGGGAAAGAGCCACCCTGTCTTT GTCCCAGGGGAAAGAGCCACCCTGTCTTT GTCCCAGGGGAAAGAGCCACCCTGCTCTT GTCCCAGGGGAAAGAGCCACCCTGCTCTT GTCCCAGGGGAAAGAGCCACCCTGCCAGGCCACCCTGTCTT GTCCCAGGGGAAAGAGCCACCCTCCTCCTGCAGGGCCACCCTGTCTT GTCCCAGGGGAAAGAGCCACCCTCCTCCTGCAGGGCCACCCTGTCTT GTCCCAGGGGAAAGAGCCACCCTCCCAGGCCACCCTGTCTT GTCCCAGGGGAAAGAGCCACCCTCCTCCTGCAGGGCCACCCTGTCTT GTCCCAGGGGAAAGAGCCACCCTCCACCACACACACACAC		Аминокислотная	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNY
GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGT GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCA GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA GCTGCTCATTTACTGGGCATCTACCCGGGGAATCCGGGG TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGAT TTCACTTTTGGCGGAGGGCCTGCAGGCTGAGAGTGT GGCAGTTTATTACTGTCAGCAGCACTACGTCTTCCCTT TCACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA AMMHOKUCJOTHAS EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS BIIB-9-1268_VL GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA Последовательность GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG HVKЛеиновой AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC	GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTG GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCC GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCC GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC Hykneuhoboй Kucnotы BIIB-9- 1267_VL TTCACTCTCACCATCAGCAGCAGCAGCTCTGGGACAGA AMUHOKUCNOTHAR GCAGTTTATTACTGTCAGCAGCAGCAGCTGCAGGACAGA AMUHOKUCNOTHAR BIB-9-1268_VL SLEPEDFAVYYCQQATVWPFTFGGGTKVEIK GAAATTGTGATGACACAGCACCCTGTCTT GTCTCCAGGGGAAAGCCAGCCTCCTGCAGGGCCAACACACAC	327	последовательность	LAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTD
GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCA GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA HYKЛЕИНОВОЙ KUCЛОТЫ BIIB-9- 1267_VL TTCACTCTCACCATCAGCTGCAGGATCTGGGACAGAT TTCACTCTCACCATCAGCAGCAGCAGCAGAACCAGGACAGAT GCTGCTCATTTACTGGCGGGGTCTGGGACAGAT TTCACTCTCACCATCAGCAGCAGCACTACGTCTTCCCTT TCACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA AMMHOKUCЛОТНАЯ EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS BIIB-9-1268_VL GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA ПОСЛЕДОВАТЕЛЬНОСТЬ GTCAGAGTGTTAGCAGCTACCTTATCACAGG HYKЛЕИНОВОЙ AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC	GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCA GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA GCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGC TCCCTGACCGATTCAGTGGCAGCGGTCTGCGGACAGAC TCCCTGACCGATTCAGTGGCAGCCTGCAGGCTGAAGATG GGCAGTTTATTACTGTCAGCAGCCTGCAGGCTGAAGATG GGCAGTTTATTACTGTCAGCAGCCACCATCACACATCACA TCACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA AMMHOKUCJOTHAA SIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS BIIB-9-1268_VL GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTT GTCTCCAGGGGAAAACCAGGACCACCCTCTCCTGCAGGGCCA GTCTCCAGGGGAAAACCAGGACCACCCTGTCTT GTCTCCAGGGGAAAACCAGGACCACCCTGTCTT GTCTCCAGGGGAAAACCAGGACCACCCTGTCTT GTCTCCAGGGGAAAACCAGGACCACCCTGTCTT GTCACTTTTGCCTGAGCAACCCCTGTCTT GTCTCCAGGGGAAAACCAGGCCACCCTGTCTT GTCACTTTTGCCAGCAACCACCCTGTCTT GTCTCCAGGGGAAAACCAGGCCACCCTGTCTT GTCACTTTTGCCAGCAACCACCCTGTCTT GTCTCCAGGGGAAAACCAGACCACCCTGTCTT GCCTGACCGAGGCCACCCTGTCCTAGCCACCCTGTCTT GTCTCCAGGGGAAAACCAGCCACCCTGTCTT GCCAGTGGGTTTAGCAGCCACCCTGTCCTAGCCACCACCACCACCACCACCACCACCACCACCACCACC		BIIB-9-1267_VL	FTLTISSLQAEDVAVYYCQQHYVFPFTFGGGTKVEIK
GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC Последовательность нуклеиновой кислоты BIIB-9- 1267_VL ТСССТБАССБАТТСАСТБЕСБАБССТЕСТВА БЕГОВНОВНЕННО В ВЕГОВНОВНЕННО В ВЕГОВНЕННО В В	GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAG Hyклеиновой кислоты BIIB-9- 1267_VL TCACTCTCACCATCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGC			GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGT
Последовательность нуклеиновой вив-9- 1267_VL TCACTTTTACTGGCAGCAGGACAGCCTCCTAA GCAGCTCTCAGCAGATCCGGGG TCCTCACCAGCAGATCCGGGG TCCCTGACCAGCAGATCCGGGG TCCCTGACCAGCAGATCCGGGG TCCCTGACCGATTCAGCAGCAGCAGATCCGGGG TCCCCTT TCACTTTTACTGTCAGCAGCAGCACTACGTCTCCCTT TCACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA AMMHOKUCJOTHAЯ EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS BIIB-9-1268_VL SLEPEDFAVYYCQQATVWPFTFGGGTKVEIK GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCCCAGGGGCAGGCAGGCCAAGGTTAGCCAGGGCCAAGGTTAGCCAGGGCCAAGGTTAGCCAGGGCCAAGGTTAGCCAGGGCCAAGGTTAGCCAGGGCCAAGGTTAGCCAGGGCCAAGGTTAGCCAGGGCCAAGGTTAGCCAGGGCCAAGGTTAGCCAGGGCCAAGGTTAGCCAGGGCCAAGGTTAGCCAGGGCCAACAGG HVKJENHOBOŇ AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC	Последовательность нуклеиновой кислоты віїв-9- 1267_VL ТТСАСТСТСАССАТСАДСАДСАДСАДСАДСАДСАДСАДСАДСАДСАДСАДСАДС			GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCA
ТТАGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA нуклеиновой кислоты віїв-9- 1267_VL ТТСАСТСТСАССАТСАGСАGСАGССТССТАДССТТ достратить последовательность віїв-9-1268_VL ТОСТСАДОСДАТОСАССТСТСАССАТСАССТСТСТСТСТСТСТТ достратить последовательность віїв-9-1268_VL Последовательность нуклеиновой ТТАGСТТТGGTACCAGCAGCATCTACCCGGGAATCCGGGG Достратить последовательность нуклеиновой ТТАGСТТТТАСТБССАДССАСССТСТСТАДСАДСАД Достратить последовательность нуклеиновой ТТАGСТТССАДСАДАТТТАСТАДССАДСАДСАДСТАСТАТСАДСАД Достратить последовательность нуклеиновой ТТАGСТТССАДСАДАТТТАССАДСАДСАДСТССТСАДССАДССТАТСТАТ	ТТАGCTTGGTACCAGCAGAAACCAGGACAGCCTCTAAAACCAGACAGCCTCCTAAAACCAGACAGCCTCCTAAAACCAGACAGCAGAAACCAGGACAGCCTCCTAAAACCAGAAACCAGGAAACCAGGAAACCAGGAAACCAGGAAACCAGGAAACCAGGAAACCAGGAAACCAGGAAACCAGGAAACCAGGAAACCAGGAAACCAGGAAACCAGGAAACCAGGAAACCAGGAAACCAGGAAACCAGGAAACCAGGAAACCAGGACACCAC		Поспаповащальность	GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC
328 кислоты BIIB-9- 1267_VL TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGAT ТСССТGACCGATTCAGTGGCAGCCTGCAGGCTGAAGATGT TTCACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGT GGCAGTTTATTACTGTCAGCAGCACTACGTCTTCCCTT TCACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA AMMHOKUCЛОТНАЯ EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ 329 ПОСЛЕДОВАТЕЛЬНОСТЬ KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS BIIB-9-1268_VL SLEPEDFAVYYCQQATVWPFTFGGGTKVEIK GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA Последовательность GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG НУКЛЕИНОВОЙ AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC	STEPEDFAVYYCQQATVWPFTFGGGTKVEIK GTCTCCAGGGGAAAGAGGGGGAAAGAGGGGGAAAGAGGGGGAAAGAG			TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA
TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGAT TTCACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGT GGCAGTTTATTACTGTCAGCAGCACTACGTCTTCCCTT TCACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA Аминокислотная ЕIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ КРБQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS ВІІВ—9—1268_VL SLEPEDFAVYYCQQATVWPFTFGGGTKVEIK GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA Последовательность GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG нуклеиновой AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC	TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGATTCACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGTTCACTTTACTGTCAGCAGCAGCAGCAGAGATGTTCACTTTTTTTT	328	-	GCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGG
ТТСАСТСТСАССАТСАGCAGCCTGCAGGCTGAAGATGT GGCAGTTTATTACTGTCAGCAGCACTACGTCTTCCCTT TCACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA AMMHOKUCЛОТНАЯ EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS BIIB-9-1268_VL GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA Последовательность GTCAGAGTGTTAGCAGCTACCTAGCCTGCTACCAACAG нуклеиновой AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC	TTCACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGG GGCAGTTTATTACTGTCAGCAGCACCACCATCACTCTCCCTG TCACTTTTGGCGGAGGACCAAGGTTGAGATCAAA AMMHOKUCJOTHAЯ EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQG BIIB-9-1268_VL SLEPEDFAVYYCQQATVWPFTFGGGTKVEIK GAAATTGTGATGACACAGGTCTCCAGCCACCCTGTCTTG GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCACCCTGTCTTG GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGA HYKJEHOBOЙ KUCJOTЫ BIIB-9- 1268_VL GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGG GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGGC GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGGC			TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGAT
ТСАСТТТТGGCGGAGGGACCAAGGTTGAGATCAAA Аминокислотная EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ последовательность КРGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS ВІІВ—9—1268_VL SLEPEDFAVYYCQQATVWPFTFGGGTKVEIK GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA Последовательность GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG нуклеиновой AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC	ТСАСТТТТGGCGGAGGGACCAAGGTTGAGATCAAA AMMHOKUCЛОТНАЯ BIIB-9-1268_VL GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTGTCTTT GTCACAGAGTGTTAGCAGCTACCTCAGCCACCAACAG нуклеиновой кислоты BIIB-9- 1268_VL GCAGTGGGTCTGGGACCACCCTCTCCTCAGCTCACCACCAGCCACCCTGTCTTT GCAGACAGGCCCAGGCTCCCAGCCACCCTCTCTAGATGATGATGATGATGATGATGATGATGATGATGATGA		1207_11	TTCACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGT
АминокислотнаяEIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ329последовательностьKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISBIIB-9-1268_VLSLEPEDFAVYYCQQATVWPFTFGGGTKVEIKGAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAПоследовательностьGTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGнуклеиновойAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC	АминокислотнаяEIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQG329последовательностьKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISBIIB-9-1268_VLSLEPEDFAVYYCQQATVWPFTFGGGTKVEIKGAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAПоследовательностьGTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGнуклеиновойAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGGкислотыBIIB-9-ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG1268_VLGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGG			GGCAGTTTATTACTGTCAGCAGCACTACGTCTTCCCTT
329последовательностьKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISBIIB-9-1268_VLSLEPEDFAVYYCQQATVWPFTFGGGTKVEIKGAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAПоследовательностьGTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGнуклеиновойAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC	329 последовательность КРGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS BIIB-9-1268_VL SLEPEDFAVYYCQQATVWPFTFGGGTKVEIK GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA Последовательность GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG нуклеиновой AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGG кислоты BIIB-9- ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG 1268_VL GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGGG GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGGGCTCCTCACCATCAGGGCTCCTCACCATCAGGGCTCCTCACCATCAGGGCTCTCACCATCAGGGCTCCTCACCATCAGGGCTCTCACCATCAGGCCAGGTTCAGCCATCAGGCCAGGTTCAGGCCAGGCTCAGGCCAGGTTCAGGCCAGGTTCAGGCCAGGCTCAGGCCAGGTTCAGGCCAGGCTCCCAGGCCAGGTTCAGGCCAGGCTCCCAGGCTCAGGCCAGGCTCCCAGGCCAGGCTCCCAGGCCAGGTTCAGGCCAGGCTCCCAGGCCAGGTTCAGGCCAGGCTCCCAGGCCAGGCTCCCAGGCCAGGCTCCCAGGCCAGGCTCCCAGGCCAGGCTCCCAGGCCAGGCTCCCAGGCCAGGCTCCCAGGCCAGGCTCCCAGGCCAGGCTCCCAGGCCAGGCTCCAGGCCAGGCTCCAGGCCAGGCCACGCCAGGCCAGGCTCCCAGGCCACGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCA			TCACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
BIIB-9-1268_VL SLEPEDFAVYYCQQATVWPFTFGGGTKVEIK GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA Последовательность GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG нуклеиновой AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC	BIIB-9-1268_VL SLEPEDFAVYYCQQATVWPFTFGGGTKVEIK GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA Последовательность GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG нуклеиновой AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGG кислоты BIIB-9- ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG 1268_VL GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGG		Аминокислотная	EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
— GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA Последовательность GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG нуклеиновой AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC	GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA Последовательность GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG нуклеиновой AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGG кислоты BIIB-9- ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG 1268_VL GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGG	329	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA Последовательность GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG нуклеиновой AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA Последовательность GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG нуклеиновой AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGG кислоты BIIB-9- ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG 1268_VL GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGG		BIIB-9-1268_VL	SLEPEDFAVYYCQQATVWPFTFGGGTKVEIK
Последовательность GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG нуклеиновой AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC	Последовательность GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG нуклеиновой AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGG кислоты BIIB-9- ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG 1268_VL GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGG			GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT
нуклеиновой AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC	330 нуклеиновой кислоты віїв-9- датссаасад даст стат дат дата да			GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
нуклеиновой AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC	330 кислоты BIIB-9- ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTC 1268_VL GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC		Последовательность	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
1 330 T	кислоты BIIB-9- ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG 1268_VL GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGG	330	нуклеиновой	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
			кислоты ВІІВ-9-	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
1268_VL GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA		1268_VL	GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA				AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
	GCAGGCCACCGTCTGGCCTTTCACTTTTGGCGGAGGGA			GCAGGCCACCGTCTGGCCTTTCACTTTTGGCGGAGGGA

		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVAITCRASQGISSWLAWYQQ
331	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-9-1269_VL	SLQPEDFATYYCQQASSFPFTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCGCCATCACTTGTCGGGCGA
	Подполовони иоди	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	Последовательность нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
332	нуклеиновои кислоты ВІІВ-9-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
	1269 VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
	1209_\I	AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCATCCAGTTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
333	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-9-1270_VL	SLEPEDFAVYYCQQSADFPFTFGGGTKVEIK
	Последовательность нуклеиновой кислоты ВІІВ-9-	GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
		AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
334		ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
	1270 VL	GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
		AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGTCCGCCGATTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
335	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTDFTLTIS
	BIIB-9-1271_VL	SLQPEDFATYYCQQGFSFPFTFGGGTKVEIK
336	Последовательность нуклеиновой кислоты ВІІВ-9- 1271_VL	GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
		AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
		ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGATTTCACTCTCACCATCAGC
		AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA

		GCAGGGATTCAGTTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
337	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-9-1272_VL	SLQPEDFATYYCQQASSFPFTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	Последовательность	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
338	кислоты ВІІВ-9-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
	1272 VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCATCCAGTTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQYPATLSLSPGERATLSCRASQSVSSYLAWYQQ
339	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-9-1273_VL	SLEPEDFAVYYCQQSANFPFTFGGGTKVEIK
		GAAATTGTGTTGACACAGTATCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
	нуклеиновой вIIB-9-	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
340		ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
		AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGTCCGCCAATTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
341	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-9-1274_VL	SLQPEDFATYYCQQANSFPFTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
	Последовательность	ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
342	нуклеиновой	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	кислоты BIIB-9-	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
	1274_VL	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
		GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC

		AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCAAATTCCTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISGWLAWYQQ
343	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-9-1275_VL	SLQPEDFATYYCQQANSLPITFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
		GTCAGGGTATTAGCGGCTGGTTAGCCTGGTATCAGCAG
	Последовательность	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
344	нуклеиновой кислоты ВІІВ-9-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
		GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
	1275_VL	AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCAAATTCCCTCCCTATCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
345	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-9-1276_VL	SLQPEDFATYYCQQGNSFPITFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
		GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
		AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
346		ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
		GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
	1276_VL	AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGGAAATAGTTTCCCTATCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSYLAWYQQ
347	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-9-1277_VL	SLEPEDLAVYYCQQSANWPPTFGGGTKVEIK
348	Последовательность нуклеиновой кислоты ВІІВ-9- 1277_VL	GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
		AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
		ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
<u> </u>	<u> </u>	<u> </u>

		GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
		AGCCTAGAGCCTGAAGATCTTGCAGTTTATTACTGTCA
		GCAGTCCGCCAATTGGCCTCCTACTTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	7.5	
240	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
349	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-9-1278_VL	SLQSEDFAVYYCQQHANFPPTFGGGTKVEIK
		GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
	нуклеиновой	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
350	кислоты ВІІВ-9-	ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
	1278 VL	GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGCACGCCAATTTTCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
351	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-9-1279_VL	SLQPEDFATYYCQQASSFPPTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	H	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	Последовательность	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
352	нуклеиновой	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
	кислоты ВІІВ-9-	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
	1279_VL	AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCATCCAGTTTCCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ
353	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-9-1280 VL	SLQPEDFATYYCQQAYSLPITFGGGTKVEIK
	— Последовательность	GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
	нуклеиновой	ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAA
354	кислоты ВІІВ-9-	GTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAG
	1280 VL	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC

GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC AGTCTGCAACCTGAGATTTTGCAACTTACTACTCTCA GCAAGCATCAAGTCTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 355 ПОСЛЕДОВЯТЕЛЬНОСТЬ ВІВ−9−1281_VL SLQPEDFATYYCQQAISLPITFGGGTKVEIK GACATCCACATCAGCTCTCCTATCACTTTCCCGGCCCA ATCTGTAGGAGACACAAGATCACCTTCCTGCCGGCCCA TYKRJENHOBOĞ RUCJOTH BIIB−9− 1281_VL GACATCCACATCAGCTCCTTCCACCCTGTCTGC ATCTGTAGGAGACACAAGATCACCATCACTTGCCGGCCCA GCCAGGCAATCAGCTCCTATCACATCAC			ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG
AGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCA GCAAGCATACAGTCTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 355 AMMCHOKUCJOTHAR DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ BIIB—9—1281_VL SLQPEDFATYYCQQAISLPITFGGGTKVEIK GACATCCAGATGACCAGTCTCCTTCCACCCTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA GTCAGAGTATTAGTAGCTCGTTTCCACCCTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA GTCAGAGTATTAGTAGCTCGTTTGCACCTGTCTGC AACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAAGC CTCCAGTTTGGAAAGTTCCCCTGATCTATAAAGC CTCCAGTTTGGAAAGTTTCACTCTCACCATCAGC AGCCTGCAGCCTGAAGATTTTCACTCTCACCATCAGC AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA GCAGGCAATCAGTCTCCCTATCACTTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 357 ROCHELOBATEJBHOCTB BIIB—9—1282_VL SLQSEDFAVYYCQQHNHLPITFGGTKVEIK GAAATAGTGATGCAGCAGCCTCTCCTGCAGGGCCA GTCCAGAGGGAAAGACCACCCTTCCTGCAGGGCCA GTCCAGAGGGAAAGACCACCCTTCCTGCAGGGCCA GTCCAGAGGGAAAGACCTCCCAGCCACCCTGTCTGT GTCTCCAGGGGAAAGACCACCCTTCCTGCAGGGCCA AAACCTGGCCAGGGCCACCCTGCTCTGT GTCTCCAGGGGAAAGAGCCCCCTCTCCTGCAGGGCCA AAACCTGGCCAGGGTCCCAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTTCCTGCAGGGCCA AAACCTGGCCAGGGTCCCAGGCTCCCAGCCACCCTGTCTGT			GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
CCAAGGTTGAGATCAAA			AGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCA
355 Аминокислотная последовательность ВІІВ-9-1281_VL KEGKAPKLLIYKASSLESGVPSRFSGSGSGTDFTLTIS SLQPEDFATYYCQQAISLPITFGGTKVEIK 356 Последовательность Нуклеиновой Кислоты ВІІВ-9-1281_VL БАСАТССАGATGACCAGTCTCCTCCACCCTGTCTGC ATCTGAGAGGTATTAGTAGCAG GCAGGGAAAGCCCTAAGCTCCTGATCTATAAAGC CTCCAGTTTGCACGTGTTGCCTGGAAGATCTTGCCTGGAAGATCACTTCACCATCAGC GCAGGGAAAGCCCTAAGCTCCATCACACTCACC AGCCTGAAGATTTGCACTACTACTACACCATCAGC AGCCTGAAGATCACTCCACTACACCACCAGC AGCCTGAAGATTTTGCAACTTATTACTGTCA GCAGGCATCAAGATCAACTCACTACTACTACTACTACTACACTTTTGGCAGGAGAACACCCTCACACACA			GCAAGCATACAGTCTCCCTATCACTTTTGGCGGAGGGA
355 последовательность ВІІВ-9-1281_VL ККРКАРКLIJYKASSLESGVPSRFSGSGSGTDFTLTIS 356 ВІІВ-9-1281_VL SLQPEDFATYYCQQAISLPITFGGTKVEIK 356 АТСТБТАGGAGCAGAGTCACCATCACCTGCCGGCCCA GTCAGCAGTTATAGAGCAGAGTTATAGTAGCTGGTTGCCCTGATCTATAAAGC GTCAGAGTATTAGTAGCTGGTTGGCCTGATCTATAAAGC CTCCAGTTTGGAAAGTTGGACCTACACTCACCATCAGC GCAGGCATCAGGCTCCATCACACTCAGC AGCCTGAAGATTTTGCAACTTATTACTGTCA GCAGGCAATCAGTCTCCCTATCACTTTTGGCAGGGGA CCAAGGTTCAGCAGAGATCAGTCTCCCTATCACTTTTGGCAGGGGA CCAAGGTTCAGCAGAGATCAGTCTCCCTATCACTTTTGGCAGGGGAGGA CCAAGGTTCAGCAGAGATCAGTCTCCCTATCACTTTTGGCAGGGGAGGA CCAAGGTTCAGCAGAGATCAGCTCCCTATCACTTTTGGCAGGGGAGAACAGAGTCACAAA 357 ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ-9-1282_VL SLQSEDFAVYYCQQHNHLPITFGGGTKVEIK 358 ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕЙНОВОЙ КИСЛОТЬ ВІІВ-9-1282_VL GAAATAGTGATGAGCAGAGTCTCCAGCCACCCTGTCTGT GTCTCAGCCAGGCCCA GCCCCTGTCTGT GTCTCAGCAGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA			CCAAGGTTGAGATCAAA
ВБІВ-9-1281_VL SLQPEDFATYYCQQAISLPITFGGGTKVEIK ВБІВ-9-1281_VL GACATCCAGATGACCAGTCTCCTTCCACCCTGTCTGC АТСТБТАБДАДАСАДАТТАСТАСТТССАССТТДССАДДОСТА ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA СТСАДТТТАДТАДТАДСТСТДАТАТАДАСС CTCCAGTTTGGAAAGTCCCTTAATAAAGC СТССАДТТТСВДААДТТДСАСТТСАССАТСАДССА AGCCTGCAGCCTGAAGATTTCACTCTCACCATCACGC АДСАДСАДТТДОДАТТТДСТАДСТТТТДСАДСТТАТТАТТАСТСТСА AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA АМИНОКИСЛОТНАЯ EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ ВБІВ-9-1282_VL SLQSEDFAVYYCQQHNHLPITFGGGTKVEIK БОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕЙНОВОЙ GAAATAGTGATGACGCAGCTCTCCTGCAGCCACCCTGTCTGT		Аминокислотная	DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ
GACATCCAGATGACCCAGTCTCCTCCACCCTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA GTCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAG AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAAAGC CTCCAGTTTGGAAAGTGGGGTCCATCAAGGTTCAGCAG AGCCTGCAGCTTTGGAAAGTTCCCATCACCATCAGC AGCCTGCAGCTTTGGAAAGTTTTGCAACTTATTACTGTCA GCAGGCAATCAGTCTCCCTATCACTTTTGGCGGAGGA CCAAGGTTGAGATCAAA AMMHOKMCNOTHAM EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ CCAAGGTTGAGATCACAA BIIB-9-1282_VL SLQSEDFAVYYCQQHNHLPITFGGGTKVEIK GAAATAGTGATGACGCAGCCTCTCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTTCTCTGCAGGCCA GTCAGAGTTTAGCAGCAACCTTCCTTCAGCCAGCCA AACCTGGCCAGGCTCCCAGGCTCCCAGCCAGGTTCAGCA AACCTGGCCAGGCTCCCAGGCTCCCAGCCAGGTTCAGCA ACCTGCCAGGGCCACTGGTATCCCAGCCAGGTTCAGCA ACCTGCCAGGGCCACTGGTATCCCAGCCAGGTTCAGCA ACCTGCCAGTTGGAGATTTTGCAGTTTATTACTGTCA GCAGGACAATCACCTCCTATCACTTTTGGCGGAGGA CCAAGGTTGAGATCAAA AMMHOKMCNOTHAM DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ CCAAGGTTGAGATCAAA AMMHOKMCNOTHAM DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS BIIB-9-1283_VL SLQPEDFATYYCQQASSFPPTFGGTKVEIK GCACTGCAGTCCCAGCTCCCATCTCCTGCTGTCCC HyKNeuhoboй ATCTGTAGGAGACCAGTCTCCATCTTCCGTGTCTCC ATCTGTAGGAGACCAACTTCCCTTCC	355	последовательность	 KPGKAPKLLIYKASSLESGVPSRFSGSGSGTDFTLTIS
атстетадеадеасадетсасстетесседеесса дасстетататадее деадетстве дастетестве деадетстве дастетестве дастетеств дастетестве дастете дастетестве дастете		BIIB-9-1281_VL	SLQPEDFATYYCQQAISLPITFGGGTKVEIK
Последовательность нуклеиновой кислоты вівв-9- 1281_VL			GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC
Последовательность нуклеиновой кислоты віїв-9- 356			ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA
356нуклеиновой кислоты 1281_VLAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAAGC CTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGCG 			GTCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAG
356 кислоты BIIB-9- 1281_VL CTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGCG GCAGTGATCTGGGACAGATTTCACTCTCACCATCAGC AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA GCAGGCAATCAGTCTCCCTATCACTTTTGGCGGAGGA CCAAGGTTGAGATCAAA 357 последовательность ВIIB-9-1282_VL EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQHNHLPITFGGGTKVEIK 358 GAAATAGTGATGACGCAGCCTCTCCTGCAGGGCCA GTCTCCAGGGGAAAGAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTGTCTGTG GCAGTGGTTTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCCATCTATGGTGC AAACCTGGCCAGGCTCCCAGGCTCCCATCTATGGTGC AACCTGGCAGGCTCCCAGGCTCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGAAGATTTTGCAGTTTATTACTGTCA GCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGA CCAAGGTTGAGATCAAA 359 AMMHOKUCJOTHAR DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ CCAAGGTTGAGATCAAA 359 Последовательность ВIIB-9-1283_VL SLQPEDFATYYCQQASSFPPTFGGGTKVEIK 360 Нуклеиновой ATCTGTAGGAGACCAGTCTCCATCTTCCGTGTCTGC 360 Нуклеиновой ATCTGTAGGAGACCAGAGTCACCATCACTTGTCGGGCGA			AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAAGC
1281_VL GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA GCAGGCAATCAGTCTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKMCJOTHAR	356	_	CTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGCG
AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA GCAGGCAATCAGTCTCCCTATCACTTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 357 ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—9—1282_VL SLQSEDFAVYYCQQHNHLPITFGGGTKVEIK GAAATAGTGATGACGCAGCCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA AAACCTGGCCAGGCTCCCAGCCACCCTGTCTGT RUCLOTЫ BIIB—9—1282_VL ATCCACCAGGGCCACCTGTCTGT GCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGCCCAG			GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
ЗборССААGGTTGAGATCAAA357Последовательность ВІІВ-9-1282_VLКРGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQHNHLPITFGGTKVEIK358Последовательность Нуклеиновой кислоты кислоты 1282_VLGAAATAGTGATGACGCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG GTCAGAGTGTTAGCAGGAACTTAGCCTGGTACCAGCAG GTCAGAGTGTTAGCAGGAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC ACCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGAAGATTTTGCAGTTATTACTGTCA GCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGA AGCCTGCAGTTGAGATCAAA359Аминокислотная Последовательность ВІІВ-9-1283_VLDIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS SLQPEDFATYYCQQASSFPPTFGGGTKVEIK360нуклеиновойATCTGTAGGAGACCAGGTCCCATCACTTCCGTGTCTGC GACATCCAGATGACCCAGGTCTCCATCACTTTCCGTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA		1781 ⁻ /T	AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
357Аминокислотная последовательность ВІІВ-9-1282_VLEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ КРБQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQHNHLPITFGGGTKVEIK358GAAATAGTGATGACGCAGCCTCTCCTGCAGGGCCA GTCTCCAGGGGAAAGAGCCACCCTTCTCTGT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGGAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCTATCTATGGTGC AAACCTGGCCAGGCTCCCAGGCTCCCAGCAGGTTCAGTG GCAGTGGGTCTGGGACAGAGTTCACCTCCAGCAGCAG AGCCTGCAGTCTGGAGAGATTTTGCAGTTTATTACTGTCA GCAGCACAATCACCTCCCTATCACTTTTGGCGAGGGA AGCCTGCAGTTGAGATCACA CCAAGGTTGAGATCAAA359AMUHOKUCJOTHAS CCAAGGTTGAGATCACAA CCAAGGTTGAGATCACACAAADIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS SLQPEDFATYYCQQASSFPPTFGGGTKVEIK360НУКЛЕИНОВОЙATCTGTAGGAGACCAGTCTCCATCTTCCGTGTCTGC ACCTCAGAGGAGACCAGAGTCACCATCACTTGTCGGGCGA ACCTCAGATGACCCAGTCTCCATCTTCCGTGTCTGC ACCTCAGAGAGACAGAGTCACCATCACTTGTCGGGCGA			GCAGGCAATCAGTCTCCCTATCACTTTTGGCGGAGGGA
357последовательность ВІІВ-9-1282_VLКРGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQHNHLPITFGGTKVEIK358GAAATAGTGATGACGCAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCAACCTTAGCCTGGTACCAGCAG HYKЛЕИНОВОЙ KИСЛОТЫ KИСЛОТЫ BIIB-9- 1282_VLGTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA359AMMHOKИСЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ-9-1283_VLDIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS SLQPEDFATYYCQQASSFPPTFGGGTKVEIK360НУКЛЕИНОВОЙATCTGTAGGAGACAGAGTCACCATCACTTTCCGTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACTTTCCGTGTCTGC			CCAAGGTTGAGATCAAA
BIIB-9-1282_VL SLQSEDFAVYYCQQHNHLPITFGGGTKVEIK 358 Последовательность нуклеиновой кислоты ВІІВ-9-1282_VL GCAGGGGCCACGCTGTCTGCTGGAGGGCCA GCTGGCAGGCCACGTTAGCCAGCAGGTTCAGCAGGGCCACGTTCATCTATGGTGC AGCCAGGCTCCCAGGCTCCTCATCTATGGTGC AGCCACGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA ВИНОВИСИТЬ ВИНОВОЙ DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS SLQPEDFATYYCQQASSFPPTFGGGTKVEIK ВІІВ-9-1283_VL SLQPEDFATYYCQQASSFPPTFGGGTKVEIK ПОСледовательность ВІІВ-9-1283_VL GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC З60 Нуклеиновой ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGGCGA		Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
358 Последовательность нуклеиновой кислоты ВІІВ-9- 1282_VL АGCCTGCAGGTCTCCAGCTCTCTCTGCAGGGCA GCAGTTTAGCAGGTCTCAGCTAGTTAGCAGGGCA ACTTAGCCTGGTACCAGCAG ACTCACCTTCTATTAGTGTGC ACGCTGCAGGGCCA ACCCTGTCTATCTATGGTGC ACCCAGGGTCCAGGTTCAGTG ACCCAGGGTCCAGGTTCAGTG ACCCAGGGTCTCAGCAGGTTCAGTG ACCCTGCAGGTTCAGTG ACCCTGCAGGTTCAGCAGCAGGTTCAGTG ACCCTGCAGGTTCACCATCAGC ACCCTGCAGGTTCAGCTAGCAGGTTGAGAGATTTTGCAGTTTATTACTGTCA GCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKUCJOTHAS DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS SLQPEDFATYYCQQASSFPPTFGGGTKVEIK BIIB-9-1283_VL SLQPEDFATYYCQQASSFPPTFGGGTKVEIK Последовательность GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC ATCTTGTCGGGCGA ACAATCACCTTGTCGGGCCGA ACCCAGTCACCTTGTCGGGCCGA ACCCAGCAGCCCAGCC	357	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
358 Последовательность нуклеиновой нуклеиновой нуклеиновой ностоя деательность нуклеиновой на поставляющей нуклеиновой нуклеинов нуклеино		BIIB-9-1282_VL	SLQSEDFAVYYCQQHNHLPITFGGGTKVEIK
358 Последовательность нуклеиновой нуклеиновой нуклеиновой нослоты выв-9- 1282_VL адастора до достора			GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
358Последовательность нуклеиновой кислоты 1282_VLАААССТGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA359Аминокислотная последовательность В11В-9-1283_VLDIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS SLQPEDFATYYCQQASSFPPTFGGGTKVEIK360нуклеиновойATCTGTAGGAGACCCAGTCTCCATCTTCCGTGTCTGC360нуклеиновойATCTGTAGGAGACCAGAGTCACCATCACTTGTCGGGCGA			GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
358Нуклеиновой кислоты 1282_VLAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA359Последовательность ВІІВ-9-1283_VLKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS SLQPEDFATYYCQQASSFPPTFGGGTKVEIK360НуклеиновойATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA		Поспеловательность	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
358кислотыBIIB-9-ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG1282_VLAGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCAAGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGGAССААGGTTGAGATCAAACCAAGGTTGAGATCAAA359ПОСЛЕДОВАТЕЛЬНОСТЬKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISВІІВ-9-1283_VLSLQPEDFATYYCQQASSFPPTFGGGTKVEIKПОСЛЕДОВАТЕЛЬНОСТЬGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC360НУКЛЕИНОВОЙATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA		нуклеиновой кислоты ВІІВ-9-	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
1282_VLGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA359АминокислотнаяDIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ359последовательностьKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISBIIB-9-1283_VLSLQPEDFATYYCQQASSFPPTFGGGTKVEIKПоследовательностьGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC360нуклеиновойATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA	358		ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKMCЛОТНАЯ DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS BIIB-9-1283_VL SLQPEDFATYYCQQASSFPPTFGGGTKVEIK Последовательность GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC 460 470 470 470 470 470 470 470 470 470 47			GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
З59ПоследовательностьKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISВІІВ-9-1283_VLSLQPEDFATYYCQQASSFPPTFGGGTKVEIKЗ60НуклеиновойATCTGTAGGAGACCCAGTCTCCATCTTGTCGGGCGA			AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
З59АминокислотнаяDIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQВІІВ-9-1283_VLKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISВІІВ-9-1283_VLSLQPEDFATYYCQQASSFPPTFGGGTKVEIKПоследовательностьGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC360нуклеиновойATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA			GCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGGA
359последовательностьKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISBIIB-9-1283_VLSLQPEDFATYYCQQASSFPPTFGGGTKVEIKПоследовательностьGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC360нуклеиновойATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA			CCAAGGTTGAGATCAAA
BIIB-9-1283_VLSLQPEDFATYYCQQASSFPPTFGGGTKVEIKПоследовательностьGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC360нуклеиновойATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA		Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
— Последовательность GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC 360 нуклеиновой ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA	359	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
360 нуклеиновой ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA		BIIB-9-1283_VL	SLQPEDFATYYCQQASSFPPTFGGGTKVEIK
	360	Последовательность	GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
кислоты BIIB-9- GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG		нуклеиновой	ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
		кислоты BIIB-9-	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG

ATCCAGTTTGCAAAGTTGCGCGTCCATCAAGGTTCAGCG GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC AGCCTGCAGCCTGAAGATTTCACTCTCACCATCAGC AGCCTGCAGCTTGAGATTTTGCAACTTATTACTGTCA GCAGGCATCCAGTTTCCCTCCTACTTTTTGCGGGAGGGA CCAAGGTTGAGATCAAA 361 последовательность ВІВ-9-1284_VL SLQSEDFAVYYCQQHNHLPITTGGGTXVEIK GAAATAGTGTTGAGCACCCTCTCTGTGAGGCCA KMCJOTE BIIB-9- 1284_VL GAAATAGTGTTGCAGCACCTCTCTGTCAGGCCAGGCCACGTTCAGTG KMCJOTE BIIB-9- 1284_VL AGCCTGGGAGCAACTTACCCTGCTACTTATTGGTGC AGCCTGCAGGCCAGGTTCCAGCCACCTCTCTGTGAGGACAACTTAGCTCTCATTAGTGTC AGCCTGCAGTTGGAGCAACTTTACCTTCAGTGAGAACACTTGCAGCAGGTTCAGTG ACCCTGCAGTTGGAGACACTTTCACTATTAGTGTCA GCAGCACAATCACCTCCTATCTATTGGTCAGCACCAGGTTCAGTG AGCCTGCAGTTGAGAGATTTTTATTACTGTCA GCAGCACAATCACCTCCTATCTATTGGCGGAGGAA CCAAGGTTGAGATTTTATTACTGTCA GCAGCACAATCACCTCCTATCTATTGGCGGAGGAA CCAAGGTTGAGATTTAGCAGTTTTATTACTGTCA GCAGCACAATCACCTCCTATCCATCTCAGCACCACCTTCTCT GTCCCAGGGGCAACTTAGCCTCCTACTTTTGGCGGAGGA CCAAGGTTGAGATTTAGCAGTTTTATTACTGTCA GCAGCACAATCACCTCCCTATCCATCTCAGCACCACCTTCTCT GTCCCAGGGGAAAGAACCACCCTCTCCTCCAGGGCCA GTCACAGGTTAGCAGCACCTTCTCTTG GTCCCAGGGGAAAGAACCCACCCTTCCTCTCAGGGCCA AAACCTGGCCAGGCCA		1283_VL	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
AMMHORMURIOTHAR BIB-9-1284_VL BIB-9-1284_VL BIB-9-1284_VL GARATAGTGCAGCAGCACCCTCTCCTGCTGCTGCTGTTTTGGCGGAGGGCACCCTGTCTGT			ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
GCAGGCATCCAGTTTCCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCANA			GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
CCAAGGTTGAGATCAAA			AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
361 ВПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—9-1284_VL КРБОДАРКІLІУGASTRATGIPARFSGSGSTEFTLTIS 362 ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ КИСЛОТЬ ВІІВ—9-1284_VL GAAATAGTGTTGACGCACCCTCTCCTGCAGGGCCA 362 ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ КИСЛОТЬ ВІІВ—9-1284_VL БІІВ—9-1284_VL 363 ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ КИСЛОТЬ ВІІВ—9-1285_VL БІІВ—9-1285_VL 364 АМИНОКИСЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ КИСЛОТЬ ВІІВ—9-1285_VL БІІВ—9-1285_VL 364 ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ КИСЛОТЬ ВІІВ—9-1285_VL БІІВ—9-1285_VL 365 ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ КИСЛОТЬ ВІІВ—9-1285_VL GAAATAGTGTAGCAGAGTTCCCAGCCACCCTGTCTGT GTCCCAGGGGCAAGGGGGAAGGGGAAGGGCACCCTCTCCTGCAGGGCCACCCTGTCTGT			GCAGGCATCCAGTTTCCCTCCTACTTTTGGCGGAGGGA
361 последовательность ВІІВ-9-1284_VL КРЯОДРЯКЬІ УКДОВЕРГАТУУСОДНЯНЬРІТРЯЗОВОВЯТЕТЬТІ І ЗАЛАГАЯТИТЬ ВІІВ-9-1284_VL КРЯОДРЯКУКОДНЯНЬРІТРЯЗОВОВЯТЕТЬТІ І ЗАЛАГАЯТИТЬ ВІІВ-9-1285_VL БІІВ-9-1286_VL КРЯОДРЯКЬКИ КОЗОВЕРГАТУУСОДНЯ ВІІВ-9-1286_VL КРЯОДРЯКТИТЬ ВІІВ-9-1286_VL КРЯОДРЯКТИТЬ ВІІВ-9-1286_VL КРЯОДРЯКТИТЬ ВІІВ-9-1286_VL КРЯОДРЕКТИТЬ ВІІВ-9-1286_VL КРЯОДРЕКТИТЬ ВІІВ-9-1286_VL КРЯОДРЕКТИТЬ ВІІВ-9-1286_VL КРЯОДРЕКТИТЬ ВІІВ-9-1286_VL КРЯОДРЕКТИТЬ ВІІВ-9-1286_VL ВОДИТОВ ВІІВ-9-1286_VL ВОДИТОВ ВІІВ-9-1286_VL ВОДИТОВ ВІІВ-9-1286_VL ВОДИТОВ ВІІВ-9-1286_VL ВОДИТОВ ВРЕГРЕЗВУВНЕННЯ ВІІВ-9-1286_VL ВОДИТОВ ВІІВ-9-1286_VL ВОДИТОВ ВІІВ-9-1286_VL ВОДИТОВ ВІІВ-9-1286_VL ВОДИТОВ ВІВ-9-1286_VL ВОДИТОВ ВРЕГРЕДОВ ВІВ-9-1286_VL ВОДРЕРУТУТУСОДАЯ В РРЕГРЕДОВ КУВЕТ ВІВ-9-1286_VL ВОДОВ ВЕРГРЕДОВ ВІВ-9-1286_VL ВОДРЕРУТУТУСОДАЯ В РРЕГРЕДОВ КУВЕТ ВІВ-9-1286_VL ВОДРЕРИТУТУСОДАЯ В РРЕГРЕДОВ КУВЕТ ВІВ-9-1286_VL ВОДРЕРИТУТУСОДАЯ В РРЕГРЕДОВ КУВЕТ ВІВ-9-1286_VL ВОДРЕРИТУТУСОДАЯ В РРЕГРЕДОВ КУВЕТ ВІВ-9-1286_VL			CCAAGGTTGAGATCAAA
BIIB-9-1284_VL SLQSEDFAVYYCQQHNHLPITFGGGTKVEIK GAAATAGTGTTGACGCAGCCCCTCTCCTGCAGGGCCA GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTGGCAGCACCTTCCCTGCAGGGCCA GTCAGAGTGTTGGCAGCACCACTTCCATCATCGTGC AACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC AACCTGGCCAGGCTCCCAGGCTCCCAGGTTCAGTG AACCTGCCAGGCCACTGGTATCCCAGCAGGTTCAGTG CCAGTGGGTCTGGGACAGAGTTCACTCTCACTATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGCCACAATCACCTCCCTATCACTTTTGGCGGAGGGA ACCAAGGTTGAGATCAAA EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ BIIB-9-1285_VL SLQSEDFAVYYCQQASNFPPTFGGGTKVEIK GAAATAGTGATGACGCACCCTTCTCTGCAGGGCCA GTCCCAGGGGAAAGAGCCACCCTTCTCTGCAGGGCCA GTCCCAGGGGAAAGAGAGTTCCAGCCACCCTGTCTGT GTCTCCCAGGGGAAAGAGGCCACCCTTCTCTGCAGGGCCA GTCCACAGGGCAACTTAGCCTGGTACCAGCAG AACCTGGCCAGGCTCCCAGGCTCCCAGCCAGGTTCAGCAGAACTTAGCCTGGTACCAGCAGAACTTAGCCTGGTACCAGCAGAACTTAGCCTGGTACCAGCAGAACTTAGCCTGGTACCAGCAACTTAGCCTGGTACCAGCAACTTAGCCTGGTACCAGCAACTTAGCCTGGTACAGCAACTTAGCCTGCTAGCTA		Аминокислотная	EIVLTQSPATLSVSPGERATLSCRASQSVGSNLAWYQQ
GAAATAGTGTTGACGCAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTGGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCTATCATTGGTGC AAACCTGGCCAGGCTCCCAGGCTCCCAGCTTCACTATCAGTG CCAGAGTCTGAAGATTTTGCAGCTATCACTATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGCACAAATCACCTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKUCJOTHAR EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS BIIB-9-1285_VL GAAATAGTGATGACGCAGCTCTCCAGCACCCTGTCTGT GTCTCCAGGGGAAAGACCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCTCCAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCCAGCCAGGTTCAGTG GCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGGGCCTCCAATTTTCCCTCCTACCTTTTTGGCGGAGGGA ACCTGCAGTTGAAGATTTTTCCAGCTACTATGTCA GCAGGCCTCCAATTTTCCCTCCTCTCACCATCAGC AGCCTGCAGTTTGAAGATTTTTCCAGCTACTTTTTTTCAGC GCAGGCCTCCAATTTTCCCTCCTCTACTTTTTTTCAGC GCAGGCCTCCAATTTTCCCTCCTCTCTCACCATCAGC AGCCTGCAGTTTGAAGATTTTTCCAGCTGTTTATTACTGTCA GCAGGCCTCCAATTTTCCCTCCTCTACTTTTTTTCAGC GCAGGCCTCCAATTTTCCCTCCTCTCTCTCACCATCAGC AGCCTGCAGTTTGAGAA AMMHOKUCJOTHA DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ CCAAGGTTGAGATCAAA AMMHOKUCJOTHA DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ KPGKAPKLLIYAASSLQSGVPSRFSGGSGGTDFTLTIS BIIB-9-1286_VL SLQPEDFVTYYCQQASSFPPTFGGGTKVEIK GCACTCCAGGTCCCAGCTCTCCATCTTCCGTGTCTCC GCACGCCTCCAATTTCCCTCCTCTCTCTCTCTCTCTCTCT	361	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
GTCTCCAGGGGAAAGAGCCACCTTCTCTGCAGGGCCA GTCAGAGTTTGCCAGGGCCACTGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC AAACCTGGCCAGGCTCCCAGGCTCCCAGGCTCCAGGTTCAGTG AAACCTGGCCAGGCTCCCAGGCTCCCAGGCTCCAGGTTCAGTG CCACAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGAAGATTTTGCAGTTTATTACTGTCA GCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKMCNOTHAR GCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA BIIB-9-1285_VL GAAATAGTGATGACGCAGCTCTCCAGCCACCCTGTCTGT GTCTCCAGGGGAAAGACCCACCCTTCTCTGCAGGCCCA GTCAGAGTGTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGCCACCCTGTCTGT GTCTCCAGGGGAAAGACCACCCTTCTCTGCAGGGCCA GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCTCACCTATCAGTG CAAGGTTTAGCAGCAACTTTGCAGCTAGGCAGCCAGGTTCCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCCAGCCAGGTTCAGTG CCAAGGTTTAGCAGCAAAA ACCTGCCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG CCAAGGTTTAGCAGAAAATTTTGCAGTTCAACAGCAGCAGCTCCCAATCTTCCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGGCCTCCAATTTCCCTCCTCTCTCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGGCCTCCAATTTCCCTCCTCTACTTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKMCNOTHAR DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ CCAAGGTTGAGATCAAA AMMHOKMCNOTHAR DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ TCCAAGGTTGAGACCCAGTCTCCATCTTCCGTGTCTGC GCAGCTCCAATTTCCCTCCTCCTCTCTCTCCTCTC		BIIB-9-1284_VL	SLQSEDFAVYYCQQHNHLPITFGGGTKVEIK
362 Последовательность нуклеиновой кислоты ВІІВ-9- 1284_VL			GAAATAGTGTTGACGCAGTCTCCAGCCACCCTGTCTGT
Последовательность нуклеиновой кислоты ВІІВ-9- 1284_VL			GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
AAACCTGGCCAGGCTCCCAGCTCCTATCTATGGTGC RUCJOTH BIIB-9- 1284_VL ACCTGGAGGCTCCCAGGCTCCCAGGTTCAGTG GCAGTGGGTCTGGAGATTTTGCAGTTTATTACTGTCA GCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHORMCJOTHAЯ EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ BIIB-9-1285_VL SLQSEDFAVYYCQQASNFPPTFGGGTKVEIK GAAATAGTGATGAGGCAGCCACCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTGTCTGT GTCTCCAGGGGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGCCACCCTGTCTGT GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGCCACCCTGTCAGTG AAACCTGGCCAGGCTCCCAGCCACCCTGTCAGTG CCAGGGTCTGGAGAAGAGTCACCTCTCATCTATGGTGC AAACCTGGCCAGGCTCCCAGCCACCCTGTCAGTG CCAGGGTCTGGAAGATTTTCCAGCCAGCAGGTCAGGCAGCACCTGGTACCAGCAG AACCTGGCCAGGCTCCCAGGCTCCCAGCCACCTTCCAGCAGGCAG		Посполовалоницосли	GTCAGAGTGTTGGCAGCAACTTAGCCTGGTACCAGCAG
362 кислоты BIIB-9- 1284_VL ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGACAGAGTTCACTCTCACTATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 363 последовательность ВIIB-9-1285_VL EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQASNFPPTFGGGTKVEIK 364 GAAATAGTGATGACGCAGCCTCTCCTGCAGGGCCA GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC AACCTGGGACAGAGTTCACTCTCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGGCCTCCAATTTCCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 365 AMMHOKUCJOTHAR DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ ACCTGCAGTTGAGATCAAA 366 TOCJELOBATEJBHOCTB BIIB-9-1286_VL SLQPEDFVTYYCQQASSFPPTFGGGTKVEIK 366 TOCJELOBATEJBHOCTB GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC 367 TOCJELOBATEJBHOCTB KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS 368 TOCJELOBATEJBHOCTB GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC			AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
1284_VL GCAGTGGGTCTGGGACAGAGTTCACTCTCACTATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA	362		ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 363 ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—9—1285_VL SLQSEDFAVYYCQQASNFPPTFGGGTKVEIK GAAATAGTGATGACGCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGAAGATTTTGCAGTTCACTACTGTCA GCAGGCTCCAATTTCCCTCCTACTTTTTGCAGGAGGGA ACCTGCAGTTGAAGATTTTGCAGTTTATTACTGTCA GCAGGCTCCAATTTCCCTCCTACTTTTTGCGGGAGGGA CCAAGGTTGAGATCAAA AMMHOKUCJOTHAR DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ CCAAGGTTGAGATCAAA AMMHOKUCJOTHAR DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ SCAGTGCAGATGACCCAGTCTCCATCTTCCGTGTCTGC GCACTCCAATTTCCCTCCTACTTTTTGCAGGAGGAGAGAGA			GCAGTGGGTCTGGGACAGAGTTCACTCTCACTATCAGC
З64AMИНОКИСЛОТНАЯEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ363ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ-9-1285_VLКРБQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQASNFPPTFGGGTKVEIK364GAAATAGTGATGACGCAGCCTCTCCTGCAGGGCCA GTCTCCAGGGGAAAGAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTGTCCTGCAGGGCCA GTCAGAGGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGCCAGCTCAGCAGCAG AAACCTGGCCAGGCTCCCAGCCAGCTCAGTG ACCCACCAGGGCCACTGGTATCCCAGCCAGCTG GCAGTGGGTCTGGAAGATTTTGCAGTTCACCATCAGC AGCCTGCAGTTCGAAGATTTTGCAGTTTATTACTGTCA GCAGGCCTCCAATTTCCCTCCTACTTTTGGCGGAGGGA ACCAAGGTTGAGATCAAA365AMMHOKUCJOTHAS DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS BIIB-9-1286_VLSLQPEDFVTYYCQQASSFPPTFGGGTKVEIK366HOCJEJOBATEJBHOCTB BIOCJEJOBATEJBHOCTBGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC		1284_VL	AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
363АминокислотнаяEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ364последовательность ВІІВ-9-1285_VLКРGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS364GAAATAGTGATGACGCAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC ATCCACCAGGGCCACCTGGTATCCCAGCCAGGTTCAGTG GCAGTGGTCTGGAGGGCCACTGGTATCCCAGCCAGGTTCAGTG 			GCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGGA
363последовательность ВІІВ-9-1285_VLКРGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQASNFPPTFGGGTKVEIK364GAAATAGTGATGACGCAGCTCTCCAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC ACCCACAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGAGATTTTCCCAGCCAGCAGCT AGCCTGCAGTTGAGATTTTTCCACCATCAGC AGCCTGCAGTTTGAGATTTTTTTACTGTCA GCAGGCCTCCAATTTCCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA365AMMHOKUCJOTHAR ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ-9-1286_VLDIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS SLQPEDFVTYYCQQASSFPPTFGGGTKVEIK366ПОСЛЕДОВАТЕЛЬНОСТЬ SLQPEDFVTYYCQQASSFPPTFGGGTKVEIK			CCAAGGTTGAGATCAAA
BIIB-9-1285_VLSLQSEDFAVYYCQQASNFPPTFGGGTKVEIKGAAATAGTGATGACGCAGCTCTCCAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG HYKЛЕИНОВОЙ KИСЛОТЫ BIIB-9- 1285_VLAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGGCCTCCAATTTCCCTCCTACTTTTGGCGGAGGA CCAAGGTTGAGATCAAA365AMMHOKUCЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ BIIB-9-1286_VLDIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ KPGKAPKLLIYAASSLQSGVPSRFSGSGGTDFTLTIS SLQPEDFVTYYCQQASSFPPTFGGGTKVEIK366ПОСЛЕДОВАТЕЛЬНОСТЬ GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC		Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGAAGATTTTGCAGTTTATTACTGTCA GCAGGCCTCCAATTTCCCTCCTACTTTTGGCGGAGGA CCAAGGTTGAGATCAAA AMMHOKUCJOTHA DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS BIIB-9-1286_VL GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC	363	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
364 Последовательность нуклеиновой кислоты віїв-9- 1285_VL — ССААССТССТССТССТССТСТССТСТССТСАССАТСАТСТАТСАСТАТСТАТСТАТСАТС		BIIB-9-1285_VL	SLQSEDFAVYYCQQASNFPPTFGGGTKVEIK
364 Последовательность нуклеиновой кислоты віїв-9- 1285_VL АССТСАССАСТСТСТАТСТАТСТАТСТАТОВОВОВОТОВНІВНЯ ВІЗВ-9- 365 Последовательность ВІЗВ-9-1286_VL SLQPEDFVTYYCQQASSFPPTFGGGTKVEIK 366 Последовательность БАСАТССАБАТБАСССАБСТСАТСТСТССТВСТТСТВСТВТВ ВІЗВ-9-1286_VL GACATCAGATGACCAGT GACATCAGC GACATCAGC SCAAGGTTGAGATCACATCAGC ACCATCAGC ACCATCAGC ACCATCAGC ACCATCAGC ACCTGCAGTTTATTACTGTCA GCAGGCCTCCAATTTCCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 367 Последовательность КРБКАРКЬ ВІЗВ-9-1286_VL SLQPEDFVTYYCQQASSFPPTFGGGTKVEIK 368 Последовательность GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC			GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
364Последовательность нуклеиновой кислоты 1285_VLAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGGCCTCCAATTTCCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA365AMMHOKUCЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ-9-1286_VLDIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ SLQPEDFVTYYCQQASSFPPTFGGGTKVEIK366ПОСЛЕДОВАТЕЛЬНОСТЬGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC			GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
364нуклеиновой кислоты 1285_VLAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGGCCTCCAATTTCCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA365AMMHOKUCЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—9—1286_VLDIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS SLQPEDFVTYYCQQASSFPPTFGGGTKVEIK366ПОСЛЕДОВАТЕЛЬНОСТЬ GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC		Поспаповащальность	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
364 кислоты 1285_VLBIIB-9- GCAGTGGGTCTGGGACAGAGTTCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGGCCTCCAATTTCCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAAАминокислотная 365DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS SLQPEDFVTYYCQQASSFPPTFGGGTKVEIK366Последовательность ПоследовательностьGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC		нуклеиновой кислоты ВІІВ-9-	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
1285_VLGCAGTGGGTCTGGGACAGAGTTCACCTCTCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGGCCTCCAATTTCCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA365Аминокислотная 	364		ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGGCCTCCAATTTCCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA Aминокислотная DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS BIIB-9-1286_VL SLQPEDFVTYYCQQASSFPPTFGGGTKVEIK Последовательность GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC 366			GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
З65ПоследовательностьGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC366ПоследовательностьGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC			AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
ЗабьАминокислотнаяDIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ365последовательностьKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISВІІВ-9-1286_VLSLQPEDFVTYYCQQASSFPPTFGGGTKVEIK366ПоследовательностьGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC			GCAGGCCTCCAATTTCCCTCCTACTTTTGGCGGAGGGA
365последовательностьKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISBIIB-9-1286_VLSLQPEDFVTYYCQQASSFPPTFGGGTKVEIK366ПоследовательностьGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC			CCAAGGTTGAGATCAAA
BIIB-9-1286_VL SLQPEDFVTYYCQQASSFPPTFGGGTKVEIK Последовательность GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC		Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
— Последовательность GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC 366	365	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
366		BIIB-9-1286_VL	SLQPEDFVTYYCQQASSFPPTFGGGTKVEIK
	266	Последовательность	GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
	300	нуклеиновой	ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA

	кислоты ВІІВ-9-	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	1286_VL	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
		ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
		GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGCCTGCAGCCTGAAGATTTTGTAACTTATTACTGTCA
		GCAGGCATCCAGTTTCCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQ
367	последовательность	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI
	BIIB-9-1287_VL	SRLEPEDFAVYYCQQYHLHPTFGGGTKVEIK
		GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAG
	Последовательность	CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG
368	нуклеиновой	TGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCA
	кислоты ВІІВ-9-	GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATC
	1287_VL	AGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTG
		TCAGCAGTACCACCTCCACCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Антитела клас	са IV – последовательности VL
	Аминокислотная	DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQ
369	последовательность	KPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTIS
	BIIB-9-397_VL	SLQPEDIATYYCQQSDDHPPTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA
	Поспеловащель чость	
	Поспеловательность	GTCAGGACATTAGCAACTATTTAAATTGGTATCAGCAG
	Последовательность	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC
370	нуклеиновой	
370	нуклеиновой кислоты BIIB-9-	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC
370	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC ATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTG
370	нуклеиновой кислоты BIIB-9-	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC ATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTG GAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGC
370	нуклеиновой кислоты BIIB-9-	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC ATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTG GAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCA
370	нуклеиновой кислоты BIIB-9-	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC ATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTG GAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCA GCAGTCCGATGACCACCCTCCTACTTTTGGCGGAGGGA
370	нуклеиновой кислоты BIIB-9- 397_VL	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC ATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTG GAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGC AGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCA GCAGTCCGATGACCACCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA

Последовательность нуклеиновой кислоты віїв—9—			GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
Последовательность			ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
нуклеиновой кислоты віїв-9- 578_VL — ССАВСТТССАВСТССТТАССТТТАССТСТО ССАВСТТТСАСТТТСАСТТТТСАСТТТТСАСТТТТСАСТТТТСАСТТТТСАСТТТСАСТТТСАСТТТСАСТТТСАСТТТСАСТТТСАСТТТСАСТТТСАСТТТСАСТТТСАСТТТСАСТТТСАСТТТТСАСТТТСАСТТТСАСТТТСАСТТТСАСТТТСАСТТТТСАСТТТТСАСТТТТСАСТТТСАСТТТТСАСТТТТСАСТТТТСАСТТТТСАСТТТТСАСТТТТСАСТТТТСАСТТТТСАСТТТТСАСТТТТСАСТТТТСАСТТТТСАСТТТТСАСТТТТСАСТТТТСАСТТТТСА ССАВСТТСАВ ССАВСТТВ СОВ СОВ ВІВ-9-612_VL ВЕРЕБРАЧУІ СОВ СТЕТЕТСАВ ССАВСТВ СТЕТЕТСАВ СОВ СТЕТЕТТВОВ СОВ СТЕТЕТТВ СТ		Подполорожени иоджи	GTCAGGGTATTGACAGCTGGTTAGCCTGGTATCAGCAG
372 жислоты BIIB-9-578_VL ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC 578_VL GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAG AGCCTGCAGCCTGAAGATTTCACTCTCACCATCAG 373 AMMHOKUCJOTHAR DIQMTQSPSSVSASVGDRVTITCRASQGISRWLAWYC 373 DIOMTQSPSSVSASVGDRVTITCRASQGISRWLAWYC KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTI 374 SLQPEDFATYYCQQRTSFPLTFGGGTKVEIK GACATCCAGATGACCATCACTTTCCGTGTCTC 4 ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGGCC CTCAGGGTATTAGCAGGTGGTAGCCATCACTTGTCGGGGCC 574 KULROTH BIIB-9- 631_VL AACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTC 4ACCAGGTAAAGCTCCTGAACTTATTACTGTC GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAAC AACCTGCAGCCTGAAGATTTCCCTCTCACCTTTTTGGCGGAGGC CCAAGGTTGGAACAAA 375 ROCLEGAGACACCACCCTTCTCTGACCACCACCACCACCACCACCACCACCACCACCACCACC			AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAG AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTC GCAGGCAAATTTCCTCCCTTTCACTTTTGGCGGAGGG CCAAAGTTGAGATCAAA AMMHORMCRIOTHAR DIQMTQSPSSVSASVGDRVTITCRASQGISRWLAWYC BIIB-9-631_VL SLQPEDFATYYCQQRTSFPLTFGGGTKVEIK GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTC ATCTGTAGGACCAGATTCACCTTGTCGGGCC GTCAGGGTATTAGCAGGTGTAGCCTGGTATCAGCA AAACCAGGGAAAGCCCCTAAGCTCCATCTTCACCATCACCACCACCACCACCACCACCACC	372	_	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTC GCAGGCAAATTTCCTCCCTTTCACTTTTGGCGGAGGG CCAAGGTTGAGATCAAA AMMHOKUCJOTHAR DIQMTQSPSSVSASVGDRVTITCRASQGISRWLAWYC SLQPEDFATYYCQQRTSFPLTFGGGTKVEIK GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTG ATCTGTAGGAGACCAGGTCACCATCACTTGCGGGCG GTCAGGGTATTAGCAGGTGGTACCACCATCACTTGCGGGCG GTCAGGGTATTAGCAGGTGGTTAGCCTGGATCTAGCTG AACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTG GCAGGAAACCAGGGAAAGCCCCTAAGCTCCACCATCACTGTCGGGCG GCAGGGAAACCAGGTTCCACTCACTATGCTG GCAGGGAAACCAGGTTCCACTCTACCACCACCACCAGGCTCGAGCACCACCACCACCACCACCACCACCACCACCACCAC			GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
AMИНОКИСЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВ ВІІВ—9—612_VL АМИНОКИСЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ КИСЛОТНАЯ ВІІВ—9—612_VL ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—9—612_VL ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—9—612_VL ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—9—612_VL ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ АТССАБТТТБСАААБТЕБЕБЕТАТТЕСТСТСТЕТСТВОЕТОВОТОВОТЬ ВІІВ—9—612_VL ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ АМИНОКИСЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—9—612_VL ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ КИСЛОТНІ ВІІВ—9—612_VL ОСАВТЕТСКАВОВСТОССАВОСТОТЕСТАСТТЕТОВСТВОЕТОВОТОВНІВНОСТЬ НУКЛЕИНОВОЙ КИСЛОТНІ ВІІВ—9—612_VL ОСАВТЕТССАВОВОТЕСТАВОТНЕТНОВОЕТОВНІВНОСТЬ НУКЛЕИНОВОЙ КИСЛОТНІ ВІІВ—9—612_VL ОСАВТЕТСТВОВОТЕТТАВОТНОВОТЬ АЛСССАВСАВОВСТВОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ КИСЛОТНІ ВІІВ—9—612_VL ОСАВТЕТСТВОВОТНЕННОВОЙ КИСЛОТНІ ВІІВ—9—612_VL ОСАВТЕТСТВОВОТЕТТАВОТНОВОЕТОВНІВНОВНЯЯ ВІТЬ ВОГОМНЬЯ ВІІВ—9—612_VL ОСАВТЕТСТВОВОТИТЬНОВОЕТОВНЬНОВНЯЯ ВІТЬ ВОГОМНЬЯ ВІТЬ—9—612_VL ОСАВТЕТСТВОВНЯЯ ВІТЬ ВОГОМНЬЯ ВІТЬ—9—612_VL ВОГОМНЬЯ ВІВ—9—612_VL ВОГОМНЬЯ ВІТЬ—9—612_VL ВОГОМНЬЯ ВІТЬ—9—612_VL ВОГОМНЬЯ ВІВ—9—612_VL ВОГОМНЬЯ ВІТЬ—9—612_VL ВОГОМНЬЯ ВІВ—9—612_VL ВОГОМНЬЯ		370_VII	AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
373 Аминокислотная DIQMTQSPSSVSASVGDRVTITCRASQGISRWLAWYQ 373 последовательность KPGKAPKLLIYAASSLQSGVPSRFSGSSGTDFTLTI 374 SLQPEDFATYYCQQRTSFPLTFGGGTKVEIK 374 GACATCCAGATGACCAGTCTCCATCTTCCGTGTCTC 4 ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCC 5 GTCAGGGTATTAGCAGGTGGTATCAGCT 4 AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTC 5 CCAGGGTATTGCAGGTGGGTCCCATCAAGGTTCAGC 4 AACCAGGGAAAGCCCTTAAGCTCCTGCCATCAGC 631_VL GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAG 631_VL GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAG 632_VL GCAGTGGATCAGA 4 AGCCTGCAGCCTGAAGATTTTCACTCTCACCATCAG 6 CCCAAGGTTGAGATCTTACCTCTCACCATCAGC 6 CCCAAGGTTGAGATCTTACCTCTCACCATCAG 6 CCCAAGGTTGAGATCTACACGTCTCTTTT 6 GCAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTT 6 GTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCC 6 GTCCAGAGGTTTAGCAGGTACCTACCTACCAGCACCTTCTCTCCAGGGGCCACCTCTCCTCTCAGCAGCACCTCTCCAGGCAGG			GCAGGCAAATTTCCTCCCTTTCACTTTTGGCGGAGGGA
373 последовательность KPGKAPKLLIYAASSLQSGVPSRFSGSSGTDFTLTI SLQPEDFATYYCQQRTSFPLTFGGTKVEIK GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTC ATCTGTAGGAGACACAGAGTCACCATCACTTGTCGGGCG GTCAGGGTATTAGCAGGTTAGCCCGGTATCAGCACACACA			CCAAGGTTGAGATCAAA
BIIB-9-631_VL SLQPEDFATYYCQQRTSFPLTFGGGTKVEIK GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTC ATCTGTAGGAGACCAGTCTCCATCTTCCGTGTCTC ATCTGTAGGAGACCAGTCTCCATCTTCCGTGTCTC ATCTGTAGGAGACCAGTCACCATCACTTGTCGGGCC GTCAGGGTATTAGCAGGTGGTTAGCCTGGTATCAGCA AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTC AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTC AAACCAGGGAAAGTCTGCAACTCACATCAAGGTTCAGC CCAGGTTGGACAGATTTTCACTCTCACCATCAAG AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTC GCAGAGAACCAGTTTCCCTCTCACTTTTTGGCGGAGGGC CCAAGGTTGAGATCAAA AMMHORMCAOTHAR BIIB-9-612_VL SLEPEDFAVYYCQQSSLFPLTFGGGTKVEIK GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCC GTCAGAGTGTTAGCAGGTACTTAGCCTGAGGCC GTCACAGGTTTAGCAGGTACCTACCAACAACAACAACAACAACAACAACAACAACAA		Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISRWLAWYQQ
GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTC ATCTGTAGGAGACAGAGTCACCATCATCTTCCGTGTCTC ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCG GTCAGGGTATTAGCAGGTGGTTAGCCTGGTATCAGCA AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTG AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTG AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTG AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTG ATCCAGTTTGCAAAGTTGCACCATCAGG GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAG AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTG GCAGGAGAACCAGTTTCCCTCTCACTTTTTGGCGGAGGGG CCAAGGTTGAGATCAAA AMMHOKUCJOTHA EIVLTQSPATLSLSPGERATLSCRASQSVSRYLAWYQ BIIB-9-612_VL SLEPEDFAVYYCQQSSLFPLTFGGGTKVEIK GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCC GTCAGAGTGTTAGCAGGGTACCTAGCTAGTG AACCTGGCCAGGCTCCCAGCCAGCTTCCAGCACCACCACACA AACCTGGCCAGGCTCCCAGCCAGGCTCCCAGCCAGGTTCAGT ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT AACCTGGCCAGGCTCCCAGCCAGGTTCAGT ACCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT ACCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT ACCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT ACCCACAGGGCCTGGAAGATTTTGCAGTTTATTACTGTC GCAGTTCGAGCCTGAAGATTTTTGCAGTTTATTACTGTC GCAGTTCCAGTCTCTCCCTCTCACCTTTTTGCCGGAGGGC GCAGTTCCAGTCTCTCCCTCTCCACCTTTTTTGCCGGAGGGC GCAGTTCCAGTCTCTTCCCTCTCACCTTTTTTGCCGGAGGGC GCAGTTCCAGTCTCTTCCCTCTCACCTTTTTTGCCGGAGGGC GCAGTTCCAGTCTCTCCCTCTCCACCTTTTTTTTTT	373	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
атстатададасадатсассатсасттатсадасадататадасадататада дадататада дадатата дадатата дадатата дадатата дадатата дадата		BIIB-9-631_VL	SLQPEDFATYYCQQRTSFPLTFGGGTKVEIK
Последовательность нуклеиновой кислоты віїв-9- 374 Аминокислотная последовательность віїв-9-612_VL Последовательность нуклеиновой кислоты віїв-9-612_VL З76 Последовательность віїв-9-612_VL З76 Последовательность нуклеиновой кислоты віїв-9-612_VL З76 Последовательность нуклеиновой кислоты віїв-9-612_VL З76 Последовательность нуклеиновой кислоты віїв-9-612_VL З776 З776 З776 Последовательность нуклеиновой кислоты віїв-9-612_VL З776 З776 З776 Последовательность нуклеиновой кислоты віїв-9-612_VL З776 З776 З776 З776 Последовательность нуклеиновой кислоты віїв-9-612_VL З776 З776 З776 З776 З776 З776 З776 Последовательность нуклеиновой кислоты віїв-9-612_VL З776			GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
Последовательность нуклеиновой кислоты ВІІВ-9- Адассададатстададатттададатттададатттададатта да			ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
алассадодаладосссталостостодот статостостодот статостостодостодостодостодостодостодост		Последовательность	GTCAGGGTATTAGCAGGTGGTTAGCCTGGTATCAGCAG
374 кислоты BIIB-9-631_VL ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC 631_VL AGCCTGCAGCCTGAAGATTTCACTCTCACCATCAG AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTC GCAGAGAACCAGTTTCCCTCTCACTTTTGGCGGAGGG CCAAGGTTGAGATCAAA AMMHOKUCJOTHAЯ EIVLTQSPATLSLSPGERATLSCRASQSVSRYLAWYQ 375 ПОСЛЕДОВАТЕЛЬНОСТЬ KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTI BIIB-9-612_VL SLEPEDFAVYYCQQSSLFPLTFGGGTKVEIK GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCC GTCAGAGTGTTAGCAGGTACCTACCATCAGCAACAACAACAACAACAACAACAACAACAACAACAAC			AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGE AGCCTGCAGCCTGAAGATTTCACTCTCACCATCAGE GCAGAGAACCAGTTTCCCTCTCACTTTTGGCGGAGGG CCAAGGTTGAGATCAAA AMMHOKUCJOTHAЯ BIIB-9-612_VL GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTT GTCTCCAGGGGAAGAGCCACCCTCTCTCTGCAGGGCC GTCAGAGTTGACACAGTCTCCAGCCACCCTGTCTT GTCTCCAGGGGAAGAGCCACCCTCTCCTGCAGGGCC GTCAGAGTGTTAGCAGGTACTTAGCCTGGTACCAACA AAACCTGGCCAGGCTCCCAGGCTCCCAGCCAGCTCAGTCAG	374		ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTC GCAGAGAACCAGTTTCCCTCTCACTTTTTGGCGGAGGG CCAAGGTTGAGATCAAA AMMHOKUCJOTHAЯ BIIB-9-612_VL GAAATTGTGTTGACACAGTTCCAGCCACCCTGTCTT GTCTCCAGGGGAAAAACAAAAC			GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
ССААGGTTGAGATCAAA AMMHOKUCЛОТНАЯ BIIB-9-612_VL GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCACCTGTCTT HYKЛЕИНОВОЙ KUCЛОТЫ BIIB-9- 612_VL CCAAGGTTGAGATCAAA EIVLTQSPATLSLSPGERATLSCRASQSVSRYLAWYQ KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTI GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTT GTCTCCAGGGGGAAAGAGCCACCCTCTCCTGCAGGGCC GTCAGAGTGTTAGCAGGTACTTAGCCTGGTACCAACA AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATG GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAG AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTC GCAGTCCAGTC			AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
АминокислотнаяEIVLTQSPATLSLSPGERATLSCRASQSVSRYLAWYQ375последовательностьKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIВІІВ-9-612_VLSLEPEDFAVYYCQQSSLFPLTFGGGTKVEIKПоследовательность нуклеиновой кислотыGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCACCCTGTCTT GTCAGAGTGTTAGCAGGTACCTAGCTAGCACACA AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGATG ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGA AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGGTCCAGTCCCACCTCTCCCTCC			GCAGAGAACCAGTTTCCCTCTCACTTTTGGCGGAGGGA
375 ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—9—612_VL SLEPEDFAVYYCQQSSLFPLTFGGGTKVEIK GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCC GTCAGAGTGTTAGCAGGTACTTAGCCTGGTACCAACA AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATG AAACCTGGCCAGGCTCCCAGCCAGGTTCAGT ATCCAACAGGGCCACCTGTCTTATGATG ACCCTAGACAGGGCCACTGCCAGCCAGGTTCAGT GCAGTGGGTCTGGGACAGACTTCACCTCTCACCATCAG AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTC GCAGTCCAGTC			CCAAGGTTGAGATCAAA
BIIB-9-612_VL SLEPEDFAVYYCQQSSLFPLTFGGGTKVEIK GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCC GTCAGAGTGTTAGCAGGTACTTAGCCTGGTACCAACA AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATG ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAG AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTC GCAGTCCAGTC		Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSRYLAWYQQ
GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCC GTCAGAGTGTTAGCAGGTACTTAGCCTGGTACCAACA AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATG ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAG AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTC GCAGTCCAGTC	375	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCC GTCAGAGTGTTAGCAGGTACTTAGCCTGGTACCAACA AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATG ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAG AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTC GCAGTCCAGTC		BIIB-9-612_VL	SLEPEDFAVYYCQQSSLFPLTFGGGTKVEIK
Последовательность нуклеиновой кислоты BIIB-9-612_VL GTCAGAGTGTTAGCAGGTACTTAGCCTGGTACCAACA AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATG AAACCTGGCCAGGCTCCCAGGCTCCAGGTTCAGT ACCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT AGCCTAGAGACTTCACTCTCACCATCAG AGCCTAGAGACTTTAGCTGTCAGGTCCAGTCTCACCTTTTTGGCGGAGGGGCCACTGCAGTTTATTACTGTCAGGTCCAGTCCACTTTTTGGCGGAGGGCCAACACACAC			GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
Последовательность нуклеиновой кислоты BIIB-9- GCAGTCCTGGCCAGGCTCCCAGGCTCCAGCCAGGTTCAGT AGCCTAGAGAGACTTGACTCTCACCATCAGGAGAGACTTCACTCTCACCATCAGGAGAGAGA			GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
АААССТGGCCAGGCTCCCAGGCTCCTCATCTATGATG нуклеиновой кислоты BIIB-9- 612_VL AGCCTAGAGCTCCCAGGCTCCTCATCTATGATG GCAGTGGGTCTGGCATCCCAGCCAGGCTTCAGT AGCCTAGAGCCTGAAGACTTCACTCTCACCATCAG GCAGTCCAGTC		нуклеиновой кислоты ВІІВ-9-	GTCAGAGTGTTAGCAGGTACTTAGCCTGGTACCAACAG
376 кислоты BIIB-9- ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT 612_VL GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAG AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTC GCAGTCCAGTCTCTCCCTCTCACTTTTGGCGGAGGGG			AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAG 612_VL AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTC GCAGTCCAGTC	376		ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTC GCAGTCCAGTC			GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
			AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
ССАВССТТСАСАТСЛАЛ			GCAGTCCAGTCTCTCCCTCTCACTTTTGGCGGAGGGA
COANGUITGAGAICAAA			CCAAGGTTGAGATCAAA
Антитело класса V- последовательности VL			
377 Аминокислотная QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIHWV	377	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIHWVR

	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-12-891_VH	STVYMELSSLRSEDTAVYYCARASIYRGLGAFDIWGQG
		TMVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATCCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
378	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
3/8	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	891_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCTAGGGCATCTATAT
		ACCGAGGTCTCGAGCCTTCGACATATGGGGTCAGGGT
		ACAATGGTCACCGTCTCCTCA
	7) - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
379	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
319	последовательность	STVYMELSSLRSEDTAVYYCARGLGRRTPTAFDIWGQG
	BIIB-12-892_VH	TMVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
	Последовательность	GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
		CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
380	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
300	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	892_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGACTAGGAA
		GAAGAACTCCAACCGCCTTTGATATTTGGGGTCAGGGT
		ACAATGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMVWVR
381	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
201	BIIB-12-893_VH	STVYMELSSLRSEDTAVYYCARDPGRRQYSFYGMDVWG
		QGTTVTVSS
	Последовательность	CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
382	нуклеиновой	GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
202	кислоты BIIB-12-	GATACACCTTCACCAGCTACTATATGGTCTGGGTGCGA
1	893 VH	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT

		CNNCCCTNCTCCTCCTNCCNCNNCCCNCNCNCNCNCNCN
		CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGATCCAGGAA
		GAAGGCAATACTCTTTCTACGGTATGGATGTCTGGGGC
		CAGGGAACAACTGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
383		QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
303	последовательность	STVYMELSSLRSEDTAVYYCARGGGYKSRGIDYWGQGT
	BIIB-12-895_VH	LVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	 CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	нуклеиновой	 CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
384	кислоты ВІІВ-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	895 VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
	_	 GGACACGGCGGTGTACTACTGCGCCAGAGGTGGAGGAT
		ACAAATCTAGAGGCATTGACTACTGGGGACAGGGTACA
		TTGGTCACCGTCTCCTCA
		QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
385	последовательность	STVYMELSSLRSEDTAVYYCARGLGQQRRGFDIWGQGT
	BIIB-12-896_VH	
		LVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
386	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
	кислоты ВІІВ-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	896_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGACTAGGAC
		AGCAGCGGCGTGGCTTCGACATATGGGGTCAGGGTACA
		TTGGTCACCGTCTCCTCA
387	Аминокислотная	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGW

	последовательность	IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
	BIIB-12-897_VH	KNQFSLKLSSVTAADTAVYYCAREGRTYYGGWFDPWGQ
		GTLVTVSS
		CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
		GTGGCTCCATCAGCAGTAGTAGTTACTACTGGGGCTGG
	Последовательность	ATCCGCCAGCCCCAGGGAAGGGGCTGGAGTGGATTGG
388	нуклеиновой	GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT
300	кислоты BIIB-12-	CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
	897_VH	AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGAGAAGGGA
		GAACATACTACGGCGGTTGGTTCGATCCCTGGGGACAG
		GGTACATTGGTCACCGTCTCCTCA
	A MATALLO TALLO CILLO CI	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
389	Аминокислотная последовательность	QAPGQGLEWMGIINPSGGSTTYAQKFQGRVTMTRDTST
309		STVYMELSSLRSEDTAVYYCARGDRMLRAFDPWGQGTL
	BIIB-12-898_VH	VTVSS
		CAGGTGCAGCTGGGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
	Последовательность	GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
		CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
390	нуклеиновой	CAACCCTAGTGGTGGTAGCACAACCTACGCACAGAAGT
	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	898_VH	AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGGGACAGGA
		TGTTAAGAGCATTCGACCCATGGGGACAGGGTACATTG
		GTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
391	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
391	BIIB-12-899_VH	STVYMELSSLRSEDTAVYYCARGPRTSSPLYFDLWGRG
		TLVTVSS
	Последовательность	CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
392	нуклеиновой	GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
	кислоты BIIB-12-	GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	899_VH	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT

		CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGGCCTAGAA
		CATCATCACCTCTATACTTCGACCTATGGGGGAGAGGT
		ACCTTGGTCACCGTCTCCTCA
	73	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
	Аминокислотная	QAPGQGLEWMGIINPGGGSTSYAQKFQGRVTMTRDTST
	последовательность	STVYMELSSLRSEDTAVYYCARSGGMYDRELGMDVWGQ
	BIIB-12-900_VH	GTTVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
394	нуклеиновой	CAACCCTGGTGGTGGTAGCACAAGCTACGCACAGAAGT
	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	900_VH	AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGATCAGGCGGAA
		TGTACGACCGAGAGCTCGGAATGGACGTATGGGGCCAG
		GGAACAACTGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMSWVR
	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-12-901 VH	STVYMELSSLRSEDTAVYYCARSRPRRPSPYGMDVWGQ
	B11B 12 901_VII	GTTVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGTCATGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
396	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGGACACGTCCACG
	901_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCTAGATCAAGACCAA
		GACGACCAAGCCCATACGGAATGGACGTATGGGGCCAG
		GGAACAACTGTCACCGTCTCCTCA
		QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR

	последовательность	QAPGQGLEWMGIINPGGGSTSYAQKFQGRVTMTRDTST
	BIIB-12-902_VH	STVYMELSSLRSEDTAVYYCARGGPRRAYSWYFDYWGQ
		GTLVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
398	нуклеиновой	CAACCCTGGTGGTGGTAGCACAAGCTACGCACAGAAGT
398	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	902_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGTGGGCCTA
		GAAGGCCTACAGCTGGTACTTTGACTACTGGGGACAG
		GGTACATTGGTCACCGTCTCCTCA
	The state of the s	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
399	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
399	последовательность ВІІВ-12-903_VH	STVYMELSSLRSEDTAVYYCARDLGYTAGAFGYWGQGT
		LVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
	Последовательность	GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
		CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
400	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
400	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	903_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGACCTGGGAT
		ACACCGCAGGGGCTTTTGGCTACTGGGGACAGGGTACA
		TTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
401	последовательность ВІІВ-12-904_VH	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
 401		NTLYLQMNSLRAEDTAVYYCARGSGRSGYHYWGQGTLV
		TVSS
	Последовательность	CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
402	нуклеиновой	GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
404	кислоты BIIB-12-	GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	904 VH	CAGGCTCCAGGCAAGGGGCTGGAGTGGCTGGCAGTTAT

		ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
		TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
		AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGCTCTGGAA
		 GATCCGGGTACCATTACTGGGGACAGGGTACATTGGTC
		ACCGTCTCCTCA
		QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
	Аминокислотная	 QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
403	последовательность	~ NTLYLQMNSLRAEDTAVYYCAKGGTYLDTWGQGTLVTV
	BIIB-12-905_VH	SS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTAT
	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
404	кислоты ВІІВ-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	905_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAAGGGCGGAACAT
		ACTTAGACACTTGGGGACAGGGTACATTGGTCACCGTC
		TCCTCA
	Аминокислотная	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
405	последовательность	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
	BIIB-12-906 VH	NTLYLQMNSLRAEDTAVYYCAKSSRHFDYWGRGTLVTV
		SS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
406	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
100	кислоты BIIB-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	906_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAAGTCTAGTAGAC
		ATTTCGATTACTGGGGACGGGGTACATTGGTCACCGTC
		TCCTCA
407	Аминокислотная	QVQLQESGPGLVKPSETLSLTCAVSGYSISSGYYWAWI
L		L

	последовательность	RQPPGKGLEWIGSIYHSGSTYYNPSLKSRVTISVDTSK
	BIIB-12-907_VH	NQFSLKLSSVTAADTAVYYCARESGMSGAAYWGQGTLV
		TVSS
		CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCGCTGTCTCTG
		GTTACTCCATCAGCAGTGGTTACTACTGGGCTTGGATC
	Последовательность	CGGCAGCCCCAGGGAAGGGGCTGGAGTGGATTGGGAG
408	нуклеиновой	TATCTATCATAGTGGGAGCACCTACTACAACCCGTCCC
400	кислоты BIIB-12-	TCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAG
	907_VH	AACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGCCGC
		AGACACGGCGGTGTACTACTGCGCCAGAGAGTCTGGAA
		TGAGCGGAGCGGCTTACTGGGGACAGGGTACATTGGTC
		ACCGTCTCCTCA
	Аминокислотная	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
409		QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
409	последовательность	NTLYLQMNSLRAEDTAVYYCAKGPRGMDVWGQGTTVTV
	BIIB-12-908_VH	SS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
410	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
	кислоты BIIB-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	908_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAAGGGCCCCAGAG
		GAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTC
		TCCTCA
	Аминокислотная	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
411	последовательность ВІІВ-12-909_VH	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
411		NTLYLQMNSLRAEDTAVYYCAKGKHRRRSFDIWGQGTM
		VTVSS
	Последовательность	CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
412	нуклеиновой	GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
414	кислоты BIIB-12-	GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	909 VH	CAGGCTCCAGGCAAGGGGCTGGAGTGGCTGGCAGTTAT

		ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
		 TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
		AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCAAAGGGCAAGCACA
		GAAGGAGGTCATTCGACATATGGGGTCAGGGTACAATG
		GTCACCGTCTCCTCA
		QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSW
	Аминокислотная	IRQHPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
413	последовательность	~
	BIIB-12-910_VH	KNQFSLKLSSVTAADTAVYYCARGPLQRQVRYFDLWGR GTLVTVSS
		CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCACAGACCCTGTCCCTCACCTGTACTGTCTCTG
		GTGGCTCCATCAGCAGTGGTGGTTACTACTGGAGCTGG
	Последовательность	ATCCGCCAGCACCCAGGGAAGGGCCTGGAGTGGATTGG
414	нуклеиновой	GTCAATCTATTACAGTGGGAGCACCTACTACAACCCGT
	кислоты BIIB-12-	CCCTCAAGAGTCGAGTTACCATATCAGTAGACACGTCT
	910_VH	AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGAGGTCCCT
		TGCAAAGACAAGTGAGATACTTCGACCTATGGGGGAGA
		GGTACCTTGGTCACCGTCTCCTCA
	7 MALIO MACHO MAIO G	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
415	Аминокислотная	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
413	последовательность	NTLYLQMNSLRAEDTAVYYCARGRGMDVWGQGTTVTVS
	BIIB-12-911_VH	S
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
416	кислоты BIIB-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	911 VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
	_	GGACACGGCGGTGTACTACTGCGCCAGAGGCAGGGGAA
		TGGATGTATGGGGCCAGGGAACAACTGTCACCGTCTCC
		TCA
417	Аминокислотная	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
		E. E

	последовательность	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
	BIIB-12-912_VH	NTLYLQMNSLRAEDTAVYYCAKSGGRYGYDIWGQGTMV
		TVSS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
418	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
410	кислоты BIIB-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	912_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAAGTCCGGTGGAA
		GATACGGGTACGACATATGGGGTCAGGGTACAATGGTC
		ACCGTCTCCTCA
	7. guio rai gara a a a a a a a a a a a a a a a a a	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVR
419	Аминокислотная	QAPGQGLEWMGWISAYNGNTNYAQKLQGRVTMTTDTST
419	последовательность ВІІВ-12-913_VH	STAYMELRSLRSDDTAVYYCARGGVSRFWGQGTLVTVS
		S
		CAGGTTCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTCTCCTGCAAGGCTTCTG
		GTTACACCTTTACCAGCTATGGTATCAGCTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGATGGAT
420	нуклеиновой	CAGCGCTTACAATGGTAACACAAACTATGCACAGAAGC
420	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCACAGACACATCCACG
	913_VH	AGCACAGCCTACATGGAGCTGAGGAGCCTGAGATCTGA
		CGACACGGCGGTGTACTACTGCGCCAGAGGTGGCGTGA
		GTAGATTCTGGGGACAGGGTACATTGGTCACCGTCTCC
		TCA
	Anguarda de Eura d	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
421	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
421	последовательность	STVYMELSSLRSEDTAVYYCARAPRYRGTMDVWGQGTT
	BIB-12-914_VH	VTVSS
	Последовательность	CAGGTGCAGCTGGGGCTGAGGTGAAGAA
422	нуклеиновой	GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
422	кислоты BIIB-12-	GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	914_VH	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT

		CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGCCCCTAGAT
		ACCGAGGTACCATGGATGTGTGGGGCCAGGGAACAACT
		GTCACCGTCTCCA
		QLQLQESGPGLVKPSETLSLTCTVSGGSISSSRYYWGW
	Аминокислотная	 IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
423	последовательность	KNQFSLKLSSVTAADTAVYYCARVGGGYANPWGQGTLV
	BIIB-12-915_VH	TVSS
		CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
		GTGGCTCCATCAGCAGTAGTCGCTACTACTGGGGCTGG
	Последовательность	ATCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGG
101	нуклеиновой	GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT
424	кислоты ВІІВ-12-	CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
	915_VH	AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGAGTTGGAG
		GAGGATACGCCAACCCATGGGGACAGGGTACATTGGTC
		ACCGTCTCCA
	Anatalouage de mus d	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
425	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
423	последовательность ВІІВ-12-916 VH	STVYMELSSLRSEDTAVYYCARGGRQKATRRVDVWGQG
	B11B 12 910_VII	TVVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
426	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
720	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	916_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGAGGTAGAC
		AAAAGGCAACAAGGAGGGTAGACGTATGGGGTCAGGGT
		ACAGTGGTCACCGTCTCCTCA
427	Аминокислотная	EVQLVQSGAEVKKPGESLKISCKGSGYSFTTYWIGWVR
	i e e e e e e e e e e e e e e e e e e e	

	последовательность	QMPGKGLEWMGIIYPGDSDTRYSPSFQGQVTISADKSI
	BIIB-12-917_VH	STAYLQWSSLKASDTAMYYCARGRFRPRGRFDYWGQGT
		LVTVSS
		GAGGTGCAGCTGGTGCAGTCTGGAGCAGAGGTGAAAAA
		GCCCGGGGAGTCTCTGAAGATCTCCTGTAAGGGTTCTG
		GATACAGCTTTACCACCTACTGGATCGGCTGGGTGCGC
	Последовательность	CAGATGCCCGGGAAAGGCCTGGAGTGGATGGGGATCAT
428	нуклеиновой	CTATCCTGGTGACTCTGATACCAGATACAGCCCGTCCT
420	кислоты BIIB-12-	TCCAAGGCCAGGTCACCATCTCAGCCGACAAGTCCATC
	917_VH	AGCACCGCCTACCTGCAGTGGAGCCAGCCTGAAGGCCTC
		GGACACGGCGATGTACTACTGCGCCAGAGGCAGATTCA
		GACCTAGAGGCAGATTCGACTACTGGGGACAGGGTACA
		TTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
429		QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
423	последовательность	NTLYLQMNSLRAEDTAVYYCAKSLGGRSFDIWGQGTMV
	BIIB-12-918_VH	TVSS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
430	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
450	кислоты BIIB-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	918_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCAAAGAGCTTGGGAG
		GTAGATCATTCGACATATGGGGTCAGGGTACAATGGTC
		ACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
431	последовательность	QAPGQGLEWMGVINPSGGSTSYAQKFQGRVTMTRDTST
101	BIIB-12-919 VH	STVYMELSSLRSEDTAVYYCARGANIAVGRRYADYWGQ
	B11B 12 313_VII	GTLVTVSS
	Последовательность	CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
432	нуклеиновой	GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
432	кислоты BIIB-12-	GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	919_VH	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAGTCAT

		CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGTGCTAACA
		TAGCAGTCGGCAGACGCTACGCAGACTACTGGGGACAG
		GGTACATTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVR
433	последовательность	QAPGQGLEWMGWISPYNGNTNYAQKLQGRVTMTTDTST
	BIIB-12-920 VH	STAYMELRSLRSDDTAVYYCARGSGHTTMFWGQGTLVT
	_	VSS
		CAGGTTCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTCTCCTGCAAGGCTTCTG
		GTTACACCTTTACCAGCTATGGTATCAGCTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGAT
434	нуклеиновой	CAGCCCTTACAATGGTAACACAAACTATGCACAGAAGC
434	кислоты ВІІВ-12-	TCCAGGGCAGAGTCACCATGACCACAGACACATCCACG
	920_VH	AGCACAGCCTACATGGAGCTGAGGAGCCTGAGATCTGA
		CGACACGGCGGTGTACTACTGCGCCAGAGGGTCTGGAC
		ACACAACCATGTTCTGGGGACAGGGTACATTGGTCACC
		GTCTCCTCA
	7	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
405	Аминокислотная	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
435	последовательность	NTLYLQMNSLRAEDTAVYYCAKVGDRGTRAFDPWGQGT
	BIIB-12-921_VH	LVTVSS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	 CAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTAT
	нуклеиновой	 ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
436	кислоты ВІІВ-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	921 VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
	_	GGACACGGCGGTGTACTACTGCGCCAAGGTAGGAGACA
		GAGGTACCCGTGCATTCGACCCATGGGGACAGGGTACA
		TTGGTCACCGTCTCCTCA
437	ДМИНОМИСПОШИО	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
43/	Аминокислотная	

	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-12-922_VH	STVYMELSSLRSEDTAVYYCARRGRIAGMWGQGTTVTV
		SS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
438	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
430	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	922_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAAGAGGACGCA
		TAGCAGGCATGTGGGGCCAGGGAACAACTGTCACCGTC
		TCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
439	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
433	BIIB-12-923 VH	STVYMELSSLRSEDTAVYYCARGAGYLQRAFDIWGQGT
	D11D 12 323_VII	MVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
440	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
	кислоты ВІІВ-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	923_VH	AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGTGCCGGAT
		ATCTACAGAGAGCCTTCGATATATGGGGTCAGGGTACA
		ATGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
441	последовательность ВІІВ-12-924 VH	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
		NTLYLQMNSLRAEDTAVYYCAKGKSSERGLNPWGQGTL
		VTVSS
	Последовательность	CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
442	нуклеиновой	GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
	кислоты BIIB-12-	GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	924_VH	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT

		ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
		TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
		AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCAAAGGGCAAGAGCT
		CGGAACGAGGTCTCAACCCATGGGGACAGGGTACATTG
		GTCACCGTCTCCA
		QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
443	последовательность	 STVYMELSSLRSEDTAVYYCARDGRMARGASPDYWGQG
	BIIB-12-926_VH	TLVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
444	кислоты ВІІВ-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	926_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGACGGCAGAA
		TGGCAAGAGGTGCTAGCCCAGATTACTGGGGACAGGGT
		ACATTGGTCACCGTCTCCTCA
	Analio Marcho Ello d	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMSWVR
445	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
440	последовательность ВІІВ-12-927 VH	STVYMELSSLRSEDTAVYYCARDSGRKRYYYMDVWGKG
	BIIB 12 327_VII	TTVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGTCATGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
446	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
1110	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	927_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGACTCAGGAA
		GGAAAAGATACTACATGGACGTATGGGGCAAGGGT
		ACAACTGTCACCGTCTCCTCA
447	Аминокислотная	QVQLVEFGVGVVQPGRSLRLSCAASGFTFSSYGMHWVR
	•	•

	последовательность	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
	BIIB-12-928_VH	NTLYLQMNSLRAEDTAVYYCAKGGTYLDTWGQGTLVTV
		SS
		CAGGTGCAGCTGGTGGAGTTTGGGGTAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
448	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
440	кислоты BIIB-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	928_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAAGGGCGGAACAT
		ACTTAGACACTTGGGGACAGGGTACATTGGTCACCGTC
		TCCTCA (
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
449	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
447	BIIB-12-929 VH	STVYMELSSLRSEDTAVYYCARDQGYSRSFDIWGQGTM
	B11B 12 323_VII	VTVSS
		CAGGTGCAGCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
450	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
130	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	929_VH	AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGGGACCAGGGAT
		ACTCAAGGTCATTCGACATATGGGGTCAGGGTACAATG
		GTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
451	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-12-930 VH	STVYMELSSLRSEDTAVYYCARVRQKATLLFQHWGQGT
		LVTVSS
452	Последовательность	CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
	нуклеиновой	GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
	кислоты BIIB-12-	GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	930_VH	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT

		CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		 GGACACGGCGGTGTACTACTGCGCCAGGGTCAGACAAA
		AGGCAACATTGTTGTTCCAACACTGGGGACAGGGTACA
		TTGGTCACCGTCTCCTCA
		QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMSWVR
	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
453	последовательность	STVYMELSSLRSEDTAVYYCARDPVOEYGPYYYYMDVW
	BIIB-12-931_VH	GKGTTVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGTCATGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
454	кислоты ВІІВ-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	931 VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGATCCGGTGC
		AGGAGTACGGCCCCTACTACTACTACATGGACGTATGG
		 GGCAAGGGTACAACTGTCACCGTCTCCTCA
		QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
	Аминокислотная	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
455	последовательность	~ NTLYLQMNSLRAEDTAVYYCARLGYRGASAFDIWGQGT
	BIIB-12-932_VH	MVTVSS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		 GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		 GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
		 CAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTAT
	Аминокислотная	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
456	последовательность	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	BIIB-12-932_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGATTGGGATACA
		GAGGGGCCTCAGCTTTCGACATATGGGGTCAGGGTACA
		ATGGTCACCGTCTCCTCA
457	Аминокислотная	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR

	последовательность	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
	BIIB-12-933_VH	NTLYLQMNSLRAEDTAVYYCARLPRFTGTAYWGQGTLV
		TVSS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
458	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
450	кислоты BIIB-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	933_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGACTTCCTAGAT
		TCACTGGTACCGCTTACTGGGGACAGGGTACATTGGTC
		ACCGTCTCCTCA
	A MATALLO TALLO CILLO CI	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
459	Аминокислотная	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
439	последовательность ВІІВ-12-934 VH	NTLYLQMNSLRAEDTAVYYCARESGGHSYGMDVWGQGT
	B11B-12-934_VH	TVTVSS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
460	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
400	кислоты BIIB-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	934_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGAGAGTCTGGAG
		GTCACAGCTACGGAATGGACGTATGGGGCCAGGGAACA
		ACTGTCACCGTCTCCTCA
	Д м инокиспошьэ а	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
461	Аминокислотная последовательность ВІІВ-12-935 VH	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
		NTLYLQMNSLRAEDTAVYYCARELEYGHYGMDVWGQGT
	DIID 12 900_VII	TVTVSS
462	Последовательность	CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
	нуклеиновой	GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
	кислоты BIIB-12-	GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	935_VH	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT

		ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
		TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
		AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGAGAGTTGGAAT
		ATGGGCATTACGGAATGGACGTATGGGGCCAGGGAACA
		ACTGTCACCGTCTCCA
	Аминокислотная	EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVR
463	последовательность	QAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSK
	BIIB-12-936 VH	NTLYLQMNSLRAEDTAVYYCAKDGGWYEAYGMDVWGQG
	DIID 12 330_VII	TTVTVSS
		GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACA
		GCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG
		GATTCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGC
	Последовательность	CAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTAT
4.6.4	нуклеиновой	TAGTGGTAGTGGTAGCACATACTACGCAGACTCCG
464	кислоты BIIB-12-	TGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAG
	936_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAAGGACGGTGGAT
		GGTACGAGGCATACGGAATGGACGTATGGGGCCAGGGA
		ACAACTGTCACCGTCTCCTCA
	_	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
465	последовательность	STVYMELSSLRSEDTAVYYCARPTRMLRSYGMDVWGQG
	BIIB-12-937_VH	TTVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	 CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	нуклеиновой	 CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
466	кислоты ВІІВ-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	937 VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
	_	 GGACACGGCGGTGTACTACTGCGCCAGACCTACTAGGA
		TGTTAAGGAGCTACGGAATGGACGTATGGGGCCAGGGA
		ACAACTGTCACCGTCTCCTCA
467	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
401	Kphromory	5 A ATT A ADOUTH A LITTLE QUO A LEAD OF LA LEAD A L

	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-12-1288_VH	STVYMELSSLRSEDTAVYYCARGGANDYGSSSRWWYFD
	_	LWGRGTLVTVSS
		CAGGTGCAGCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
468	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
400	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1288_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGAGGTGCTA
		ACGACTACGGCAGCAGCCGATGGTGGTACTTCGAC
		TTATGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
	7	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
4.60	Аминокислотная	QAPGQGLEWMGIINPGGGSTSYAQKFQGRVTMTRDTST
469		STVYMELSSLRSEDTAVYYCARGPPRTYATGSHNWFDP
	BIIB-12-1289_VH	WGQGTLVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGAATGGGAATAAT
470	нуклеиновой	CAACCCTGGTGGTGGTAGCACAAGCTACGCACAGAAGT
470	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1289_VH	AGCACAGTCTACATGGAGCTGAGCCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGACCGCCTA
		GAACCTACGCAACCGGAAGCCACAATTGGTTCGACCCC
		TGGGGACAGGTACATTGGTCACCGTCTCCTCA
	A MATALLO TALLO CITTO CI	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
 171	Аминокислотная	QAPGQGLEWMGIINPGGGSTSYAQKFQGRVTMTRDTST
471	последовательность	STVYMELSSLRSEDTAVYYCAREGGRYVRGMDVWGQGT
	BIIB-12-1290_VH	TVTVSS
472	Последовательность	CAGGTGCAGCTGGGGCTGAGGTGAAGAA
	нуклеиновой	GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
	кислоты BIIB-12-	GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	1290_VH	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT

		CAACCCTGGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		 GGACACGGCGGTGTACTACTGCGCCAGAGAGGGAGGAA
		 GATACGTGAGAGGAATGGACGTATGGGGCCAGGGAACA
		ACTGTCACCGTCTCCTCA
		QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
473	последовательность	STVYMELSSLRSEDTAVYYCARSRRMWVGYFDLWGRGT
	BIIB-12-1291_VH	LVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Подполовони иоди	
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
474	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
	кислоты ВІІВ-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1291_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCTAGATCAAGAAGGA
		TGTGGGTAGGCTACTTCGACCTATGGGGGAGAGGTACC
		TTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIHWVR
475	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
475	BIIB-12-1292 VH	STVYMELSSLRSEDTAVYYCARDPGRRQSSGFDYWGQG
	DIID 12 1232_VII	TLVTVSS
		CAGGTGCAGCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATCCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
476	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
476	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1292_VH	AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGATCCAGGAA
		GAAGGCAAAGTTCTGGATTCGATTACTGGGGACAGGGT
		ACATTGGTCACCGTCTCCTCA
477	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR

	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-12-1293_VH	STVYMELSSLRSEDTAVYYCARGSGGKHRGLDVWGQGT
		MVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
478	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
4/0	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1293_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGCTCTGGAG
		GCAAACACAGAGGTCTAGACGTATGGGGTCAGGGTACA
		ATGGTCACCGTCTCCA
	Anguarda da mara d	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVR
479	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
4/9	последовательность ВІІВ-12-1294 VH	STVYMELSSLRSEDTAVYYCARGTRSSRDMDVWGQGTT
	BIIB-IZ-IZ94_VH	VTVSS
		CAGGTGCAGCTGGGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
480	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
400	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1294_VH	AGCACAGTCTACATGGAGCTGAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGCACTAGAT
		CCAGCAGAGACATGGATGTGTGGGGCCAGGGAACAACT
		GTCACCGTCTCCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMVWVR
481	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-12-1295 VH	STVYMELSSLRSEDTAVYYCARVGGATTGKIGYGMDVW
	DIID IZ IZ 00_VII	GQGTTVTVSS
482	Последовательность	CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
	нуклеиновой	GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
	кислоты BIIB-12-	GATACACCTTCACCAGCTACTATATGGTCTGGGTGCGA
	1295_VH	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT

		CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGTTGGAGGAG
		CCACCACAGGGAAAATCGGATACGGAATGGACGTATGG
		GGCCAGGGAACAACTGTCACCGTCTCCTCA
	Аминокислотная	EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVR
483	последовательность	QAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSK
	BIIB-12-1296 VH	NTLYLQMNSLRAEDTAVYYCAKGPPHYYYLWYFDLWGR
		GTLVTVSS
		GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACA
		GCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG
		GATTCACCTTTAGCACCTATGCCATGAGCTGGGTCCGC
	Последовательность	CAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTAT
404	нуклеиновой	TAGTGGTAGTGGTAGCACATACTACGCAGACTCCG
484	кислоты BIIB-12-	TGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAG
	1296_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAAGGGCCCTCCTC
		ACTACTATCTCTGGTACTTCGACCTATGGGGGAGA
		GGTACCTTGGTCACCGTCTCCTCA
		QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
105	Аминокислотная	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
485	последовательность	NTLYLQMNSLRAEDTAVYYCARSGGQTHRRSMDVWGQG
	BIIB-12-1297_VH	TTVTVSS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	 CAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTAT
	нуклеиновой	 ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
486	кислоты ВІІВ-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	1297 VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
	_	GGACACGGCGGTGTACTACTGCGCCAGATCAGGCGGAC
		AAACACACAGGAGGTCAATGGACGTATGGGGCCAGGGA
		ACAACTGTCACCGTCTCCTCA
487	AMMINIOTAL CHORUS C	
40/	Аминокислотная	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR

	последовательность	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
	BIIB-12-1298_VH	NTLYLQMNSLRAEDTAVYYCAKGGSDRRVGSWGQGTLV
		TVSS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
488	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
400	кислоты BIIB-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	1298_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAAGGGAGGTTCTG
		ACCGCAGAGTGGGCAGTTGGGGCACAGGGTACATTGGTC
		ACCGTCTCCTCA
	Anguarda da mara d	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
489	Аминокислотная	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
409	последовательность	NTLYLQMNSLRAEDTAVYYCARGGSRRAYVYWGQGTLV
	BIIB-12-1299_VH	TVSS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
490	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
450	кислоты BIIB-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	1299_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGCGGTTCTA
		GAAGGGCCTACGTTTATTGGGGACAGGGTACATTGGTC
		ACCGTCTCCTCA
	Аминокислотная	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
491	последовательность	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
4 <i>9</i> 1	BIIB-12-1300 VH	NTLYLQMNSLRAEDTAVYYCARGSKYLHAWGQGTLVTV
	DIID 12 1300_VII	SS
492	Последовательность	AGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAG
	нуклеиновой	CCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGG
	кислоты BIIB-12-	ATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCC
	1300_VH	AGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATA

494 494 495 ВІВ-12-1301_УН ВІВ-12-1301_УН			TCGTATGATGGAAGTAATAAATACTATGCAGACTCCGT
ACACGCTGTATCTGCAAATGAACACCTGAGAGCCGAG GACACGCGGTGTACTACTGCCCAGAGGTTCTAAATA CCTCCACGCATGGGGACACGGTACATTGGTCACCGTCT CCTCA 493 AMUHOKUCJOTHAЯ HOCJEGOBATEJBHOCTB BIIB-12-1301_VH CAGGTTCAGGGAGGTCTCGGGGGAGGGGTGGTCCA GCCTGGAGGTCCTGGGGGAGGGCTGGTCCA GCCTGGAGGTCCTGGGGGGAGGCGTGGCCCA GCCTGGAGGTCCTGGGGGGAGGCGTGGCCC GAGTTCACCTTCAGTAGCTATGGCATGGC			
493 493 Аминокислотная последовательность нуклеиновой вівв-12-1301_VH 494 495 Аминокислотная последовательность нуклеиновой вівв-12-1302_VH 496 496 496 496 496 496 496 49			
493 Aминокислотная последовательность Нуклеиновой Віїв-12-1302_VH Aминокислотная последовательность Нуклеиновой Кислоте Віїв-12-1302_VH Aминокислотная последовательность Нуклеиновой Кислоте Віїв-12-1302_VH Aминокислотная последовательность Нуклеиновой Кислоте Віїв-12-1302_VH Aминокислотная последовательность Нуклеиновой Кислоте Віїв-12-140000000000000000000000000000000000			
494 495 Aминокислотная последовательность Вів-12-1301_VH Дариновой кислоте Вів-12-1302_VH Дариновой вів-12-1302_VH Дариновой вів-12-1302_VH Дариновой кислоте Вів-12-1402-1402-1402-1402-1402-1402-1402-1			
AMMHOKUCJOTHAЯ последовательность BIIB-12-1301_VH Page			CCTCCACGCATGGGGACAGGGTACATTGGTCACCGTCT
493 АМИНОКИСЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—12—1301_VH ОАРЯКЯСЬЖУЗУДЗЯКУЎДЗЯКУУУДЗАКАЗАКУУУДЗАКАЗАКУУУДЗАКАЗАКУУДЗАКУУУДЗАКАЗАКУУДЗАКУУДЗАКУУДЗАКУУДЗАКУУДЗАКУУДЗАКУУДЗАКУУДЗАКУУДЗАКУУДЗАКУУДЗАКУУДЗАКУУДЗАКУУДЗАКУУДЗАКУУДЗАКУУДЗАКУДЗАК			CCTCA
493 последовательность ВІІВ—12—1301_VH САВСТСАССТСТСАСА ВІІВ—12—1301_VH САВСТСАССТТСАСТАСТАСТАСТАССАВОСАВОТОСТЬ Нуклеиновой кислоты ВІІВ—12— 1301_VH АМИНОКИСЛОТНАЯ последовательность ВІІВ—12—1302_VH АМИНОКИСЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—12—1302_VH САВСТСТАСТОВОСТВОВОТОСТВОВНОЕННОЕ В В В В В В В В В В В В В В В В В В В		Аминокисполная	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
BIIB-12-1301_VH VTVSS CAGGTGCAGCTGGTGAGACTCTCCTGTGCAGCGTCCCA GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT HYKЛЕИНОВОЙ KUCЛОТЫ BIIB-12- 1301_VH ACCGTATCTCCCAGAACAGCCTGAGACTCCCGAGACACTCCAGG GACACGGCGGTTACTCACAATGAACAGCCTGAGAACT ACCGAAGGGGCTGTACTCTCCAGAACAGCCTGAGAACCT ACCGAAGGGGAATGCCATCTCCCAGAACAGCCGAAACCT ACCGAAGGGGAATGCCATCTCCCAGACACTGGAAACT ACGGAAGGGGAATGCCATCTCGCAAATGAACACTCTGCACAATGAAACT ACGGAAGGGGAATGCCATCTCGCACAACTGGAAACT ACGGAAGGGGAATGCCATCTCGCACAGACCTGACAACT ACGGAAGGGGAATGCCATCTCGCACAGACCTGGAAACT ACGGAAGGGGAATGCCATCATGGGGCACAGACCTGACACT ACGGAAGGGGAATGCCATCTGGGGCACAGACCTTTG GTCACCGTCTCCTCA 495 BIIB-12-1302_VH CAGGTTCACCTTTACAACTATGGTACCACAAGACTTCTG GTTACACCTTTACCAACTATGGTATCAGCTGGGTGCGA GCCTGGGGCCTCAGTGAAGGTCTCTGCAAGGCTTCTG GTTACACCTTTACCAACTATGGTATCAGCTGGGTGCGA CAGGCCCTTGGACAAGGCCTTGGAGTGGATGGAT HYKNEUHOBOЙ KUCNOTЫ BIIB-12- TCCAGGGCAGAGTCACCATGACCACAGACACTCCACG AGCACAGCCTACAATGGAGCTGAGGGTCAGAGTG ACCGACAGGCCTTCCTCA GTCACCGTCTCCTCA CGACACGGCGGTGTACTATTGGGGTCAGGGTACAATG ACTGAGAGCCTTCCTCA GTCACCGTCTCCTCA CGACACGGCGGTGTACTATTGGGGTCAGGGTACAATG ACTGGAGAGCCTTCGATATATTGGGGTCAGGGTACAATG ACTGGAGAGCCTTCCTCCA CGACACGGCGGTGTACTATTGGGGTCAGGGTACAATG ACTGGAGAGCCTTCCTCCA CGACACGGCGGTGTACTACTGGGGAGCCTGAGATCTGA CGACACGCCTTCCTCCA CGACACGGCGTTCCTCCA CTCACCGTCTCCTCA CTCACCGTCTCCTCCA CTCACCTCTCCTCCA CTCACCTCTCCTCCA CTCACCTCTCTCCCCA CTCACCTCTCTCCCA	193		QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
CAGGTGCAGCTGGTGGAGTCTCGGGGGAGGCGTGGTCCA GCCTGGGAGGTCCTGAGACTCTCCTGTGCAGCGTCTG GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC CAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTAT HYKЛеиновой RUCЛОТЫ BIIB-12- 1301_VH AACACGCTGTATCTGCAAATGAACAGCCTGAGAACTG GGACACGGCGGTGTACTCCCAGAGACAATTCCAAG AACACGCTGTATCTCCAAATGAACAGCCTGAGAACT ACGGAAGGGGAATGCCATACTGCGCCAGAACTGGAACT ACGGAAGGGGAATGCCATACTGGGGCAGAACTG GTCACCGTCTCCTCA AMMHORICЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ BIIB-12-1302_VH VTVSS CAGGTTCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAA GCCTGGGGCCTAGTGAGGTTACTGGAGCTGAGGTTCTG GTTACACCTTTACCAACTATGGTACAGCTTCTG GTTACACCTTTACCAACTATGGTACAGCTGGAGCTTCTG GTTACACCTTTACCAACTATGGTACAGCAGACACTCTG GTTACACCTTTACCAACTATGGTATCAGCTGGGTGCGA HYKЛЕИНОВОЙ RUCЛОТЫ BIIB-12- TCCAGGGCCAGAGGCTTGAGTGGATGGATGGAT CAGGCCCTTGCAAAGGACCTTCACAGAACCTTATGCACAGAACCT CAGGCCCTTGAAAGGTCTCACAGAACCAAACTATGCACAGAACC AGCACCTTACAATGGTAACACAAACTATGCACAGAACC AGCACAGGCCTACATGGAGCTGAGGAGCCTGAGATCTGA CGACACGGCGGTGTACATTGGAGCTGAGGCTGAGATCTGA CGACACGGCGGTTACAATGGTACACACAGACCATCCACG AGCACAGGCCTTACAATGGTACACAGACCATCCACG AGCACAGGCCTTACAATGGTACACACAGACCATCCACG AGCACAGGCGTTACAATTGGAGCTGAGGGCTTGAG CGACACGGCGGTTACATTATGGGGTCAGGGTACAATG ACTGGAGAGCCTTCCTCA	455		NTLYLQMNSLRAEDTAVYYCARTGNYGRGMPYWGQGTL
494 494 Последовательность нуклеиновой нуклеиновой нуклеиновой носледовательность вітв-12-1302_VH 495 Последовательность нуклеиновой носледовательность носледовательность вітв-12-1302_VH 496 Последовательность носледовательность носледовательность носледовательность нуклеиновой нуклеиновой нуклеиновой нуклеиновой кислоты вітв-12-1302_VH 497 498 499 Аминокислотная последовательность вітв-12-1302_VH 499 Аминокислотная последовательность нуклеиновой кислоты вітв-12-1302_VH 499 499 499 499 499 499 Аминокислотная последовательность нуклеиновой кислоты вітв-12-1302_VH 499 499 499 499 499 499 499 4		B11B-12-1301_VII	VTVSS
494 494 494 494 494 494 494 494 494 494			CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
Последовательность			GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
494 Нуклеиновой кислоты віів-12- таааададададатадададададададададададада			GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
494 кислоты BIIB-12- TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG 1301_VH AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA GGACACGGCGGTGTACTACTGCGCCAGAACTGGAAACT 405 AMMHOKUCJOTHAR ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ-12-1302_VH QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGISWVR QAPGQGLEWMGWISAYNGNTNYAQKLQGRVTMTTDTST STAYMELRSLRSDDTAVYYCARARSDWRAFDIWGQGTM VTVSS 496 CAGGTTCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGCTTCAGCTGGGTGCGA CAGCCCTTGCAAAGGCTTGAGTGGATGGATCGA CAGCCCTTGCAAAGGCTTGAGCCACAGACCATCCACG CAGCCCTTGCAATGGTAACACAAACTATGCACAGAAGC CAGCCCTTGCAATGGTAACACAAACTATGCACAGAAGC CAGCACGGCGGTGTACCACTGAGCACACACACACTCCACG AGCACAGGCCTACATGGAGCTGAGGGTCACAGAACTTCAC GACACGGCGGTGTACTACTGCGCAAGGGCTAGAAGTG ACTGGAGAGCCTTCGATATATGGGGTCAGGGTACAATG ACTGGAGAGCCTTCCTCA		Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
496 Кислоты BIIB-12- TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG 496 Последовательность Нуклеиновой кислоты ВІІВ-12- CAGGCCCTGGACAGGCTTCAGAGCCTGAGAGCTGAAACT 496 Последовательность ВІІВ-12- CAGGCCCCTGGGGAGCTGGGGCTGAGACTGGAAACT 496 САССТТАСССТСА САССТТАСССТСА 496 Кислоты BIIB-12- 496 Кислоты BIIB-12- 496 Кислоты BIIB-12- 496 Кислоты BIIB-12- 496 САССССССССССССССССССССССССССССССССССС		нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
GGACACGGCGGTGTACTACTGCGCCAGAACTGGAAACT ACGGAAGGGGAATGCCATACTGGGGACAGGGTACATTG GTCACCGTCTCCTCA 495 Аминокислотная последовательность В11В-12-1302_VH САGGTTCAGGTGAGGTGAGGTTACATGTGAGGTGAGGTM ОДРОДЬ СВОЕВ СТОЕВ СТОЕВ СВОЕВ СВОЕ	494	кислоты BIIB-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
ACGGAAGGGGAATGCCATACTGGGGACAGGGTACATTG GTCACCGTCTCCTCA AMMHORMCЛОТНАЯ последовательность BIIB-12-1302_VH CAGGTTCAGCTGGTGCAGTTGAGCTGAGCTGAGGTMAGAA GCCTGGGGCCTCAGTGAAGGTCTCGCAAGGCTTCTG GTTACACCTTTACCAACTATGGTATCAGCTGGGTGCAG HYRЛЕИНОВОЙ RUCЛОТЫ BIIB-12- 1302_VH AGCACAGGCCTACATGGAGCTGAGGTCAGAACCACACACA		1301 VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
495 Аминокислотная последовательность ВІІВ-12-1302_VH QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGISWVR QAPGQGLEWMGWISAYNGNTNYAQKLQGRVTMTTDTST STAYMELRSLRSDDTAVYYCARARSDWRAFDIWGQGTM VTVSS Последовательность ВІІВ-12-1302_VH CAGGTTCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGTCTCCTGCAAGGCTTCTG GTTACAACTATGGTATCAGCTGGGTGCGA GCCCTGGACAAGGGCTTGAGTGGATGGATGGAT CAGCCCTTGACAATGGTAACACAAACTATGCACAGAAGC CAGCCCTTGACAATGGTAACACAAACTATGCACAGAAGC CAGCCCTACATGGAGCCACAGACACATCCACG AGCACAGGCCTACATGGAGCTGAGAGTG ACCACAGGCCTACATGGAGCTGAGAGTG ACCACAGGCCTACATGGAGCCTAGAAGTG ACTGGAGAGCCTTCGATATATGGGGTCAGGGTACAATG GTCACCGTCTCCTCA		_	GGACACGGCGGTGTACTACTGCGCCAGAACTGGAAACT
AMMHOKMCЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ВIIB—12—1302_VH САGGTTCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAA ССАGGCCCTGGACAAGGCTTCTGCAAGGCTTCTG НУКЛЕИНОВОЙ КИСЛОТЫ ВIIB—12— ТССАGGGCAGAGTCACATGACCACAGACACATCCACG 1302_VH АGCACAGGCTTACAATGGTACCAAGGCTTGAGTCAGATCTGA АGCACAGGCTTACAATGGTACCACAGAACCATCACCAC 1302_VH АGCACAGGCCTACATGGAGCTGAGGACACACACACACCACGACACCACACACCACGACACCAC			ACGGAAGGGGAATGCCATACTGGGGACAGGGTACATTG
495Аминокислотная последовательность ВІІВ—12—1302_VHQAPGQGLEWMGWISAYNGNTNYAQKLQGRVTMTTDTST STAYMELRSLRSDDTAVYYCARARSDWRAFDIWGQGTM VTVSSСАGGTTCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGTCTCCTGCAAGGCTTCTG GTTACACCTTTACCAACTATGGTATCAGCTGGGTGCGAПоследовательность нуклеиновой кислотыCAGGCCCCTGGACAAGGGCTTGAGTGGATGGAT CAGCGCTTACAATGGTAACACAAACTATGCACAGAAGC TCCAGGGCAGAGTCACCATGACCACAGACACTCCACG AGCACAGCCTACATGGAGCTGAGAGCCTGAGATCTGA CGACACGGCGGTGTACTACTGCGCAAGGGCTAGAAGTG ACTGGAGAGCCTTCGATATATGGGGTCAGGGTACAATG GTCACCGTCTCCTCA			GTCACCGTCTCCTCA
495Последовательность ВІІВ-12-1302_VHQAPGQGLEWMGWISAYNGNTNYAQKLQGRVTMTTDTST STAYMELRSLRSDDTAVYYCARARSDWRAFDIWGQGTM VTVSS496CAGGTTCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGTCTCCTGCAAGGCTTCTG GTTACACCTTTACCAACTATGGTATCAGCTGGGTGCGA CAGCCCCTGGACAAGGGCTTGAGTGGATGGAT CAGCCCTTGACAAGGGCTTGAGTGGATGGAT CAGCCCTTGACAAGGGCTTGAGTGGATGGAT CAGCGCTTACAATGGTAACACAAACTATGCACAGAAGC RUCJOTEL BIIB-12-CAGCGCTTACAATGGTAACACAAACTATGCACAGAAGC TCCAGGGCAGAGTCACCATGACCACAGACACATCCACG AGCACAGCCTACATGGAGCTGAGAGCCTAGAAGTG ACTGGAGAGCCTTCGATATATGGGGTCAGGGTACAATG GTCACCGTCTCCTCA			QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGISWVR
BIIB—12—1302_VH VTVSS CAGGTTCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGTTCTCTGCAAGGCTTCTG GTTACACCTTTACCAACTATGGTATCAGCTGGGTGCGA Hyклеиновой кислоты BIIB—12— TCCAGGGCAGAGTCACCACAGACACATCCACG 1302_VH AGCACAGCCTTCGATGAGGGTCAGGAGTCTGA CGACAGGCGTGTACAATGGTACCACAGAGCCTAGAAGTG ACTGGAGAGCCTTCGATATATGCGCAAGGGCTTGAG CGACACGGCGGTGTACTACTGCGCAAGGGCTAGAAGTG ACTGGAGAGCCTTCGATATATATGGGGTCAGAATG GTCACCGTCTCCTCA		Аминокислотная	QAPGQGLEWMGWISAYNGNTNYAQKLQGRVTMTTDTST
BIIB-12-1302_VH VTVSS CAGGTTCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGTCTCCTGCAAGGCTTCTG GTTACACCTTTACCAACTATGGTATCAGCTGGGTGCGA Hyклеиновой кислоты BIIB-12- 1302_VH AGCACAGCCTACATGGAGCAGAGGCCTGAGATCTGA CGACACGGCGGTGTACATGGAGCCAAGGGCTTGAGTGAGT	495	последовательность	STAYMELRSLRSDDTAVYYCARARSDWRAFDIWGOGTM
САGGTTCAGCTGGTGCAGTCTGGAGCTGAGGAAAAAAAAAA		BIIB-12-1302_VH	
GCCTGGGGCCTCAGTGAAGGTCTCCTGCAAGGCTTCTG GTTACACCTTTACCAACTATGGTATCAGCTGGGTGCGA GTTACACCTTTACCAACTATGGTATCAGCTGGGTGCGA CAGGCCCCTGGACAAGGGCTTGAGTGGATGGAT CAGCGCTTACAATGGTAACACAAACTATGCACAGAAGC KUCЛОТЫ BIIB-12- TCCAGGGCAGAGTCACCATGACCACAGACACATCCACG 1302_VH			
Последовательность САGGCCCCTGGACAAGGGCTTGAGTGGATGGAT САGCCCTTGACAACTATGGTATCAGCTGGGTGCGA САGGCCCCTGGACAAGGGCTTGAGTGGATGGAT САGCGCTTACAATGGTAACACAAACTATGCACAGAAGC ТССАGGGCAGAGTCACCATGACCACAGACACATCCACG АGCACAGCCTACATGGAGCTGAGAGCCTGAGATCTGA ССАСАСССТСТСАСТССТСА			
1302_VH CGACACGGCTTCGATACTACTGCGCAAGGGCTTGAGTGGATCGA CGACACGGCGTTACAATGGTAACACAAACTATGCACAGAAGC AGCACAGGCAGAGTCACCATGACCACAGACACTCCACG AGCACACGGCGGTGTACTACTGCGCAAGGGCTAGAAGTG ACTGGAGAGCCTTCCTCA CAGCCCCTGGACAAGGGCTTGAGTGGATCGATCCACG AGCACACGGCGGTGTACTACTGCGCAAGGGCTAGAAGTG ACTGGAGAGCCTTCCTCA			
496нуклеиновой кислотыCAGCGCTTACAATGGTAACACAAACTATGCACAGAAGC TCCAGGGCAGAGTCACCATGACCACAGACACATCCACG AGCACAGCCTACATGGAGCTGAGGAGCCTGAGATCTGA CGACACGGCGGTGTACTACTGCGCAAGGGCTAGAAGTG ACTGGAGAGCCTTCGATATATGGGGTCAGGGTACAATG GTCACCGTCTCCTCA		Поспеловальность	
496 кислоты BIIB-12- TCCAGGGCAGAGTCACCATGACCACAGACACATCCACG 1302_VH AGCACAGCCTACATGGAGCTGAGGAGCCTGAGATCTGA CGACACGGCGGTGTACTACTGCGCAAGGGCTAGAAGTG ACTGGAGAGCCTTCGATATATGGGGTCAGGGTACAATG GTCACCGTCTCCTCA			
AGCACAGCCTACATGGAGCTGAGGAGCCTGAGATCTGA CGACACGGCGGTGTACTACTGCGCAAGGGCTAGAAGTG ACTGGAGAGCCTTCGATATATGGGGTCAGGGTACAATG GTCACCGTCTCCTCA	496	-	
CGACACGGCGGTGTACTACTGCGCAAGGGCTAGAAGTG ACTGGAGAGCCTTCGATATATGGGGTCAGGGTACAATG GTCACCGTCTCCTCA			
ACTGGAGAGCCTTCGATATATGGGGTCAGGGTACAATG GTCACCGTCTCCTCA		1302_VH	
GTCACCGTCTCCTCA			
497 Аминокислотная QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR			
	497	Аминокислотная	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR

Последовательность ВIIB-12-1303_VH NTLYLQMNSLRAEDTAVYYCARGPTSRLFQHWGQGT TVS CAGGTGCAGCTGGTGGAGTCTGGGGAGGCGTGGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GATTCACCTTCAGTAGCTATAGCATGCAGTGCAG
TVS CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GATTCACCTTCAGTAGCTATGGCATGGATCCACTGGGTCC GATTCACCTTCAGTAGCTATGGCATGGAGTCGCAGTT HYKЛеиновой KUCЛОТЫ BIIB-12- 1303_VH AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCAC GGACACGGCGGTTTATCCAACACTGGGCACACACCAC GTAGGTTATTCCAACACTGGGGCCAGAGGACCACAC GTAGGTTATTCCAACACTGGGGACAGGGACCACAC GTAGGTTATTCCAACACTGGGGACAGGGTACATTGG ACCGTCTCCTCA AMMINOKUCЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ BIIB-12-1304_VH TVSS CAGGTGCAGCTGGAGTCACACTGGGGGAGGCCGTGGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCC TOCLEDOBATEЛЬНОСТЬ HYKЛЕИНОВОЙ KUCЛОТЫ BIIB-12- TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCA
GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCC CAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTT HYKЛеиновой KUCЛОТЫ BIIB-12- 1303_VH ACACGCTGTATCTGCAAATGAACAGCCTGAGAGCC GGACACGGCGGTTATCTGCAAATGAACAGCCTGAGAGCC GGACACGGCGGTTATCTCCAACACTGCGCCAGAGGACCACT GTAGGTTATTCCAACACTGCGCCAGAGGACCACT GTAGGTTATTCCAACACTGGGGACAGGGTACATTGG ACCGTCTCCTCA AMMHOKUCЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ BIIB-12-1304_VH CAGGTGCAGCTGGTGGAGTCTCGGGGGAGGCGTGGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCACGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCTC GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCC TAGAGGCCCAACGGGCTGGAGTGGGTGGCC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCTC TAGAGGCCCAATTCACCATCTCCAGAGACAATTCCA TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCA
GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCC Последовательность нуклеиновой кислоты BIIB-12- 1303_VH
Последовательность нуклеиновой нуклеиновой нуклеиновой нуклеиновой кислоты віів—12— тдааддасстатстасадастатста дааддасстатат тдааддасстат тдааддасста тдааддасстат тдааддаст
нуклеиновой кислоты віів—12— тдааддассдаттсассатстссададасаттсса аасасдаттаттса адасасдаттатта адасада адасасдаттатт адасада адасасдаттатт адасада адасасда адасасдатт адасада адасасда адасасасда адасасасда адасасасда адасасасда адасасасда адасасасда адасасасда адасасасда адасасасас
198 КИСЛОТЫ ВІІВ—12— TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCA 1303_VH AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCC GGACACGGCGGTGTACTACTGCGCCAGAGGACCCAC GTAGGTTATTCCAACACTGGGGACAGGACCCAC GTAGGTTATTCCAACACTGGGGACAGGGTACATTGG ACCGTCTCCTCA QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHW QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDN NTLYLQMNSLRAEDTAVYYCAKGPGSRRFDIWGQGT TVSS CAGGTGCAGCTCTGGGGGAGGCGTGGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCC GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCC CAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTT HYKЛеИНОВОЙ ATCGTATGATGGAAGTAATAAATACTATGCAGACTC TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCA
КИСЛОТЫ ВІІВ—12— TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCA 1303_VH AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCC GGACACGGCGGTGTACTACTGCGCCAGAGGACCCAC GTAGGTTATTCCAACACTGGGGACAGGGTACATTGG ACCGTCTCCTCA QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHW QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDN NTLYLQMNSLRAEDTAVYYCAKGPGSRRFDIWGQGT TVSS CAGGTGCAGCTGGTGGAGTCTGGGGGAGGGCGTGGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCC TOCJOEADBATEJAHOCTA AACACGCTGTTATCTCCAACACTGCGAGACACTCCAACACTCCAGAGACAATTCCA AACACGCTGTATCACCATCTCCAGAGACAATTCCA AACACGCTGTATCTCCAGAAATGAACAACTCCAAGACCCACCACCACCACCACCACCACCACCACCACCA
GGACACGGCGGTGTACTACTGCGCCAGAGGACCCAC GTAGGTTATTCCAACACTGGGGACAGGGTACATTGG ACCGTCTCCTCA AMMHOKUCЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—12—1304_VH CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTC GCCTGGGAGGTCCTGAGACTCTCCTGTGCAGCGTC GATTCACCTTCAGTAGCTATGGCATGCACTGGTCC GATTCACCTTCAGTAGCTATGGCATGGAGTCC TOCЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ КИСЛОТЫ ВІІВ—12— ТGAAGGGCCGATTCACCATCTCCAGAGACAATTCCA
GTAGGTTATTCCAACACTGGGGACAGGGTACATTGG ACCGTCTCCTCA AMMIHOKUCJOTHAЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—12—1304_VH САGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GATTCACCTTCAGTAGCTATGGCATGGAGTCC GATTCACCTTCAGTAGCTATGGCATGGGTGGTCC CAGGCTCCAGGCAAGGGGCTGGTGGAGTCC HYKЛЕИНОВОЙ KИСЛОТЫ BIIB—12— TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCA
ACCGTCTCCTCA AMMINOKUCЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—12—1304_VH САБСТБССТСТСА ДОУДІVESGGGVVQPGRSLRLSCAASGFTFSSYGMHW QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDN NTLYLQMNSLRAEDTAVYYCAKGPGSRRFDIWGQGT TVSS САБСТБСАБСТБСТБСТБСТБСТБСТБСТБСТБСТБСТБСТБСТБСТБ
Aминокислотная последовательность ВIIB-12-1304_VH САСТЕСТВОВОВОТЕЛЬНОСТЬ Последовательность Последовательность Нуклеиновой кислоты ВIIB-12- ТGAAGGGCCGATTCACCATCTCCAGAGACAATTCCA
Аминокислотная последовательность ВІІВ-12-1304_VHQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDN NTLYLQMNSLRAEDTAVYYCAKGPGSRRFDIWGQGT TVSSСАGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCC CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTT ATCGTATGATGGAAGTAATAAATACTATGCAGACTC500кислотыBIIB-12-TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCA
499последовательность ВІІВ-12-1304_VHQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDN NTLYLQMNSLRAEDTAVYYCAKGPGSRRFDIWGQGT TVSSСАGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCC САGGCTCCAGGCAAGGGGCTGGAGTGGCAGTT НУКЛЕИНОВОЙ КИСЛОТЫCAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTT ATCGTATGATGGAAGTAATAAATACTATGCAGACTC TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCA
BIIB-12-1304_VH TVSS CAGGTGCAGCTGGTGGAGTCTCCTGTGCAGCGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCC Последовательность нуклеиновой кислоты BIIB-12- TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCA
TVSS CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTC GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCC Последовательность CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTT нуклеиновой ATCGTATGATGGAAGTAATAAATACTATGCAGACTC кислоты BIIB-12- TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCA
GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCC Последовательность CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTT. нуклеиновой ATCGTATGATGGAAGTAATAAATACTATGCAGACTC кислоты BIIB-12- TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCA
GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCC Последовательность CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTT. нуклеиновой ATCGTATGATGGAAGTAATAAATACTATGCAGACTC кислоты BIIB-12- TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCA
Последовательность CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTT. нуклеиновой ATCGTATGATGGAAGTAATAAATACTATGCAGACTC кислоты BIIB-12- TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCA
нуклеиновой ATCGTATGATGGAAGTAATAAATACTATGCAGACTC кислоты BIIB-12- TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCA
500 кислоты BIIB-12- TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCA
кислоты BIIB-12- TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCA
1304_VH AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCC
GGACACGGCGGTGTACTACTGCGCCAAGGGGCCTGG.
GTAGGAGGTTCGACATATGGGGTCAGGGTACAATGG
ACCGTCTCCTCA
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHW Аминокислотная
QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDN 501 последовательность
NTLYLQMNSLRAEDTAVYYCAKLGGRWSSDFQHWGQ
LVTVSS
Последовательность CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTC
нуклеиновой GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTC
кислоты BIIB-12- GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCC
1305_VH CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTT.

		ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
		TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
		AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAAGCTAGGCGGAA
		GATGGAGTTCTGACTTCCAACACTGGGGACAGGGTACA
		TTGGTCACCGTCTCCTCA
	Angelo Media Torres	QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSW
E02	Аминокислотная	IRQHPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
503	последовательность ВІІВ-12-1306 VH	KNQFSLKLSSVTAADTAVYYCARGAGGSAPWGQGTLVT
	DIID 17 1200_AU	VSS
		CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCACAGACCCTGTCCCTCACCTGTACTGTCTCTG
		GTGGCTCCATCAGCAGTGGTGGTTACTACTGGAGCTGG
	Последовательность	ATCCGCCAGCACCCAGGGAAGGGCCTGGAGTGGATTGG
504	нуклеиновой	GTCAATCTATTACAGTGGGAGCACCTACTACAACCCGT
304	кислоты BIIB-12-	CCCTCAAGAGTCGAGTTACCATATCAGTAGACACGTCT
	1306_VH	AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGAGGTGCCG
		GAGGATCTGCCCCATGGGGACAGGGTACATTGGTCACC
		GTCTCCTCA
	Аминокислотная	QVQLQESGPGLVKPSETLSLTCAVSGYSISSGYYWAWI
505	последовательность	RQPPGKGLEWIGSIYHSGSTYYNPSLKSRVTISVDTSK
	BIIB-12-1307 VH	NQFSLKLSSVTAADTAVYYCARGPLPRSRGLAFDIWGQ
	DIID 12 1307_VII	GTMVTVSS
		CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCGCTGTCTCTG
		GTTACTCCATCAGCAGTGGTTACTACTGGGCTTGGATC
	Последовательность	CGGCAGCCCCAGGGAAGGGGCTGGAGTGGATTGGGAG
506	нуклеиновой	TATCTATCATAGTGGGAGCACCTACTACAACCCGTCCC
300	кислоты BIIB-12-	TCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAG
	1307_VH	AACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGCCGC
		AGACACGGCGGTGTACTACTGCGCCAGAGGTCCCTTGC
		CAAGATCTAGAGGCTTAGCCTTCGATATCTGGGGTCAG
		GGTACAATGGTCACCGTCTCCTCA
507	Аминокислотная	QVQLVESGGGVVQPGRSLRLSRAASGFTFSSYGMHWVR

	последовательность	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
	BIIB-12-1308_VH	NTLYLQMNSLRAEDTAVYYCARGPRALGTAFDIWGQGT
		MVTVSS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTATCCAGAGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
508	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
300	кислоты BIIB-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	1308_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGACCAAGAG
		CATTGGGAACCGCATTCGACATATGGGGTCAGGGTACA
		ATGGTCACCGTCTCCTCA
	A MATALLO TALLO CILLO CI	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
509	Аминокислотная последовательность ВІІВ-12-1309_VH	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
309		NTLYLQMNSLRAEDTAVYYCARGRYTSRYFQHWGQGTL
		VTVSS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
510	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
310	кислоты BIIB-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	1309_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGCAGATACA
		CAAGCAGATACTTCCAACACTGGGGACAGGGTACATTG
		GTCACCGTCTCCTCA
	Аминокислотная последовательность ВІІВ-12-1310_VH	EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVR
511		QAPGKGLEWVSSISSSSSYIYYADSVKGRFTISRDNAK
511		NSLYLQMNSLRAEDTAVYYCARLGGYGSSQRYFDLWGR
		GTLVTVSS
	Последовательность	GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAA
512	нуклеиновой	GCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG
512	кислоты BIIB-12-	GATTCACCTTCAGTAGCTATAGCATGAACTGGGTCCGC
	1310_VH	CAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCAT

		TAGTAGTAGTAGTTACATATACTACGCAGACTCAG
		TGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAG
		AACTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGATTGGGCGGAT
		ACGGAAGCTCGCAGCGATACTTCGACCTATGGGGGAGA
		GGTACCTTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
513	последовательность	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
010	BIIB-12-1311 VH	NTLYLQMNSLRAEDTAVYYCAKGRHYWAVWGQGTLVTV
	DIID IZ IOII	SS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
514	кислоты ВІІВ-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	1311_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
	_	GGACACGGCGGTGTACTACTGCGCCAAGGGCAGACACT
		ACTGGGCCGTCTGGGGACAGGGTACATTGGTCACCGTC
		TCCTCA
		QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
	Аминокислотная	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
515	последовательность	NTLYLQMNSLRAEDTAVYYCAKGMGHWIDYWGQGTLVT
	BIIB-12-1312_VH	VSS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	 CAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTAT
	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
516	кислоты ВІІВ-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	1312 VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
	_	GGACACGGCGGTGTACTACTGCGCCAAGGGAATGGGAC
		ACTGGATTGACTACTGGGGACAGGGTACATTGGTCACC
		GTCTCCTCA
517	Аминокислотная	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
	1 mminothicitornax	A A T A T D Q Q Q A A A T Q I YO TIVITO CWYD Q I. I I. D D I Q IIIUM A V

BIIB-12-1313_VH NTLYLQMNSLRAEDTAVYYCAKGTGWWRY SS CAGGTGCAGCTGGTGGAGTCTGGGGGAGG GCCTGGGAGGTCCCTGAGACTCTCCTGTG GATTCACCTTCAGTAGCTATGGCATGCAC HУКЛЕИНОВОЙ КИСЛОТЫ BIIB-12- 1313_VH ACACGCTGTATCTCCAGAGAC GGACACGGCGGTGTACTACTGCGCCAAGG GGTGGCGATACTGGGGACAGGGTACATTGC GGACACGGCGGTGTACTACTGCGCCAAGG GGTGGCGATACTGGGGACAGGGTACATTGC GGACACGGCGGTGTACTACTGCGCCAAGG GGTGGCGATACTGGGGACAGGGTACATTGC GGTGGCGATACTGGGGACAGGGTACATTGC	GCGTGGTCCA GCAGCGTCTG CTGGGTCCGC CGCAGTTAT GCAGACTCCG CAATTCCAAG
САGGTGCAGCTGGTGGAGTCTGGGGGAGG GCCTGGGAGGTCCCTGAGACTCTCCTGTG GATTCACCTTCAGTAGCTATGGCATGCAC Последовательность САGGCTCCAGGCAAGGGGCTGGAGTGGGT нуклеиновой АТСGTATGATGGAAGTAATAAATACTATG кислоты ВІІВ—12— ТGAAGGGCCGATTCACCATCTCCAGAGAC 1313_VH AACACGCTGTATCTGCAAATGAACAGCCT GGACACGGCGGTGTACTACTGCGCCAAGG	CCAGCGTCTG CTGGGTCCGC CGCAGTTAT GCAGACTCCG CAATTCCAAG
GCCTGGGAGGTCCCTGAGACTCTCCTGTG GATTCACCTTCAGTAGCTATGGCATGCAC Последовательность CAGGCTCCAGGCAAGGGGCTGGAGTGGGT нуклеиновой ATCGTATGATGGAAGTAATAAATACTATG кислоты BIIB-12- TGAAGGGCCGATTCACCATCTCCAGAGAC 1313_VH AACACGCTGTATCTGCAAATGAACAGCCT GGACACGGCGGTGTACTACTGCGCCAAGG	CCAGCGTCTG CTGGGTCCGC CGCAGTTAT GCAGACTCCG CAATTCCAAG
Баттсассттсадтадстатддсатдсас САССТСАД САССТТСАДТАДСТАТДСА САССТТСАДТАДСТАТДДСАД САССТССАДДСАДДСАДДСАДДСАДДСАДДСАДДСАДДСА	CTGGGTCCGC CGGCAGTTAT GCAGACTCCG CAATTCCAAG
Последовательность CAGGCTCCAGGCAAGGGGCTGGAGTGGGT нуклеиновой ATCGTATGATGAAGTAATAAATACTATG кислоты BIIB-12- TGAAGGGCCGATTCACCATCTCCAGAGAC 1313_VH AACACGCTGTATCTGCAAATGAACAGCCT GGACACGGCGGTGTACTACTGCGCCAAGG	GGCAGTTAT GCAGACTCCG CAATTCCAAG GGAGAGCCGA
518нуклеиновой кислотыATCGTATGATGGAAGTAATAAATACTATG TGAAGGGCCGATTCACCATCTCCAGAGAC AACACGCTGTATCTGCAAATGAACAGCCT GGACACGGCGGTGTACTACTGCGCCAAGG	CAGACTCCG CAATTCCAAG CGAGAGCCGA
518 кислоты BIIB-12- TGAAGGGCCGATTCACCATCTCCAGAGAC 1313_VH AACACGCTGTATCTGCAAATGAACAGCCT GGACACGGCGGTGTACTACTGCGCCAAGG	CAATTCCAAG
кислоты BIIB-12- TGAAGGGCCGATTCACCATCTCCAGAGAC 1313_VH AACACGCTGTATCTGCAAATGAACAGCCT GGACACGGCGGTGTACTACTGCGCCAAGG	GAGAGCCGA
GGACACGGCGGTGTACTACTGCGCCAAGG	
	GAACCGGCT
GGTGGCGATACTGGGGACAGGGTACATTG	
	GTCACCGTC
TCCTCA	
QVQLVESGGGVVQPGRSLRLSCAASGFTE	SSYGMHWVR
Аминокислотная QAPGKGLEWVAVISYDGSNKYYADSVKGF	RFTISRDNSK
NTLYLQMNSLRAEDTAVYYCAKGTRWAGN	IWGQGTLVTV
BIIB-12-1314_VH SS	
CAGGTGCAGCTGGTGGAGTCTGGGGGAGG	GCGTGGTCCA
GCCTGGGAGGTCCCTGAGACTCTCCTGTG	GCAGCGTCTG
GATTCACCTTCAGTAGCTATGGCATGCAC	CTGGGTCCGC
Последовательность CAGGCTCCAGGCAAGGGGCTGGAGTGGGT	GGCAGTTAT
нуклеиновой ATCGTATGATGGAAGTAATAAATACTATG	GCAGACTCCG
кислоты BIIB-12- TGAAGGGCCGATTCACCATCTCCAGAGAC	CAATTCCAAG
1314_VH AACACGCTGTATCTGCAAATGAACAGCCT	GAGAGCCGA
GGACACGGCGGTGTACTACTGCGCCAAGG	GGAACTAGAT
GGGCAGGGAATTGGGGACAGGGTACATTG	GTCACCGTC
TCCTCA	
QVQLVQSGAEVKKPGASVKVSCKASGYTE	TSYYMVWVR
Аминокислотная QAPGQGLEWMGIINPSGGSTSYAQKFQGF	RVTMTRDTST
521 последовательность STVYMELSSLRSEDTAVYYCARGRPSSKF	RVTYFDYWGQ
BIIB-12-1315_VH GTLVTVSS	
Последовательность CAGGTGCAGCTGGTGCAGTCTGGGGCTGA	GGTGAAGAA
нуклеиновой GCCTGGGGCCTCAGTGAAGGTTTCCTGCA	AGGCATCTG
SZZ	CTGGGTGCGA
1315_VH CAGGCCCCTGGACAAGGGCTTGAGTGGAT	GGGAATAAT

		CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGAAGGCCTA
		GCAGCAAAAGGGTTACATACTTCGACTACTGGGGACAG
		GGTACATTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
523	последовательность	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
020	BIIB-12-1316 VH	NTLYLQMNSLRAEDTAVYYCAKSGQYRAFDIWGQGTMV
		TVSS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
F 0 4	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
524	кислоты BIIB-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	1316_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAAGTCTGGACAGT
		ATAGAGCCTTTGATATTTGGGGTCAGGGTACAATGGTC
		ACCGTCTCCTCA
		QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
	Аминокислотная	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
525	последовательность	 NTLYLQMNSLRAEDTAVYYCARGVGGHDTRWGQGTLVT
	BIIB-12-1317_VH	VSS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		 GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		 GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	 CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
526	кислоты ВІІВ-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	1317 VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
	-3 - 1 - 1 - 1	GGACACGGCGGTGTACTACTGCGCCAGAGGCGTAGGAG
		GACACGACACGAGATGGGGACAGGGTACATTGGTCACC
		GTCTCCTCA
E07	7.500070555555	
527	Аминокислотная	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR

	последовательность	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
	BIIB-12-1318_VH	NTLYLQMNSLRAEDTAVYYCARKGDYRSGSYSGRAFGI
		WGQGTMVTVSS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCTGGCAGTTAT
528	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
320	кислоты BIIB-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	1318_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGAAAGGGAGACT
		ACAGGAGCGGAAGCTACTCCGGAAGAGCCTTCGGTATA
		TGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
	Лимиомиспошиза	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
529	Аминокислотная последовательность ВІІВ-12-1319_VH	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
323		NTLYLQMNSLRAEDTAVYYCARTGYHRSVYYWGQGTLV
		TVSS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
530	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
	кислоты BIIB-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	1319_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGAACTGGATACC
		ACAGAAGTGTATACTATTGGGGACAGGGTACATTGGTC
		ACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIHWVR
531	последовательность ВІІВ-12-1322_VH	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
331		STVYMELSSLRSEDTAVYYCARSRQRHRGDWYFDLWGR
		GTLVTVSS
	Последовательность	CAGGTGCAGCTGGCAGTCTGGGGCTGAGGTGAAGAA
532	нуклеиновой	GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
002	кислоты ВІІВ-12-	GATACACCTTCACCAGCTACTATATCCACTGGGTGCGA
	1322_VH	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT

		CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCTAGATCAAGACAAA
		GACACAGAGGTGATTGGTACTTCGATTTATGGGGGAGA
		GGTACCTTGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIHWVR
533	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-12-1323_VH	STVYMELSSLRSEDTAVYYCARGRRFPRGLDYWGQGTL
		VTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATCCACTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
534	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1323_VH	AGCACAGTCTACATGGAGCTGAGCCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGCAGAAGAT
		TCCCTAGAGGCTTAGATTACTGGGGACAGGGTACATTG
		GTCACCGTCTCCA
	7.500.000.000	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMVWVR
E 2 E	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
535	последовательность	STVYMELSSLRSEDTAVYYCARLPRYSKRGLDVWGQGT
	BIIB-12-1324_VH	MVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGGTCTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
536	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1324 VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
	_	GGACACGGCGGTGTACTACTGCGCCAGACTTCCTAGAT
		ACAGCAAAAGAGGTCTAGACGTATGGGGTCAGGGTACA
		ATGGTCACCGTCTCCTCA
537	Аминокислотная	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMVWVR
		E.E. SOCIETION AND STATE OF THE

	последовательность	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
	BIIB-12-1325_VH	STVYMELSSLRSEDTAVYYCARGGRYMLDPWGQGTLVT
		VSS
		CAGGTGCAGCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGGTCTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGAATGGGAATAAT
538	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
330	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1325_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGAGGTAGAT
		ATATGTTAGACCCATGGGGACAGGGTACATTGGTCACC
		GTCTCCTCA
	Anguarus and an	EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVR
539	Аминокислотная последовательность ВІІВ-12-1326_VH	QAPGKGLEWVSTISGSGGSTYYADSVKGRFTISRDNSK
339		NTLYLQMNSLRAEDTAVYYCAKGPLYRRYGYGMDVWGQ
		GTTVTVSS
		GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACA
		GCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG
		GATTCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGC
	Последовательность	CAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAACCAT
540	нуклеиновой	TAGTGGTAGTGGTAGCACATACTACGCAGACTCCG
340	кислоты BIIB-12-	TGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAG
	1326_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAAGGGGCCGTTGT
		ACCGCAGATACGGCTACGGTATGGACGTTTGGGGCCAG
		GGAACAACTGTCACCGTCTCCTCA
	Аминокислотная последовательность ВІІВ-12-1327_VH	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
541		QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
		NTLYLQMNSLRAEDTAVYYCAKLGLARGGGYGMDVWGQ
		GTTVTVSS
	Последовательность	CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
542	нуклеиновой	GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
) 77 <i>L</i>	кислоты BIIB-12-	GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	1327_VH	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT

		ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
		TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
		AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAAGTTAGGATTGG
		CAAGAGGAGGTGGATACGGAATGGACGTATGGGGCCAG
		GGAACAACTGTCACCGTCTCCTCA
		QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGW
	Аминокислотная	IROPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
543	последовательность	KNQFSLKLSSVTAADTAVYYCARDPAYYSGHDYYYYGM
	BIIB-12-1328_VH	
		DVWGQGTTVTVSS
		CAGCTGCAGCTGCAGGAGTCGGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
		GTGGCTCCATCAGCAGTAGTAGTTACTACTGGGGCTGG
	Последовательность	ATCCGCCAGCCCCAGGGAAGGGGCTGGAGTGGATTGG
	нуклеиновой кислоты ВІІВ-12-1328_VH	GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT
544		CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
		AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGAGATCCCG
		CTTACTACTCAGGTCACGACTATTACTATTATGGAATG
		GATGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTC
		A
	Аминокислотная	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
545	последовательность ВІІВ-12-1329_VH	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
343		NTLYLQMNSLRAEDTAVYYCARGGAGSRYFQHWGQGTL
		VTVSS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
546	кислоты BIIB-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	1329_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGAGGAGGTGCTG
		GATCAAGGTACTTCCAACACTGGGGACAGGGTACATTG
		GTCACCGTCTCCTCA

547	Аминокислотная последовательность ВІІВ-12-1330_VH	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK NTLYLQMNSLRAEDTAVYYCAKGGSARWINIWGQGTTV TVSS
548	Последовательность нуклеиновой кислоты ВІІВ-12-1330_VH	CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC CAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTAT ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA GGACACGGCGGTGTACTACTGCGCCAAGGGAGGTTCTG CAAGATGGATCAACATATGGGGTCAGGGAACAACTGTC
549	Аминокислотная последовательность ВІІВ-12-1331_VH	ACCGTCTCCTCA QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK NTLYLQMNSLRAEDTAVYYCAKVPHHRGHDYWGQGTLV TVSS
550	Последовательность нуклеиновой кислоты ВІІВ-12-1331_VH	CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC CAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTAT ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA GGACACGGCGGTGTACTACTGCGCCAAGGTACCTCACC ACAGAGGTCACGATTACTGGGGACAGGTACATTGGTC ACCGTCTCCTCA
551	Аминокислотная последовательность ВІІВ-12-1332 VH	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMSWVR QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARLGRKSRVFDIWGQGTM VTVSS
552	Последовательность нуклеиновой кислоты ВІІВ-12-	CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG GATACACCTTCACCAGCTACTATATGTCATGGGTGCGA

	1332 VH	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	_	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
		TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
		AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGATTGGGAAGGA
		AATCAAGGGTATTCGACATATGGGGTCAGGGTACAATG
		GTCACCGTCTCCA
		QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMVWVR
	Аминокислотная	QAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTST
553	последовательность	STVYMELSSLRSEDTAVYYCARVSRRDYPLAFDIWGQG
	BIIB-12-1333_VH	TMVTVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTG
		GATACACCTTCACCAGCTACTATATGGTCTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT
	нуклеиновой	CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGT
554	кислоты BIIB-12-	TCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACG
	1333_VH	AGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCTAGAGTATCTAGAA
		GGGACTACCCATTAGCCTTCGATATCTGGGGTCAGGGT
		ACAATGGTCACCGTCTCCTCA
	Аминокислотная	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR
555	последовательность	QAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSK
	BIIB-12-1334 VH	NTLYLQMNSLRAEDTAVYYCARVPRKQTGHVDYWGQGT
	B11B 12 1334_VII	LVTVSS
		CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCA
		GCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG
		GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGC
	Последовательность	CAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTAT
556	нуклеиновой	ATCGTATGATGGAAGTAATAAATACTATGCAGACTCCG
	кислоты BIIB-12-	TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAG
	1334_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAGAGTCCCTAGAA
		AGCAAACTGGTCACGTGGACTACTGGGGACAGGGTACA
		TTGGTCACCGTCTCCTCA

	Антитела клас	ca VI - последовательности VH
	Аминокислотная	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGW
557		IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
337	последовательность ВІІВ-12-894 VH	KNQFSLKLSSVTAADTAVYYCAREGAHSSMAGLDVWGQ
	B11B 12 034_VII	GTMVTVSS
		CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
		GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG
		GTGGCTCCATCAGCAGTAGTAGTTACTACTGGGGCTGG
	Последовательность	ATCCGCCAGCCCCAGGGAAGGGGCTGGAGTGGATTGG
558	нуклеиновой	GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT
	кислоты BIIB-12-	CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
	894_VH	AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGAGAAGGAG
		CTCACAGCAGCATGGCAGGGCTAGACGTATGGGGTCAG
		GGTACAATGGTCACCGTCTCCTCA
	Аминокислотная	EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVR
559	последовательность	QAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSK
	BIIB-12-925 VH	NTLYLQMNSLRAEDTAVYYCAKGPRYYWYSWYFDLWGR
		GTLVTVSS
		GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACA
		GCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG
		GATTCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGC
	Последовательность	CAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTAT
560	нуклеиновой	TAGTGGTAGTGGTAGCACATACTACGCAGACTCCG
	кислоты ВІІВ-12-	TGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAG
	925_VH	AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA
		GGACACGGCGGTGTACTACTGCGCCAAGGGCCCCAGAT
		ACTACTGGTACAGCTGGTACTTCGACCTATGGGGGAGA
		GGTACCTTGGTCACCGTCTCCTCA
	Аминокислотная	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGW
561	последовательность	IRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTS
	BIIB-12-1320 VH	KNQFSLKLSSVTAADTAVYYCARGSGLLVREHYYYYMD
	_	VWGKGTTVTVS
562	Последовательность	CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAA
	нуклеиновой	GCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG

	кислоты BIIB-12-	GTGGCTCCATCAGCAGTAGTAGTTACTACTGGGGCTGG
	1320_VH	ATCCGCCAGCCCCAGGGAAGGGGCTGGAGTGGATTGG
		GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGT
		CCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCC
		AAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
		CGCAGACACGGCGGTGTACTACTGCGCCAGAGGCTCTG
		GATTGCTAGTCCGAGAGCACTACTACTACTACATGGAC
		GTATGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
	Аминокислотная	QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVR
563		QAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADEST
363	последовательность	STAYMELSSLRSEDTAVYYCARTPDTSSATDWGQGTLV
	BIIB-12-1321_VH	TVSS
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAA
		GCCTGGGTCCTCGGTGAAGGTCTCCTGCAAGGCTTCTG
		GAGGCACCTTCAGCAGCTATGCTATCAGCTGGGTGCGA
	Последовательность	CAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAGGGAT
564	нуклеиновой	CATCCCTATCTTTGGTACAGCAAACTACGCACAGAAGT
304	кислоты BIIB-12-	TCCAGGGCAGAGTCACGATTACCGCGGACGAATCCACG
	1321_VH	AGCACAGCCTACATGGAGCTGAGCAGCCTGAGATCTGA
		GGACACGGCGGTGTACTACTGCGCCAGAACTCCTGACA
		CAAGCTCTGCTACCGATTGGGGACAGGGTACATTGGTC
		ACCGTCTCCTCA
	Антитела клас	сса V - последовательности VL
	Аминокислотная	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNY
565	последовательность	LAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTD
	BIIB-12-891_VL	FTLTISSLQAEDVAVYYCQQYFNPPFTFGGGTKVEIK
		GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGT
		GTCTCTGGGCGAGAGGCCACCATCAACTGCAAGTCCA
	Последовательность	GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC
	нуклеиновой	TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA
566	кислоты ВІІВ-12-	GCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGG
	891 VL	TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGAT
	7 7 7 1	TTCACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGT
		GGCAGTTTATTACTGTCAGCAGTACTTCAACCCCCCTT
1		TCACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA

	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
567	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-12-892_VL	SLEPEDFAVYYCQQRLNLPLTFGGGTKVEIK
		GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	_	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
	Последовательность	AAACCTGGCCAGGCTCCCAGGCTCCTCATTTATGATGC
568	нуклеиновой	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
	кислоты ВІІВ-12-	GCAGTGGGTCTGGGACAGATTTCACTCTCACCATCAGC
	892_VL	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGAGACTCAACCTCCCTCTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQLTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
569	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-893_VL	SLQPEDFATYYCQQAAAFPFTFGGGTKVEIK
		GACATCCAGTTGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	Последовательность	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
570	кислоты ВІІВ-12-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
	893 VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
	099	AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCAGCCGCCTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
571	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-895_VL	SLQPEDFATYYCQQASSFPFTFGGGTKVEI
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	Последовательность	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
572	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
	кислоты BIIB-12-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
	895_VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCATCCAGTTTCCCTTTCACTTTTGGCGGAGGGA

		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
573	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-896_VL	SLQPEDFATYYCQQANSFPFTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	Последовательность	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
574	кислоты ВІІВ-12-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
	896 VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
	030_11	AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCAAATTCCTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQ
575	последовательность	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI
	BIIB-12-897_VL	SRLEPEDFAVYYCQQDGNYPYTFGGGTKVEIK
	Последовательность	GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAG
	нуклеиновой	CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG
576	кислоты ВІІВ-12-	TGCATCCAGCAGGCCACTGGCATCCCAGACAGGTTCA
	897 VL	GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATC
	_	AGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTG
		TCAGCAGGACGGAAACTACCCTTACACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	Аминокислотная	DIQLTQSPSTLSASVGDRVTITCRASQAISSWLAWYQQ
577	последовательность	KPGKAPKLLIYDASSLESGVPSRFSGSGSGTEFTLTIS
	BIIB-12-898_VL	SLQPDDFATYYCQQVNRFPFTFGGGTKVEIK
		GACATCCAGTTGACCCAGTCTCCTTCCACCCTGTCTGC
	Последовательность	ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA
	нуклеиновой	GTCAGGCTATTAGTAGCTGGTTGGCCTGGTATCAGCAG
578	кислоты ВІІВ-12-	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGATGC
	898 VL	CTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGCG
	_	GCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGC
		AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA

		GCAGGTCAATCGCTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNY
579	последовательность	LAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTD
	BIIB-12-899_VL	FTLTISSLQAEDVAVYYCQQSYTLPPTFGGGTKVEIK
		GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGT
		GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCA
	Последовательность	GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC
	нуклеиновой	TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA
580	кислоты ВІІВ-12-	GCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGG
	899 VL	TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGAT
	099_1	TTCACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGT
		GGCAGTTTATTACTGTCAGCAGTCCTACACCCTCCCTC
		CTACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ
581	последовательность	KPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTIS
	BIIB-12-900_VL	SLQPDDFATYYCQQYRSYPTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA
	Последовательность	GTCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAG
	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAAGC
582	кислоты ВІІВ-12-	CTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGCG
	900 VL	GCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGC
		AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA
		GCAGTACCGAAGCTACCCTACTTTTGGCGGAGGGACCA
		AGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
583	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-12-901_VL	SLEPEDFAVYYCQQSANFPFTFGGGTKVEIK
		GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
	Последовательность	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
584	нуклеиновой	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
	кислоты BIIB-12-	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
	901_VL	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC

		AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGTCCGCCAATTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNY
585	последовательность	LAWYQQKPGQPPKLLISWASTRESGVPDRFSGSGSGTD
	BIIB-12-902_VL	FTLTISSLQAEDVAVYYCQQSFSTPFTFGGGTKVEIK
		GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGT
		GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCA
	П	GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC
	Последовательность	TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA
586	нуклеиновой	GCTGCTCATTTCCTGGGCATCTACCCGGGAATCCGGGG
	кислоты ВІІВ-12-	TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGAT
	902_VL	TTCACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGT
		GGCAGTTTATTACTGTCAGCAGTCCTTCTCCACTCCTT
		TCACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
587	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-12-903_VL	SLEPEDFAVYYCQQRANWPPTFGGGTKVEIK
		GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Подположения ст.	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
	Последовательность	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
588	нуклеиновой	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
	кислоты ВІІВ-12-	GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
	903_VL	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGAGAGCCAACTGGCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
589	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-12-904_VL	SLQSEDFAVYYCQQAFNWPPTFGGGTKVEIK
	Подполовото то мосто	GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
	Последовательность	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
590	нуклеиновой	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
	кислоты ВІІВ-12-	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
	904_VL	ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG

		GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGGCCTTCAACTGGCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQ
591		QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI
391	последовательность	
	BIIB-12-905_VL	SRLEPEDFAVYYCQQYGRFPPTFGGGTKVEIK
		GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGGAGCAGCTACTTAGCCTGGTACCAG
	нуклеиновой	CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG
592	кислоты ВІІВ-12-	TGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCA
	905 VL	GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATC
		AGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTG
		TCAGCAGTACGGACGCTTCCCTCCTACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
593	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-12-906_VL	SLEPEDFAVYYCQQSSDWPPTFGGGTKVEIK
		GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Подположения	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
	Последовательность	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
594	нуклеиновой	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
	кислоты BIIB-12-	GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
	906_VL	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGTCCTCCGACTGGCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIVMTQSPLSLPVTPGEPASISCRSSQSLLYSNGYNYL
595	последовательность	DWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDF
	BIIB-12-907 VL	TLKISRVEAEDVGVYYCMQRLGLPPTFGGGTKVEIK
	— Последовательность	GATATTGTGATGACTCAGTCTCCACTCTCCCTGCCCGT
	нуклеиновой	CACCCTGGAGAGCCGGCCTCCATCTCCTGCAGGTCTA
596	кислоты ВІІВ-12-	GTCAGAGCCTCCTGTATAGTAATGGATACAACTATTTG
	907 VL	GATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCT

		CCTGATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCC
		CTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTT
		ACACTGAAAATCAGCAGAGTGGAGGCTGAGGATGTTGG
		GGTTTATTACTGCATGCAGAGACTCGGCCTCCCTCCTA
		CTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
	Аминокислотная	DIQLTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
597	последовательность	KPGKAPKLLIYGASSLQSGVPSRFSGSGSGTDFTLTIS
391	BIIB-12-908 VL	SLQPEDFATYYCQQGSSLPITFGGGTKVEIK
	B11B-12-900_VL	GACATCCAGTTGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	Последовательность	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
E00	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGGTGC
598	кислоты BIIB-12-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
	908_VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGCCTGCAGCCTGAAGATTTTTGCAACTTATTACTGTCA
		GCAGGGATCCAGTCTCCCTATCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
599	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-12-909_VL	SLEPEDFAVYYCQQLSDWPPTFGGGTKVEIK
		GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
	нуклеиновой	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
600	кислоты ВІІВ-12-	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
	909 VL	GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
	_	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGCTCAGTGACTGGCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ
601	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-910_VL	SLQPEDFATYYCQQLSHTPFTFGGGTKVEIK
	Последовательность	GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
602	нуклеиновой	ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAA
	кислоты BIIB-12-	GTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAG
	<u>l</u>	

ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC AGTCTGCAACCTGAGAATTTTGCAACTTACTCTCAC AGTCTGCAACCTGAGAGATTTTGCAACTTACTACTGTCA GCAACTATCCCACACTCCTTTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHONMCTOTHAR BILB-12-911_VL SLEPEDFAVYYCQORNNFPITFGGGTKVEIK GAAATTGGTGACACAGTCTCCTGCAGGGCCA HYKRIENHOBOÑ RUCROTH BIIB-12- 911_VL GCACAGGGCAACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAGAGCCACCCTTCTCTGCAGGGCCA AGCCTAGAGCTGGCACAGCTCTCCAGCCAGGCTCCTACTATGATGC AACCTGGCCAGGCTCCCAGGCTCCTACCATCAGC AGCCTAGAGCTTGAGATTTTGCAGTTTATTACTGTCA GCAGAGAATTACACAACAG AGCCTAGAGCTGAGAACATTTCACTTTTCGCGGAGGGA ACCCTAGAGCTGAGAACATTTCACTTTTTCGCGAGGGCA AGCCTAGAGCTGAGAACATTTCACTTTTTCGCGAGGGCA AGCCTAGAGCTGAGAACATTTCACTTTTTCGCGAGGGCA AGCCTAGAGCTGAGAACATTTCCCTATCACTTTTTCCC GCAGAGAATTACACTTTTTCGCGGAGGGA ACCCAAGGTTGAGATCAAA AMMHONMCTOTHAR BIIB-12-912_VL SLQSEDFAVYYCQQFHNFPPTFGGTKVEIK GAAATAGTGATGAGCAACTTTACCTTCTCTCCAGGGCCA TCCAAGGTTTAGAGCCACCCTGTCTTG GTCTCCAGGGGAAACAACCACCTGTCTCTCTCCAGGGCCA ACCCTGGCCAGGCTCCCAGCCACCCTGTCTTG GTCTCCAGGGGAACAACCTACCCTGTCTCTCCAGGGCCA ACCCTGCCAGGTTCCAGCCACCCTGTCTTG GTCTCCAGGGGAAACAACCACCTGTCTCTCCAGGGCCA TCCACAGGTTTAGAGCTACACCAC ACCCTGCCAGGCTCCCAGGCTCCTCTCTCTCACCACCAC ACCCTGCCAGGTTCCAGCCACCCTGTCTTT GCAGAGTTTTTTTTTT		910_VL	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
AMMHORMUCJOTHAЯ 603 AMMHORMUCJOTHAЯ 604 AMMHORMUCJOTHAЯ 605 BIIB-12-911_VL 606 BIIB-12-911_VL 607 BIIB-12-911_VL 607 BIIB-12-911_VL 608 BIIB-12-911_VL 608 AMMHORMUCJOTHAЯ 609 AMMHORMUCJOTHAЯ 609 AMMHORMUCJOTHAЯ 609 AMMHORMUCJOTHAЯ 600 AMMH			ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG
GCAACTATCCCACACTCCTTTCACTTTTGGCGGAGGGA			GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
CCAAGGTTGAGATCAAA			AGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCA
AMMHORMCROTHAЯ EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAMYQQ BIIB-12-911_VL SLEPEDFAVYYCQQRSNFPITFGGGTKVEIK GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGGCTACCTATCAGTGC AAACCTGGCCAGGCTCCCAGGCTACCTACTATGATGC GCAGTGGTTCGAGGGCACCCTGTCAGTCAGGCACCCTGTCAGTG ACCCTAGAGGCCACCTGTCAGTTAGCCTGGTACCAACAG AAACCTGGCCAGGCTCCCAGGCTCCAGCCAGGTTCAGTG GCAGTGGTTCAGTG GCAGTGGTTCAGTGCAGGCACCCTGTCAGTCAGGCAGGCCACTGGCATCCCAGCCAG			GCAACTATCCCACACTCCTTTCACTTTTGGCGGAGGGA
603 последовательность ВІІВ-12-911_VL КРЕФАРКІІ УДОКУКРЕТЬ БОДОКОВІТЬ ВІІВ-12-911_VL SLEPEDFAVYYCQQRSNFPITFGGGTKVEIK 604 БІІВ-12-911_VL GAAATTGTGTTGACACAGGTCTCCAGCCACCCTGTCTTT GTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGACAGG GTCAGACAGG GTCAGACAGG GTCAGACAGG GTCAGACAGG AAACCTGGCCAGCTACCTAGATGC AACCTGGCCAGGCTCCCAGCCAGGTTCAGTG CAGCAGGGCCACTGGCATCCCAGCCAGGTTCAGTG CAGCAGGGCCACTGGCATCCCAGCCAGGTTCAGTG CAGCAGAGACTTCACTCTACACTAGAGC CAGCAGAGACTTCACTCTCACCATCAGC AGCCTAGAGACTTAGCTTTATTACTGTCA GCAGAGAACTTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATTAGATT			CCAAGGTTGAGATCAAA
BIIB-12-911_VL SLEPEDFAVYYCQQRSNFPITFGGGTKVEIK GAAATTGTGTTGACACAGGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCAC GTCAGAGTGTTACCAGCTACTTAGCCTGGTACCAACAG AAACCTGGCCAGGCTCCCAGCCAGGTTCAGTG ACCTAGAGGCCACCTGTCATCTATGATGC ATCCAACAGGGCCACTGCCAGCCAGGTTCAGTG ACCTAGAGCCTGGCATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACACAGCTACTTATCATGATGC AGCCTAGAGCCTGGAACATTTTGCAGTTTATTACTGTCA GCAGAGAACTAACTTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA BIIB-12-912_VL SLQSEDFAVYYCQQFHNFPPTFGGGTKVEIK GAAATAGTGATGACGCAGCCTGTCTGTT GTCTCCAGGGGAAAGACTTCACTCTCACCATCAGC AGCCTAGAGCTTGAGATCAAA BIIB-12-912_VL SLQSEDFAVYYCQQFHNFPPTFGGGTKVEIK GAAATAGTGATGACGCAGCTCTCAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTTCCTCAGCAGCCAG ACCTGCCAGGGCAACATTAGCCTGGTACCAGCAG ACCTGCCAGGGCCACCCTGTCTGT GTCACACAGGGCCACCCTTCCTCAGCCAGCCAG ACCCTGCAGGCCAGGTTCCAGCCAGCTTCATCTATGGTGC AGCCTGCAGGCCAGGTTCCAGCAGGTTCATCTATGGTGC AGCCTGCAGTTTAGCAGCAGAGTTCACTCTCACCATCAGC AGCCTGCAGTTTGGAGATTTTTCCCTCCTCACTTTTTTTCTCAC AGCCTGCAGTTTGAGAGTTTTTTCCTCCACCATCAGC AGCCTGCAGTTTGAGAGTTTTTTTTTT		Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
GAAATTGTTTGACACAGTCTCCAGCCACCCTGTCTTT GTCTCCAGGGGAAAGAGCCACCCTTCTCTGCAGGGCCA GTCAGAGTGTTAGCAGGTCACCAGCAGGCCAC GTCAGAGTGTTAGCAGGTCACCAGCAGGCCACAGGCCACAGGCCACAGGCCACAGGCCACAGGCCACAGGCCACAGGCCACAGGCCACAGGCCACAGGCCACAGGCCACAGGCCAGGCCACAGGCCAGGCCCAGGCTCCCAGCCAG	603	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
604 Последовательность нуклеиновой кислоты вІІВ-12- віїв-12-912_VL Последовательность нуклеиновой кислоты вІІВ-12- віїв-12-912_VL віїв-12-913_VL		BIIB-12-911_VL	SLEPEDFAVYYCQQRSNFPITFGGGTKVEIK
GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGAGATTTAGCTCACCATCAGC AGCCTAGAGCCTGAGAGATTTTGCAGTTTATTACTGTCA GCAGAGAAGTTAGCTTTAGCTGTCACCATCAGC AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA GCAGAGAAGTAACTTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA BIB-12-912_VL GAAATAGTGATGAGACCTGAAGATTTTTCCACCATCAGC GCAGAGAAGTAACTTCCCTATCACTTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS GTCTCCAGGGGAAGAGCCACCCTGTCTGT GTCTCCAGGGGAAGAGCCACCCTGTCTGT GTCTCCAGGGGAAGAGCCACCCTGTCTGT GTCTCCAGGGGAAGAGCCACCCTGTCTCTGCAGGGCCA GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCTACTATTATGGTGC ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTTCCACAATTTCCCTCCTCACCATCAGC AGCCTGCAGTTTGGAGATCAA AMMHOKUCJOTHA A EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ CCAAGGTTGAGATCAA AMMHOKUCJOTHA A EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ CCAAGGTTGAGAATCTAA AMMHOKUCJOTHA A EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ NCAAGGTTGAGATCAA BIB-12-913_VL SLQSEDFAVYYCQQYAPYPPLTFGGGTKVEIK GAAATAGTGATGACGCAGCTCCCAGCCACCCTGTCTGT GCAGGTTCCACAATTTCCCTCCTACTTTTTGGCGGAGGGA CCAAGGTTGAGATCAA BIB-12-913_VL GAAATAGTGATGACGCAGCTCCCAGCCACCCTGTCTGT GAAACCTGGCCAGGCTCCCAGGCTCCCAGCCACCCTGTCTGT			GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
Последовательность нуклеиновой кислоты віїв-12-912_VL Баластадбат дала достадовательность нуклеиновой кислоты віїв-12-912_VL Баластадбат дала даластадбат даластадбат даластадбат даластадба даластадбат даластадбат даластадбат даластадбат даластадбат даластадбат даластадбат даластадба даласта да			GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
AAACCTGGCCAGGCTCCCAGGCTCCTATCTATGATGC Hykлеиновой кислоты BIIB-12- 911_VL		Подполовони подп	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
604 кислоты BIIB-12- 911_VL ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA GCAGAGAAGTAACTTCCCTATCACTTTTGGCGGAGGA CCAAGGTTGAGATCAAA 605 Последовательность ВІІВ-12-912_VL EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQFHNFPPTFGGGTKVEIK 606 GAAATAGTGATGACGCAGCCTCTCCTGCAGGGCCA GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCCATCTATGTGC AAACCTGGCCAGGCTCCCAGGCTCCCATCTATGTGC GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGTTCCACAATTTCCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAA 607 AMUHOKUCJOTHAS GCAGTGGGTCTGAGAGATCACACCTCTCTTCTCACCATCAGC BIIB-12-913_VL EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ SLQSEDFAVYYCQQYAPYPPLTFGGGTKVEIK 608 Последовательность BIIB-12-913_VL SLQSEDFAVYYCQQYAPYPPLTFGGGTKVEIK			AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
911_VL AGCCTGGGTCTGGGACAGACTTCACTCTCACCATCAGC AGCCTAGAGCCTGAAGATTTTTGCAGTTTATTACTGTCA GCAGAGAAGTAACTTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKNCJOTHAЯ EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQFHNFPPTFGGGTKVEIK GAAATAGTGATGACGCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA AAACCTGGCCAGGCTCCCAGCCACCCTGTCTGT CCACACAGGTTTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCCAGCCAGGTTCAGTG CCAGTGGGTCTGGAAGATTTTGCAGTTCATTAGTGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGTTCCACAAATTTCCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAA AMMHOKNCJOTHAЯ TOCJAGOBATEJBHOCTB KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS BIIB-12-913_VL GAAATAGTGATGACGCAGCTCTCCAGCCACCCTGTCTGT GAAATAGTGATGACGCAGCCACCCTGTCTGT	604		ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA GCAGAGAAGTAACTTCCCTATCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKUCJOTHAЯ EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ ROCLEGOBATEJBHOCTB BIIB-12-912_VL SLQSEDFAVYYCQQFHNFPPTFGGGTKVEIK GAAATAGTGATGACGCAGCTCTCCTGCAGGGCCACCCTGTCTGT			GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
605AMИНОКИСЛОТНАЯEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ605ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ-12-912_VLKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS606GAAATAGTGATGACGCAGCCCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTGTCCTGCAGGGCCA GTCAGAGGTGTTAGCAGGAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC ACCCACAGGGCCACTGTATCCAGCAGGTTCAGTG GCAGTGGGTCTGGAAGATTTTCCAGCTAGCAGCAGCTCCCAGCAGCTCATCTACTATGCTCA GCAGTTCCACAAATTTTCCTTCACCATCAGC AGCCTGCAGTTGAAGATTTTGCAGTTTATTACTGTCA GCAGTTCCACAAATTTCCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAA607AMMHOKUCJOTHAЯ ПОСЛЕДОВАТЕЛЬНОСТЬ BIIB-12-913_VLEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQYAPYPPLTFGGGTKVEIK608ПОСЛЕДОВАТЕЛЬНОСТЬ BIOCЛЕДОВАТЕЛЬНОСТЬSLQSEDFAVYYCQQYAPYPPLTFGGGTKVEIK		311	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
AMИНОКИСЛОТНАЯEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ605последовательностьKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISBIIB-12-912_VLSLQSEDFAVYYCQQFHNFPPTFGGGTKVEIKGAAATAGTGATGACGCAGCCACCCTGTCTGTGTCTCCAGGGGAAAGAGCCACCCTGTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAGGTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAGHykлеиновой кислоты кислоты кислоты визвания визвания от последовательность визванияATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTTCGAGAGATTTTGCAGTTTATTACTGTCA GCAGTTCCACAATTTCCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAA607AMИНОКИСЛОТНАЯ последовательность 			GCAGAGAAGTAACTTCCCTATCACTTTTGGCGGAGGGA
605последовательность ВІІВ-12-912_VLКРGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQFHNFPPTFGGGTKVEIK606GAAATAGTGATGACGCAGCCCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTGTCTGT GTCAGAGGTGTTAGCAGCAGCACCCTGTCCTGCAGGGCCA GTCAGAGGTGTTAGCAGCAGCACCTGTCATCTATGGTGC AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC AAACCTGGCCAGGCTCCCAGGCTCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGTTCCACAATTTCCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAA607AMMHOKMCJOTHAR INOCJEJOBATEJBHOCTB BIIB-12-913_VLEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQYAPYPPLTFGGGTKVEIK608ПОСЛЕДОВАТЕЛЬНОСТЬGAAATAGTGATGACGCAGCTCCCAGCCACCCTGTCTGT			CCAAGGTTGAGATCAAA
BIIB-12-912_VL SLQSEDFAVYYCQQFHNFPPTFGGGTKVEIK GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG HYKЛЕИНОВОЙ КИСЛОТЫ BIIB-12- 912_VL AGCCTGCAGGGCCACCTGTCTATCTATGGTGC AGCCTGCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGAGAGATTTACTCCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGTTCCACAAATTTCCCTCCTACTTTTGGCGGAGGAA CCAAGGTTGAGATCAA AMMHOKUCЛОТНАЯ EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ TOCJAGJOBATEЛЬНОСТЬ BIIB-12-913_VL SLQSEDFAVYYCQQYAPYPPLTFGGGTKVEIK GAAATAGTGATGACGCAGCCACCCTGTCTGT GAAATAGTGATGACGCAGCCACCCTGTCTGT GAAATAGTGATGACGCAGCCACCCTGTCTGT GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT GAAATAGTGATGACGCAGCTCTCCAGCCACCCTGTCTGT GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT GAAATAGTGATGACGCAGCCACCCTGTCTGT GAAATAGTGATGACGCAGCCACCCTGTCTGT GAAATAGTGATGACGCAACCTCTCCAGCCACCCTGTCTGT		Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
GAAATAGTGATGACGCAGCTCTCCAGCCACCCTGTCTGT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGTTCCACAAATTTCCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAA AMMHOKUCJOTHA EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS BIIB-12-913_VL GAAATAGTGATGACGCAGCTCTCCAGCCACCCTGTCTGT GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT GAAATAGTGATGACACACACCCTGTCTCAGCACCCTGTCTAGCACACCCTGTCTAGCACACCCTGTCTAGCACACCCTGTCTAGCACACACCCTGTCTAGCACACACA	605	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG Последовательность		BIIB-12-912_VL	SLQSEDFAVYYCQQFHNFPPTFGGGTKVEIK
GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG Последовательность нуклеиновой кислоты ВІІВ-12- 912_VL			GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
Последовательность нуклеиновой нуклеиновой атссассададстстадададстсадададстсададстсададстсадададстсадададстсадададстсадададстсадададстадст			GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
АААССТGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC Нуклеиновой кислоты BIIB-12- 912_VL		Последовательность	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
606 кислоты 912_VLBIIB-12- 912_VLATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGAAGATTTTGCAGTTTATTACTGTCA AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGTTCCACAATTTCCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAA607Последовательность ВІІВ-12-913_VLEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQYAPYPPLTFGGGTKVEIK608ПоследовательностьGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT			AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
912_VL GCAGTGGGTCTGGGACAGAGTTCACCTCTCACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGTTCCACAATTTCCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAA В Аминокислотная EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ КРСДАРКLLIYGASTRATGIPARFSGSGSGTEFTLTIS SLQSEDFAVYYCQQYAPYPPLTFGGGTKVEIK В Последовательность GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT	606		ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGTTCCACAATTTCCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAA AMMHOKUCЛОТНАЯ EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ последовательность KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS ВІІВ—12—913_VL SLQSEDFAVYYCQQYAPYPPLTFGGGTKVEIK Последовательность GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT 608			GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
CCAAGGTTGAGATCAAAMMHOKUCЛОТНАЯEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ1007ПОСЛЕДОВАТЕЛЬНОСТЬKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISBIIB-12-913_VLSLQSEDFAVYYCQQYAPYPPLTFGGGTKVEIK1008ПОСЛЕДОВАТЕЛЬНОСТЬGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT		712_\1	AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
AминокислотнаяEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ607последовательностьKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISBIIB-12-913_VLSLQSEDFAVYYCQQYAPYPPLTFGGGTKVEIK608ПоследовательностьGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT			GCAGTTCCACAATTTCCCTCCTACTTTTGGCGGAGGGA
607последовательностьKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISBIIB-12-913_VLSLQSEDFAVYYCQQYAPYPPLTFGGGTKVEIK608ПоследовательностьGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT			CCAAGGTTGAGATCAA
BIIB-12-913_VL SLQSEDFAVYYCQQYAPYPPLTFGGGTKVEIK Последовательность GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT		Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
— Последовательность GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT	607	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
608		BIIB-12-913_VL	SLQSEDFAVYYCQQYAPYPPLTFGGGTKVEIK
	600	Последовательность	GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
,	000	нуклеиновой	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA

913_VL AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC ATCCACCAGGGCCACTGGTATCCCAGCCAGGCTCAGTG GCAGTGGGTCTGAGAGATTTTGCAGTTTATTACTGTCA GCAGTAGGCCCCCTACCCTCCTCTCACTTTTTGCAGGAG GGACCAAGGTTGAGATCAAA AMMHONMCHOTHAM DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ BIB-12-914_VL SLQPEDFATYYCQQGYNTPLTFGGTKVEIK GACATCCAGATGCCCCGTACCTCCCTGCCTGCCAGC ATCTGTAGGAGACCAGTCTCCATCTTCCCTGTCTGC ATCTGTAGGAGACCAGTCTCCATCTCCCTGTCTGC ATCTGTAGGAGACCAGGTCTCCATCCTCCCTGTCTGC AACCAGGGAAAGCCCCTAAGCTCCCTGTCTGC AACCAGGGAAAGCCCCTAAGCTCCATCATCTCCCTGTCTGC AACCAGGGAAAGCCCCTAAGCTCCTCACTTATGCTGC AACCAGGTTGGAACTTGGAACTTTACACATCAGC AGCATGCAAACTTGCAGCAAGATTTCACTACTCTCACATCAGC AGCAGGATCAGAAGTTGCAGCTCCATCATCACTTCACCATCAGC AGCAGGATCAAAACACTCCTCTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAAA AMMHONMCHODATA DIVMTQSPLSLPVTPGEPASISCRSSQSLHSNGYNYL BIIB-12-915_VL TLKISRVEAEDVGYYYCMQARQRPWTFGGGTKVEIK GATATTGTGATGACTCAGTCTCCACTCTCCCTGCCCGT CACCCCTGGAGAGCCTCCATCTCCCTGCCCGT CACCCCTGGAGAGCCAGAACCACCTCTCCACTTTTTGCCGGGGCTCC CACCCCTGGAGAGCCAGAACCACCTCTCCCTGCCCGT CACCCCTGGAGAGCCAGGCCTCCACTCTCCCTGCCCGT CACCCCTGGAGAGCCAGGCCTCCACCTCTCCCTGCCCGT CACCCCTGGAGAGCCAGGCCTCCACCTCTCCCTGCCCGT CACCCCTGGAGAGCCAGAACCACGCCCTTAGACCTCACACGT CCCCAGAGGTTCACTAGCAGACCACACATTTT ACACTGAAAATCAGCAGAGCAG		кислоты ВІІВ-12-	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
GCAGTGGGTCTGGGACAGAGTTCACTCTACCATCAGC AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGTACGCCCCTACCCTCCTCTCACTTTTTGCGGGAG GGACCAAGGTTGAGATCAAA AMMHOKUCJOTHAR BIB-12-914_VL CACCTCGAGTCTACCATCTCACTTTTTGGCGGAG GGACCAAGGTTGAGATCAAA AMMHOKUCJOTHAR BIB-12-914_VL CACCTCGAGTGGACCAGTCTCCACTCCCTGTCTGC ATCTGTAGGAGACCAGTCTCCATCCTCCCTGTCTGC ATCTGTAGGAGACCAGTCTCCATCCTCCCTGTCTGC ATCTGTAGGAGACCAGTCTCCATCCTCCCTGTCTGC ATCCGAGCATTAGCAGAGTCACCATCACTTGCCGGGCAA GTCAGAGCATTAGCAGAGATCACCATCACTTGCCGGGCAA AACCAGGGAAAGCCCCTAAGCTCCTCACCATCAGC AGCTGCAACCTGAAGATTTTCACACATCAGC AGCTGCAACCTGAAGATTTTGCAACTTACTACTGCA GCAAGGTACAACACCTCCTCTCACTTTTTGGCGGGAGGA CCAAGGTTGAGACACTCCTCTCACTTTTTGGCGGGAGGA CCAAGGTTGAGACACTCCTCTCACTTTTTGGCGGGAGGA CCAAGGTTGAGACACTCCTCTCACTTTTTGGCGGGAGGA CCAAGGTTGAGACTCACACTCCTCCCCTCC		913 VL	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA GCAGTACGCCCCCTACCCTCTCTCACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA AMMHOKUCЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ BIB-12-914_VL ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ КИСЛОТЫ BIIB-12- 914_VL AMMHOKUCЛОТНАЯ AMMHOKUCЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ КИСЛОТЫ BIIB-12- 914_VL ACCCGGGACAAGGTCACCATCACTTGCCGGGCCAA GCCAGTCTTGCAAGGTCACCATCACTTAGCTGC AGCAGTTTGCAAAGTGGGGTCCATCCTGCATGCTGC AGCAGTTTGCAAAGTGGGGTCCATCATCATGCTGC AGCAGTTTGCAAAGTTGGACCATCACTTCACCATCAGG AAACCAGGGAAAGCCCCTAAGGTCACTCACAGGTCAGGG ACCAGGTTTTGCAAAGTGGGGTCCCATCACAGGTCAGG AGCAGGATACAACACTCCTCTCACCATCAGC AGCAGGATACAACACTCCTCTCACCTTTTGGCGGAGGAA CCAAGGTTGAGAACACTCCTCTCACCTTTTGGCGGAGGGA CCAAGGTTGAGAACACTCCTCTCACCTTTTGGCGGAGGAC CCAAGGTTGAGATCAAA AMMHOKUCЛОТНАЯ BIIB-12-915_VL IIOCЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ КИСЛОТЫ BIIB-12- 915_VL CATATTGTGATGACTCACTCCCTGCCCGT CACCCCTGGAGAGCCAGGCAGTCTCCACAGCT CCTGATCTATTTGGCTTCCACAGCT CCTGATCTATTTGGCTTCCACAGCT CCTGATCTATTTGGCTTCAACTGGGCCTCCAGGTCCA CCTGATCTATTTGGCTTCTAATCGGGCCTCCAGGTCC CTGACAGGTTCAGTGGCAGGAGCCAGGATCTCCACAGCT CCTGATCTATTTGGCTTCTAATCGGGCCTCCAGGGTCC CTGACCAGAAAATCAGCAGAGTGGAGCAGAGATTTT ACACTGAAAATCAGCAGAGTGGAGCAGAGATTTT ACACTGAAAATCAGCAGAGTGGAGCAAGACTTTGG GGTTTATTACTGCATGCAGGCAAGACAGCCCCTTGGA CTTTTGGCGGAGGGCACAAGGTTGAGATCAAA AMUHOKUCЛОТНАЯ DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ			ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
GCAGTACGCCCCTACCCTCTCACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA AMMHOKUCJOTHAЯ BIB-12-914_VL BIB-12-915_VL BIB-12-12-915_VL BIB-12-12-915_VL BIB-12-			GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
GGACCAAGGTTGAGATCAAA Aминокислотная последовательность вів—12—914_vl SLQPEDFATYYCQQGYNTPLTGGGTKVEIK GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC ATCTGTAGGAGACAGAGTTCACATCACTTGCCGGGCAA GTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAG AACCAGGGAAAGCCCCTAAGGTCCCATCACTCACCATCACTG ATCCGGTTTGCAAAGTTGCAGCATCACTTAGCTGC ATCCAGTTTGCAAAGTTGCAGCATCACTTATGCTGC ATCCAGTTTGCAAAGTTGGGGTCCATCAAGGTTCAGTG GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC AGCTGGAACCTGAAGATTTCACTCTCACCATCAGC AGCAGGATCAGAAGTTTGCAACTTACTACTGCA GCAAGGATCAGAACACCTCCTCTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKUCJOTHAЯ DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYL DWYLQKPGQSPQLLIYLASNRASGVPDRFSGSGSGTDF TLKISRVEAEDVGVYYCMQARQRPWTFGGGTKVEIK GATATTGTGATGACTCACTCTCCCTGCCCGT CACCCCTGGAGAGCCGCCTCCATCTCCCTGCCCGT CACCCCTGGAGAGCCGGCCTCCATCTCCCTGCCGGT CACCCCTGGAGAGCCTCCATCTCCCTGCCGGT CACCCCTGGAGAGCCAGAGTTTTACACTCTCCACAGCT CACCCCTGGAGAGCCAGGGCAGTCTCCACAGCT CCTGATCTATTTGGCTTCAATCGGGCCTCCACGGGGTCC CTGACAGGTTCAGTGCAGAGCCAGGGCAGATTTT ACACTGAAAATCAGCAGAGTGGAGCACAGATTTT ACACTGAAAATCAGCAGAGTGGAGCAGAGTTGGA GGTTTATTACTGCATGCAGGCAGAGCCCCCTTGGA CTTTTGGCGGAGGGCACAAGGTTGAGATCAAA AMMHOKUCJOTHAЯ DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ			AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
Aминокислотная DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ ROCAEQOBATEЛЬНОСТЬ BIB-12-914_VL GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC ATCTGTAGGAGACCAGGTCATCATTGCCGGGCAA GTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAG AAACCAGGGAAAGCCCCTAAGCTCCATCACTTAGCTGC AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC ACCAGTTTGCAAAGTTGGACCATCACTTAGCTGC AGTCTGCAACCTGAAGATTTCACTCTCACCATCAGC AGTCTGCAACCTGAAGATTTTGCAACTTACTACTGCA GCAAGGATACAACACTCCTCTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHORMCAOTHAB DIVMTQSPSLSPVTPGEPASISCRSSQSLLHSNGYNYL BIIB-12-915_VL TLKISRVEAEDVGVYYCMQARQRPWTFGGGTKVEIK GATATTTGTATGATCACTCTCCCTGCCGGT CACCCCTGGAGAGCCTCCTCCACTCTCCCTGCCGGT CACCCCTGGAGAGCCTCCTGCATCTCCTCCCTGCCGGT CACCCCTGGAGAGCCTCCTGCATCTCCCTGCCGGT CACCCCTGGAGAGCCTCCTGCATCTCCCTGCCGGT CACCCCTGGAGAGCCTCCTGCATAGTAATGGATACAACTATTTG GATTGGTACCTGCAGAAGCCAGGCCTCCAGCTT CCTGACAGGTTCAGTGGAGCCACAGATTTT ACACTGAAAATCAGCAGAGTGGAGGCCTCCAGGGTCC CTGACAGGTTCAGTGCAGGCACAGATTTT ACACTGAAAATCAGCAGAGTTGAGGCCACAGATTTT ACACTGAAAATCAGCAGGCAAGACAGCGCCCTTGGA CTTTTGGCGGAGGACCAAGGTTGAGACCAGGATCTCCACCTTTTTTTT			GCAGTACGCCCCTACCCTCCTCTCACTTTTGGCGGAG
609 последовательность КРБКАРКLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS BIB-12-914_VL SLQPEDFATYYCQQGYNTPLTFGGGTKVEIK GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAA GTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAG AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC GCAGTGGATCTGGACAGAGTTTCACTCTCACCATCAGC AGCCAGGTTGAGACATTTCCACCTCCACCATCAGC GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC AGCCAAGGTTGAGACTTATTGCAACTTACTGCTCA GCAAGGATACAACCTCCTCTCACCTTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA 611 NOCLEGOBATELEDOCTE DWYLQKPGQSPQLLIYLASNRASGVPDRFSGSGSGTDF TLKISRVEAEDVGYYYCMQARQRPWTFGGGTKVEIK GATATTGTGATGATCCAGTCTCCACTCTCCCTGCCCGT CACCCCTGGAGAGCCTCCATCTCCCTGCCCGT CACCCCTGGAGAGCCTCCATCTCCCTGCCGGTCTA GTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTG GTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTG GTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTG GTCAGAGCCTCCTGCATCTCCCTGCCGGTCC CCTGATCTATTTTGGCTTCTAATCGGGCCTCCAGGCCCCTTA CCTGACTGATAGTAATCAGCAGGATCTCCACAGCT GTCAGAGCTCCTGCATCTCTCACAGCT CCTGACAGGTTCAGTCAGAGCACAGATTTT ACACTGAAAAATCAGCAGAGAGGCACAGGATCTCCACAGCT CCTGACTCTTCTTCAACTGGGCACAGACTCTCCACAGCT CCTGACTCATCTCT			GGACCAAGGTTGAGATCAAA
BIB-12-914_VL SLQPEDFATYYCQQGYNTPLTFGGGTKVEIK GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAA GTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAG AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC 610 KUCJOTH BIIB-12-914_VL 611 GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC AGTCTGCAACCTGAAGATTTTGCAACTTCACCATCAGC AGTCTGCAACCTGAAGATTTTGCAACTTCACCATCAGC AGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCA GCAAGGATACAACACTCCTCTCACTTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYL BIIB-12-915_VL TLKISRVEAEDVGVYYCMQARQRPWTFGGGTKVEIK GATATTGTGATGACTCAGTCTCCACTGCCCGT CACCCCTGGAGAGCCTCCATCTCCCTGCCCGT CACCCCTGGAGAGCCTCCATCTCCCTGCCGGT CACCCCTGGAGAGCCTCCATCTCCCTGCAGGTCTA GATATTGTGATGACTCAGTTTCCACTGCTCGCTGCCCGT CACCCCTGGAGAGCCTCCATCTCCCTGCAGGTCTA GATATTGTGATGCTGCAGAAGCCAGGGCCTCCATCTCCCTGCCGGT CCTGACAGGTTCATATTTGGCTTCTAATCGGGCCTCCAGGGTCC GATTGTACTTGCAGAAGCCAGGGCAGATTTT ACACTGAAAATCAGCAGAGTGGAGCACAGATTTT ACACTGAAAATCAGCAGAGTGGAGCAGAGACAGGCCCCTTGGA CTTGACAGGTTCAGTGCAGGAAGACAGCGCCCTTGGA GATTTTTTGCAGAGAGACAGAGACAGAGACAGAGACAGAGACAGAGACAGAGACAGAGACAGAGACAGAGACAGAGACAGAGACAGAGACAGACAGAGACAGAGACAGAGACAGAGACAGAGACAGAGACAGAGACAGAGACAGAGACAGAGACAGACACAGAGACAGAGACAAGACACACAGAGACAAGACACAGAGACAAGACACACAGAGACAAGAC		Аминокислотная	DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ
GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAA GTCAGAGCATTAGCAGCTCATTAAAATTGGTATCAGCAG AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG AACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG GCAAGGATACAACACTCTCTCACCATCAGC AGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCA GCAAGGATACAACACTCCTCTCACCTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKUCJOTHA BIIB-12-915_VL BIIB-12-915_VL GATATTGTGATGACTCCACTCTCCCTGCCCGT CACCCCTGGAGAGCCTCCATCTCCCTGCCCGT CACCCCTGGAGAGCCTCCATCTCCCTGCCCGT CACCCCTGGAGAGCCTCCTTCCACTCTCCCTGCCCGT CACCCCTGGAGAGCCTCCTGCATATTATTTG GATTTGTACTGCAGAGCCTCCACCTCTCCCAGGTCCACCCTTGCAGGTCCACCCTTGCAGGTCCACCCTTGCAGGTCCACCCTTTTTACTGCAGGAGCCTCCAGGGCCTCCAGCCTCCAGCTCCCTGCAGGTCCACCCTTGCAGAAAATCAGCAGAGGCAGACAGGCCCCTTGGA CTGACAGGTTCAGTGCAGGAGAGCAGGCCCCTTGGA CTGACAGGTTCAGTGCAGGAGACAGGCCCCTTGGA CTGACAGAAAATCAGCAGAGGTGAGACAAGCCCCTTGGA CTTTTGGCGGAGGGACCAAGGTTGAGAACAACACCTTTCCACAGCT CTGACAGGTTCAGTGCAGGAAGACAGCCCCCTTGGA CTTTTTGCCGGAGGGCAAGACAGCCCCCTTGGA CTTTTTGCCGGAGGGCAAGACAAGCCCCCTTGGA CTTTTTGCCGGAGGGCAAGACAAGCCCCTTTGAACACTATTTG ACACTGAAAATCAGCAGAGTTGAGAACAACACTTTT ACACTGAAAATCAGCAGAGTTGAGAACAACACCCCTTGGA CTTTTTGCCGGAGGCAAGACAGCCCCCTTGGA CTTTTTGCCGGAGGGCAAGACAACACCCCCTTGGA CTTTTTGCCGGAGGGCAAGACAACACCCCCTTTGAACACTATTTT ACACTGAAAATCAGCAGAGTTGAGAACAACACCCCTTTGAACACTATTTT ACACTGAAAAATCAGCAGAGTTGAGAACAACACCTCTTCCACACCT CTGACAGGTTCAACACTATTTT ACACTGAAAATCAGCAGAGTTGAGAACACACCTCTCCCTGCCAGTCTCACACCTT ACACTGAAAAATCAGCAGAGTTGAGAACAACACCTCTTTTTTTT	609	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
атстдтаддадасаддатсассатсасттдссдадсад даассаддадаттдадатдада		BIB-12-914_VL	SLQPEDFATYYCQQGYNTPLTFGGGTKVEIK
GTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAG AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC AGTCTGCAACCTGAAGATTTTGCAACTTACTACTGCAA GCAAGGATACAACACTCCTCTCACCTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKUCJOTHA			GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
Последовательность нуклеиновой кислоты BIIB-12- 914_VL			ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAA
610 нуклеиновой кислоты віїв-12- 914_VL Алассадбдаладстесталадстесталадстела да			GTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAG
ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC 914_VL AGTCTGCAACCTGAAGATTTTGCAACTTACTACTACTAC GCAAGGATACAACACTCCTCTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHOKUCJOTHAЯ DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYL DWYLQKPGQSPQLLIYLASNRASGVPDRFSGSGSGTDF TLKISRVEAEDVGVYYCMQARQRPWTFGGGTKVEIK GATATTGTGATGACTCACTCTCCCTGCCCGT CACCCCTGGAGAGCCGGCCTCCATCTCCTGCAGGTCTA GTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTG GATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCT HYKJRENHOBOЙ KUCJOTH BIIB-12- 915_VL GCTGATCTATTTGGCTTCTAATCGGGCCTCCAGGTCC CTGACAGGTTCAGTGGCAGGGAGGCAGAGATTTT ACACTGAAAATCAGCAGAGTGGAGCAGGATGTTGG GGTTTATTACTGCATGCAGGCAAGACACACCTTTGGA CTTTTGGCGGAGGGCAAGACAGGCCCCTTGGA AMMHOKUCJOTHAЯ DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ			AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
914_VL GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC AGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCA GCAAGGATACAACACTCCTCTCACTTTTGGCGAGGGA CCAAGGTTGAGATCAAA AMMHOKMCЛОТНАЯ DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYL DWYLQKPGQSPQLLIYLASNRASGVPDRFSGSGSGTDF TLKISRVEAEDVGVYYCMQARQRPWTFGGGTKVEIK GATATTGTGATGACTCACTCTCCCTGCCCGT CACCCCTGGAGAGCCGGCCTCCATCTCCTGCAGGTCTA GTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTG GATTGGTACCTGCAGAGAGCCAGGGCAGTCTCCACAGCT HYKRIENHOBOЙ RMCЛОТЫ BIIB-12- 915_VL GATATTGTGATGACTCTCTCACTGCCGGGTCC CTGACAGGTTCAGTGGCAGGGCAG	610		ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG
AGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCA GCAAGGATACAACACTCCTCTCACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA AMMHORUCJOTHAЯ DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYL DWYLQKPGQSPQLLIYLASNRASGVPDRFSGSGSGTDF TLKISRVEAEDVGVYYCMQARQRPWTFGGGTKVEIK GATATTGTGATGACTCACTCTCCCTGCCCGT CACCCCTGGAGAGCCGGCCTCCATCTCCTGCAGGTCTA GTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTG GATTGGTACCTGCAGAGCCAGGGCAGTCTCCACAGCT CCTGATCTATTTGGCTTCTAATCGGGCCTCCGGGGTCC CTGACAGGTTCAGTGGCAGGTGGATCAGGCACAGATTTT ACACTGAAAATCAGCAGAGTGGAGGCTGAGGATGTTGG GGTTTATTACTGCATGCAGGCAAGACCCCTTGGA CTTTTGGCGGAGGGACCAAGGTTGAGATCAAA AMMHORUCJOTHAЯ DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ			GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
CCAAGGTTGAGATCAAA AMMHOKUCЛОТНАЯ DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYL DWYLQKPGQSPQLLIYLASNRASGVPDRFSGSGSGTDF TLKISRVEAEDVGVYYCMQARQRPWTFGGGTKVEIK GATATTGTGATGACTCACTCTCCCTGCCCGT CACCCCTGGAGAGCCGGCCTCCATCTCCTGCAGGTCTA GTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTG GATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCT CCTGATCTATTTGGCTTCTAATCGGGCCTCCGGGGTCC CTGACAGGTTCAGTGGCAGTGGATCAGGATGTTT ACACTGAAAATCAGCAGAGTTGAGATCAGA CTTTTTGGCGGAGGGACCAAGGTTGAGATCAAA AMMHOKNCJOTHAЯ DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ		914_VL	AGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCA
АминокислотнаяDIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYL611последовательность ВІІВ-12-915_VLDWYLQKPGQSPQLLIYLASNRASGVPDRFSGSGSGTDF TLKISRVEAEDVGVYYCMQARQRPWTFGGGTKVEIK612GATATTGTGATGACTCCACTCTCCCTGCCCGT CACCCCTGGAGAGCCGGCCTCCATCTCCTGCAGGTCTA GTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTG GATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCT CCTGATCTATTTGGCTTCTAATCGGGCCTCCGGGGTCC CTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTT ACACTGAAAATCAGCAGAGTGGAGCTGAGGATGTTGG GGTTTATTACTGCATGCAGGCAAGACAGCGCCCTTGGA CTTTTGGCGGAGGGCACAAGGTTGAGATCAAAАминокислотнаяDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ			GCAAGGATACAACACTCCTCTCACTTTTGGCGGAGGGA
611последовательность ВІІВ-12-915_VLDWYLQKPGQSPQLLIYLASNRASGVPDRFSGSGSGTDF TLKISRVEAEDVGVYYCMQARQRPWTFGGGTKVEIK612GATATTGTGATGACTCAGTCTCCACTCTCCCTGCCGT CACCCCTGGAGAGCCTCCTGCATAGTAATGGATACAACTATTTG GATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCT CCTGATCTATTTGGCTTCTAATCGGGCCTCCAGGGTCC CTGACAGGTTCAGTGGCAGGAGCCAGGGTCC CTGACAGGTTCAGTGGCAGGAGTCTAGGCACAGATTTT ACACTGAAAATCAGCAGAGTGGAGGCTGAGGATGTTGG GGTTTATTACTGCATGCAGGCAAGACAGCGCCCTTGGA CTTTTTGGCGGAGGGACCAAGGTTGAGATCAAAАминокислотнаяDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ			CCAAGGTTGAGATCAAA
BIIB-12-915_VL TLKISRVEAEDVGVYYCMQARQRPWTFGGGTKVEIK GATATTGTGATGACTCAGTCTCCACTCTCCCTGCCCGT CACCCCTGGAGAGCCGGCCTCCATCTCCTGCAGGTCTA GTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTG GATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCT CCTGATCTATTTGGCTTCTAATCGGGCCTCCGGGGTCC CTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTT ACACTGAAAATCAGCAGAGTGGAGGCTGAGGATGTTGG GGTTTATTACTGCATGCAGGCAAGACAGCCCCTTGGA CTTTTGGCGGAGGGACCAAGGTTGAGATCAAA AMMHOKUCJOTHAR DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ		Аминокислотная	DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYL
GATATTGTGATGACTCAGTCTCCACTCTCCCTGCCCGT CACCCCTGGAGAGCCGGCCTCCATCTCCTGCAGGTCTA GTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTG GATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCT CCTGATCTATTTGGCTTCTAATCGGGCCTCCGGGGTCC CTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTT ACACTGAAAATCAGCAGAGTGGAGCTGAGGATGTTGG GGTTTATTACTGCATGCAGGCAAGACCAGCTCTGGA CTTTTGGCGGAGGGACCAAGGTTGAGATCAAA AMMHOKUCJOTHAA DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ	611	последовательность	DWYLQKPGQSPQLLIYLASNRASGVPDRFSGSGSGTDF
САССССТGGAGAGCCGGCCTCCATCTCCTGCAGGTCTA GTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTG GATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCT CCTGATCTATTTGGCTTCTAATCGGGCCTCCGGGGTCC CTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTT ACACTGAAAATCAGCAGAGTGGAGCTGAGGATCTTGG GGTTTATTACTGCATGCAGGCAAGACAGCCCCTTGGA CTTTTGGCGGAGGGCCCAAGGTTGAGATCAAA AMMHOKUCJOTHAA DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ		BIIB-12-915_VL	TLKISRVEAEDVGVYYCMQARQRPWTFGGGTKVEIK
Последовательность нуклеиновой кислоты BIIB-12- 915_VL СТGACAGGTTCAGTAGTAATGGATACAACTATTT ACACTGAAAATCAGCTGCAGAAGCCAGGGCAGTCTCCACAGCT CCTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTT ACACTGAAAATCAGCAGAGTGGAGGCACAGATTTT ACACTGAAAATCAGCAGAGTGGAGCACAGATTTGG GGTTTATTACTGCATGCAGGCAAGACAGCCCCTTGGA CTTTTGGCGGAGGGACCAAGGTTGAGATCAAA AMMHOKUCJOTHAA DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ			GATATTGTGATGACTCAGTCTCCACTCTCCCTGCCCGT
Последовательность нуклеиновой кислоты BIIB-12- 915_VL СТGATCTATTTGGCTGCAGAGCCAGGGCAGTCTCCACAGCT СТGACAGGTTCAGTGGCAGTGGATCAGGGCCTCCGGGGTCC СТGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTT АСАСТGААААТСАGCAGAGTGGAGGCTGAGGATGTTGG GGTTTATTACTGCATGCAGGCAAGACAGCGCCCTTGGA СТТТТGGCGGAGGGACCAAGGTTGAGATCAAA Аминокислотная DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ			CACCCTGGAGAGCCGGCCTCCATCTCCTGCAGGTCTA
612 Нуклеиновой кислоты BIIB-12- СТБАСАБСТТСТАСТВЕТСТВОТЕ ВОТОВНЕНИЕ ВОТОВНЕ		Послеповательность	GTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTG
612 кислоты ВІІВ—12— 915_VL СТБАСАБСТТСТАТТТБССТТСТААТСБСБССТССБББСТСС СТБАСАБСТТСТАТТТБССАБСТБСТСТАТТТТ АСАСТБААЛАТСАБСАБСТБСВАБСТБАБСТТТТБССТБАБСТБСТБСВАБСТБАБСТТТБСТБСАТБСАБСТБСВАБСТТБСВАБСТБСВАБСТБСВАБСТБСВАБСТБСВАБСТБСВАБСТБСВАБСТБСВАБСТБСВАБСТБСВАБСТБСВАБСТБСВАБСТБСВАБСТВАБСТ			GATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCT
915_VL CTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTT ACACTGAAAATCAGCAGAGTGGAGGCTGAGGATGTTGG GGTTTATTACTGCATGCAGGCAAGACAGCGCCCTTGGA CTTTTGGCGGAGGGACCAAGGTTGAGATCAAA Аминокислотная DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ	612		CCTGATCTATTTGGCTTCTAATCGGGCCTCCGGGGTCC
ACACTGAAAATCAGCAGAGTGGAGGCTGAGGATGTTGG GGTTTATTACTGCATGCAGGCAAGACAGCGCCCTTGGA CTTTTGGCGGAGGGACCAAGGTTGAGATCAAA Аминокислотная DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ			CTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTT
CTTTTGGCGGAGGGACCAAGGTTGAGATCAAA Аминокислотная DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ			ACACTGAAAATCAGCAGAGTGGAGGCTGAGGATGTTGG
Аминокислотная DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ			GGTTTATTACTGCATGCAGGCAAGACAGCGCCCTTGGA
			CTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
		Аминокислотная	DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ
613 последовательность KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS	613	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
BIIB-12-916_VL SLQPEDFATYYCQQLAITPFTFGGGTKVEIK		BIIB-12-916_VL	SLQPEDFATYYCQQLAITPFTFGGGTKVEIK
614 Последовательность GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC	614	Последовательность	GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC

	нуклеиновой	ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAA
	кислоты BIIB-12-	GTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAG
	916_VL	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
		ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG
		GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCA
		GCAACTAGCCATCACTCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
615	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-12-917_VL	SLQSEDFAVYYCQQLFNHPPTFGGGTKVEIK
		GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
	нуклеиновой	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
616	кислоты ВІІВ-12-	ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
	917 VL	GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGCTCTTCAATCACCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSLSASVGDRVTITCRASQSISRYLNWYQQ
617	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-918_VL	SLQPEDFATYYCQQIFSLPITFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAA
	Последовательность	GTCAGAGCATTAGCAGATATTTAAATTGGTATCAGCAG
	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
618	кислоты ВІІВ-12-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG
	918 VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCA
		GCAAATATTCAGTCTCCCTATCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ
619	последовательность	KPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTIS
	BIIB-12-919_VL	SLQPDDFATYYCQQVSSYPTFGGGTKVEIK

атстдтададасададтсассатсастто детовательность нуклеиновой кислоты вів-12-919_VL адсстдададатстадададатстадададатстададатстадададатстадададатстадададатстадададатстадададатстадададатстадададад	FATCAGCAG CTATAAAGC GGTTCAGCG ACCATCAGC FTACTGCCA GAGGGACCA
Последовательность нуклеиновой кислоты BIIB-12- 919_VL	CTATAAAGC GGTTCAGCG ACCATCAGC FTACTGCCA GAGGGACCA
620нуклеиновой кислоты 919_VLСТССАGTTTGGAAAGTGGGGTCCCATCAAG CTCCAGTTTGGAAAGTGGGGTCCCATCAAG GCAGTGGATCTGGGACAGAATTCACTCTCA AGCCTGCAGCCTGATGATTTTGCAACTTAT GCAGGTCAGCAGTTACCCTACTTTTGGCGG AGGTTGAGATCAAAАминокислотная 621EIVMTQSPATLSVSPGERATLSCRASQSVS KPGQAPRLLIYSASTRATGIPARFSGSGSG	GGTTCAGCG ACCATCAGC FTACTGCCA GAGGGACCA
620 кислоты ВІІВ—12— 919_VL АGCCTGCAGTTTGGAAAGTGGGGTCCCATCAAC GCAGTTGGATCTGGGACAGAATTCACTCTCA AGCCTGCAGCCTGATGATTTTTGCAACTTAT GCAGGTCAGCAGTTACCCTACTTTTTGGCGC AGGTTGAGATCAAA ЕІVMTQSPATLSVSPGERATLSCRASQSVS Последовательность КРGQAPRLLIYSASTRATGIPARFSGSGSC	ACCATCAGC FTACTGCCA GAGGGACCA
919_VL GCAGTGGATCTGGGACAGAATTCACTCTCA AGCCTGCAGCCTGATGATTTTTGCAACTTAT GCAGGTCAGCAGTTACCCTACTTTTGGCGG AGGTTGAGATCAAA Аминокислотная EIVMTQSPATLSVSPGERATLSCRASQSVS Последовательность KPGQAPRLLIYSASTRATGIPARFSGSGSG	FTACTGCCA GAGGGACCA
AGCCTGCAGCCTGATGATTTTGCAACTTAT GCAGGTCAGCAGTTACCCTACTTTTGGCGC AGGTTGAGATCAAA Аминокислотная EIVMTQSPATLSVSPGERATLSCRASQSVS последовательность KPGQAPRLLIYSASTRATGIPARFSGSGSC	GAGGGACCA
AGGTTGAGATCAAA Аминокислотная EIVMTQSPATLSVSPGERATLSCRASQSVS 621 последовательность KPGQAPRLLIYSASTRATGIPARFSGSGSC	
АминокислотнаяEIVMTQSPATLSVSPGERATLSCRASQSVS621последовательностьKPGQAPRLLIYSASTRATGIPARFSGSGSO	SSNI.ZWVOO
621 последовательность KPGQAPRLLIYSASTRATGIPARFSGSGSC	SSNI.ZWVOO
	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
DITD 12 020 VI CLOCEDENVYCOONNAYDDECCCERCE	GTEFTLTIS
BIIB-12-920_VL SLQSEDFAVYYCQQANAYPPTFGGGTKVE	Ι
GAAATAGTGATGACGCAGTCTCCAGCCACG	CCTGTCTGT
GTCTCCAGGGGAAAGAGCCACCCTCTCCTC	GCAGGGCCA
GTCAGAGTGTTAGCAGCAACTTAGCCTGGT	FACCAGCAG
АААССТGGCCAGGCTCCCAGGCTCCTCATC	CTATAGCGC
622 ATCCACCAGGGCCACTGGTATCCCAGCCAC	GGTTCAGTG
GCAGTGGGTCTGGGACAGAGTTCACTCTCA	ACCATCAGC
AGCCTGCAGTCTGAAGATTTTGCAGTTTAT	FTACTGTCA
GCAGGCCAATGCCTACCTCTACTTTTGC	GCGGAGGGA
CCAAGGTTGAGATCAAA	
Аминокислотная DIQMTQSPSSVSASVGDRVTITCRASQGIS	SRWLAWYQQ
623 последовательность KPGKAPKLLIYAASSLQSGVPSRFSGSGSC	GTDFTLTIS
BIIB-12-921_VL SLQPEDFATYYCQQGNVFPLTFGGGTKVE	ſΚ
GACATCCAGATGACCCAGTCTCCATCTTCC	CGTGTCTGC
ATCTGTAGGAGACAGAGTCACCATCACTTC	GTCGGGCGA
	[ATCAGCAG
GTCAGGGTATTAGCAGGTGGTTAGCCTGGT	
Последовательность АААССАGGGAAAGCCCCTAAGCTCCTGATC	JTATGCTGC
Последовательность АААССАGGGAAAGCCCCTAAGCTCCTGATC НУКЛЕИНОВОЙ ATCCAGTTTGCAAAGTGGGGTCCCATCAAC	
Последовательность нуклеиновой нуклеиновой кислоты BIIB-12- GCAGTGGATCTGGGACAGATTTCACTCTCA	GGTTCAGCG
Последовательность АААССАGGGAAAGCCCCTAAGCTCCTGATC НУКЛЕИНОВОЙ ATCCAGTTTGCAAAGTGGGGTCCCATCAAC	GGTTCAGCG ACCATCAGC
Последовательность нуклеиновой нуклеиновой кислоты BIIB-12- GCAGTGGATCTGGGACAGATTTCACTCTCAGCTCAGCTC	GGTTCAGCG ACCATCAGC CTACTGTCA
Последовательность нуклеиновой нуклеиновой атссадттдсааадстсстдатс адстадт вислоты вів—12— GCAGTGGATCTGGGACAGATTTCACTCTCA AGCCTGCAGCCTGAAGATTTTGCAACTTAC	GGTTCAGCG ACCATCAGC CTACTGTCA
Последовательность нуклеиновой кислоты BIIB-12- 921_VL	GGTTCAGCG ACCATCAGC CTACTGTCA GCGGAGGGA

	BIIB-12-922_VL	TLKISRVEAEDVGVYYCMQALQTPITFGGGTKVEIK
		GATATTGTGATGACTCAGTCTCCACTCTCCCTGCCCGT
	CACCCTGGAGAGCCGGCCTCCATCTCCTGCAGGTCTA	
	П	GTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTG
	Последовательность	GATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCT
626	нуклеиновой вислоты віів-12-	CCTGATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCC
	кислоты BIIB-12- 922 VL	CTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTT
	922_VII	ACACTGAAAATCAGCAGAGTGGAGGCTGAGGATGTTGG
		GGTTTATTACTGCATGCAGGCACTACAGACTCCTATCA
		CTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ
627	последовательность	KPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTIS
	BIIB-12-923_VL	SLQPDDFATYYCQQFKSLSFTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC
	Последовательность нуклеиновой	ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA
		GTCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAG
		AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAAGC
628	кислоты ВІІВ-12-	CTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGCG
	923 VL	GCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGC
	J23_VI	AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA
		GCAGTTCAAAAGTCTCTCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
629	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-924_VL	SLQPEDFATYYCQQGNSFPLTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	Последовательность	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
630	кислоты ВІІВ-12-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
	924 VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
	924_VII	AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGGAAATTCCTTCCCTCTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
631	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ

	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-12-926_VL	SLQSEDFAVYYCQQHSFWPPTFGGGTKVEIK
		GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
	Последовательность	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
632	нуклеиновой кислоты ВІІВ-12-	ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
	926_VL	AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGCACTCCTTCTGGCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
633	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-12-927_VL	SLQSEDFAVYYCQQFNLWPFTFGGGTKVEIK
		GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
	нуклеиновой	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
634	кислоты ВІІВ-12-	ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
	927 VL	GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGTTCAATCTCTGGCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQ
635	последовательность	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI
	BIIB-12-928_VL	SRLEPEDFAVYYCQQYVRFPLTFGGGTKVEIK
		GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGGAGCAGCTACTTAGCCTGGTACCAG
	нуклеиновой	CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG
636	кислоты ВІІВ-12-	TGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCA
	928 VL	GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATC
		AGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTG
		TCAGCAGTACGTTCCCTCTCACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA

	Аминокислотная	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNY
637	последовательность	LAWYQQKPGQPPKLLISWASTRESGVPDRFSGSGSGTD
	BIIB-12-929_VL	FTLTISSLQAEDVAVYYCQQYFSLPFTFGGGTKVEIK
		GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGT
		GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCA
	Последовательность	GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC
		TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA
638	нуклеиновой ві ві в ві в ві в ві в ві в ві в ві	GCTGCTCATTTCCTGGGCATCTACCCGGGAATCCGGGG
	кислоты BIIB-12- 929 VL	TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGAT
	929_VL	TTCACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGT
		GGCAGTTTATTACTGTCAGCAGTACTTCAGTCTCCCTT
		TCACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
	Аминокислотная	DIVMTQSPDSLAVSLGERATINCKSSQSVLFSSNNKNY
639	последовательность	LAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTD
	BIIB-12-930_VL	FTLTISSLQAEDVAVYYCQQYFLSPFTFGGGTKVEIK
		GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGT
		GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCA
	Последовательность	GCCAGAGTGTTTTATTCAGCTCCAACAATAAGAACTAC
	нуклеиновой	TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA
640	кислоты ВІІВ-12-	GCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGG
	930 VL	TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGAT
	320_4	TTCACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGT
		GGCAGTTTATTACTGTCAGCAGTACTTCCTCTCCCCTT
		TCACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
641	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-12-931_VL	SLQSEDFAVYYCQQAAYWPWTFGGGTKVEIK
		GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
642	нуклеиновой	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
042	кислоты BIIB-12-	ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
	931_VL	GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGGCCGCCTACTGGCCTTGGACTTTTGGCGGAGGGA
<u> </u>		

		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ
643	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-932_VL	SLQPEDFATYYCQQSHSAPTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAA
		GTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAG
	Аминокислотная	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
644	последовательность	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG
	BIIB-12-932_VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCA
		GCAAAGCCACAGTGCCCCTACTTTTGGCGGAGGGACCA
		AGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQ
645	последовательность	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI
	BIIB-12-933_VL	SRLEPEDFAVYYCQQYSRSPITFGGGTKVEIK
		GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAG
	нуклеиновой	CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG
646	кислоты ВІІВ-12-	TGCATCCAGCAGGCCACTGGCATCCCAGACAGGTTCA
	933 VL	GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATC
		AGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTG
		TCAGCAGTACTCCCGCTCCCCTATCACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
647	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-12-934_VL	SLQSEDFAVYYCQQFNDHPITFGGGTKVEI
		GAAATAGTGTTGACGCAGTCTCCAGCCACCCTGTCTGT
	Последовательность	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	нуклеиновой	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
648	кислоты ВІІВ-12-	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
	934 VL	ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA

		GCAGTTCAATGACCACCCTATCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSFLAWYQ
649	последовательность	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI
	BIIB-12-935_VL	SRLEPEDFAVYYCQQYSSSPITFGGGTKVEIK
		GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGCAGCAGCTTCTTAGCCTGGTACCAG
	нуклеиновой	CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG
650	кислоты ВІІВ-12-	TGCATCCAGCAGGCCCACTGGCATCCCAGACAGGTTCA
	935 VL	GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATC
	333_vII	AGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTG
		TCAGCAGTACTCCAGTTCCCCTATCACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
651	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-12-936_VL	SLQSEDFAVYYCQQSHNLPPTFGGGTKVEIK
		GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
	нуклеиновой	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
652	кислоты ВІІВ-12-	ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
	936 VL	GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGTCCCACAATCTCCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYL
653	последовательность	DWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDF
	BIIB-12-937_VL	TLKISRVEAEDVGVYYCMQERQTPLTFGGGTKVEIK
		GATATTGTGATGACTCAGTCTCCACTCTCCCTGCCCGT
	Последовательность	CACCCTGGAGAGCCGGCCTCCATCTCCTGCAGGTCTA
654	нуклеиновой	GTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTG
	кислоты BIIB-12-	GATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCT
	937_VL	CCTGATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCC
		CTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTT

		ACACTGAAAATCAGCAGAGTGGAGGCTGAGGATGTTGG
		GGTTTATTACTGCATGCAGGAAAGACAAACTCCTCTCA
		CTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
	Аминокислотная	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNY
655		LAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTD
655	последовательность	
	BIIB-12-1288_VL	FTLTISSLQAEDVAVYYCQQSFNTPFTFGGGTKVEIK
		GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGT
		GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCA
	Последовательность	GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC
	нуклеиновой	TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA
656	кислоты ВІІВ-12-	GCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGG
	1288 VL	TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGAT
		TTCACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGT
		GGCAGTTTATTACTGTCAGCAGTCCTTCAACACTCCTT
		TCACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
	Аминокислотная	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNY
657	последовательность	LAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTD
	BIIB-12-1289_VL	FTLTISSLQAEDVAVYYCQQYYASPFTFGGGTKVEIK
		GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGT
		GTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCA
		GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTAC
	Последовательность	TTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAA
658	нуклеиновой	GCTGCTCATTTACTGGGCATCTACCCGGGGAATCCGGGG
	кислоты BIIB-12-	TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGAT
	1289_VL	TTCACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGT
		GGCAGTTTATTACTGTCAGCAGTACTACGCCTCCCCTT
		 TCACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
659	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-1290 VL	SLQPEDFATYYCQQGFSFPFTFGGGTKVEIK
	_	GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
	Последовательность	ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
660	нуклеиновой	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	кислоты BIIB-12-	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
	1290_VL	
		ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG

		GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		 GCAGGGATTCAGTTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
661	последовательность	 KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-12-1291 VL	SLEPEDFAVYYCQQRLNLPLTFGGGTKVEIK
	-	GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
	Последовательность	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
662	нуклеиновой	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
	кислоты ВІІВ-12-	GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
	1291_VL	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGAGACTCAATCTCCCTCTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAA
	Аминокислотная	EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
663	последовательность	KPGQAPRLLIYDSSNRATGIPARFSGSGSGTDFTLTIS
	BIIB-12-1292_VL	SLEPEDFAVYYCQQRLNFPFTFGGGTKVEIK
		GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQ KPGQAPRLLIYDSSNRATGIPARFSGSGSGTDFTLTI SLEPEDFAVYYCQQRLNFPFTFGGGTKVEIK GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTT GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCC GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACA AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATT
	нуклеиновой	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATTC
664	кислоты BIIB-12-	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
	1292 VL	GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
	1292_VII	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGAGACTCAATTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
665	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-1293_VL	SLQPEDFATYYCQQANIFPFTFGGGTKVEIK
	Последовательность	GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
666	нуклеиновой	ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	кислоты BIIB-12-	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	1293_VL	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC

		ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
		GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCAAATATCTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ
667	последовательность	 KPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTIS
	BIIB-12-1294_VL	SLQPDDFATYYCQQVNTFPFTFGGGTKVEIK
	_	GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA
		GTCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAG
	Последовательность	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAAGC
668	нуклеиновой	CTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGCG
	кислоты BIIB-12-	GCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGC
	1294_VL	AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA
		GCAGGTCAATACCTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
669	последовательность	KPGKAPKLLIYAASNLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-1295_VL	SLQPEDFATYYCQQAISLPITFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	Последовательность	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
670	нуклеиновои кислоты ВІІВ-12-	ATCCAATTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
	1295 VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
	1295_VL	AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCAATCAGTCTCCCTATCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQ
671	последовательность	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI
	BIIB-12-1296_VL	SRLEPEDFAVYYCQQYADSPLTFGGGTKVEIK
	Последовательность	GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT
672	нуклеиновой	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	кислоты BIIB-12-	GTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAG
	<u>l</u>	

	1296_VL	CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG
		TGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCA
		GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATC
		AGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTG
		TCAGCAGTACGCCGACAGTCCTCTCACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSRYLAWYQQ
673	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-12-1297_VL	SLEPEDFAVYYCQQGNNWPPTFGGGTKVEIK
		GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	По спо по рожени и сели	GTCAGAGTGTTAGCAGGTACTTAGCCTGGTACCAACAG
	Последовательность	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
674	нуклеиновой	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
	кислоты ВІІВ-12-	GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
	1297_VL	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGGGCAACAATTGGCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
675	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-1298_VL	SLQPEDFATYYCQQTNSLPITFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	Последовательность	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
676	кислоты ВІІВ-12-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
	1298 VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
	1290_11	AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGACAAATAGTCTCCCTATCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
677	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-12-1299_VL	SLQSEDFAVYYCQQLNNFPITFGGGTKVEIK
678	Последовательность	GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
0/0	нуклеиновой	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA

	кислоты BIIB-12-	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
	1299_VL	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
		ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGCTCAATAATTTCCCTATCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
679	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-1300_VL	SLQPEDFATYYCQQASSFPPTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	По ано по рожени мо ани	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	Последовательность	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
680	нуклеиновой ВІІВ-12-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
	кислоты BIIB-12- 1300 VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
	1300_11	AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCATCCAGTTTCCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
681	последовательность	KPGQAPRLLIYDASKRATGIPARFSGSGSGTDFTLTIS
	BIIB-12-1301_VL	SLEPEDFAVYYCQQSSSWPPTFGGGTKVEIK
		GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
		AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
	т н л к:леи новои	
682	нуклеиновой ВІІВ-12-	ATCCAAAAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
682	кислоты BIIB-12-	
682		ATCCAAAAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
682	кислоты BIIB-12-	ATCCAAAAGGGCCACTGGCATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
682	кислоты BIIB-12-	ATCCAAAAGGGCCACTGGCATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
	кислоты BIIB-12-	ATCCAAAAGGGCCACTGGCATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA GCAGTCCAGTTCCTGGCCTCCTACTTTTGGCGGAGGGA
682	кислоты BIIB-12- 1301_VL	ATCCAAAAGGGCCACTGGCATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA GCAGTCCAGTTCCTGGCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA
	кислоты BIIB-12- 1301_VL Аминокислотная	ATCCAAAAGGGCCACTGGCATCCCAGCCAGGTTCAGTG GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA GCAGTCCAGTTCCTGGCCTCCTACTTTTGGCGGAGGGA CCAAGGTTGAGATCAAA EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ

	нуклеиновой	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	кислоты BIIB-12-	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
	1302_VL	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
		ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGGTCAATAATCTCCCTCTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ
685	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-1303_VL	SLQPEDFATYYCQQAYSLPITFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
	85 ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—12—1303_VL SLQPEDFATYYCQQAYSLPITFO GACATCCAGATGACCCAGTCTCO ATCTGTAGGAGACAGAGTCACCA GTCAGAGCATTAGCAGCTATTTA AAACCAGGGAAAGCCCCTAAGCT ATCCAGTTTGCAAAGTGGGGTCC GCAGTGGATCTGGAAGATTTTC AGTCTGCAACCTGAAGATTTTC GCAAGCATACAGCTGAAGATTTTC CCAAGGTTGAGATCACA AMMHORICAOTHAR EIVMTQSPATLSVSPGERATLSO CCAAGGTTGAGATCACA BIIB—12—1304_VL SLQSEDFAVYYCQQANVLPLTFO GAAATAGTGATGACGCAGTCTCC GAAGTTGACACCTGAAGATTTC CCAAGGTTGAGATCACA AMMHORICAOTHAR SIQSEDFAVYYCQQANVLPLTFO GAAATAGTGATGACGCAGTCTCC GAAGTTGACACCTCACACCT CCAAGGTTGAGATCACACCT CCAAGGTTACACACCT CCAAGGTTGAGATCACACCT CCAAGGTTACACACCT CCAAGGTTACACACCT CCAAGGTTACACACCT CCAAGGTTACACACCT CCAAGGTTACACACCT CCAAGGTTACACACCT CCAAGGTTACACCT CCAAGGTTACACACCT CCAAGGTTACACCT CCAAGGTTACACACCT CCAAGGTTACACCT CC	ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAA
	Последовательность	GTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAG
	нуклеиновой AAACCAGGGAAAGCCCCTAAGCTCC ATCCAGTTTGCAAAGTGGGGTCCC	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
686		ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG
		GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCA
		GCAAGCATACAGTCTCCCTATCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
687	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-12-1304_VL	SLQSEDFAVYYCQQANVLPLTFGGGTKVEIK
		GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
	нуклеиновой	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
688	кислоты ВІІВ-12-	ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
	1304 VL	GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGGCCAATGTCCTTCCTCTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
689	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-12-1305_VL	SLEPEDFAVYYCQQSANWPPTFGGGTKVEIK

GTCTCCAGGGGAAAGAGCCACCCTCTCCTGC GTCAGAGTGTTAGCAGCTACTTAGCCTGGTA AAACCTGGCCAGGCTCCCAGGCTCCTCATCT AAACCTGGCCAGGCTCCCAGCCAGC GCAGTGGGTCTGGGACAGACTTCACTCTCAC AGCCTAGAGCCTGAAGATTTTGCAGTTTATT GCAGTCCGCCAATTGGCCTCCTACTTTTGGC CCAAGGTTGAGATCAAA Аминокислотная БIIB-12-1306_VL GACATCGTGATGACCCAGTCTCCAGACTCC GACATCGTGATGACCCAGTCTCACTCTCAC CCAAGGTTGAGATCAAA AMINOKICJOTHAS GACATCGTGATGACCCAGTCTCCAGACTCC GACATCGTGATGACCCAGTCTCCAGACTCCC GACATCGTGATGACCCAGTCTCCAGACTCCCC GACATCGTGATGACCCAGTCTCCAGACTCCCC GACATCGTGATGACCCAGTCTCCAGACTCCCC GACATCGTGATGACCCAGTCTCCAGACTCCCC GACATCGTGATGACCCAGTCTCCAGACTCCCCCCCAGACTCCCCCCCC	ACCAACAG FATGATGC GTTCAGTG CCATCAGC FACTGTCA CGGAGGGA
Последовательность нуклеиновой кислоты BIIB-12- 1305_VL	FATGATGC GTTCAGTG CCATCAGC FACTGTCA CGGAGGGA YSSNNKNY
690нуклеиновой кислоты 1305_VLAAACCTGGCCAGGCTCCCAGGCTCCTCATCT ATCCAACAGGGCCACTGGCATCCCAGCCAGC GCAGTGGGTCTGGGACAGACTTCACTCTCAC AGCCTAGAGCCTGAAGATTTTGCAGTTTATT GCAGTCCGCCAATTGGCCTCCTACTTTTGGC CCAAGGTTGAGATCAAA691АМИНОКИСЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ—12—1306_VLDIVMTQSPDSLAVSLGERATINCKSSQSVLY LAWYQQKPGQPPKLLIYWASTRESGVPDRFS FTLTISSLQAEDVAVYYCQQSVNTPLTFGGC	GTTCAGTG CCATCAGC FACTGTCA CGGAGGGA YSSNNKNY
690кислотыBIIB-12-ATCCAACAGGGCCACTGGCATCCCAGCCAGC1305_VLGCAGTGGGTCTGGGACAGACTTCACTCTCACAGCCTAGAGCCTGAAGATTTTGCAGTTTATTGCAGTCCGCCAATTGGCCTCCTACTTTTGGCCCAAGGTTGAGATCAAACCAAGGTTGAGATCAAAАминокислотнаяDIVMTQSPDSLAVSLGERATINCKSSQSVLY691последовательностьLAWYQQKPGQPPKLLIYWASTRESGVPDRFSBIIB-12-1306_VLFTLTISSLQAEDVAVYYCQQSVNTPLTFGGC	CCATCAGC FACTGTCA CGGAGGGA YSSNNKNY
GCAGTGGGTCTGGGACAGACTTCACTCTCAC AGCCTAGAGCCTGAAGATTTTGCAGTTTATT GCAGTCCGCCAATTGGCCTCCTACTTTTGGC CCAAGGTTGAGATCAAA Аминокислотная Последовательность ВІІВ—12—1306_VL FTLTISSLQAEDVAVYYCQQSVNTPLTFGGC	FACTGTCA CGGAGGGA YSSNNKNY
AGCCTAGAGCCTGAAGATTTTGCAGTTTATT GCAGTCCGCCAATTGGCCTCCTACTTTTGGC CCAAGGTTGAGATCAAA Аминокислотная DIVMTQSPDSLAVSLGERATINCKSSQSVLY последовательность LAWYQQKPGQPPKLLIYWASTRESGVPDRFS BIIB-12-1306_VL FTLTISSLQAEDVAVYYCQQSVNTPLTFGGC	CGGAGGGA YSSNNKNY
ССААGGTTGAGATCAAA Аминокислотная DIVMTQSPDSLAVSLGERATINCKSSQSVLY последовательность LAWYQQKPGQPPKLLIYWASTRESGVPDRFS ВІІВ—12—1306_VL FTLTISSLQAEDVAVYYCQQSVNTPLTFGGG	YSSNNKNY
Аминокислотная DIVMTQSPDSLAVSLGERATINCKSSQSVLY 691 последовательность LAWYQQKPGQPPKLLIYWASTRESGVPDRFS BIIB-12-1306_VL FTLTISSLQAEDVAVYYCQQSVNTPLTFGGG	
691 последовательность LAWYQQKPGQPPKLLIYWASTRESGVPDRFS ВІІВ-12-1306_VL FTLTISSLQAEDVAVYYCQQSVNTPLTFGGG	
BIIB-12-1306_VL FTLTISSLQAEDVAVYYCQQSVNTPLTFGGC	SGSGSGTD
_	· ·
GACATCGTGATGACCCAGTCTCCAGACTCCC	GTKVEIK
	CTGGCTGT
GTCTCTGGGCGAGAGGGCCACCATCAACTGC	CAAGTCCA
GCCAGAGTGTTTTATACAGCTCCAACAATAA	AGAACTAC
ТТАGCTTGGTACCAGCAGAAACCAGGACAGCAGACAGCAGACAGC	CCTCCTAA
692 нуклеиновой GCTGCTCATTTACTGGGCATCTACCCGGGAA	ATCCGGGG
TCCCTGACCGATTCAGTGGCAGCGGGTCTGC	GGACAGAT
TTCACTCTCACCATCAGCAGCCTGCAGGCTC	GAAGATGT
GGCAGTTTATTACTGTCAGCAGTCCGTCAAC	CACTCCTC
TCACTTTTGGCGGAGGACCAAGGTTGAGAT	ГСААА
Аминокислотная DIQLTQSPSSLSASVGDRVTITCRASQSISS	SFLNWYQQ
693 последовательность KPGKAPKLLIYAASSLQSGVPSRFSGSGSGT	[DFTLTIS
BIIB-12-1307_VL SLQPEDFATYYCQQTYSTPLTFGGGTKVEIF	ζ
GACATCCAGTTGACCCAGTCTCCATCCTCCC	CTGTCTGC
ATCTGTAGGAGACAGAGTCACCATCACTTGC	CCGGGCAA
GTCAGAGCATTAGCAGCTTTTTAAATTGGTA	ATCAGCAG
I TO COTE A COLOR OF THE COLOR	PATGCTGC
AAACCAGGGAAAGCCCCTAAGCTCCTGATCT	GTTCAGTG
нуклеиновой АТССАGTTTGCAAAGTGGGGTCCCATCAAGC	
нуклеиновой атссадттдсааадтддддагссатсаадс астория віів—12— астория віів—12— астория віів—12— астория віів—12— астория віів—12— астория віїв—12— астория віїв—	
нуклеиновой АТССАGTTTGCAAAGTGGGGTCCCATCAAGC	CCATCAGC
694 нуклеиновой кислоты BIIB-12- GCAGTGGATCTGGGACAGATTTCACTCTCAC	CCATCAGC FACTGTCA
694 нуклеиновой кислоты BIIB-12- GCAGTTTGCAAAGTGGGGTCCCATCAAGC GCAGTGGATCTGGGACAGATTTCACTCTCAC AGTCTGCAACCTGAAGATTTTGCAACTTACT	CCATCAGC FACTGTCA
694 нуклеиновой кислоты BIIB-12- GCAGTTTGCAAAGTGGGGTCCCATCAAGC GCAGTTTGCAAAGTGGGGTCCCATCAAGC GCAGTTTGCAAAGTGGGACAGATTTCACTCTCACTGCAACCTGAAGATTTTGCAACTTACTGCAACATACAGTACTCCTCTCACTTTTGGC	CCATCAGC FACTGTCA CGGAGGGA

	BIIB-12-1308_VL	SRLEPEDFAVYYCQQAGSFPPTFGGGTKVEIK
		GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	H	GTCAGAGTGTTAGCAGCGACTACTTAGCCTGGTACCAG
	Последовательность	CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG
696	нуклеиновой кислоты ВІІВ-12-	TGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCA
	кислоты BIIB-12- 1308 VL	GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATC
	1300_11	AGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTG
		TCAGCAGGCCGGAAGTTTCCCTCCTACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
697	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-1309_VL	SLQPEDFATYYCQQANSLPITFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	Последовательность	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	нуклеиновой кислоты ВІІВ-12-1309_VL	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
698		ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
		GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCAAATTCCCTCCCTATCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSRYLAWYQQ
699	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-12-1310_VL	SLEPEDFAVYYCEQASNWPPTFGGGTKVEIK
		GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGCAGGTACTTAGCCTGGTACCAACAG
	нуклеиновой	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
700	нуклеиновои кислоты BIIB-12- 1310_VL	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
		AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTGA
		ACAGGCCAGTAATTGGCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
701	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ

	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-12-1311_VL	SLEPEDFAVYYCQQASNLPPTFGGGTKVEIK
		GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Подполовони иоди	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
	Последовательность нуклеиновой	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
702	нуклеиновои кислоты ВІІВ-12-	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
	1311 VL	GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
	1311_\1	AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGGCCTCCAATCTCCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
703	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-1312_VL	SLQPEDFATYYCQQASSFPPTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
	Последовательность нуклеиновой кислоты ВІІВ-12- 1312 VL	ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
		GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
		AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
704		ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
		GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
	1012_11	AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCATCCAGTTTCCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
705	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-12-1313_VL	SLQSEDFAVYYCQQHNHLPITFGGGTKVEIK
		GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
	нуклеиновой кислоты ВІІВ-12-1313_VL	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
706		ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGCACAATCACCTCCCTATCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA

	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
707	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-1314_VL	SLQPEDFATYYCQQANFFPITFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	Подполовони из дв	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	Последовательность	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
708	нуклеиновой вислоты віів-12-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
		GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
	1314_VL	AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCAAATTTCTTCCCTATCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
709	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-12-1315_VL	SLQSEDFAVYYCQQVFNWPPWTFGGGTKVEIK
		GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность нуклеиновой	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
		AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
710	кислоты ВІІВ-12-	ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
	1315 VL	GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
	1313_11	AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGGTCTTCAATTGGCCTCCTTGGACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
711	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-1316_VL	SLQPEDFATYYCQQINNFPPTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
712		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	Последовательность	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
/12	кислоты BIIB-12-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
	1316_VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGATAAATAACTTCCCTCCTACTTTTGGCGGAGGGA
		GCAGATAAATAACTICCCTCCTACTTTTGGCGGAGGGA

		CCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
713	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-1317_VL	SLQPEDFATYYCQQRHSLPPTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
	Подполовони иоди	GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
	Последовательность нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
714	кислоты BIIB-12-	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
	1317 VL	GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
	1317_11	AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGAGACACAGTCTCCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
715	последовательность	KPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTIS
	BIIB-12-1318_VL	SLEPEDFAVYYCQQLNNWPPTFGGGTKVEIK
	Последовательность нуклеиновой кислоты ВІІВ-12- 1318_VL	GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
		AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGC
716		ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
		AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGCTCAACAATTGGCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
717	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-12-1319_VL	SLQSEDFAVYYCQQASNFPPTFGGGTKVEI
	Последовательность нуклеиновой кислоты ВІІВ-12- 1319_VL	GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
718		AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
		ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA

		GCAGGCCTCCAATTTCCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNY
719	последовательность	LAWYQQKPGQPPKLLISWASTRESGVPDRFSGSGSGTD
	BIIB-12-1322_VL	FTLTISSLQAEDVAVYYCQQSYFTPFTFGGGTKVEIK
		ACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGTG
		TCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCAG
	Последовательность	CCAGAGTGTTTTATACAGCTCCAACAATAAGAACTACT
	последовательность	TAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAAG
720	нуклеиновой кислоты ВІІВ-12-	CTGCTCATTTCCTGGGCATCTACCCGGGAATCCGGGGT
	1322 VL	CCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGATT
	1322_\1	TCACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGTG
		GCAGTTTATTACTGTCAGCAGTCCTACTTCACTCCTTT
		CACTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQ
721	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-1323_VL	SLQPEDFATYYCQQANIFPFTFGGGTKVEIK
	Последовательность нуклеиновой кислоты ВІІВ-12- 1323_VL	GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGA
		GTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAG
		AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
722		ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG
		GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCA
		GCAGGCAAATATCTTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
723	последовательность	KPGQAPRLLIYDSSNRATGIPARFSGSGSGTDFTLTIS
	BIIB-12-1324_VL	SLEPEDFAVYYCQQLVSWPTFGGGTKVEIK
		GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT
	Последовательность	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
724	нуклеиновой	GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
	кислоты ВІІВ-12-	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATTC
	1324_VL	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC

		AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGCTCGTCTCCTGGCCTACTTTTGGCGGAGGGACCA
		AGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQ
725	последовательность	KPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTIS
	BIIB-12-1325_VL	SLQPDDFATYYCQQSNRYPRTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCA
	_	GTCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAG
	Последовательность	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAAGC
726	нуклеиновой	CTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGCG
	кислоты BIIB-12-	GCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGC
	1325_VL	AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA
		GCAGTCCAATCGCTACCCTAGGACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQ
727	последовательность	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI
	BIIB-12-1326_VL	SRLEPEDFAVYYCQQAYSSPLTFGGGTKVEIK
	Последовательность	GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGGAGCAGCTACTTAGCCTGGTACCAG
		CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG
728	нуклеиновой	TGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCA
	кислоты BIIB-12- 1326_VL	GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATC
		AGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTG
		TCAGCAGGCCTACAGTTCCCCTTTGACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATQYVSPGERATLSCRASQSVSSNLAWYQQ
729	последовательность	KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-12-1327_VL	SLQSEDFAVYYCQQYHNFPPTFGGGTKVEIK
	Последовательность нуклеиновой кислоты 737 ВІІВ-12-1327_VL	GAAATAGTGATGACGCAGTCTCCAGCCACCCAGTATGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
730		GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
		AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
		ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG

		GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		 GCAGTACCACAATTTCCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
731	последовательность	 KPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-12-1328 VL	SLQSEDFAVYYCQQPNSYPLTFGGGTKVEIK
	_	GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
	Последовательность	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
732	нуклеиновой	ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
	кислоты BIIB-12-	GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
	1328_VL	AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGCCCAATTCCTACCCTCTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATKSVSPGERATLSCRASQSVSSNLAWYQQ
733	последовательность	KPGQAPRLLIYSASTRATGIPARFSGSGSGTEFTLTIS
	BIIB-12-1329_VL	SLQSEDFAVYYCQQVFNWPPTFGGGTKVKIK
		GAAATAGTGATGACGCAGTCTCCAGCCACCAAGTCTGT
		GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	Последовательность нуклеиновой кислоты ВІІВ-12-1329_VL	GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAG
		AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATAGCGC
734		ATCCACCAGGCCACTGGTATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGGTCTTCAATTGGCCTCCTACTTTTGGCGGAGGGA
		CCAAGGTTAAGATCAAA
	Аминокислотная	DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ
735	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-1330_VL	SLQPEDFATYYCQQAYSVPITFGGGTKVEI
	Последовательность	GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
736	нуклеиновой	ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAA
750	кислоты BIIB-12-	GTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAG
	1330_VL	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC

GCAGTGGATCTGGGACAGATTTCACTCTCACCA AGTCTGCAACCTGAAGATTTTGCAACTTACTAC GCAAGCATACAGTGTCCCTATCACTTTTGGCGC CCAAGGTTGAGATCAAA Аминокислотная БІVLTQSPAKKSLSPGERATLSCRASQSVSSY КРБQAPRLLIYDASNRATGIPARFSGSGSGTD SLEPEDFAVYYCQQRVNLPITFGGGTKVVFK GAAATTGTGTTGACACAGTCTCCAGCCAAAAAC GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAC GTCAGAGTGTTAGCAGGTACTTAGCCTGGTACC AAACCTGGCCAGGCTCCCAGGCTCCTCATCTAC AACCTGGCCAGGCTCCCAGCCAGGCT GCAGTGGGTCTGGGACAGACTTCACTCTCACC AGCCTAGAGCCTGAAGATTTTGCAGTTTATTAC GCAGAGAGAGTCAATCTCCCTATCACTTTTGGCGGCACCCTCTCTTTTGGCGCGCAGAGAGCTCCCCAGCTTTTTTTGGCGCGCAGAGAGTCCCCAGCTTTTTTTT	CTGTCA GAGGGA LAWYQQ FTLTIS GTCTTT GGGCCA CAACAG TGATGC
GCAAGCATACAGTGTCCCTATCACTTTTGGCGGCCCAAGGTTGAGATCAAA AMMHOKUCЛОТНАЯ TOCЛЕДОВАТЕЛЬНОСТЬ BIIB-12-1331_VL GAAATTGTGTTGACACAGTCTCCAGCCAAAAAG GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAG GTCAGAGTGTTAGCAGGTCTCCAGCCAAAAAG GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTAGCCTGGTACG ACCAACAGGGCCACTGGCATCCCAGCCAGGTT GCAGTGGGTCTGGGACAGACTTCACTCTCACCCAGCCAGGTT ACCCAACAGGGCCACTGGCATCCCAGCCAGGTT GCAGTGGGTCTGGGACAGACTTCACTCTCACCCAGCCAGGTT AGCCTAGAGCCTGAAGATTTTGCAGTTTATTAGCAGTTTAGCAGTTTATTAGCAGTTTAGCAGTTTATTAGCAGTTTAGCAGAGAGAG	GAGGGA LAWYQQ FTLTIS GTCTTT GGGCCA CAACAG TGATGC
ССААGGTTGAGATCAAA AMИНОКИСЛОТНАЯ TOCЛЕДОВАТЕЛЬНОСТЬ BIIB-12-1331_VL GAAATTGTGTTGACACAGTCTCCAGCCAAAAAA GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAA GTCAGAGTGTTAGCAGGCTACTTAGCCTGGTACA AAACCTGGCCAGGCTCCCAGGCTCTCATCTA ATCCAACAGGGCCACCTCTCCTGCAA ATCCAACAGGGCCACTCTCCAGCCAGGCT GCAGTGGGTCTGGGACAGACTTCACTCTCACCA AGCCTAGAGCCTGAAGATTTTGCAGTTTATTAAACCTGGCAGAGCTTCTCACCCAGGCTCTCACCCACC	LAWYQQ FTLTIS GTCTTT GGGCCA CAACAG TGATGC
АминокислотнаяEIVLTQSPAKKSLSPGERATLSCRASQSVSSY737последовательностьKPGQAPRLLIYDASNRATGIPARFSGSGSGTDВІІВ-12-1331_VLSLEPEDFAVYYCQQRVNLPITFGGGTKVVFKБАААТТGTGTTGACACAGTCTCCAGCCAAAAAGTCTCCAGGGGAAAGAGGCCACCCTCTCCTGCAGGGGAAAGAGGCCACCCTCTCCTGCAGGAGGGGAAAGAGGCCACCCTCTCCTGCAGGAGAGGCCACCCTCTCCTGCAGGAGAGGCCAGGCTCCCAGGCTCCTCATCTAGGCCTGGCAGGCCAGGCTCCCAGGCTCCCAGGCTCCTCATCTAGGCCTGGCAACAGGGCCACTGGCATCCCAGCCAG	FTLTIS GTCTTT GGGCCA CAACAG TGATGC
737 последовательность КРGQAPRLLIYDASNRATGIPARFSGSGSGTD: SLEPEDFAVYYCQQRVNLPITFGGGTKVVFK GAAATTGTGTTGACACAGTCTCCAGCCAAAAAA GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAAGACTCTCCAGGGGAAAGAGGCCACCCTCTCCTGCAAGACTCTCCAGGCTACTTAGCCTGGTACAAAACCTGGCCAGGCTCCCAGGCTCCCAGGCTCCTCATCTAAAACCTGGCCAGGCTCCCAGGCTCCCAGGCTCCCAGGCTCCCAGGCTCCAAAAAAAA	FTLTIS GTCTTT GGGCCA CAACAG TGATGC
BIIB—12—1331_VL SLEPEDFAVYYCQQRVNLPITFGGGTKVVFK GAAATTGTGTTGACACAGTCTCCAGCCAAAAAA GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAG GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTAG AAACCTGGCCAGGCTCCCAGGCTCCCAGCCAGGT ATCCAACAGGGCCACTGGCATCCCAGCCAGGT GCAGTGGGTCTGGGACAGACTTCACTCTCACCAGCCAGGCTCCTCACCAGCCAG	GTCTTT GGGCCA CAACAG TGATGC
GAAATTGTGTTGACACAGTCTCCAGCCAAAAAG GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAG GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTAG AAACCTGGCCAGGCTCCCAGGCTCCCAGCCAGGTG ATCCAACAGGGCCACTGGCATCCCAGCCAGGTG GCAGTGGGTCTGGGACAGACTTCACTCTCACCAGCCAGGCTCCTCACCAGCCAG	GGGCCA CAACAG TGATGC
GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGAAAGAGCCACCCTCTCCTGCAGGGAAAGAGCCACCCTCTCCTGCAGGCTAGCTTAGCCTGGTACGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTAGAACACAGGGCCACTGGCATCCCAGCCAG	GGGCCA CAACAG TGATGC
Последовательность нуклеиновой кислоты BIIB-12- 1331_VL GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACO AAACCTGGCCAGGCTCCCAGGCTCCTCATCTA ATCCAACAGGGCCACTGGCATCCCAGCCAGGT GCAGTGGGTCTGGGACAGACTTCACTCTCACCA AGCCTAGAGCCTGAAGATTTTGCAGTTTATTAG	CAACAG TGATGC
Последовательность нуклеиновой нуклеиновой кислоты BIIB-12- 1331_VL AAACCTGGCCAGGCTCCCAGGCTCCATCTA' ACCTAGGCCACTGGCATCCCAGCCAGGT' ACCTAGAGACTTCACTCTCACCAGCCAGGCTCACCAGAGACTTCACTCTCACCAGAGACTTCACCAGAGACTTCACCAGAGACTTCACCAGAGACTTCACCAGAGACTTCACCAGAGACTTCACCAGAGACTTCACCAGACAGA	TGATGC
738 нуклеиновой AAACCTGGCCAGGCTCCCAGGCTCCTCATCTA' ATCCAACAGGGCCACTGGCATCCCAGCCAGGCT' GCAGTGGGTCTGGGACAGACTTCACTCTCACCAGCCAGGCTCTCACCAGCCAG	
738 кислоты BIIB-12- GCAGTGGGTCTGGGACAGTTCACCCAGCCAGGTTGAGAGACTTCACTCTCACCAGAGAGACTTCACTCTCACCAGAGAGAG	
GCAGTGGGTCTGGGACAGACTTCACTCTCACCZ 1331_VL AGCCTAGAGCCTGAAGATTTTGCAGTTTATTAG	l'CAGTG
AGCCTAGAGCCTGAAGATTTTGCAGTTTATTA	ATCAGC
GCAGAGAGTCAATCTCCCTATCACTTTTGGCG	CTGTCA
i I	GAGGGA
CCAAGGTTGTGTTCAAA	
Аминокислотная DIQMTQSPSSVSASVGDRVTITCRASQGISSW:	LAWYQQ
739 последовательность КРGKAPKLLIYAASSLQSGVPSRFSGSGSGTD	FTLTIS
BIIB-12-1332_VL SLQPEDFATYYCQQVNSFPLTFGGGTKVEFK	
GACATCCAGATGACCCAGTCTCCATCTTCCGTZ	ATCAGC
ATCTGTAGGAGACAGAGTCACCATCACTTGTC	GGGCGA
GTCAGGGTATTAGCAGCTGGTTAGCCTGGTAT	CAGCAG
АААССАGGGAAAGCCCCTAAGCTCCTGATCTA'	TGCTGC
740 ТУКЛЕЙНОВОЙ ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGT	TCAGCG
GCAGTGGATCTGGGACAGATTTCACTCTCACCZ	ATCAGC
AGCCTGCAGCCTGAAGATTTTGCAACTTATTA	CTGTCA
GCAGGTAAACAGTTTCCCTCTCACTTTTGGCG	GAGGGA
CCAAGGTTGAGTTCAAA	
Аминокислотная EIVMTQSPATLSVSPGERATLSCRASQSVSSN	LAWYQQ
741 последовательность КРGQAPRLLIYGASTRATGIPARFSGSGSGTE	FTLTIS
BIIB-12-1333_VL SLQSEDFAVYYCQQVNTWPTFGGGTKVEIK	
Последовательность GAAATAGTGATGACGCAGTCTCCAGCCACCCT	GTCTGT
742 нуклеиновой GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAG	gggcca l
кислоты BIIB-12- GTCAGAGTGTTAGCAGCAACTTAGCCTGGTAC	

	1333_VL	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGC
		ATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG
		GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGC
		AGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGGTCAATACCTGGCCTACTTTTGGCGGAGGGACCA
		AGGTTGAGATCAAA
	Аминокислотная	DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYL
743	последовательность	DWYLQKPGQSPQLLIYLASNRASGVPDRFSGSGSGTDF
	BIIB-12-1334_VL	TLKISRVEAEDVGVYYCMQRIGTPWTFGGGTKVEIK
		GATATTGTGATGACTCAGTCTCCACTCTCCCTGCCCGT
		CACCCTGGAGAGCCGGCCTCCATCTCCTGCAGGTCTA
	П	GTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTG
	Последовательность	GATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCT
744	нуклеиновой	CCTGATCTATTTGGCTTCTAATCGGGCCTCCGGGGTCC
	кислоты ВІІВ-12-	CTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTT
	1334_VL	ACACTGAAAATCAGCAGAGTGGAGGCTGAGGATGTTGG
		GGTTTATTACTGCATGCAGAGAATAGGCACTCCTTGGA
		CTTTTGGCGGAGGGACCAAGGTTGAGATCAAA
	Антитела клас	са VI - последовательности VL
	Аминокислотная	DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQ
745	последовательность	KPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTIS
	BIIB-12-894_VL	SLQPEDIATYYCQQDDALPFTFGGGTKVEI
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
	Последовательность нуклеиновой	ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGA
		GTCAGGACATTAGCAACTATTTAAATTGGTATCAGCAG
		AAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGC
746		ATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTG
	кислоты ВІІВ-12-	GAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGC
	894_VL	AGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCA
		GCAGGACGATGCCCTCCCTTTCACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAA
	Аминокислотная	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQ
747	последовательность	QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI
	BIIB-12-925_VL	SRLEPEDFAVYYCQQSGGSPLTFGGGTKVEIK
1		

	нуклеиновой	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
	кислоты BIIB-12-	GTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAG
	925_VL	CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGG
		TGCATCCAGCAGGCCACTGGCATCCCAGACAGGTTCA
		GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATC
		AGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTG
		TCAGCAGTCCGGAGGCTCCCCTCTCACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	Аминокислотная	DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ
749	последовательность	KPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTIS
	BIIB-12-1320_VL	SLQPEDFATYYCQQADDTPWTFGGGTKVEIK
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGC
		ATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAA
	Последовательность	GTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAG
	нуклеиновой	AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGC
750	кислоты BIIB-12- 1320 VL	ATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG
		GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC
		AGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCA
		GCAAGCAGACGACTCCTTGGACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQ
751	последовательность	KPGQAPRLLIYDSSNRATGIPARFSGSGSGTDFTLTIS
	BIIB-12-1321_VL	SLEPEDFAVYYCQQFTNLPYTFGGGTKVEIK
		GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTTT
	Последовательность	GTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA
		GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAG
	нуклеиновой	AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATTC
752	кислоты ВІІВ-12-	ATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG
	1321_VL	GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
		AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCA
		GCAGTTCACCAATCTCCCTTACACTTTTGGCGGAGGGA
		CCAAGGTTGAGATCAAA
	Аминокислотная	YNSGKLEEFVQGNLERECMEEKCSFEEAREVFENTERT
56	последовательность	TEFWKQYVDGDQCESNPCLNGGSCKDDINSYECWCPFG
	BIIB-FIX-147a-LC	FEGKNCELDVTCNIKNGRCEQFCKNSADNKVVCSCTEG

активированного фактора IX) ТАТААТТСАGGТАААТТGСАAGAGTTTGTTCAAGGGAA TCTAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA		(легкая цепь	YRLAENQKSCEPAVPFPCGRVSVSQTSKLTR
ТАТАТТСАGGTAAATTGGAAGAGTTTGTTCAAGGGAA ТСТАGAGAGAGAATGTTAGAAAAACACTGAAAGAACA АСТGAATTTTGAAAGCACTGAAAGAACA АСТGAATTTTGAAGACAGTTTTTGAAGACACTGAAAGAACA АСТGAATTTTGGAAGCAGTATGTTGATGGAGAACACA АСТGAATTTTTGAAGACACTGAAAGAACA АСТGAATTTTTGAAGACACTGAAAGAACA АСТGAATTTTTGAAGACACTGAAAGAACA АСТGAATTTTTGAAGACAGTTTTAAATGGCGGCAGTTGCAAGG НУКЛЕННОВОЙ ЖИСЛОТЫ ВІІВ-FIX— ТТТGAAGGAAAGACTGTGAATTAGATGTAACATGTAA САТТААДВААТGCCAGTGGAATTAGATGTAACATGTAA САТТААДВААТGCCAGATGCGAGCAGTTTTGTAAAAATA GTGCCTGATAACAAGGTGGTTTTGCTCCTGTACTGAGGGA TATCGACTTGCAGGAAAACCAGAAGTCCTGTGAACCAGC AGTGCCATTTCCATGTGGAAGAGTCTTGTACAAAA СТТСТААGCTCACCGT АМИНОКИСЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ-FIX—147а—HC (ТЯЖЕЛАЯ ЦЕПЬ АКТИВИРОВАННОГО (ПОДЧЕРКНУТ) И ВІОТАД (ПОДЧЕРКНУТ ДВАЖДЬ) ПОСЛЕДОВАТЕЛЬНОСТЬ НУКЛЕИНОВОЙ ЖИСЛОТЫ ВІІВ-FIX— 147а—HC СТТСТАGGTGAGAGAGTGCCAAACCAGGTCAATTCCC НУКЛЕИНОВОЙ ЖИСЛОТЫ ВІІВ-FIX— 147а—HC GTGGCAGGTTGTTTGAATGGTAAAATTGAACT GTGGCAGGTTGATTGAAAATTACAGT ТТGCCCACTTGTTTGAAACTGTAAAATTACAGT ТТGCCCACTTGTTTGAAACTGGTGTTAAAAATTACAGT ТТGCCCACTTGTTTGAAACTGGTGTTAAAATTACAGT ТТGCCCACTTGTTTGAAACTGGTGTTAAAAATTACAGT ТТGCCCACTTGTTTGAAACTGGTGTTAAAAATTACAGT ТТGCCCACTTGTTTGAAACTGGTGTTAAAAATTACAGT ТТGCCCACTTGTTTGAAACTGGTGTTAAAAATTACAGT ТТGCCCACTTGTTTGAAACTGGTGTTAAAAATTACAGT ТТGCCCACTTGTTTGAAACTGGTGTTAAAAATTACAGT ТТGCCCACTTGTTTGAAACTGGTGTTAAAAATTACAGT ТТGCCCCACTTGTTTGAAACTGGTGTTAAAAATTACAGT ТТGCCCCACTTGTTTGAAACTGGTGTTAAAAATTACAGT ТТGCCCCACTTGTTTGAAACTGGTGTTAAAAATTACAGT ТТGCCCCACTTGTTTGAAACTGGTGTTAAAAATTACAGT ТТGCCCACTTGTTTGAAACTGGTGTTAAAAATTACAGT ТТGCCCCACTTGTTTGAAACTGGTGTTAAAAATTACAGT ТТGCCCCACTTGTTTGAAACTGGTGTTAAAAATTACAGT ТТGCCCACTTGTTTGAAACTGGTGTTAAAAATTACAGT ТТGCCCACTTGTTTGAAACTGGTGTTAAAAATTACAGT ТТGCCCCACTTGTTTGAAACTTAATTATTCCCAC САССАСТАСААТСААТССАТТСТССССТТССССТТССССТТСТССССТТСТССССТТСТС		активированного	
ТСТАGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTG ААGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACA АСТGAATTTTGGAAGCAGTATGTTGATGGAGACAG АСТGAATTTTGGAAGCAGTATGTTGATGGAGGATCAGTG ТОТОТОТОТОТОТОТОТОТОТОТОТОТОТОТОТОТОТО		фактора IX)	
757 ААДААДСАСДАДАДАТТТТДААДАСАСТДАДАДАСА 757 ПОСЛЕДОВАТЕЛЬНОСТЬ ТОДАТТТТДАДАДАТТТДАТТДЕТДАТДАТДЕТДАТДАТДЕТДАТДАТДЕТДАТДАТДАТДАТДАТДАТДАТДАТДАТДАТДАТДАТДАТ			TATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAA
Последовательность			TCTAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTG
Последовательность нуклеиновой			AAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACA
757 нуклеиновой кислоты віїв-гіх- 147а-LC АТБАСАТТААТТССТАТБААТБТТБСТТТБСА ТТТБААБДААДАСТБТААТТАДАТБТААСАТБТАА САТТААДААТБСАДБСАДБСТТТСТАСТДБАДБСАДБСАДБСТТТТДТААЛАТА БТДСССТТТСТАСАДАА СТТСТАТСАСТТССТБСТДБАДССАДС АДТБСССТТСТАДБСАДБСАДБСАДБСАДБСАДБСАДБСАДБСАДБСАДБС			ACTGAATTTTGGAAGCAGTATGTTGATGGAGATCAGTG
757 кислоты BIIB-FIX- TTTGAAGGAAAGACTGTGAATTAGATGTAACATGTAA 147а-LC CATTAAGAATGCAGAGTGCTGTGAACATGTAA CATTAAGAATGCAGAGTGTTTGCTCCTGTACTGAGGGA ТАТССАСТТССАБАДАААССАДАДСТСТСТДАСССДС AGTGCCATTTCCATGTGGAAGAGTCCTGTGAACCAGC AGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAA СТСТААДСТСАССССТ AMMHOKUCJOTHAR TOCJEQOBATEJBHOCTB VVGGEDAKPGQFPWQVVLNGKVDAFCGGSIVNEKWIVT ВІІВ-FIX-147а-HC VVGGEDAKPGQFPWQVVLNGKVDAFCGGSIVNEKWIVT AAHCVETGVKITVVAGEHNIEETEHTEQKRNVIRIIPH НКТИВИРОВАННОГО HNYNAAINKYNHDIALLELDEPLVLNSYVTPICIADKE ТЕКТОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВ		Последовательность	TGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGG
кислоты BIIB-FIX- TTTGAAGGAAAGAACTGTGAATTAGATGTAACATGTAA 147а-LC CATTAAGAATGCAGGTGGTTTGCTCCTGTACTGAGGGA ТАТСВАСТТССАТВТСВАДАААССАВДАВСТСТЕТВААССАВС AGTGCCATTTCCATGTGGAAGAGTCCTGTGAACCAGC АМИНОКИСЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ВІІВ-FIX-147а-НС VVGGEDAKPGQFPWQVVLNGKVDAFCGGSIVNEKWIVT (тяжелая цепь активированного HNYNAAINKYNHDIALLELDEPLVLNSYVTPICIADKE FIX) YTNIFLKFGSGYVSGWGRVFHKGRSALVLQYLRVPLVD С-концевой (G ₃ S) ₂ RATCLRSTKFTIYNNMFCAGFHEGGRDSCQGDSGGPHV линкер TEVEGTSFLTGIISWGEECAMKGKYGIYTKVSRYVNWI (подчеркнут) КЕКТКLTGGGSGGGSLNDIFEAQKIEWH Віотад (подчеркнут) КЕКТКLTGGGSGGGSAAGATGCCAAACCAGGTCAATTCCC нуклеиновой ТТGGCAGGTTGTTTTGAATGAAAAATGGATTGTAACT Кислоты BIIB-FIX- GTGGAGGTCTATCGTTAATGAAAAATGGATTGTAACT 147а-НС GCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGT 759 (тяжелая цепь GCTGCCACTGTGTTGAAACTGGAGACACATA активированного CAGAGCAAAAGCGAAATTATTGAGGAGACAGAACATA активированного CACAACTACAATGCAGCTATTAATAAGTACAACCATGA САСААСТАСАТССССТСТСТСБААСССТТАСТАСТАССТАС	757	нуклеиновой	ATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGA
GTGCTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGA TATCGACTTGCAGAAAACCAGAAGTCCTGTACACAGC AGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAA CTTCTAAGCTCACCCGT AMMHORMCDITHAR последовательность ВІІВ-FIX-147a-HC (тяжелая цепь активированного НNYNAAINKYNHDIALLELDEPLVLNSYVTPICIADKE FIX) YTNIFLKFGSGYVSGWGRVFHKGRSALVLQYLRVPLVD C-концевой (G ₃ S) ₂ RATCLRSTKFTIYNNMFCAGFHEGGRDSCQGDSGGPHV ПОДЧеркнут) и КЕКТКLTGGGSGSLNDIFEAOKIEWH Последовательность НУКЛЕИНОВОЙ КИСЛОТЫ ВІІВ-FIX- 147a-HC GTGGCAGGTTGTTTTGAACTGGTGATAACTTCCC НУЖЕЛАЯ ЦЕПЬ АКТИВИРОВАННОГО САGAGCAAAAGCGAAAATGGATTCTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTAATATTTCGACTAAACCAGGT FIX) CACAACTACAATGCAGCTAATTATTCCTCAC FIX) CACAACTACAATGCAGCTAATTAATAAGTACAACCATGA C-концевой (G ₃ S) ₂ CATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAA	757	кислоты BIIB-FIX-	TTTGAAGGAAAGAACTGTGAATTAGATGTAACATGTAA
ТАТСGАСТТGCAGAAAACCAGAAGTCCTGTGAACCAGC AGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAA CTTCTAAGCTCACCCGT Аминокислотная последовательность ВІВ-FIX-147а-НС (тяжелая цепь активированного ННУNAAINKYNHDIALLELDEPLVLNSYVTPICIADKE FIX) С-концевой (G ₃ S) ₂ линкер ТЕVEGTSFLTGIISWGEECAMKGKYGIYTKVSRYVNWI (подчеркнут) и Віотад (подчеркнут дважды) Последовательность КККТКLTGGGSGGSLNDIFEAOKIEWH Последовательность GTTGTTGGTGGAGAAAGCCAAACCAGGTCAATTCCC нуклеиновой кислоты ВІІВ-FIX- 147а-НС (тяжелая цепь активированного СадаGCTCTATCGTTAATGAAAAATTGAGT TTGCCCACTGTGTTGAACTGGTGTTAAAATTACAGT ТТДСССАСТАТССТАТССТАТССАТТТСТСАС БІХ) САСААСТАСААТGCAGCTATTTAATAAGTACAACCATGA ССКОНЦЕВОЙ (G ₃ S) ₂ САСТТССССТСТСТGGACCACACCCAGACCCATGCTAA		147a-LC	CATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATA
AGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAA CTTCTAAGCTCACCGT AMMHOKMCЛОТНАЯ последовательность ВІВ—FIX—147а—HC (тяжелая цепь активированного БІХ) С-концевой (G ₃ S) 2 линкер (подчеркнут) и ВіоТад (подчеркнут дважды) Последовательность кислоты ВІІВ—FIX— 147а—HC (тяжелая цепь активированного СТБСССССТСТТБСАБСДАДАТТСДАТТСАДАДАТТАТТССТСАС Кислоты ВІВ—FIX— 147а—HC (тяжелая цепь активированного САСАДСТАДАДАДАТТСДАДТТАДАДАДАТТСТСАДАДСТАДТТССС БІХ) САСАДСТАДСТТСТБСДАДСТДАТТДАДТСДАДТТАДТСТСАС САСАДСТАДАДАДСТДАДТТДАДТ			GTGCTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGA
Аминокислотная последовательность ВІІВ-FIX-147а-HC (тяжелая цепь активированного Ниукланікунный подчеркнут) и ВіоТад (подчеркнут дважды) Последовательность нуклеиновой кислоты ВІІВ-FIX-147а-HC (тяжелая цепь активированного Ниукланікунный кекткіт утим гражды) Последовательность нуклеиновой тіддосадого достостата да			TATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGC
Аминокислотная последовательность ВІІВ-FIX-147а-HC (тяжелая цепь активированного HNYNAAINKYNHDIALLELDEPLVLNSYVTPICIADKE ТЕХ) С-концевой (G ₃ S) ₂ линкер TEVEGTSFLTGIISWGEECAMKGKYGIYTKVSRYVNWI (подчеркнут) и ВіоТад (подчеркнут дважды) Последовательность нуклеиновой ТТGGCAGGTTGTTTTGAAACTAGTTGATGCATTCT GTTGCCAGTTGAACTTGTTAAAATTACAGT ТБУВ (Тяжелая цепь ТGCCCACTGTGTTGAAACTGGTGAATTATTCCTCAC САСААСТАСААТGCAGTCAATTCCC САСААСТАСААТGCAGTTAATATTTCCTCAC САСААСТАСААТGCAGTCAATTCCC САСААСТАСААТGCAGTTAATATTTCCTCAC САСААСТАСААТGCAGTTAATATATAGAGT САСААСТАСААТGCAGTTAATATATAGAGT САСААСТАСАТТСТСАС САСААСТАСААТGCAGCTATTAATAATAAGTACAACCATGA ССТТСТСТАСССТТСТСТАСАСТТСТСТАССТТСТСТАССТТСТСТАСАСТТСТТ			AGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAA
Последовательность ВІІВ-FIX-147a-HC (тяжелая цепь активированного нуклеиновой кислоты ВІІВ-FIX- Последовательность ность нуклеиновой (бз S) 2 Таба (тяжелая цепь ность нуклеиновой (бз S) 2 Последовательность ность нуклеиновой (бз S) 2 Таба (тажелая цепь ность ность нослоты віїв-Fix- 147a-HC Таба (тажелая цепь ность нативированного нуклеиновой кислоты віїв-Fix- 147a-HC Таба (тажелая цепь ность нативированного нативированного сада (сала сада стата сада са да са са да са да са да са да са да са са са да са са са са да са			CTTCTAAGCTCACCCGT
BIIB-FIX-147a-HC VVGGEDAKPGQFPWQVVLNGKVDAFCGGSIVNEKWIVT (тяжелая цепь активированного HNYNAAINKYNHDIALLELDEPLVLNSYVTPICIADKE 758 FIX) YTNIFLKFGSGYVSGWGRVFHKGRSALVLQYLRVPLVD С-концевой (G ₃ S) ₂ RATCLRSTKFTIYNNMFCAGFHEGGRDSCQGDSGGPHV линкер TEVEGTSFLTGIISWGEECAMKGKYGIYTKVSRYVNWI (подчеркнут) и ВіоТад (подчеркнут KEKTKLTGGGSGGGSLNDIFEAQKIEWH ВіоТад (подчеркнут TTGGCAGGTTGTTTTGAATGGTAAAGTTGATCCC нуклеиновой TTGGCAGGTTGTTTTGAATGGTAAAGTTGATCT кислоты ВІІВ-FIX- GTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACT 147а-НС GCTGCCCACTGTGTTGAAACTGGTGTTAAAAATTACAGT 759 (тяжелая цепь TGTCGCAGGTGAACATAATATTGAGGAGACAGAACATA активированного CAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCAC FIX) CACAACTACAATGCAGCTATTAATAAGTACAACCATGA С-концевой (G ₃ S) ₂ CATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAA		Аминокислотная	
(тяжелаяцепьAAHCVETGVKITVVAGEHNIEETEHTEQKRNVIRIIPHактивированногоHNYNAAINKYNHDIALLELDEPLVLNSYVTPICIADKE758FIX)YTNIFLKFGSGYVSGWGRVFHKGRSALVLQYLRVPLVDС-концевой (G3S)2RATCLRSTKFTIYNNMFCAGFHEGGRDSCQGDSGGPHVлинкерTEVEGTSFLTGIISWGEECAMKGKYGIYTKVSRYVNWI(подчеркнут)иВіотад (подчеркнут дважды)KEKTKLTGGGSGGGSLNDIFEAQKIEWHПоследовательностьGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCCнуклеиновойTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTкислотыBIIB-FIX-GTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACT147а-НСGCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGT759(тяжелаяцепьTGTCGCAGGTGAACATAATATTGAGGAGACAGAACATAактивированногоCAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCACFIX)CACAACTACAATGCAGCTATTAATAAAGTACAACCATGAС-концевой (G3S)2CATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAA		последовательность	
758активированногоHNYNAAINKYNHDIALLELDEPLVLNSYVTPICIADKE758FIX)YTNIFLKFGSGYVSGWGRVFHKGRSALVLQYLRVPLVDС-концевой (G3S) 2RATCLRSTKFTIYNNMFCAGFHEGGRDSCQGDSGGPHVлинкерTEVEGTSFLTGIISWGEECAMKGKYGIYTKVSRYVNWI(подчеркнут)иВіоТад (подчеркнутКЕКТКLTGGGSGGGSLNDIFEAQKIEWHПоследовательностьGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCCнуклеиновойTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTкислотыBIIB-FIX-GTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACT147а-НСGCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGT759(тяжелая цепьTGTCGCAGGTGAACATAATATTTGAGGAGACAGAACATAактивированногоCAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCACFIX)CACAACTACAATGCAGCTATTAATAAAGTACAACCATGAС-концевой (G3S) 2CATTGCCCTTCTGGAACTGGACCCTTAGTGCTAA		BIIB-FIX-147a-HC	VVGGEDAKPGQFPWQVVLNGKVDAFCGGSIVNEKWIVT
758 FIX) YTNIFLKFGSGYVSGWGRVFHKGRSALVLQYLRVPLVD C-концевой (G ₃ S) ₂ RATCLRSTKFTIYNNMFCAGFHEGGRDSCQGDSGGPHV TEVEGTSFLTGIISWGEECAMKGKYGIYTKVSRYVNWI (подчеркнут) и КЕКТКLTGGGSGGGSLNDIFEAOKIEWH ВіоТад (подчеркнут дважды) GTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCC нуклеиновой TTGGCAGGTTGTTTTGAATGGTAAAGTTGATCT Кислоты ВІІВ-FIX— GTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACT 147а-HC GCTGCCCACTGTGTTGAACTGGTGTTAAAAATTACAGT TGTXACTAACTAACTAACTAACTAACTAACTAACTAACTAAC		(тяжелая цепь	AAHCVETGVKITVVAGEHNIEETEHTEQKRNVIRIIPH
С-концевой (G ₃ S) ₂ RATCLRSTKFTIYNNMFCAGFHEGGRDSCQGDSGGPHV линкер (подчеркнут) и КЕКТКLTGGGSGGGSLNDIFFAOKIEWH ВіоТад (подчеркнут дважды) Последовательность GTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCC нуклеиновой TTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCT кислоты BIIB-FIX- GTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACT 147а-HC (тяжелая цепь TGTCGCAGGTGAACATAATATTGAGGAGACAGAACATA активированного CAGAGCAAAAGCGAAATGTTTTCACC FIX) Сасаастасаатдсадстаттаттаатаадтастаада САССТСТСТСТСТСТСТСТСТСТСТСТСТСТСТСТСТСТ		активированного	HNYNAAINKYNHDIALLELDEPLVLNSYVTPICIADKE
линкер теvegtsfltgliswgeecamkgkyglytkvsryvnwl кекткltgggsgggslnDlfeaQklewh Віотад (подчеркнут дважды) Последовательность GTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCC нуклеиновой ттдGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCT кислоты вlib-fix- GTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACT 147а-HC GCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGT ТСТССАС (тяжелая цепь активированного САGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCAC FIX) САСААСТАСААТGCAGCTATTAATAAAGTACAACCATGA С-концевой (G ₃ S) ₂ САТТGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAA	758	FIX)	YTNIFLKFGSGYVSGWGRVFHKGRSALVLQYLRVPLVD
(подчеркнут)иKEKTKLTGGGSGGGSLNDIFEAQKIEWHВіоТад (подчеркнут дважды)GTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCCПоследовательность нуклеиновойTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTкислотыBIIB-FIX- GTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACT147а-НСGCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGT759(тяжелая активированного FIX)TGTCGCAGGTGAACATAATATTGAGGAGACAGAACATAСАСААСТАСААТGCAGCTATTAATAAGTACAACCATGA CATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAA		С-концевой (G ₃ S) ₂	RATCLRSTKFTIYNNMFCAGFHEGGRDSCQGDSGGPHV
ВіоТад (подчеркнут дважды) Последовательность GTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCC нуклеиновой TTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCT кислоты BIIB-FIX- GTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACT 147а-HC GCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGT (тяжелая цепь TGTCGCAGGTGAACATAATATTGAGGAGACAGAACATA активированного CAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCAC FIX) CACAACTACAATGCAGCTATTAATAAGTACAACCATGA CACAACTACAATGCAGCTATTAATAAGTACAACCATGA CATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAA		линкер	TEVEGTSFLTGIISWGEECAMKGKYGIYTKVSRYVNWI
дважды) Последовательность GTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCC нуклеиновой TTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCT кислоты BIIB-FIX- GTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACT 147а-НС GCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGT 759 (тяжелая цепь TGTCGCAGGTGAACATAATATTGAGGAGACAGAACATA активированного CAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCAC FIX) CACAACTACAATGCAGCTATTAATAAGTACAACCATGA С-концевой (G ₃ S) ₂ CATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAA		(подчеркнут) и	KEKTKLT <u>GGGSGGSLNDIFEAOKIEWH</u>
Последовательность GTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCC нуклеиновой TTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCT кислоты BIIB-FIX- GTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACT 147а-HC GCTGCCCACTGTGTTGAAACTGGTGTTAAAAATTACAGT (тяжелая цепь TGTCGCAGGTGAACATAATATTGAGGAGACAGAACATA активированного CAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCAC FIX) CACAACTACAATGCAGCTATTAATAAGTACAACCATGA С-концевой (G ₃ S) ₂ CATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAA		BioTag (подчеркнут	
нуклеиновой TTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCT кислоты BIIB-FIX- GTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACT 147a-HC GCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGT TGTCGCAGGTGAACATAATATTGAGGAGACAGAACATA активированного CAGAGCAAAAGCGAAATGTGATTCCTCAC FIX) CACAACTACAATGCAGCTATTAATAAGTACAACCATGA C-концевой (G ₃ S) ₂ CATTGCCCTTCTGGAACTGGACCATTAATAAGTACAACCATGA		дважды)	
кислоты BIIB-FIX- GTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACT 147a-HC GCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGT (тяжелая цепь TGTCGCAGGTGAACATAATATTGAGGAGACAGAACATA активированного CAGAGCAAAAGCGAAATGTGATTCCTCAC FIX) CACAACTACAATGCAGCTATTAATAAGTACAACCATGA C-концевой (G ₃ S) ₂ CATTGCCCTTCTGGAACTGGACCGTAA		Последовательность	GTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCC
759(тяжелаяцепьTGTCGCAGGTGAACATAATATTGAGGAGACAGAACATAактивированногоCAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCACFIX)CACAACTACAATGCAGCTATTAATAAGTACAACCATGAС-концевой (G3S)2CATTGCCCTTCTGGAACTGGACCGAACCCTTAGTGCTAA		нуклеиновой	TTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCT
759(тяжелаяцепьTGTCGCAGGTGAACATAATATTGAGGAGACAGAACATAактивированногоCAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCACFIX)CACAACTACAATGCAGCTATTAATAAGTACAACCATGAС-концевой (G3S)2CATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAA	759	кислоты BIIB-FIX-	GTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACT
активированного CAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCAC FIX) CACAACTACAATGCAGCTATTAATAAGTACAACCATGA CATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAA		147a-HC	GCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGT
FIX) CACAACTACAATGCAGCTATTAATAAGTACAACCATGA CATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAA		(тяжелая цепь	TGTCGCAGGTGAACATAATATTGAGGAGACAGAACATA
С-концевой (G ₃ S) ₂ CATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAA		активированного	CAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCAC
		FIX)	CACAACTACAATGCAGCTATTAATAAGTACAACCATGA
линкер ACAGCTACGTTACACCTATTTGCATTGCTGACAAGGAA		С-концевой (G ₃ S) ₂	CATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAA
		линкер	ACAGCTACGTTACACCTATTTGCATTGCTGACAAGGAA

	(подчеркнут) и	TACACGAACATCTTCCTCAAATTTGGATCTGGCTATGT
	BioTag (подчеркнут	AAGTGGCTGGGGAAGAGTCTTCCACAAAGGGAGATCAG
	дважды)	CTTTAGTTCTTCAGTACCTTAGAGTTCCACTTGTTGAC
		CGAGCCACATGTCTTCGATCTACAAAGTTCACCATCTA
		TAACAACATGTTCTGTGCTGGCTTCCATGAAGGAGGTA
		GAGATTCATGTCAAGGAGATAGTGGGGGACCCCATGTT
		ACTGAAGTGGAAGGGACCAGTTTCTTAACTGGAATTAT
		TAGCTGGGGTGAAGAGTGTGCAATGAAAGGCAAATATG
		GAATATACCAAGGTGTCCCGGTATGTCAACTGGATT
		AAGGAAAAACAAAGCTCACT <u>GGAGGAGGATCCGGAGG</u>
		<u>AGGATCCTTGAACGACATTTTTGAAGCGCAAAAAATTG</u>
		AATGGCAT
	Аминокислотная	
	последовательность	
	BIIB-FIX-148	MQRVNMIMAESPGLITICLLGYLLSAECTVFLDHENAN
	Неактивируемая	KILNRPKRYNSGKLEEFVQGNLERECMEEKCSFEEARE
	конструкция	VFENTERTTEFWKQYVDGDQCESNPCLNGGSCKDDINS
	Фактора IX,	YECWCPFGFEGKNCELDVTCNIKNGRCEQFCKNSADNK
	содержащая мутацию	VVCSCTEGYRLAENQKSCEPAVPFPCGRVSVSQTSKLT
	Arg в Ala (в	RAETVFPDVDYVNSTEAETILDNITQSTQSFNDFTAVV
760	рамке) для	GGEDAKPGQFPWQVVLNGKVDAFCGGSIVNEKWIVTAA
	предотвращения	HCVETGVKITVVAGEHNIEETEHTEQKRNVIRIIPHHN
	активации FIX и C-	YNAAINKYNHDIALLELDEPLVLNSYVTPICIADKEYT
	концевого $(G_3S)_2$	NIFLKFGSGYVSGWGRVFHKGRSALVLQYLRVPLVDRA
	линкера	TCLRSTKFTIYNNMFCAGFHEGGRDSCQGDSGGPHVTE
	(подчеркнуто) и	VEGTSFLTGIISWGEECAMKGKYGIYTKVSRYVNWIKE
	BioTag	KTKLT <u>GGGSGGGSLNDIFEAOKIEWH</u>
	(подчеркнуто	
	дважды)	
	Последовательность	TATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAA
	нуклеиновой	TCTAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTG
761	кислоты BIIB-FIX-	AAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACA
	148	ACTGAATTTTGGAAGCAGTATGTTGATGGAGATCAGTG
	Неактивируемая	TGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGG
	конструкция	ATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGA

фактора X,

содержащая мутацию

Arg в Ala (в
рамке) для
предотвращения
активации FX, и Сконцевого (G₃S)₂
линкера
(подчеркнуто), и
ВіоТад
(подчеркнуто
дважды)

TTTGAAGGAAAGAACTGTGAATTAGATGTAACATGTAA CATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATA GTGCTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGA TATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGC AGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAA CTTCTAAGCTCACCCGTGCTGAGACTGTTTTTCCTGAT GTGGACTATGTAAATTCTACTGAAGCTGAAACCATTTT GGATAACATCACTCAAAGCACCCAATCATTTAATGACT TCACTGCAGTTGTTGGTGGAGAAGATGCCAAACCAGGT CAATTCCCTTGGCAGGTTGTTTTGAATGGTAAAGTTGA TGCATTCTGTGGAGGCTCTATCGTTAATGAAAAATGGA TTGTAACTGCTGCCCACTGTGTTGAAACTGGTGTTAAA ATTACAGTTGTCGCAGGTGAACATAATATTGAGGAGAC AGAACATACAGAGCAAAAGCGAAATGTGATTCGAATTA TTCCTCACCACAACTACAATGCAGCTATTAATAAGTAC AACCATGACATTGCCCTTCTGGAACTGGACGAACCCTT AGTGCTAAACAGCTACGTTACACCTATTTGCATTGCTG ACAAGGAATACACGAACATCTTCCTCAAATTTGGATCT GGCTATGTAAGTGGCTGGGGAAGAGTCTTCCACAAAGG GAGATCAGCTTTAGTTCTTCAGTACCTTAGAGTTCCAC TTGTTGACCGAGCCACATGTCTTCGATCTACAAAGTTC ACCATCTATAACAACATGTTCTGTGCTGGCTTCCATGA AGGAGGTAGAGATTCATGTCAAGGAGATAGTGGGGGAC CCCATGTTACTGAAGTGGAAGGGACCAGTTTCTTAACT GGAATTATTAGCTGGGGTGAAGAGTGTGCAATGAAAGG CAAATATGGAATATATACCAAGGTGTCCCGGTATGTCA ACTGGATTAAGGAAAAAACAAAGCTCACTGGAGGAGGA TCCGGAGGAGGATCCTTGAACGACATTTTTGAAGCGCA AAAAATTGAATGGCAT

Аминокислотная
762 последовательность
ВІІВ-FX-015

ANSFLEEMKKGHLERECMEETCSYEEAREVFEDSDKTN
EFWNKYKDGDQCETSPCQNQGKCKDGLGEYTCTCLEGF
EGKNCELFTRKLCSLDNGDCDQFCHEEQNSVVCSCARG
YTLADNGKACIPTGPYPCGKQTLERRKRSVAQATSSSG
EAPDSITWKPYDAADLDPTENPFDLLDFNQTQPERGDN
NLTAIVGGQECKDGECPWQALLINEENEGFCGGTILSE

FYILTAAHCLYQAKRFKVRVGDRNTEQEEGGEAVHEVE
VVIKHNRFTKETYDFDIAVLRLKTPITFRMNVAPACLP
ERDWAESTLMTQKTGIVSGFGRTHEKGRQSTRLKMLEV
PYVDRNSCKLSSSFIITQNMFCAGYDTKQEDACQGDSG
GPHVTRFKDTYFVTGIVSWGEGCARKGKYGIYTKVTAF
LKWIDRSMKTRGLPKAKSHAPEVITSSPLKGGGSGGGS
LNDIFEAOKIEWH

Неактивируемая конструкция фактора X, содержащая мутацию Arg в Ala (в рамке) для предотвращения активации FX, и С-концевого $(G_3S)_2$ линкера (подчеркнуто), и BioTag (подчеркнуто дважды)

Последовательность нуклеиновой КИСЛОТЫ BITB-FX-015 Неактивируемая конструкция фактора Χ, содержащая мутацию Ala Arq в (в рамке) ДЛЯ предотвращения активации FX, и Cконцевого $(G_3S)_2$ линкера (подчеркнуто), И BioTag (подчеркнуто

дважды)

763

GCCAATTCCTTTCTTGAAGAGATGAAGAAAGGACACCT CGAAAGAGAGTGCATGGAAGAGACCTGCTCATACGAAG AGGCCCGCGAGGTCTTTGAGGACAGCGACAAGACGAAT GAATTCTGGAATAAATACAAAGATGGCGACCAGTGTGA GACCAGTCCTTGCCAGAACCAGGGCAAATGTAAAGACG GCCTCGGGGAATACACCTGCACCTGTTTAGAAGGATTC GAAGGCAAAAACTGTGAATTATTCACACGGAAGCTCTG CAGCCTGGACAACGGGGACTGTGACCAGTTCTGCCACG AGGAACAGAACTCTGTGGTGTGCTCCTGCGCCCGCGGG TACACCCTGGCTGACAACGGCAAGGCCTGCATTCCCAC AGGGCCCTACCCCTGTGGGAACAGACCCTGGAACGCA GGAAGAGGTCAGTGGCCCAGGCCACCAGCAGCAGCGGG GAGGCCCCTGACAGCATCACATGGAAGCCATATGATGC AGCCGACCTGGACCCCACCGAGAACCCCTTCGACCTGC TTGACTTCAACCAGACGCAGCCTGAGAGGGGGCGACAAC AACCTCACCGCGATCGTGGGAGGCCAGGAATGCAAGGA CGGGGAGTGTCCCTGGCAGGCCCTGCTCATCAATGAGG AAAACGAGGGTTTCTGTGGTGGAACCATTCTGAGCGAG TTCTACATCCTAACGGCAGCCCACTGTCTCTACCAAGC CAAGAGATTCAAGGTGAGGGTAGGGGACCGGAACACGG AGCAGGAGGAGGCGGTGAGGCGGTGCACGAGGTGGAG GTGGTCATCAAGCACAACCGGTTCACAAAGGAGACCTA TGACTTCGACATCGCCGTGCTCCGGCTCAAGACCCCCA

		TCACCTTCCGCATGAACGTGGCGCCTGCCTCCCC
		GAGCGTGACTGGGCCGAGTCCACGCTGATGACGCAGAA
		GACGGGGATTGTGAGCGGCTTCGGGCGCACCCACGAGA
		AGGGCCGGCAGTCCACCAGGCTCAAGATGCTGGAGGTG
		CCCTACGTGGACCGCAACAGCTGCAAGCTGTCCAGCAG
		CTTCATCATCACCCAGAACATGTTCTGTGCCGGCTACG
		ACACCAAGCAGGAGGATGCCTGCCAGGGGGACAGCGGG
		GGCCCGCACGTCACCCGCTTCAAGGACACCTACTTCGT
		GACAGGCATCGTCAGCTGGGGAGAGGGCTGTGCCCGTA
		AGGGGAAGTACGGGATCTACACCAAGGTCACCGCCTTC
		CTCAAGTGGATCGACAGGTCCATGAAAACCAGGGGCTT
		GCCCAAGGCCAAGAGCCATGCCCCGGAGGTCATAACGT
		CCTCTCCATTAAAG <u>GGAGGAGGATCCGGAGGAGGATCC</u>
		TTGAACGACATTTTTGAAGCGCAAAAAATTGAATGGCA
		<u>T</u>
		MQRVNMIMAESPGLITICLLGYLLSAECTVFLDHENAN
		KILNRPKRYNSGKLEEFVQGNLERECMEEKCSFEEARE
		VFENTERTTEFWKQYVDGDQCESNPCLNGGSCKDDINS
		YECWCPFGFEGKNCELDVTCNIKNGRCEQFCKNSADNK
		VVCSCTEGYRLAENQKSCEPAVPFPCGRVSVSQTSKLT
7.64	пре-про-FIX	RAETVFPDVDYVNSTEAETILDNITQSTQSFNDFTRVV
764	зимоген	GGEDAKPGQFPWQVVLNGKVDAFCGGSIVNEKWIVTAA
	JIMOT CIT	HCVETGVKITVVAGEHNIEETEHTEQKRNVIRIIPHHN
		YNAAINKYNHDIALLELDEPLVLNSYVTPICIADKEYT
		NIFLKFGSGYVSGWGRVFHKGRSALVLQYLRVPLVDRA
		TCLRSTKFTIYNNMFCAGFHEGGRDSCQGDSGGPHVTE
		VEGTSFLTGIISWGEECAMKGKYGIYTKVSRYVNWIKE
		KTKLT

ТАБЛИЦА 5. Обозначение SEQ ID NO для CDR.

Антитело	VH-CDR1	VH-CDR2	VH-CDR3	VL-CDR1	VL-CDR2	VL-CDR3
		Антите	ела класс	a I		
BIIB-9-605	800	845	890	935	980	1025
BIIB-9-475	801	846	891	936	981	1026
BIIB-9-477	802	847	892	937	982	1027
BIIB-9-479	803	848	893	938	983	1028
BIIB-9-480	804	849	894	939	984	1029
BIIB-9-558	805	850	895	940	985	1030
BIIB-9-414	806	851	896	941	986	1031
BIIB-9-415	807	852	897	942	987	1032

BIIB-9-425	808	853	898	943	988	1033
BIIB-9-440	809	854	899	944	989	1034
BIIB-9-452	810	855	900	945	990	1035
BIIB-9-460	811	856	901	946	991	1036
BIIB-9-461	812	857	902	947	992	1037
BIIB-9-465	813	858	903	948	993	1038
BIIB-9-564	814	859	904	949	994	1039
BIIB-9-484	815	860	905	950	995	1040
BIIB-9-469	816	861	906	951	996	1041
BIIB-9-566	817	862	907	952	997	1042
BIIB-9-567	818	863	908	953	998	1043
BIIB-9-569	819	864	909	954	999	1044
BIIB-9-588	820	865	910	955	1000	1045
BIIB-9-611	821	866	911	956	1001	1046
BIIB-9-619	822	867	912	957	1002	1047
BIIB-9-626	823	868	913	958	1003	1048
BIIB-9-883	824	869	914	959	1004	1049
BIIB-9-419	825	870	915	960	1005	1050
BIIB-9-451	826	871	916	961	1006	1051
BIIB-9-473	827	872	917	962	1007	1052
BIIB-9-565	828	873	918	963	1008	1053
BIIB-9-573	829	874	919	964	1009	1054
BIIB-9-579	830	875	920	965	1010	1055
BIIB-9-581	831	876	921	966	1011	1056
BIIB-9-582	832	877	922	967	1012	1057
BIIB-9-585	833	878	923	968	1013	1058
BIIB-9-587	834	879	924	969	1014	1059
BIIB-9-590	835	880	925	970	1015	1060
BIIB-9-592	836	881	926	971	1016	1061
BIIB-9-606	837	882	927	972	1017	1062
BIIB-9-608	838	883	928	973	1018	1063
BIIB-9-616	839	884	929	974	1019	1064
BIIB-9-621	840	885	930	975	1020	1065
BIIB-9-622	841	886	931	976	1021	1066

BIIB-9-627	842	887	932	977	1022	1067
BIIB-9- 1335	843	888	933	978	1023	1068
BIIB-9-						
1336	844	889	934	979	1024	1069
1330		7.1.55		<u> </u> . II		
DIID 0 400	1070		ла класса		1006	1000
BIIB-9-408	1070	1074	1078	1082	1086	1090
BIIB-9-416	1071	1075	1079	1083	1087	1091
BIIB-9-629	1072	1076	1080	1084	1088	1092
BIIB-9-885	1073	1077	1081	1085	1089	1093
		Антител	а класса	III		
BIIB-9-607	1094	1136	1178	1220	1262	1304
BIIB-9-471	1095	1137	1179	1221	1263	1305
BIIB-9-472	1096	1138	1180	1222	1264	1306
BIIB-9-439	1097	1139	1181	1223	1265	1307
BIIB-9-446	1098	1140	1182	1224	1266	1308
BIIB-9-568	1099	1141	1183	1225	1267	1309
BIIB-9-615	1100	1142	1184	1226	1268	1310
BIIB-9-628	1101	1143	1185	1227	1269	1311
BIIB-9-882	1102	1144	1186	1228	1270	1312
BIIB-9-884	1103	1145	1187	1229	1271	1313
BIIB-9-886	1104	1146	1188	1230	1272	1314
BIIB-9-887	1105	1147	1189	1231	1273	1315
BIIB-9-888	1106	1148	1190	1232	1274	1316
BIIB-9-889	1107	1149	1191	1233	1275	1317
BIIB-9-433	1108	1150	1192	1234	1276	1318
BIIB-9-445	1109	1151	1193	1235	1277	1319
BIIB-9-470	1110	1152	1194	1236	1278	1320
BIIB-9-625	1111	1153	1195	1237	1279	1321
BIIB-9-	1110	115/	1106	1000	1200	1222
1264	1112	1154	1196	1238	1280	1322
BIIB-9-	1113	1155	1197	1239	1281	1323
1265						1010
BIIB-9-	1114	1156	1198	1240	1282	1324

1266						
BIIB-9-	1115	1157	1199	1241	1283	1325
1267	1110	1107	1100	1241	1200	1323
BIIB-9-	1116	1158	1200	1242	1284	1326
1268						
BIIB-9-	1117	1159	1201	1243	1285	1327
1269						
BIIB-9-	1118	1160	1202	1244	1286	1328
1270						
BIIB-9-	1119	1161	1203	1245	1287	1329
1271 BIIB-9-						
1272	1120	1162	1204	1246	1288	1330
BIIB-9-						
1273	1121	1163	1205	1247	1289	1331
BIIB-9-	1100	1164	1206	1040	1200	1222
1274	1122	1164	1206	1248	1290	1332
BIIB-9-	1123	1165	1207	1249	1291	1333
1275	1120	1100	1201	1219	1201	1333
BIIB-9-	1124	1166	1208	1250	1292	1334
1276						
BIIB-9-	1125	1167	1209	1251	1293	1335
1277						
BIIB-9-	1126	1168	1210	1252	1294	1336
1278 BIIB-9-						
1279	1127	1169	1211	1253	1295	1337
BIIB-9-						
1280	1128	1170	1212	1254	1296	1338
BIIB-9-	1100	1171	1010	1055	1007	1220
1281	1129	1171	1213	1255	1297	1339
BIIB-9-	1130	1172	1214	1256	1298	1340
1282	1130	11/2	121 4	1200	1230	1040
BIIB-9-	1131	1173	1215	1257	1299	1341
1283						

BIIB-9-	1100	1174	1016	1050	1000	1040
1284	1132	1174	1216	1258	1300	1342
BIIB-9-	1133	1175	1217	1259	1301	1343
1285	1133	11/5	121/	1200	1301	1242
BIIB-9-	1134	1176	1218	1260	1302	1344
1286	1131	1170	1210	1200	1002	1011
BIIB-9-	1135	1177	1219	1261	1303	1345
1287						
		Антите.	ла класса	IV		
BIIB-9-397	1346	1350	1354	1358	1362	1366
BIIB-9-578	1347	1351	1355	1359	1363	1367
BIIB-9-631	1348	1352	1356	1360	1364	1368
BIIB-9-612	1349	1353	1357	1361	1365	1369
	•	Антит∈	ела класса	a V		
BIIB-12-	1370	1460	1550	1640	1730	1820
891	1370	1100	1000	1010	1730	1020
BIIB-12-	1371	1461	1551	1641	1731	1821
892	10,1	1101	1001	1011	1,01	1021
BIIB-12-	1372	1462	1552	1642	1732	1822
893						
BIIB-12-	1373	1463	1553	1643	1733	1823
895						
BIIB-12-	1374	1464	1554	1644	1734	1824
896						
BIIB-12-	1375	1465	1555	1645	1735	1825
897						
BIIB-12-	1376	1466	1556	1646	1736	1826
898						
BIIB-12-	1377	1467	1557	1647	1737	1827
899						
BIIB-12-	1378	1468	1558	1648	1738	1828
900						
BIIB-12-	1379	1469	1559	1649	1739	1829
901						
BIIB-12-	1380	1470	1560	1650	1740	1830

902						
BIIB-12-	1381	1471	1561	1651	1741	1831
903	1301	11/1	1001	1001	1,41	1031
BIIB-12-	1382	1472	1562	1652	1742	1832
904						
BIIB-12-	1383	1473	1563	1653	1743	1833
905						
BIIB-12-	1384	1474	1564	1654	1744	1834
906						
BIIB-12-	1385	1475	1565	1655	1745	1835
907						
BIIB-12- 908	1386	1476	1566	1656	1746	1836
BIIB-12-						
909	1387	1477	1567	1657	1747	1837
BIIB-12-						
910	1388	1478	1568	1658	1748	1838
BIIB-12-						
911	1389	1479	1569	1659	1749	1839
BIIB-12-	1000	1.100		1 0 0 0	1 = = 0	
912	1390	1480	1570	1660	1750	1840
BIIB-12-	1 2 0 1	1 / 0 1	1571	1661	1751	10/1
913	1391	1481	1571	1661	1/31	1841
BIIB-12-	1392	1482	1572	1662	1752	1842
914	1332	1402	1072	1002	1752	1042
BIIB-12-	1393	1483	1573	1663	1753	1843
915						
BIIB-12-	1394	1484	1574	1664	1754	1844
916						
BIIB-12-	1395	1485	1575	1665	1755	1845
917						
BIIB-12-	1396	1486	1576	1666	1756	1846
918						
BIIB-12-	1397	1487	1577	1667	1757	1847
919						

BIIB-12- 920	1398	1488	1578	1668	1758	1848
BIIB-12- 921	1399	1489	1579	1669	1759	1849
BIIB-12- 922	1400	1490	1580	1670	1760	1850
BIIB-12- 923	1401	1491	1581	1671	1761	1851
BIIB-12- 924	1402	1492	1582	1672	1762	1852
BIIB-12- 926	1403	1493	1583	1673	1763	1853
BIIB-12- 927	1404	1494	1584	1674	1764	1854
BIIB-12- 928	1405	1495	1585	1675	1765	1855
BIIB-12- 929	1406	1496	1586	1676	1766	1856
BIIB-12- 930	1407	1497	1587	1677	1767	1857
BIIB-12- 931	1408	1498	1588	1678	1768	1858
BIIB-12- 932	1409	1499	1589	1679	1769	1859
BIIB-12- 933	1410	1500	1590	1680	1770	1860
BIIB-12- 934	1411	1501	1591	1681	1771	1861
BIIB-12- 935	1412	1502	1592	1682	1772	1862
BIIB-12- 936	1413	1503	1593	1683	1773	1863
BIIB-12- 937	1414	1504	1594	1684	1774	1864
BIIB-12-	1415	1505	1595	1685	1775	1865

1288						
BIIB-12-	1416	1506	1596	1686	1776	1866
1289		1000	1000	1000	1,,0	1000
BIIB-12-	1417	1507	1597	1687	1777	1867
1290			200,		_ , , .	2007
BIIB-12-	1418	1508	1598	1688	1778	1868
1291						
BIIB-12-	1419	1509	1599	1689	1779	1869
1292						
BIIB-12-	1420	1510	1600	1690	1780	1870
1293						
BIIB-12-	1421	1511	1601	1691	1781	1871
1294						
BIIB-12-	1422	1512	1602	1692	1782	1872
1295 BIIB-12-						
1296	1423	1513	1603	1693	1783	1873
BIIB-12-						
1297	1424	1514	1604	1694	1784	1874
BIIB-12-						
1298	1425	1515	1605	1695	1785	1875
BIIB-12-	1.406	1516	1606	1606	1786	1876
1299	1426	1516	1606	1696	1/00	10/0
BIIB-12-	1427	1517	1607	1697	1787	1877
1300	110,	1017	<u> </u>	2001	1,0,	1011
BIIB-12-	1428	1518	1608	1698	1788	1878
1301						
BIIB-12-	1429	1519	1609	1699	1789	1879
1302						
BIIB-12-	1430	1520	1610	1700	1790	1880
1303						
BIIB-12-	1431	1521	1611	1701	1791	1881
1304						
BIIB-12-	1432	1522	1612	1702	1792	1882
1305						

BIIB-12-	1433	1523	1613	1703	1793	1883
1306						
BIIB-12-	1434	1524	1614	1704	1794	1884
1307						
BIIB-12-	1435	1525	1615	1705	1795	1885
1308						
BIIB-12-	1436	1526	1616	1706	1796	1886
1309						
BIIB-12-	1437	1527	1617	1707	1797	1887
1310						
BIIB-12-	1438	1528	1618	1708	1798	1888
1311						
BIIB-12-	1439	1529	1619	1709	1799	1889
1312 BIIB-12-						
1313	1440	1530	1620	1710	1800	1890
BIIB-12-						
1314	1441	1531	1621	1711	1801	1891
BIIB-12-						
1315	1442	1532	1622	1712	1802	1892
BIIB-12-						
1316	1443	1533	1623	1713	1803	1893
BIIB-12-						
1317	1444	1534	1624	1714	1804	1894
BIIB-12-	1 1 1 5	1.505	1.005	1.71.5	1005	1005
1318	1445	1535	1625	1715	1805	1895
BIIB-12-	1 4 4 6	1526	1.00.0	1716	1000	1000
1319	1446	1536	1626	1716	1806	1896
BIIB-12-	1447	1537	1627	1717	1807	1897
1322	1447	1337	1027	1/1/	1007	1097
BIIB-12-	1448	1538	1628	1718	1808	1898
1323	T # # O	1000	1020	1/10	1000	1030
BIIB-12-	1449	1539	1629	1719	1809	1899
1324	1447	1000	1029	1/19	1009	1009
BIIB-12-	1450	1540	1630	1720	1810	1900

1325						
BIIB-12-	1451	1541	1631	1721	1811	1901
1326	1101	1011	1001	1,21	1011	
BIIB-12-	1452	1542	1632	1722	1812	1902
1327						
BIIB-12-	1453	1543	1633	1723	1813	1903
1328						
BIIB-12-	1454	1544	1634	1724	1814	1904
1329						
BIIB-12- 1330	1455	1545	1635	1725	1815	1905
BIIB-12-						
1331	1456	1546	1636	1726	1816	1906
BIIB-12-						
1332	1457	1547	1637	1727	1817	1907
BIIB-12-	1458	1548	1638	1728	1818	1908
1333	1430	1940	1030	1720	1010	
BIIB-12-	1459	1549	1639	1729	1819	1909
1334		2010	2000			
		Антите	ла класса	ı VI		
BIIB-12-	1910	1914	1918	1922	1926	1930
894						
BIIB-12-	1911	1915	1919	1923	1927	1931
925						
BIIB-12-	1912	1916	1920	1924	1928	1932
1320						
BIIB-12-	1913	1917	1921	1925	1929	1933
1321	6 . Пост		ъности по			

ТАБЛИЦА 6. Последовательности дочерних антител из примера

	Описание	
SEQ	(антитело,	
ID NO	домен, тип	Последовательность
ID NO	последовател	
	ьности)	

GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAC GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCA CAGTAGCTATAGCATGAACTGGGTCCGCCAGGCTCCAGC BIIB-9-3595 GGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTA	ACCTT GGAAG
CAGTAGCTATAGCATGAACTGGGTCCGCCAGGCTCCAGC BIIB-9-3595 GGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGT 1934 VH (нукл. TATACTACGCAGACTCAGTGAAAGGCCGATTCACCATCT кислота) AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAC AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGAT GTGGATACGCAGGGTACTACGGCATGGATGTATGGGGGG GACCACGGTCACCGTCTCCTCA EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQ	GGAAG
BIIB-9-3595 GGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTA	
VH (нукл. TATACTACGCAGACTCAGTGAAAGGCCGATTCACCATCT кислота) AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAC AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGAT GTGGATACGCAGGGTACTACGGCATGGATGTATGGGGGG GACCACGGTCACCGTCTCCTCA EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQ	TTACA
кислота) AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAC AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGAT GTGGATACGCAGGGTACTACGGCATGGATGTATGGGGGGC GACCACGGTCACCGTCTCCTCA EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQ	
AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGAT GTGGATACGCAGGGTACTACGGCATGGATGTATGGGGGG GACCACGGTCACCGTCTCCTCA EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQ	[CCAG
GTGGATACGCAGGGTACTACGGCATGGATGTATGGGGGC GACCACGGTCACCGTCTCCTCA EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQ	GCCTG
GACCACGGTCACCGTCTCCTCA EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQ	[TTGG
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQ	CAAGG
I IDIID O ZEOE I	QAPGK
BIIB-9-3595 GLEWVSSISSSSYIYYADSVKGRFTISRDNAKNSLYLÇ	QMNSL
VH (aa) RAEDTAVYYCARDLGGYAGYYGMDVWGQGTTVTVSS	
GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCA	ATCTG
TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGC	GACAT
TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAA	AAGCC
ССТААGCTCCTGATCTACGATGCATCCAATTTGGAAACA	AGGGG
TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATT	[TTAC
TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAAC	CATAT
TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGC	CGGAG
GGACCAAGGTTGAGATCAAA	
DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQF BIIB-9-3595	KPGKA
1937 PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEI	YTAIC
YCQQYANFPYTFGGGTKVEIK	
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAC	GCCTG
GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCA	ACCTT
CAGTAGCTTCAGCATGAACTGGGTCCGCCAGGCTCCAGC	GGAAG
BIIB-9-3601 GGGCTGGAGTGGTCTCATCCATTAGTAGTGCTGGGAGT	rtaca
1938 VH (нукл. TATACTACGCAGACTCAGTGAAGGGCCGATTCACCATC	ICCAG
кислота) AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAC	GCCTG
AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGAT	IGTAG
GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGCC	CAGGG
AACAACTGTCACCGTCTCCA	
BIIB-9-3601 EVQLVESGGGLVKPGGSLRLSCAASGFTFSSFSMNWVRQ	QAPGK
VH (aa) GLEWVSSISSAGSYIYYADSVKGRFTISRDNAKNSLYLÇ	QMNSL

		RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG
		TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACAT
	BIIB-9-3601	TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC
1940		CCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGG
1940	VL (нукл.	TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC
	кислота)	TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT
		TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	BIIB-9-3601	DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA
1941	VL (aa)	PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY
	VI (da)	YCQQYANFPYTFGGGTKVEIK
		GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG
		GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT
		CAGTAGCTATGATATGGTGTGGGTCCGCCAGGCTCCAGGGAAG
	BIIB-9-3604	GGGCTGGAGTGGGTCTCATCCATTAGTAGTGGGGATAGTTACA
1942	VH (нукл.	TATACTACGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAG
	кислота)	AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG
		AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG
		GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGCCAGGG
		AACAACTGTCACCGTCTCCTCA
	BIIB-9-3604	EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYDMVWVRQAPGK
1943	VH (aa)	GLEWVSSISSGDSYIYYADSVKGRFTISRDNAKNSLYLQMNSL
		RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG
	BIIB-9-3604	TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACAT
		TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC
1944	VL (нукл.	CCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGG
	кислота)	TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC
	кислота)	TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT
		TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	BIIB-9-3604	DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA
1945	VL (aa)	PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY
	, ,	YCQQYANFPYTFGGGTKVEIK

	1	
		GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG
		GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT
		CAGTAGCTATTCTATGACTTGGGTCCGCCAGGCTCCAGGGAAG
	BIIB-9-3617	GGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTGGTACGTAC
1946	VH (нукл.	TATACTACGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAG
	кислота)	AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG
		AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG
		GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGCCAGGG
		AACAACTGTCACCGTCTCCTCA
	BIIB-9-3617	EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMTWVRQAPGK
1947		GLEWVSSISSSGTYIYYADSVKGRFTISRDNAKNSLYLQMNSL
	VH (aa)	RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG
		TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACAT
	DIID 0 2617	TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC
1040	BIIB-9-3617 VL (нукл.	CCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGG
1948		TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC
	кислота)	TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT
		TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	BIIB-9-3617	DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA
1949		PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY
	VL (aa)	YCQQYANFPYTFGGGTKVEIK
		GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG
		GGGGGTCCATGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT
		CAGTAGCTATGAGATGGTTTGGGTCCGCCAGGCTCCAGGGAAG
	BIIB-9-3618	GGGCTGGAGTGGGTCTCATATATTAGTAGTGGTAGTAGTTACA
1950	VH (нукл.	TATACTACGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAG
	кислота)	AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG
		AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG
		GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGCCAGGG
		AACAACTGTCACCGTCTCCTCA
	D.T.T. 0. 0.011	EVQLVESGGGLVKPGGSMRLSCAASGFTFSSYEMVWVRQAPGK
1951	BIIB-9-3618	GLEWVSYISSGSSYIYYADSVKGRFTISRDNAKNSLYLQMNSL
	VH (aa)	RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS

		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG
		TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACAT
		TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC
	BIIB-9-3618	CCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGG
1952	VL (нукл.	
	кислота)	TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC
		TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT
		TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	BIIB-9-3618	DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA
1953	VL (aa)	PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY
		YCQQYANFPYTFGGGTKVEIK
		GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG
		GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT
		CGGGAGCTATAGCATGGCTTGGGTCCGCCAGGCTCCAGGGAAG
	BIIB-9-3621	GGGCTGGAGTGGGTCTCAGGTATTAGTAGTAGTAGTGGTTACA
1954	VH (нукл.	TATACTACGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAG
	кислота)	AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG
		AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG
		GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGCCAGGG
		AACAACTGTCACCGTCTCCTCA
	BIIB-9-3621	EVQLVESGGGLVKPGGSLRLSCAASGFTFGSYSMAWVRQAPGK
1955	VH (aa)	GLEWVSGISSSSGYIYYADSVKGRFTISRDNAKNSLYLQMNSL
	vn (aa)	RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG
		TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACAT
	BIIB-9-3621	TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC
1956		CCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGG
1936	(,,,,,,,,,,	TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC
	кислота)	TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT
		TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	DIID 0 2621	DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA
1957	BIIB-9-3621	PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY
	VL (aa)	YCQQYANFPYTFGGGTKVEIK
1958	BIIB-9-3647	GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG
	I	I

	VH (нукл.	GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT
	кислота)	 CAGTAGCTATGGTATGGTGTGGGTCCGCCAGGCTCCAGGGAAG
		 GGGCTGGAGTGGGTCTCATCCATTAGTAGTGCGAGTAGTTACA
		TATACTACGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAG
		AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG
		AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG
		GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGCCAGGG
		AACAACTGTCACCGTCTCCTCA
	D.T.D. 0. 0.647	EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYGMVWVRQAPGK
1959	BIIB-9-3647	GLEWVSSISSASSYIYYADSVKGRFTISRDNAKNSLYLQMNSL
	VH (aa)	RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG
		TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACAT
	BIIB-9-3647	TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC
1960		CCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGG
1960	VL (нукл.	TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC
	кислота)	TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT
		TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	BIIB-9-3647	DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA
1961	VL (aa)	PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY
	VI (da)	YCQQYANFPYTFGGGTKVEIK
		GAGGTGCAGCTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG
		GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT
		CAGTAGCTATGGTATGGCTTGGGTCCGCCAGGCTCCAGGGAAG
	BIIB-9-3649	GGGCTGGAGTGGGTCTCAGGTATTAGTAGTAGTTCGAGTTACA
1962	VH (нукл.	TATACTACGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAG
	кислота)	AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG
		AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG
		GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGCCAGGG
		AACAACTGTCACCGTCTCCTCA
	BIIB-9-3649	EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYGMAWVRQAPGK
1963	VH (aa)	GLEWVSGISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSL
		RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS
1964	BIIB-9-3649	GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG

	VL (нукл.	TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACAT
	кислота)	TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC
		CCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGG
		TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC
		TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT
		TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	D. T. T. D. O. C. A. O.	DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA
1965	BIIB-9-3649	PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY
	VL (aa)	YCQQYANFPYTFGGGTKVEIK
		GAGGTGCAGCTGGAGTCTGGGGGGAGGCTTGGTACAGCCTG
		GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT
		CGGGAGCTATGAGATGAACTGGGTCCGCCAGGCTCCAGGGAAG
	BIIB-9-3650	GGGCTGGAGTGGGTTTCAGCGATTAGTGCTAGTAGTACCA
1966	VH (нукл.	TATACTACGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAG
	кислота)	AGACAATGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG
		AGAGCTGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG
		GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGCCAGGG
		AACAACTGTCACCGTCTCCTCA
	BIIB-9-3650	EVQLVESGGGLVQPGGSLRLSCAASGFTFGSYEMNWVRQAPGK
1967	VH (aa)	GLEWVSAISASSSTIYYADSVKGRFTISRDNAKNSLYLQMNSL
	VII (dd)	RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG
		TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACAT
	BIIB-9-3650 VL (нукл. кислота)	TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC
1968		CCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGG
		TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC
		TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT
		TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	BIIB-9-3650	DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA
1969	VL (aa)	PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY
		YCQQYANFPYTFGGGTKVEIK
1970	BIIB-9-3654	GAGGTGCAGCTGGTGGAGTCTGGGGGGAGGCCTGGTCAAGCCTG
	VH (нукл.	GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT

	кислота)	CGAGAGCTATAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAG
		 GGGCTGGAGTGGGTCTCAGGGATTAGTAGTGCTAGTAGTTACA
		TATACTACGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAG
		AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG
		AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG
		GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGCCAGGG
		AACAACTGTCACCGTCTCCTCA
		EVQLVESGGGLVKPGGSLRLSCAASGFTFESYSMNWVRQAPGK
1971	BIIB-9-3654	GLEWVSGISSASSYIYYADSVKGRFTISRDNAKNSLYLQMNSL
	VH (aa)	RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS
		GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG
		TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACAT
		TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC
	BIIB-9-3654	CCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGG
1972	VL (нукл.	TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC
	кислота)	TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT
		TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA
1070	BIIB-9-3654	DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA
1973	VL (aa)	PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY
		YCQQYANFPYTFGGGTKVEIK
	ИСХ	одное антитело: BIIB-9-1336
		GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG
		GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT
		CGGGAGCTATGATATGAACTGGGTCCGCCAGGCTCCAGGGAAG
	BIIB-9-3753	GGGCTGGAGTGGGTCTCATCCATTAGTGACAGTGCAAGTTACA
1974	VH (нукл.	TAGCCTACGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAG
	кислота)	AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG
		AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTTT
		CGGGATACGCAGGGTACTACGGCATGGATGTATGGGGGCAAGG
		GACCACGGTCACCTCA
	BIIB-9-3753	EVQLVESGGGLVKPGGSLRLSCAASGFTFGSYDMNWVRQAPGK
1975		GLEWVSSISDSASYIAYADSVKGRFTISRDNAKNSLYLQMNSL
	VH (aa)	RAEDTAVYYCARDVSGYAGYYGMDVWGQGTTVTVSS
1976	BIIB-9-3753	GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG
L	1	I

ТВССААСТАТТТААТТВОТАТСАВСАВЛААССАВОВАЛАСС		VL (нукл.	TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACAT
TCCCATCAAGGTTCAGTGAAGTGGATCTGGGACAGATTTTAC TTTCACCATCAGCAGCCTGAAGATCTTGCAACATAT TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGGTDFFFTISSLQPEDIATY YCQQYANFPYTFGGTKVEIK GAGGTGCAGCTGTGAGACTCTCTGTGCAGCCTCGGAGAGAGGGGGGGG		кислота)	TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC
TTTCACCATCAGCAGCCTGAAGATATTGCAACATAT TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGBRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATCACCTT CGGGAGCTATGATATAGAACTGGGTCCGCCAGGCTCCAGGGAAG BIIB-9-3754 GGCCTGAGAGTCAGCTCATCCATTAGTAGTGGTGAGAGTTACA CHURKI. TATACTACGCAGAGTCAGTGAAGGGCCGATTCACCATCCCAG AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG AGAGCCAGGGACACGGCGGTTACTACTGCGCCAGAGATGTAG GAGGATACGCAGGAGACTCACTGTATCTGCACAATGAACAGCCTG AGAGCCAGGGTCACCGTCTCCTCA BIIB-9-3754 VH (aa) BIIB-9-3754 VL (aykii. KMCJOTa) TGCCAACATATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC CCTAAGCTCCAGTCACCATCCACTTTGCACAGGAAACCCAGGGAAAGCC CCTAAGCTCCAGATGACCATCACTTGCCAGGAAAACCAGGGAAAGCC CCTAAGCTCAGATGACCAACACTTCCCTTGCACCTG TCCCATCAAGGTTCAGCAGAAACCAGGGAAAGCC CCTAAGCTCCTGATCTACCATCTTGGAAACAGGGG GGACCAAGGTTCAGCATCACTTTGGAAACAGGGG TCCCACCAACACACTCACTTGCCCAGGCAGATTTTAC TTCCACCATCAAGGTTCAGCAGAAACCAGGGAAAGCC CCTAAGCTCCTGATCTACCATCACTTTGGAAACAGGGG GGACCAAGGTTCAGCAGCAACTTCCCTTAGCACTTTTAC TTCCACCATCAAGGTTCAGAGCATCTCCCTTAGCACTTTTGCAGAACATAT TACTGTCAGCAGTACACAACATCACTTCCCTTAGACTTTTTGCAGAACATAT TACTGTCAGCAGTTCAGCAGACACTTCCCTTAGACTTTTGCAGCAGAGACCAGAGTTCAGACATAT TACTGTCAGCAGTTCAGACTGCAACTTCCCTTAGACTTTTGCAGCAGAGACCAGAGTTCAGACATAT TACTGTCAGCAGTTCAGACTTCCCTTACACTTTTGCAGCAGAGACCAGAGTTCAGACATAT TACTGTCAGCAGTTCAGACTTCCCTTACACTTTTGCAGCAGAGACCAGAGTTCAGACATAT TACTGTCAGCAGTACAGCCAACTTCCCTTACACTTTTGCAGCAGAGACCAGAGTTCAGACATAT TACTGTCAGCAGTACAGCCAACTTCCCTTACACTTTTGCAGCAGAGACCAGAGTTCAGACATAT TACTGTCAGCAGAGCCTGCAGCCTGAAGATATTTCCACCATCAGCAGACACATAT TACTGTCAGCAGAGATCAGAGACCAGAGATATTTACACTTTTGCAGCAGAACCAGGGAAACCAGGGAACCAGAGATATTACACTTTTGCAGCAGAACCAGAGATATTACACTTTTTGCAGCAGAACCAGAGATCAGAGAACCAGGGAACCAGAGATATTACACTTTTACACTTTTTGCAGCAGAACCAGAGATATTACACTTTTTGCAGCAGAACCAGAGATATTACACTTTTACACTTTTTGCAGCAGAACCAGGAGATCAGAGAACCAGGGAACCAGAGATATTACACTTTTTACACTTTTTACACTTTTACACTTTTTACACTTTTACACTTTTACACTTTTACACTTTTACACTTTTACACTTTTACACTTTTACACTTTTACAC			CCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGG
TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK GAGGTCCAGGAGCTCTGGGAGGCCTGGTCAAGCCTG GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT CGGGAGCTATGATATGA			TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC
BIIB-9-3753 VL (aa) DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK GAGGTGCAGCTGGTGGAGCCTCTGGATCACCTT CGGGAGCTATGATATGA			TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT
1977 BIIB-9-3753 DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKFGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK GAGGTGCAGCTGTGGAGCCTGGGGGAGGCCTGGATCACCTT GGGGAGCTCTGGAGCCTCTGGATCACCTT GGGAGCTATGATATGAACTGGGTCCGCCAGGCTCCAGGAAG GGGCTGGAGTGAGAGTCACTTCCATTAGTAGTGGTGAGAGTTACA TATACTACCAGAGACTCACTGTATCTGCAAATGAACAGCCTG AGACCACGGCAGGACTCACCATCACCATCACCATCACCAT AGACCACGGCAGGACACGGCGGTGTACTACCATGAGAGACTCACGAGAGACTCACTGTATCTGCAAATGAACAGCCTG AGACCACGGTCACCGTCTCCTCA GAGCCGAGGACACGGCGGTGTACTACCATGAGAGAGAGACACCGGGGAGAAGACACCGGGGAGAAGACTCACTGTATCTGCAAATGAACAGCCTG GAGCACACGGTCACCGTCTCCTCA GAGCCAGGGTCACCGTCTCCTCA GACCACGGTCACCGTCTCCTCA GACCACGGTCACCGTCTCCTCA GACATCCAGGGAGAACCCAGGGGAGAACCAGGGGAAGACCAGGGAAACCAGGGAAACCAGGGAAACCAGGGAAACCAGGAAACCAGGGAAACCAGGAAACCAGGGAAACCAGGAAACCAGGGAAACCAGGAAACCAGGGAAAGCC CCTAAGCTCCAGTCACCATCCACCTCCCTGTCTGCATCTC TAGGAGAACAGAGGTCACCATCACTTGCCAGGCGAGACCAT TGCCAACTATTTAAATTGGTATCACAATTTGGAAACAGGGG TCCCATCAAGGTTCAGTGGAACCAGGAAACCAGGGAACCAGGCTGAAGATATTACCACATCACTTTACCAACTTTACCAACTATTACACACTATCACACTTTACCAACTATTACACACACTACACTTACACACTATCACACTTTACCAACACACACACACACACACACACACACACACACACAC			TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG
PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK GAGGTGCAGCTGGTGAGACTCTCTGGGGGAGGCCTGGTCAAGCCTG GGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT CCGGAGCTATGATATGA			GGACCAAGGTTGAGATCAAA
PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK GAGGTGCAGCTGGTGAGCTCTGGGGGAGGCCTGGTCAAGCCTG GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT CGGGAGCTATGATATGA		DIID 0 2752	DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA
PCQQYANFPYTFGGGTKVEIK GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT CGGGAGCTATGATATGA	1977		PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY
GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT CGGGAGCTATGATATGA		VL (dd)	YCQQYANFPYTFGGGTKVEIK
CGGGAGCTATGATATGAACTGGGTCCGCCAGGCTCCAGGGAAG BIIB-9-3754 VH (Hykn. TATACTACGCAGAGTCAGTGAAGGGCCGATTCACCATCTCCAG KMCJOTA) BIIB-9-3754 VH (Hykn. TATACTACGCAGAGTCAGTGAAGGGCCGATTCACCATCTCCAG AGACCCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG GAGATACGCAGGGTTTTATGGCATGGATGTATGGGGGCAAGG GACCACGGTCACCGTCTCCTCA BIIB-9-3754 VH (aa) BIIB-9-3754 VL (Hykn. KMCJOTA) BIIB-9-3754 VL (Hykn. KMCJOTA) BIIB-9-3754 VL (Hykn. TAGGAGACAGCTGAAGTGTACCATCTGCAGCGGAAACCAGGGGAAACCAGGGAAACCAGGGAAACCAGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGAAACCAGGGGACCTCAGCCTGAAGATTTTAC TTCCACTACAGCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT TACTGTCAGCAGTTCAGCAGACCTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA BIIB-9-3754 VL (aa) BIIB-9-3754 VL (AB) BIIB-9-375			GAGGTGCAGCTGGTGGAGTCTGGGGGGAGGCCTGGTCAAGCCTG
BIIB-9-3754 GGGCTGGAGTGGGTCTCATCCATTAGTAGTGGTGAGAGTTACA VH (нукл. TATACTACGCAGAGTCAGTGAAGGCCGATTCACCATCTCCAG кислота) AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG GAGGATACGCAGGGTTTTATGGCATGGATGTATGGGGCAAGG GACCACGGTCACCGTCTCCTCA BIIB-9-3754 VH (aa) EVQLVESGGGLVKPGGSLRLSCAASGFTFGSYDMNWVRQAPGK GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL RAEDTAVYYCARDVGGYAGFYGMDVWGQGTTVTVSS GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACAT TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC CCTAAGCTCCTGATCTACGATGCAACATATTTCCACATCAGCAGCAGAAACCAGGGAAACCAGGGGAAGCC CCTAAGCTCCTGATCTACGATGCAACATATTTCCCATCAGCAGCAGAAACCAGGGGAAGCC TCCCATCAAGGTTCAGTGGAAGTGGATCTGGAACAATAT TACTGTCAGCAGTACGCAGCCTGAAGATATTGCAACATAT TACTGTCAGCAGTTAGAACAACATAT TACTGTCAGCAGTTAGAACAACATAT TACTGTCAGCAGTTGAGATCAAA BIIB-9-3754 VL (aa) DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGGSGGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK BIIB-9-3756 GAGGTGCAGCTGGGGGAGGCCTGGTCAAGCCTG			GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT
1978 VH (Hykn. TATACTACGCAGAGTCAGTGAAGGGCCGATTCACCATCTCCAG			CGGGAGCTATGATATGAACTGGGTCCGCCAGGCTCCAGGGAAG
AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG GAGGATACGCAGGGTTTTATGGCATGGATGTATGGGGGCAAGG GACCACGGTCACCGTCTCCTCA BIIB-9-3754 VH (aa) BIIB-9-3754 VH (aa) BIIB-9-3754 VL (Hykn. KNCJOTA) BIIB-9-3754 VL (Hykn. KNCJOTA) BIIB-9-3754 VL (Hykn. KNCJOTA) BIIB-9-3754 VL (Hykn. KNCJOTA) BIIB-9-3754 VL (AGAGACACGTCTGATCTCCTGAACATTTGGAAACAGGGG GGACCAAGGTTCAGGAGATTTTACACTTTGGAAACATAT TACTGTCAGCAGTACCAGCCTGAACATTTGGAAACATAT TACTGTCAGCAGTACCAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA BIIB-9-3754 VL (AGAGACAGAGCCAGCTGAACACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA BIIB-9-3754 VL (AGAGACAAGCCAGCTGAGCCTGAACACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA BIIB-9-3754 VL (AGAGACACACTGCAGCCTGAGCCTGACCACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA BIIB-9-3754 VL (AGAGACACACTGCCAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA BIIB-9-3754 VL (AGAGACACACTGCCAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA BIIB-9-3754 VL (AGAGACACACTGCCAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA BIIB-9-3754 VL (AGAGACACACTGCAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA BIIB-9-3754 VL (AGAGACACACACACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK GAGGTGCAAGCTGGTGGAGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGAGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGCTCTGGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGCTCTGGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGCTCTGGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGCTCTGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGCTCTGGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGCTCTGGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGCTCTGGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGGTCAGGT		BIIB-9-3754	GGGCTGGAGTGGGTCTCATCCATTAGTAGTGGTGAGAGTTACA
AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG GAGGATACGCAGGGTTTTATGGCATGGATGTATGGGGGCAAGG GACCACGGTCACCGTCTCCTCA BIIB-9-3754 VH (aa) BIIB-9-3754 VL (Hykn. KNCJOTA) BIIB-9-3754 VL (aa) BIIB-9-3754 VL (aa) BIIB-9-3754 VL (Hykn. KNCJOTA) BIIB-9-3754 VL (AUCHORA) BIIB-9-3754 VL (AUCHORA) BIIB-9-3754 VL (Hykn. KNCJOTA) BIIB-9-3754 VL (AUCHORA) BIIB-9-3756 BIIB-9-3756 GAGGTGCAGCTGGTGGAGTCTGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTTGGTGGAGGCCTGGTCAAGCCTG BIIB-9-3756 GAGGTGCAGCTTGGTGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTTGGGTGAGGCCTGGTCAAGCCTG BIIB-9-3756 GAGGTGCAGCTTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGGTCTGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGGTCTGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGGTCTGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGGTCTGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGGTCTGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGGTCTGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGAGCTGGTGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGCTGCTGCTCCATCCCTTACACTTTTGCACTTTTAC TACTGTCAGCAGCTACACTTCCCTTACACTTTTTAC TACTGTCAGCAGCTACACTTCCCTTACACTTTTTAC TACTGTCAGCAGCTACACTTCCCTTACACTTTTAC TACTGTCAGCAGCTACACTCCACTC	1978	VH (нукл.	TATACTACGCAGAGTCAGTGAAGGGCCGATTCACCATCTCCAG
GAGGATACGCAGGGTTTTATGGCATGATGTATGGGGGCAAGG GACCACGGTCACCGTCTCCTCA BIIB-9-3754 VH (aa) BIIB-9-3754 VH (aa) BIIB-9-3754 VI (hykn. KNCJOTa) BIIB-9-3754 VL (aa) BIIB-9-3754 VL (aa) BIIB-9-3754 VL (hykn. KNCJOTa) BIIB-9-3754 VL (aa) BIIB-9-3756 GAGGTGCAGCTGGTGGAGTCTCCATCCTGGAACATTTACACTTTTACACATCACTTCAGCAGAAACCAGAGAACCAGAGAACCAGAGAACCAGAGAACCAGAGAACCAGAAACCAACTATTACACCATCAACATATTACACCATCAGCAGCCTGAAGATATTGCAACATATTACACCATCAGCAGCAGACTCCCCTTACACTTTTGGCGGAGAGACCAACTTCCCTTACACTTTTGGCGGAGAGACCAACTACCAACTACCAACACACAC		кислота)	AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG
GACCACGGTCACCGTCTCCTA BIIB-9-3754 VH (aa) BIIB-9-3754 VL (HYKI). RECACCACTACTTACACTTGCCAGGCAAACCAGGAAACCAGGGAAACCAGGGAAACCAGCAG			AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG
BIIB-9-3754 VH (aa) EVQLVESGGGLVKPGGSLRLSCAASGFTFGSYDMNWVRQAPGK GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL RAEDTAVYYCARDVGGYAGFYGMDVWGQGTTVTVSS GACATCCAGATGACCCAGTCTCCATCCTCCCTGCATCTG TAGGAGACAGAGTCACCATCACTTGCCAGGCGAACACT TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC CCTAAGCTCCTGATCTACGATGCATCCAATTTTGGAAACAGGGG TCCCATCAAGGTTCAGTGGAAGTTCTACGATGTTTTAC TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTTAC TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA 1981 BIIB-9-3754 VL (aa) DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK 1982 BIIB-9-3756 GAGGTGCAGCTGGTGGAGGTCTGGGGGGAGGCCTGGTCAAGCCTG			GAGGATACGCAGGGTTTTATGGCATGGATGTATGGGGGCAAGG
BIIB-9-3754 VH (aa) GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL RAEDTAVYYCARDVGGYAGFYGMDVWGQGTTVTVSS GACATCCAGATGACCCAGTCTCCATCCTCCTGTCTGCATCTG TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGCAAACCCAGGAAACCAGGGAAACCCAGGGAAACCCAGGGAAACCCAGGGAAACCCAGGGAAACCCAGGGAAACCAGGGGAAACCC CCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGG VL (Hykn. KNCJOTA) TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK BIIB-9-3756 GAGGTGCAGCTGGTGGAGGCTGGTGAAGCCTG GAGGTGCAGCTGGTGGAGGCCTGGTCAAGCCTG			GACCACGGTCACCGTCTCCA
PAREDTAVYYCARDVGGYAGFYGMDVWGQGTTVTVSS GACATCCAGATGACCCAGTCTCCATCCTCCTGCATCTG TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGAAACCAGGGAAAGCC CCTAAGCTCCTGATCTACGATGCATCAATTTGGAAACAGGGG VL (Hykn. KNCJOTA) TCCCATCAAGGTTCAGGAGAAGTCACCATCACTTGGGACAGATTTTAC TACTGTCAGCAGGAGAACCAGGGAAACCAGGGAAACCAGGGAAACCAGGGAAACCAGGGG TTTCACCATCAGGTTCAGTGGAAGTTCTACGATTTTAC TACTGTCAGCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK BIIB-9-3756 GAGGTGCAGCTGGTGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGGTCTGGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGTCTGGGGGGAGGCCTGGTCAAGCCTG		RTTR-9-3754	EVQLVESGGGLVKPGGSLRLSCAASGFTFGSYDMNWVRQAPGK
RAEDTAVYYCARDVGGYAGFYGMDVWGQGTTVTVSS GACATCCAGATGACCCAGTCTCCATCCTCCTGTCTGCATCTG TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACAT TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC CCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGG TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTAC TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA 1981 BIIB-9-3754 VL (aa) DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK BIIB-9-3756 GAGGTGCAGCTGGTGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGTCTGGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGTCTGGGGGGAGGCCTGGTCAAGCCTG	1979		GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL
ТАGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACAT ТGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC ССТААGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGG ТСССАТСААGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC ТТТСАССАТСАGCAGCCTGCAGCCTGAAGATATTGCAACATAT ТАСТGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA ВІІВ—9—3754 VL (аа) ВІІВ—9—3756 ВІІВ—9—3756 БАGGTGCAGCTGGTGGAGTCTGGGAGACCTG ВІІВ—9—3756 БАGGTGCAGCTGGTGGAGTCTGCGGAGGCCTGAAGCCTG ВІІВ—9—3756 БАGGTGCAGCTGGTGAGTCTGGGGGAGGCCTGGTCAAGCCTG ТОССАТСТВОТТОВОТОВНІКОВ ВІІВ—9—3756 ВІІВ—9—3756 БАGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG ТОССАТСТВОТТОВОТОВНІКОВ ВІІВ—9—3756 ВІІВ—9—3756 БАGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG ТОССАТСТВОТОВОТОВНІКОВ ВІІВ—9—3756 ВІІВ—9—3756 ВІІВ—9—3756 БАGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG		vii (da)	RAEDTAVYYCARDVGGYAGFYGMDVWGQGTTVTVSS
1980 UL (нукл. кислота) TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC CCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGG TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTAC TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT TACTGTCAGCAGGTTGAGATCAAA GGACCAAGGTTGAGATCAAA 1981 BIIB-9-3754 VL (aa) DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK 1982 BIIB-9-3756 GAGGTGCAGCTGGTGGAGGTCTGGGGGAGGCCTGGTCAAGCCTG			GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG
BIIB-9-3754 VL (HYKJ. KNCJOTA) CCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGG TCCCATCAAGGTTCAGTGGAAGTGGATCTTGGAAACAGGGG TTCCCATCAGGAGCCTGCAGCCTGAAGATATTTAC TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK BIIB-9-3756 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG			TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACAT
VL (нукл. кислота) VL (нукл. кислота) VL (нукл. кислота) VL (нукл. кислота) VL (нукл. тттсассатсабтабаабтатабаабтаттас тастатсабатсаб		VL (нукл.	TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC
ТСССАТСААGGTTCAGTGGAAGTTCTGGGACAGATTTTAC TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA 1981 BIIB-9-3754 VL (aa) DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK BIIB-9-3756 GAGGTGCAGCTGGTGGAGTCTGGGGGGAGGCCTGGTCAAGCCTG	1980		CCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGG
TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK BIIB-9-3756 GAGGTGCAGCTGGTGGAGTCTGGGGGGAGGCCTGGTCAAGCCTG GAGGTGCAGCTGGTGGAGTCTGGGGGGAGGCCTGGTCAAGCCTG			TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC
GGACCAAGGTTGAGATCAAA 1981 BIIB-9-3754 VL (aa) BIIB-9-3756 GAGGTGCAGCTGGTGGAGTCTGGGGGGAGGCCTGGTCAAGCCTG GGACCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG			TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT
BIIB-9-3754 VL (aa) BIIB-9-3756 BIIB-9-3756 DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK BIIB-9-3756 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG			TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG
BIIB-9-3754 VL (aa) PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK BIIB-9-3756 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG 1982			GGACCAAGGTTGAGATCAAA
PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK BIIB-9-3756 GAGGTGCAGCTGGTGAGTCTGGGGGAGGCCTGGTCAAGCCTG 1982		BIIB-9-3754	DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA
YCQQYANFPYTFGGGTKVEIK BIIB-9-3756 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG 1982	1981		PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY
1982		(33)	YCQQYANFPYTFGGGTKVEIK
	1982	BIIB-9-3756	GAGGTGCAGCTGGTGGAGTCTGGGGGGAGGCCTGGTCAAGCCTG
		VH (нукл.	GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT

GGGCTGGAGTGGGTCTCATCCATTAGTAGTGGTGAGAGTTACA		кислота)	CGGGAGCTATGATATGAACTGGGTCCGCCAGGCTCCAGGGAAG
AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG AGAGCCGAGGACACGGCGTGTACTACTGCGTCAGAGATGTAG GAGGATACGCAGGGTACTACTGCGTCAGAGATGTAG GAGCACACGGTCACCGTCTCCTCA BIIB-9-3756 VH (aa) BIIB-9-3756 VL (HYKN. KMCJOTa) BIIB-9-3756 VL (Aa) BIIB-9-3756 VL (Aa) BIIB-9-3756 VL (HYKN. KMCJOTa) BIIB-9-3756 VL (Aa) BIIB-9-3764 BIIB-9-3764 BIIB-9-3764 VH (HYKN. KMCJOTA) BIIB-9-3764 BIIB-9-3764 VH (HYKN. CAGGCCAAGGTCACTCACTTGCACGCCAGGCTGAGACTCCACTCCCTCC			 GGGCTGGAGTGGGTCTCATCCATTAGTAGTGGTGAGAGTTACA
AGAGCCGAGGACACGGCGGTGTACTACTGCGTCAGAGATGTAG GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGCAAGG GACCACGGTCACCGTCTCCTCA BIIB-9-3756 VH (aa) BIIB-9-3756 VH (aa) BIIB-9-3756 VL (HYMI) RACIOTA) BIIB-9-3756 VL (AA) BIIB-9-3756 VL (AA) BIIB-9-3756 VL (HYMI) RACIOTA) BIIB-9-3756 VL (AA) BIIB-9-3764 BIIB-9-3764 BIIB-9-3764 VH (HYMI) RACIOTA) BIIB-9-3764 VH (HYMI) RACIOTA) BIIB-9-3764 BIIB-9-3764 VH (HYMI) RACIOTA) BIIB-9-3764 VH (HYMI) RACIOTA) BIIB-9-3764 VH (HYMI) RACIOTA BIIB-9-3764 VH (HYMI) RACIOTACCAGGAGACCGAGGGGGGGGGGGGGGGGGGGGGGGGG			 TATACTACGCAGAGTCAGTGAAGGGCCGATTCACCATCTCCAG
GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGGCAAGG			AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG
BIIB-9-3756 VH (aa) BIIB-9-3756 VL (HYRII. RECARCTATTAAATTGGTATCAGCAGGAAACCAGGGAAAGCC CCTAAGGTTCAGGATCAGATCA			AGAGCCGAGGACACGGCGTGTACTACTGCGTCAGAGATGTAG
BIIB-9-3756 VH (aa) BIIB-9-3756 VH (aa) BIIB-9-3756 VH (aa) BIIB-9-3756 VH (aa) BIIB-9-3756 1984 BIIB-9-3756 VL (Hykn. KUCJOTa) BIIB-9-3756 VL (Hykn. KUCJOTa) BIIB-9-3756 VL (aa) BIIB-9-3764 BIIB-9-3764 BIIB-9-3764 BIIB-9-3764 BIIB-9-3764 VH (Hykn. KUCJOTa) BIIB-9-3764 BIIB-9-3764 BIIB-9-3764 VH (Hykn. KUCJOTa) BIIB-9-3764 VH (Aa) BIIB-9-3764 CLEWYSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS GACATCCAGATGACCCAGTCTCCATCCTCCTCTCCATCTCCATCTCCATCTCCATCTCCATCTCCATCTCCATCTCCATCTCCATC			GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGGCAAGG
BIIB-9-3756 VH (aa) GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL RAEDTAVYYCVRDVGGYAGYYGMDVWGQGTTVTVSS GACATCCAGATGACCCAGTCTCCATCTGCAGCTGATCTG TAGGAGAGACAGAGTCACCATCACTTGCCAGGCAGACCAT TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC CCTAAGCTCCTGATCTACGATGCATCTGGAACAGGGG VL (Hyki. KMCNOTA) TCCCATCAAGGTTCAGTGGAAGTGGATCTGGAACAGGGG GGACCAAGGTTGAGATCAGATTTGGAAACAGGGG TCCCATCAAGGTTCAGTGGAAGTTCAGATTTTGAAACATAT TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCAGGA GGACCAAGGTTGAGATCAAA BIIB-9-3756 VL (aa) DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGGTDFTFTISSLQPEDIATY YCQQYANFPYFFGGGTKVEIK GAGGTGCAGCTGTGAGACTCTCTGGATCCAGGAAG BIIB-9-3764 GGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT CGGGAGCTATGATATGA			GACCACGGTCACCGTCTCCA
Second Company of the company of t			EVQLVESGGGLVKPGGSLRLSCAASGFTFGSYDMNWVRQAPGK
RAEDTAVYYCVRDVGGYAGYYGMDVWGQGTTVTVSS GACATCCAGATGACCCAGTCTCCATCCTCCTGTCTGCATCTG TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGACACT TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC CCTAAGCTCCTGATCTACGATGCAACTTTGGAAACAGGGG VL (Hykn. KNCJOTA) TCCCATCAAGGTTCAGTGGAAGTGGATCTAGGAGAAACAGGGG TCCCATCAAGGTTCAGTGGAAGTGGATCTTGGAACACATAT TACTGTCAGCAGTACGCCAGCCTGAAGATATTGCAACATAT TACTGTCAGCAGTAGAGACCAGCCTGAAGATATTGCAACATAT TACTGTCAGCAGTTGAGATCAAA BIIB-9-3756 VL (aa) DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK GAGGTGCAGCTGGTGGAGCCTCTGGATCCACCTT CGGGAGCTATGATATGA	1983		 GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL
TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACAT TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC CCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACCAGGG VL (Hykn. KNCJOTA) TTCCACTCAGCAGTCAGCTGCAGCCTGAAGATATTGCAACATAT TACTGTCAGCAGTCAGCCTGCAGCCTGAAGATATTGCAACATAT TACTGTCAGCAGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK GAGGTGCAGCTGGAGCTCTGGGGGAGGCCTGGAGACCTG GGGGGTCCCTGAGACTCTCCTTTGGCCGAG BIIB-9-3764 VH (Hykn. TATACTACGCAGACTCTCCTGTGCAGCCTCTGGATTCACCTT CGGGAGCTATGATATGA		VH (aa)	RAEDTAVYYCVRDVGGYAGYYGMDVWGQGTTVTVSS
TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC CCTAAGCTCCTGATCTACGATGCATCAGTGAAACCAGGGGAAAGCC CCTAAGCTCCTGATCTACGATGCATCTAGGAAACCAGGGAAACCAGGGG VL (HYKI. KMCJOTA) TCCCATCAAGGTTCAGTGGAAGTGGATCTGGAACACATAT TTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT TACTGTCAGCAGTACGCAAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT CGGGAGCTATGATATGA			GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG
BIIB-9-3756 VL (нукл. кислота) BIIB-9-3756 VL (нукл. кислота) BIIB-9-3756 VL (нукл. татастаса сарт сарт сарт сарт сарт сарт			TAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACAT
VL (Hykn. Kuchota) BIIB-9-3756 VL (Hykn. Tatactacgatgatctagatgatctagatgatctagatgatctagatgatctagatgatattagatgatgatctagatgatattagatgatattagatgatgatattagatgat			TGCCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC
TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT TACTGTCAGCAGTTGAGATCAAA BIIB-9-3756 VL (aa) DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK GAGGTGCAGCTTGTGAGACTCTGGGTCAAGCCTG GGGAGCCTGGAGACTCTCCTGTGCAGCCTGTGAAGCCTG GGGAGCCTATGATATGA	1004		CCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGG
TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK GAGGTGCAGCTGGTGGAGCCTCTGGATCACCTT CGGGAGCTATGATATGA	1984	(TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC
GGACCAAGGTTGAGATCAAA BIIB-9-3756 VL (aa) DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK GAGGTGCAGCTGGTGGAGTCTGGGGGGAGGCCTGGTCAAGCCTG GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT CGGGAGCTATGATATGA		кислота)	TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT
DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK GAGGTGCAGCTGGTGGAGCCTCTGGATCACCTT CGGGAGCTATGATATGA			TACTGTCAGCAGTACGCCAACTTCCCTTACACTTTTGGCGGAG
BIIB-9-3756 VL (aa) PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK GAGGTGCAGCTGGTGGAGTCTGGGGGGAGGCCTGGTCAAGCCTG GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT CGGGAGCTATGATATGA			GGACCAAGGTTGAGATCAAA
PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYANFPYTFGGGTKVEIK GAGGTGCAGCTGGTGGAGTCTGGGGGGAGGCCTGGTCAAGCCTG GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT CGGGAGCTATGATATGA		DIID 0 2757	DIQMTQSPSSLSASVGDRVTITCQASQDIANYLNWYQQKPGKA
YCQQYANFPYTFGGGTKVEIK GAGGTGCAGCTGGTGAGACTCTGGGGGAGGCCTGGTCAAGCCTG GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT CGGGAGCTATGATATGA	1985		PKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATY
GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT CGGGAGCTATGATATGA		VL (dd)	YCQQYANFPYTFGGGTKVEIK
CGGGAGCTATGATATGAACTGGGTCCGCCAGGCTCCAGGGAAG BIIB-9-3764 GGGCTGGAGTGGGTCTCATCCATTAGTAGTGGTGAGAGTTACA VH (нукл. ТАТАСТАСССАБАТСАСТБТАТСТБСАААТБААСАССТБ АБАССАВ АБАССАВ ВЕТВ-9-3764 VH (аа) BIIB-9-3764 VH (аа) BIIB-9-3764 VH (аа) BIIB-9-3764 CGGGAGCTATGATATGAACTGCTCCATCTCCAG AGACCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG AGAGCCGAGGGTACTACTGCGCCAGAGATGTAG GAGGATACGCAGGGTACTACTGCGCCAGAGATGTAG GAGGATACGCAGGGTACTACTGCATGTATTGGGGCCAGGG AACAACTGTCACCGTCTCCTCA EVQLVESGGGLVKPGGSLRLSCAASGFTFGSYDMNWVRQAPGK GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS BIIB-9-3764 GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG			GAGGTGCAGCTGGTGGAGTCTGGGGGGAGGCCTGGTCAAGCCTG
BIIB-9-3764GGGCTGGAGTGGGTCTCATCCATTAGTAGTGGTGAGAGTTACA1986VH (нукл.TATACTACGCAGAGTCAGTGAAGGGCCGATTCACCATCTCCAG 			GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT
1986VH(нукл.ТАТАСТАСССАGAGTCAGTGAAGGGCCGATTCACCATCTCCAG AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGCCAGGG AACAACTGTCACCGTCTCCTCA1987BIIB-9-3764 VH (aa)EVQLVESGGGLVKPGGSLRLSCAASGFTFGSYDMNWVRQAPGK GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL 			CGGGAGCTATGATATGAACTGGGTCCGCCAGGCTCCAGGGAAG
кислота)AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGCCAGGG AACAACTGTCACCGTCTCCTCA1987EVQLVESGGGLVKPGGSLRLSCAASGFTFGSYDMNWVRQAPGK GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS1988BIIB-9-3764GACATCCAGATGACCCAGTCTCCATCCTCCTGTCTGCATCTG		BIIB-9-3764	GGGCTGGAGTGGGTCTCATCCATTAGTAGTGGTGAGAGTTACA
AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGCCAGGG AACAACTGTCACCGTCTCCTCA BIIB-9-3764 VH (aa) BIIB-9-3764 VH (ab) BIIB-9-3764 GACATCCAGATGACCCAGTCTCCATCCTCCTCTCTCTCTC	1986	VH (нукл.	TATACTACGCAGAGTCAGTGAAGGGCCGATTCACCATCTCCAG
GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGCCAGGG AACAACTGTCACCGTCTCCTCA BIIB-9-3764 VH (aa) BIIB-9-3764 VH (ab) BIIB-9-3764 CACATCCAGATGACCCAGTCTCCATCCTCCTGCATCTG BIIB-9-3764 CACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG BIIB-9-3764 CACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG		кислота)	AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG
AACAACTGTCACCGTCTCCTCA BIIB-9-3764 VH (aa) BIIB-9-3764 VH (ab) BIIB-9-3764 CACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG BIIB-9-3764 CACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG CACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCATCTGCATCTGCATCTGCATCTGCATCTGCATCTGCATCTGCATCATCTGCATCTGCATCTGCATCATCTGCATCATCTGCATCATCATCTGCATCTGCATCTGCATCTGCATCATCATCATCATCATCATCATCATCATCATCATCATC			AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG
BIIB-9-3764 VH (aa) BIIB-9-3764 VH (ab) BIIB-9-3764 CACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG BIIB-9-3764 CACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG CACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGCATCTG CACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG CACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG CACATCCAGATGACCCAGTCTCCATCCTCCCTGCATCTGCATCTG CACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG CACATCCAGATGACCCAGTCTCCATCCTCCCTGCCTGCATCTGCATCTG CACATCCAGATGACCCAGTCTCCATCCTCCCTGCCTGCATCATCTGCATCATCTGCATCATCTGCATCTGCATCATCTGCATCATCATCATCATCATCATCATCATCATCATCATCATC			GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGCCAGGG
BIIB-9-3764 VH (aa) GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS BIIB-9-3764 GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG 1988			AACAACTGTCACCGTCTCCTCA
1987 VH (aa) GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS BIIB-9-3764 GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG 1988		RTTR-9-376/	EVQLVESGGGLVKPGGSLRLSCAASGFTFGSYDMNWVRQAPGK
RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS BIIB-9-3764 GACATCCAGATGACCCAGTCTCCATCCTCCTGTCTGCATCTG 1988	1987		GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL
1988		vii (aa)	RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS
	1988	BIIB-9-3764	GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG
	1 700	VL (нукл.	TAGGAGACAGAGTCACCATCACTTGCGGAGCGAATCAGTACAT

CCTAAGCTCCTGATCTACGATGGGCCAATTTGCACAGGGG TCCCATCAAGGTTCAGTGGACCAATTTGCACACAGGGG TCCCATCAAGGTTCAGTGGACAGTTGTGCAACATTTAC TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATATT TACTGTCAGCAGTAGGCCAGGTTCCCTTACACTTTCGGCGGAG GGACCAAGGTTGAGATCAAA 1989 BIIB-9-3764 VL (aa)		кислота)	TAGCGACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC
TTTCACCATCAGCAGCTGCAGCCTGAAGATATTGCAACATAT			CCTAAGCTCCTGATCTACGATGCAGCCAATTTGCACACAGGGG
TACTGTCAGCAGTACGCCAGGTTCCCTTACACTTTCGGCGGAG GGACCAAGGTTGAGATCAAA			TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC
BIIB-9-3764			TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT
DIQMTQSPSSLSASVGDRVTITCGANQYISDYLNWYQQKPGKA PKLLIYDAANLHTGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYARFPYTFGGGTKVEIK GAGGTGCAGCTTGTGGAGGCCTCGGGTCAAGCCTG GGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT CGGGAGCTATGATATAGAACTGGGTCCGCCAGGCTCCAGGAAC RWCJOTA) PHON (HyKJ). TATACTACGCAGAGTCCACTGATAGACTAGCCAGGCTAGAGACCCAGCCTCAGGAACACCCACAGCCTCAGAGACTCACCAG AGACCAGCAGAGACTCACTGATACTAGAATGAACAGCCTG AGAGCCAGGGAGACTCACTGTATCTGCAAATGAACAGCCTG AGAGCCAGGGAGACTCACTGTATCTGCAAATGAACAGCCTG AGAGCCAGGGAGACTCACTGTATCTGCAAATGAACAGCCTG AGAGCCAGGGGTACTACACGTCTCCTCA BIIB-9-3766 VH (aa) BIIB-9-3766 VL (HyKJ). RWCJOTA) BIIB-9-3766 VL (HyKJ). TCCCATCAGGTCACCATCCATTACGAGAAACCAGGGAAACCC CCTAAGCTCCTCAGCAGATTCACCAGCAGAAACCAGGGAAACCACT TTCCACCATCAGGTGACCATCCACTTGCGACAGAAACCAGGGAAACCA TTCCCATCAAGGTTCACCATCCTCCAGCAGAAACCAGGGAAACCA TTCCCATCAAGGTTCACTACTTGCAACAGAAACCAGGGAAACCA TTCCCATCAAGGTTCACTACTTGCAACAGAAACCAGGGAAACCA TTCCCATCAAGGTTCACTACTTGCAACAGAAACCAGGGAACCAT TTCCCATCAAGGTTCAGTAGCAGAAACCAGGGACAACT TTCCCATCAAGGTTCAGTAGCAGAAACCAGGAAACCAGGAA TTCCCATCAAGGTTCAGTTGCAACATATTTACACTTTCGGCGGAG GGACCAAGGTTCAGTACCACTCCCTTACACTTTCGGCGGAG GGACCAAGGTTCAGTACCACTCCTTACACTTTCGGCGGAG GGACCAAGGTTCAGTACCACTCCTTACACTTTCGGCGGAG GGACCAAGGTTCAGTTCA			TACTGTCAGCAGTACGCCAGGTTCCCTTACACTTTCGGCGGAG
PKLLIYDAANLHTGVPSRFSGSSGSTDFTFTISSLQPEDIATY YCQQYARFPYTFGGTKVEIK GAGGTGCAGCTGGTGAGACTCTCCTGTGCAGCCTGGTCAAGCCTG GGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT CGGGAGCTATGATATGA			GGACCAAGGTTGAGATCAAA
PKLLIYDAANLHTGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCQQYARFPYTFGGTKVEIK GAGGTGCAGCTGGTGAGACTCTCGTGCAGCCTGGGGAAG BIIB-9-3766 BIIB-9-3766 CGGGGTCCTGAGACTCTCTTAGTAGTAGTGGTGAGAGTTACA TATACTACGCAGAGTCACTTACTATAGTAGTGGTGAGACTCTCCAG AGACACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG AGACCAGAGGAGACTCACTGTATCTGCAAATGAACAGCCTG AGACCAGAGGACACGGCGGTGTACTACTACTACAATGAACAGCCTG AGACCAGGGGAGACACGGCGGTGTACTACTGCACAAGAACGCCAGGGAAG AACAACTGTCACCGTCTCCTCA BIIB-9-3766 VH (aa) BIIB-9-3766 VL (HyKII. KUCIIOTA) BIIB-9-3766 VL (AA) BIIB-9-376		DITD_0_376/	DIQMTQSPSSLSASVGDRVTITCGANQYISDYLNWYQQKPGKA
PCQQYARFPYTFGGGTKVEIK GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT CGGGAGCTATGATATGA	1989		PKLLIYDAANLHTGVPSRFSGSGSGTDFTFTISSLQPEDIATY
BIIB-9-3766 GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT		VL (da)	YCQQYARFPYTFGGGTKVEIK
CGGGAGCTATGATATGAACTGGGTCCGCCAGGCTCCAGGGAAG BIIB-9-3766 GGGCTGGAGTGGGTCTCATCATTAGTAGTGTGAGAGTTACA TATACTACGCAGAGTCAGTGAAGGGCCGATTCACCATCTCCAG AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG GAGGCCAGGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG GAGGCCAGGGTACTACCGGCATGGATGTATGGGGCCAGGG AACAACTGTCACCGTCTCCTCA BIIB-9-3766 VH (aa) BIIB-9-3766 VL (Hykn. KNCNOTa) BIIB-9-3766 VL (Hykn. TAGCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC CCTAAGCTCCTGATCTCCATCCTCCTGCATCTTGCAACATTTTCACTCTCCTGAACATTTTCACTCCTGAACATTTTCACTCCTGAACATTTTCACTCCTGAACATTTTCACTCCTGAACATTTTCACTCCTGAACATTTTCACTCCTGAACATTTTCACTCCTGAACATTTTCACTCCATCACACTTCGGGAGGGA			GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG
BIIB-9-3766 GGGCTGGAGTGGGTCTCATCCATTAGTAGTGGTGAGAGTTACA VH			GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT
1990 VH (нукл. кислота) ТАТАСТАСССАБОДАБОТСАСТВОТАВОДЕСКАЯ ВОВОТЕ ВЕТВОТОТА В ВІІВ—9—3766 VL (нукл. кислота) ТАТАСТАССДОТСТВОТОТОТОТОТОТОТОТОТОТОТОТОТОТОТОТОТО			CGGGAGCTATGATATGAACTGGGTCCGCCAGGCTCCAGGGAAG
RUCJOTA) AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG GAGGCAGGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGCCAGGG AACAACTGTCACCGTCTCCTCA EVQLVESGGGLVKPGGSLRLSCAASGFTFGSYDMNWVRQAPGK GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS GACATCCAGATGACCCAGTCTCCATCCTCCTGTCTGCATCTG TAGGAGCAGAGACCCAGTCACCATCCATCCTCCTGTCTGCATCTG TAGCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC CCTAAGCTCCTGATCTACGATGCATCCAATTTGCAATACGGGG VL (нукл. RUCJOTA) TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTTGCAACATAT TACTGTAGTCAGTACGCCAACTTCCCTTACACTTTCGGCGGAG GGACCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCEASEDISNYLNWYQQKPGKA PKLLIYDASNLQYGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCSQYANFPYTFGGGTKVEIK VCXOДНОЕ AHTUTEJO: BIIB-9-619 BIIB-9-3707 CAGGTGCAGCTGGTGCAGCTGAGGTGAGGTGAGGAAGCCTG		BIIB-9-3766	GGGCTGGAGTGGGTCTCATCCATTAGTAGTGGTGAGAGTTACA
AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG GAGGATACGCAGGGTACTACGGCATGATGTATGGGGCCAGGG AACAACTGTCACCGTCTCCTCA BIIB-9-3766 VH (aa) BIIB-9-3766 VL (HYKNI. KNCJOTA) BIIB-9-3766 VL (AB) CAGGTGCAGCTGCAGCTGCAGCTGAAGATATTGCAACATATTTACACTTTCCGGCGGAG GGACCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCEASEDISNYLNWYQQKPGKA PKLLIYDASNLQYGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCSQYANFPYTFGGGTKVEIK MCXOДНОЕ AHTMTEJO: BIIB-9-619 BIIB-9-3707 CAGGTGCAGCTGGTGCAGCTGGAGGTGAGGTGAGGAAGCCTG	1990	VH (нукл.	TATACTACGCAGAGTCAGTGAAGGGCCGATTCACCATCTCCAG
GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGCCAGGG AACAACTGTCACCGTCTCCTCA BIIB-9-3766 VH (aa) BIIB-9-3766 VH (aa) GAGATCCAGGTVKPGGSLRLSCAASGFTFGSYDMNWVRQAPGK GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG TAGGAGACAGAGTCACCATCACTTGCGAAGCGAGGAAACCAGGGAAAGCC CCTAAGCTCCTGATCTACGATGCATCAATTTGCAATACGGGG VL (HYKI). KNCJOTA) TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT TACTGTAGTCAGTACGCCAACTTCCCTTACACTTTCGGCGGAG GGACCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCEASEDISNYLNWYQQKPGKA PKLLIYDASNLQYGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCSQYANFPYTFGGGTKVEIK NCXORHOE AHTUTEJO: BIIB-9-619 BIIB-9-3707 CAGGTGCAGCTGGTGCAGCTGAGGTGAGGTAAGGCATGCTG		кислота)	AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG
AACAACTGTCACCGTCTCCTCA BIIB-9-3766 VH (aa) BIIB-9-3766 VH (aa) GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS GACATCCAGATGACCCAGTCTCCATCCTCCCTGCATCTG TAGGAGCAGAGCCAGTCTCCATCCTCCCTGCATCTG TAGCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC CCTAAGCTCCTGATCTACGATGCATCCAATTTGCAATACGGGG VL (Hykn. KNCNOTA) TCCCATCAAGGTTCAGTGGAAGTGGATCTGGAACATATT TACTGTAGTCAGTACGAGCCTGCAGCCTGAAGATATTGCAACATAT TACTGTAGTCAGTACGCCAACTTCCCTTACACTTTCGCGGAG GGACCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCEASEDISNYLNWYQQKPGKA PKLLIYDASNLQYGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCSQYANFPYTFGGGTKVEIK VCXOQHOE AHTUTEJO: BIIB-9-619 BIIB-9-3707 CAGGTGCAGCTGGTGCAGCTGAGGTGAGGTGAGGAAGCCTG			AGAGCCGAGGACACGGCGGTGTACTACTGCGCCAGAGATGTAG
BIIB-9-3766 VH (aa) EVQLVESGGGLVKPGGSLRLSCAASGFTFGSYDMNWVRQAPGK GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS GACATCCAGATGACCCAGTCTCCATCCTCCCTGCATCTG TAGGAGACAGAGTCACCATCACTTGCGAAGCCAGTCTCCATCTG TAGCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC CCTAAGCTCCTGATCTACGATGCATCTACCAATTTGCAATACGGGG TCCCATCAAGGTTCAGTGGAAGTGCATCTAGCAGTTTAC TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT TACTGTAGTCAGTACGCCAACTTCCCTTACACTTTCGGCGGAG GGACCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCEASEDISNYLNWYQQKPGKA PKLLIYDASNLQYGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCSQYANFPYTFGGGTKVEIK MCXOLHOE AHTUTEJO: BIIB-9-619 BIIB-9-3707 CAGGTGCAGCTGGAGCTGAGGCTGAGGTGAGGAAGCCTG			GAGGATACGCAGGGTACTACGGCATGGATGTATGGGGCCAGGG
BIIB-9-3766 VH (aa) GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS GACATCCAGATGACCCAGTCTCCATCCTCCTGCATCTG TAGGAGACAGAGTCACCATCACTTGCGAAGCGAGTGAAGACAT TAGCAACTATTTAAATTGGTATCAGCAGAAAACCAGGGAAAGCC CCTAAGCTCCTGATCTACGATGCACCAATTTGCAATACGGGG VL (Hykn. KNCJOTA) TTTCACCATCAGGTTCAGTGGAAGTGATCTGGGACAGATTTTAC TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT TACTGTAGTCAGTACGCCAACTTCCCTTACACTTTCGGCGGAG GGACCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCEASEDISNYLNWYQQKPGKA PKLLIYDASNLQYGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCSQYANFPYTFGGGTKVEIK NCXOJHOE AHTUTEJO: BIIB-9-619 BIIB-9-3707 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAGGAAGCCTG			AACAACTGTCACCGTCTCCTCA
UH (aa) GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS GACATCCAGATGACCCAGTCTCCATCCTCCTGCTCGCATCTG TAGGAGACAGAGTCACCATCACTTGCGAAGCGAGAAACCAGGGAAAGCC CCTAAGCTCCTGATCTACGATGCACCAATTTGCAATACGGGG VL (нукл. RИСЛОТа) TCCCATCAAGGTTCAGTGGAAGTGATCTACGATGTACCAATTTTAC TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTTCAACACTTTCC TACTGTAGTCAGTACGCCAACTTCCCTTACACTTTCGGCGGAG GGACCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCEASEDISNYLNWYQQKPGKA PKLLIYDASNLQYGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCSQYANFPYTFGGGTKVEIK ИСХОДНОЕ АНТИТЕЛО: BIIB-9-619 BIIB-9-3707 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAGGAAGCCTG		BITB-9-3766	EVQLVESGGGLVKPGGSLRLSCAASGFTFGSYDMNWVRQAPGK
RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS GACATCCAGATGACCCAGTCTCCATCCTCCTGCATCTG TAGGAGACAGAGTCACCATCACTTGCGAAGCGAGTGAAGACAT TAGCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC CCTAAGCTCCTGATCTACGATGCATCCCAATTTGCAATACGGGG VL (Hykn. KMCJOTA) TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTTGCAACATAT TACTGTAGTCAGTACGCCAACTTCCCTTACACTTTCGGCGGAG GGACCAAGGTTGAGATCAAA DIQMTQSPSSLSASVGDRVTITCEASEDISNYLNWYQQKPGKA PKLLIYDASNLQYGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCSQYANFPYTFGGGTKVEIK MCXOGHOE AHTUTEJO: BIIB-9-619 BIIB-9-3707 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAGGAAGCCTG	1991		GLEWVSSISSGESYIYYAESVKGRFTISRDNAKNSLYLQMNSL
1992 Наукла на предости на пр		VII (dd)	RAEDTAVYYCARDVGGYAGYYGMDVWGQGTTVTVSS
1992 Наукл. Нау			GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTG
BIIB-9-3766 VL (нукл. кислота) ВІІВ-9-3766 VL (нукл. тсссатсанд таста да			TAGGAGACAGAGTCACCATCACTTGCGAAGCGAGTGAAGACAT
VL (нукл. кислота) VL (нукл. тсссатсаадстсстдатстасдатдсаатстаддаадтттас кислота) ТТТСАССАТСАДСАДССТДАДССТДАДССТДАДСТТДАДСТТТТСДАДСАТТТТДАДСТТТТДАДСТТТТДАДСТТТТДДАДСТТТДДАДСТТТДДАДСТТТДДАДСТТТДДАДСТТТДДАДСТТТДДАДСТТТДДАДСТТТДДАДСТТТТТТТТ		BITE-9-3766	TAGCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCC
тсссатсаадаттсадтадатстададатстададатттас тттсассатсадсадсстададататтададататт тастадатададатададададададададададададад	1002		CCTAAGCTCCTGATCTACGATGCATCCAATTTGCAATACGGGG
TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT TACTGTAGTCAGTACGCCAACTTCCCTTACACTTTCGGCGGAG GGACCAAGGTTGAGATCAAA 1993 BIIB-9-3766 VL (aa) VCSQYANFPYTFGGGTKVEIK ИСХОДНОЕ АНТИТЕЛО: BIIB-9-619 BIIB-9-3707 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAGGAAGCCTG 1994	1992	_	TCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTAC
GGACCAAGGTTGAGATCAAA 1993 BIIB-9-3766 VL (аа) DIQMTQSPSSLSASVGDRVTITCEASEDISNYLNWYQQKPGKA PKLLIYDASNLQYGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCSQYANFPYTFGGGTKVEIK ИСХОДНОЕ АНТИТЕЛО: BIIB-9-619 BIIB-9-3707 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAGGAAGCCTG		RICHOTA	TTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATAT
BIIB-9-3766 VL (aa) DIQMTQSPSSLSASVGDRVTITCEASEDISNYLNWYQQKPGKA PKLLIYDASNLQYGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCSQYANFPYTFGGGTKVEIK ИСХОДНОЕ АНТИТЕЛО: BIIB-9-619 BIIB-9-3707 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAGGAAGCCTG			TACTGTAGTCAGTACGCCAACTTCCCTTACACTTTCGGCGGAG
BIIB-9-3766 VL (aa) PKLLIYDASNLQYGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCSQYANFPYTFGGGTKVEIK ИСХОДНОЕ АНТИТЕЛО: BIIB-9-619 BIIB-9-3707 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTAGGAAGCCTG 1994			GGACCAAGGTTGAGATCAAA
PKLLIYDASNLQYGVPSRFSGSGSGTDFTFTISSLQPEDIATY YCSQYANFPYTFGGGTKVEIK Исходное антитело: BIIB-9-619 ВIIB-9-3707 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAGGAAGCCTG 1994		BITB_0_2766	DIQMTQSPSSLSASVGDRVTITCEASEDISNYLNWYQQKPGKA
YCSQYANFPYTFGGGTKVEIK Исходное антитело: BIIB-9-619 BIIB-9-3707 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAGGAAGCCTG	1993		PKLLIYDASNLQYGVPSRFSGSGSGTDFTFTISSLQPEDIATY
BIIB-9-3707 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAGGAAGCCTG		VL (aa)	YCSQYANFPYTFGGGTKVEIK
1994		ИС	ходное антитело: BIIB-9-619
	1994	BIIB-9-3707	CAGGTGCAGCTGGGCAGTCTGGGGCTGAGGTGAGGAAGCCTG
		VH (нукл.	GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT

GGGCTTGAGTGGATAGCCTAGTGGTGGTAGCA		кислота)	CACCAGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAA
GGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTG AGATCTGAGGACACGCGGTGTACTACTGCGCCAGAGACGGAC CAAGAGAGTCGGACTACTACTGCGCCAGAGACGGAC CAAGAGAGTCGGACTACTACATGGACCTATGGGCCAAGAGCGAC CAAGAGAGTCGGACTACTACATGGACGTATGGGGCAAAGGGAC CACGGTCACCGTCTCCTCA BIIB-9-3707 VH (aa) BIIB-9-3707 VL (HYKII NUCLIOTA) BIIB-9-3707 VL (AB) BIIB-9-3709 BIIB-9-3709 BIIB-9-3709 VH (HYKII CAAGCTACGTAGGAGCTTGGGACAGCTTGGAAGAGCTTGGACAGAGCTTGAGCAGCTTGGAGAGAGA			GGGCTTGAGTGGATGGGAATAATCAACCCTAGTGGTGGTAGCA
AGATCTGAGGACAGGGGGTGTACTACTGGGCCAGAGACGGAC CAAGAGAGTCGACTACTACATGGACGTATGGGCCAAGAGAGGAC CAAGAGAGTCGACTACTACATGGACGTATGGGCCAAGAGAGGAC CAAGAGAGTCGACTACTACATGGACGTATGGGCCAAGAGGAC CACGGTCACCGTCTCCTCA OVOLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ GLEWMGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRESDYYMDVWGKGTTVTVSS GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC CAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGT CCCAGGCTACTATGCCTGGTACCAACAGAAACCTGGCCAGGCT CCCAGGCTCCTCATCTATGATGCATCCAACAGGACCACCTGGCA TCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCAC TCCCAGCCAGGGTCAGAGATTTTGCAGTTTAT TACTGTCAGCAGAGAGACAACTGGCCTTTCACTTTTGCGGGAG GGACCAAGGTTGAGATCAAA TACTGTCAGCAGAGAGACAACTGGCCTTTCACTTTTGCGGGAG GGACCAAGGTTGAGATCAAA FILIPDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVY YCQQRDNWPFTFGGGTKVEIK CAGGTGAGCTGGTGCAGTGGGCTGAGGAGACCTT CACCAGCTACTATATGCACTGGGTGGGAGAGGCCCTGGACAA GGGCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT CACCAGCTACTATATGCACTGGGTGCGAGAGCCCCTGGACAA GGGCTGAGTGGGTGGGAATAATCAACCCTAGTGGTGGTAGCA GGACACGTCCACGAGACAGGTCTCACATGACCAG GGACCACGTCACCAGAGAGTTCCAGGGCAGAGTCACCATGACCAG GGACACGTCCACGAGACAGGTCTCACATGGACCAG GAATCTGAGGACACAGTCTCACATGGACCAGGAC CAAGAGATTTGACACTTCACATGGACGACAGGAC CAAGACTTCTACATGGACGATACACATGGACCAGACACTCTCACAGGACACAGTCTCACATGGACGACACAGACTCTCACAGGACACAGTCTCACAGGACACAGACTCTCACAGGACACAGACTCTCACAGGACACAGACTCTCACAGGACACAGACTCTCACAGGACACAGTCTCACAGGACACAGACTCTCACAGGACACAGACTCTCACAGGACACAGACTCTCACAGGACACAGACTCTCACAGGACACAGACTCTCACAGGACACAGTCTCACAGGACACAGACTCTCACAGGACACAGTCTCACAGGACACAGTCTCACAGGACACAGTCTCACAGGACACAGACTCTCACAGGACACAGTCTCACAGGACACAGTCTCACAGGACACAGTCTCACAGGACACAGTCTCACAGGACACAGTCTCACAGCACACAGAACTCTCACAGGACACAGTCTCACAGCACACAGAACTCTCACAGCACCCTGTCTTTTGTCTC CACAGCTACCAGCACACAGAACTCTCCAGCCACCCTGTCTTTTGTCTC CACAGCTACCAGTCTCCAGCCACCCTGTCTTTTGTCTC CACAGCTACCAGTCTCCAGCCACCCTGTCTTTTGTCTC CACAGCTACCAGCACCCTGTCTTTTGTCTC CACAGCTACCAGCACCCTGTCTTTTGTCTC CACAGCTACCAGCACCCTGTCTTTTGTCTC CACAGCTACCAGCACCCTGTCTTTTGTCTC CACAGCTACCACCCTGTCTTTTGTCTC CA			CAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAG
CAAGAGAGTCGGACTACTACATGGACGTATGGGGCAAAGGGAC CACGGTCACCGTCTCCTCA PRIIB-9-3707 VH (aa) BIIB-9-3707 VH (aa) BIIB-9-3707 VH (aa) BIIB-9-3707 VH (aa) BIIB-9-3707 VL (HYRII. RMCJOTA) BIIB-9-3707 VL (HYRII. RMCJOTA) BIIB-9-3707 VL (aa) BIIB-9-3709 BIIB-9-3709 VH (HYRII. CAAGCTACGTACGTGGGGCTGGGACACCTGGCAACGAGGGCTTGGGACAGGGCTTGGGCAACGAGGGCTTGGGACAGGGAGAGACTCTGCACAGGGCAGGAGAGAGA			GGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTG
1995 BIIB-9-3707 VH (aa) QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ GLEWMGIINPSGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRESDYYMDVWGKGTTVTVSS GAAATTGTGTTGACACAGCTCCCAGCCACCTGTCTTTGTCTC CAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGCCAGGCT TAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCT TCCCAGGCTACTATGATGCATCCAACAGAAACCTGGCCAGGCA TCCCAGGCTACTATGATGCATCCAACAGAAACCTTGGCAGGCA			AGATCTGAGGACACGGCGGTGTACTACTGCGCCAGAGACGGAC
1995 BIIB-9-3707 VH (aa) POULVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ GLEWMGIINPSGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRESDYYMDVWGKGTTVTVSS GAAATTGTGTTGACACAGTCTCCAGCCACCTGTCTTTGTCTC CAGGGGGAAAGAGCCACCCTCTCTCTGCAGGGCCAGGCT TAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCT CCCAGGCTCCTCATCTATGATGCATCCAACAGGACACTGCCA TCCCAGCCAGGTTCAGTGGCAGGCCTGGCAAGAGACTTCAC TCTCACCATCAGCAGCCTTGAGGCTGGAAGATTTTGCAGGTTAT TACTGTCAGCAGGAGAGACACTGGCCTTTCACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA BIIB-9-3707 VL (aa) PRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVY YCQQRDNWPFTFGGGTKVEIK CAGGTGCAGCTGGTGAGGCAGGCCTTGGACAGAGACCTTG GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT CACCAGCTACTATATGCACTGGGTGGAGAGACCTTG GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT CACCAGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAA BIIB-9-3709 GGGCTTGAGTGGGTGGGAATAATCAACCCTAGTGGTGTGACACAG KMCJOTA) GGACACGTCCACGAGCACAGATCTACATGGACCTGAGCAGC CAAGAGATGTGGACTACCATGACCAG GGACCGTCCACGAGCACAGTCTACATGGACGTGAGCAGCCC CAAGAGATGTGGACTACTACATGGACGTATGGGCAAAGGGAC CAAGAGATGTGGACTACTACATGGACGTACTAGCAGGAC CAAGAGATGTGGACTACCATGACCAG CAAGAGATTGTGGACACGCCCTCTCA BIIB-9-3709 VH (aa) BIIB-9-3709 QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ GLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS GAAATTGTGTTGACACAGGCCCCCTGTCTTTGTCTC			CAAGAGAGTCGGACTACTACATGGACGTATGGGGCAAAGGGAC
1995 BIIB-9-3707 VH (aa) GLEWMGIINPSGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRESDYYMDVWGKGTTVTVSS GAAATTGTGTTGACACAGCCACCCTGTCTTTGTCTC CAGGGGAAAGAGCCACCCTTCCTGCAGGGCCAGCCAGGCT TAGCAGGTACTATGACTGGACACAGAAACCTGGCCAGGCT TCCCAGCCAGGTTCAGTGGAGGACACACAGAAACCTGGCCAGGCT TCCCAGCCAGGTTCAGTGGCAGTGGGACAGACACTGCCA TCCCAGCCAGGTTCAGTGGCAGTGGGACAGACTTCAC TCTCACCATCAGCAGCCTTGAGGCTGGAAGATTTTGCAGTTTAT TACTGTCAGCAGAGAGACACTGGCCTTTCACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA BIIB-9-3707 VL (aa) PRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVY YCQQRDNWPFTFGGGTKVEIK CAGGTGCAGCTGGTGAGGCTGAGGCACTGGAAA BIIB-9-3709 GGGCTTGAGTGGGTGGGATAATCAACCCTAGTGGAGCACAC KUCJOTA) BIIB-9-3709 VH (Hykil) CAAGCTACGACAGAGATTCCAGGGCAGAGTCACCATGACCAG AGAACATTGGACACAGGACACTTCACATGGACGCACAGGACCTG AGACTTGAGCACAGGACACAGTCTACATGGACGTAGCACAC CAAGAGATTGGACACACGCCGGTGTACTACATGGACCAGGACCCCTGACAAA CAAGAGATTGGACACACAGAAGTTCCAGGGCAGAGACGGAC CAAGAGATTGGACACACAGACGTCTACATGGACCTGAGCAGAC CAAGAGATTGGACACACACACAGACGTCTACATGGACCAGAGACGAC CAAGAGATTGGACACACGCCACAGAAGTTCACATGGACCAGAAACCACACGACCACGACACACAC			CACGGTCACCGTCTCCA
SLEWMGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRESDYYMDVWGKGTTVTVSS GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC CAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGGCT TAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCT CCCAGGCTCCTCATCATGATGCATCCAACAGGACCACTGGCA TCCCAGCCAGGTTCAGTGGCAGTGGTTTAT TACTGTCAGCAGAGACACTGGCAGGCT TCCCAGCCAGGTTCAGTGGCAGGCCTGGAAGATTTTGCAGTTTAT TACTGTCAGCAGAGAGACAACTGGCCTTTCACTTTTGCAGGTTAT TACTGTCAGCAGAGAGACAACTGGCCTTTCACTTTTGCAGGTTAT TACTGTCAGCAGAGAGACAACTGGCCTTTCACTTTTGCAGGAG GGACCAAGGTTGAGATCAAA EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQA PRLLIYDASNRATGIPARFSGSGSTDFTLTISSLEPEDFAVY YCQQRDNWPFTFGGTKVEIK CAGGTGCAGCTGGTGCAGTCTGGAGGTGAGGAAGCCTG GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT CACCAGCTACTATATGCACTGGGTGCGACAGGCCCTGGACAA GGGCCTCAGTGAGAGTTCCAGGGCAGAGGCCCTGGACAA KUCJOTA) GGACACGTCCACGAGCACAGATCTTACATGGAGCTGAGCAGC KUCJOTA) 1999 WH (aa) BIIB-9-3709 VH (aa) BIIB-9-3709 VH (aa) GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ GLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS BIIB-9-3709 GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC		DITD 0 2707	QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ
RSEDTAVYYCARDGPRESDYYMDVWGKGTTVTVSS GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC CAGGGGAAAGAGCCACCCTCTCTCTGCAGGGCCAGCCT TAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCT CCCAGGCTCCTCATCATGATGATGCATCAACAGGACACTTCAC TCCCAGCCAGGTTCAGTGGCAGTGGTTTAT TACTGTCAGCAGCAGCAGACTTCAC TCTCACCATCAGCAGCCTAGAGGTTTCACTTTTTTT TACTGTCAGCAGGAGACACTGGCATTTAT TACTGTCAGCAGGAGACACTGGCATTTAT TACTGTCAGCAGGAGACACTGGCCTTTCACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA BIIB-9-3707 VL (aa) BIIB-9-3707 VL (aa) EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQA PRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVY YCQQRDNWPFTFGGTKVEIK CAGGTGCAGCTGGTGCAGTGTGGGCTGAGGTGAGGAACCCTG GGGCCTCAGTGAAGGTTCCTGCAAGGCATCTGGATACACCTT CACCAGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAA GGGCCTCAGTGAGAGGTTCCCTGCAAGGCACCTTGGACAA RUCJOTA) GGACACGTCCACGAGCACAGATCTACATGGAGCTGAGCAGC CAAGAGATGTGGACCAGGACAGTCTACATGGAGCTGAGCAGC CACGGTCACCGTCCCCACGAGCACAGTCTACATGGAGCTGAGCAGC CAAGAGATGTGGACTACTACATGGAGCTGAGCAGAC CACGGTCACCGTCTCCTCA BIIB-9-3709 VH (aa) BIIB-9-3709 VH (aa) GAAATTGTGTTGACACAGTCTCCAGCCACCCTTCTTTGTCTC BIIB-9-3709 GAAATTGTGTTGACACAGTCTCCAGCCCACCCCTGCTTTTGTCTC	1995		GLEWMGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL
CAGGGGAAAGACCACCCTCTCCTGCAGGGCCAGTCAGAGTGT TAGCAGCTACTTATGCTTGATCAACAGAAACCTGGCCAGGCT CCCAGGCTCCTCATCTATGATGCATCAACAGAAACCTGGCCAGCA TCCCAGCCAGGTTCAGTGGCAGTCTGGGAAGATTTTT TACTGTCAGCAGGAACACTGGCATTTTT TACTGTCAGCAGGAGAACACTGGCCTTTCACTTTTTGCGGAG GGACCAAGGTTGAGATCAAA BIIB-9-3707 VL (aa) BIIB-9-3709 BIIB-9-3709 CAGGTGCAGTGGGATTCAGTGGGAGAGACTTCAC TCCACCAGCAGGTTCAGTGGAGAGATTTTGCAGTTTAT TACTGTCAGCAGGAGAGACAACTGGCCTTTCACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQA PRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVY YCQQRDNWPFTFGGGTKVEIK CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAGGAAGCCTG GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT CACCAGCTACTATATGCACTGGGTGCACAGGCCCCTGGACAA GGGCCTCAGTGAGGGGAATAATCAACCCTAGTGGTGGTAGCA KMCJOTA) GGGCTTGAGTGGGTGGGAATAATCAACCCTAGTGGTGGTAGCA GGACACGTCCACGAGAAGTTCCAGGGCAGAGGTCACCATGACCAG GGACACGTCCACGAGACACAGTCTACATGGAGCTGAGCAGGAC CAAGAGATGTGGACTACATGGACGTATGGGGCAAAGGGAC CAAGAGATGTGGACTACATACATGGACGTATGGGGCAAAGGAC CAAGAGATGTGGACTACATACATGGACGTATGGGGCAAAGGAC CAAGAGATGTGGACTACTACATGGACGTATGGGGCAAAGGAC CAAGAGATGTGGACTACTACATGGACGTATGGGGCAAAGGAC CAAGGATGTGGACTACTACATGGACGTATGGGGCAAAGGAC CACGGTCACCGTCTCCTCA PRILIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVY YCQQCDNWPFTFGGGTKVEIK CAGGTCAGGTGAGGACAGGTCTCCAGGGCAGAGGACCGCTGGACAAG GGACCTCCACGAGAAGTTCCAGGGCAGAGGACCAGCCTGGACAAG CAAGAGATGTGGACACAGTCTCAACTGGACCAGGACGAC CAAGAGATGTGGACTACATGAGACGTATGGGGCAAAGGGAC CAAGGATGTGGACTACATGAGACGTATGGGGCAAAGGGAC CAAGGATGTGGACACAGTCTCCAGCCACGAGACGCCTGACCTGTCTTTGTCTC BIIB-9-3709 VH (aa) CAAGCTACGCACAGAAGTTCCCAGCCACCCTGTCTTTGTCTC		VH (da)	RSEDTAVYYCARDGPRESDYYMDVWGKGTTVTVSS
TAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCT CCCAGGCTCCTCATCTATGATGCATCAACAGGACACTGCCA TCCCAGCCAGGTTCAGTGGATGGGTCTGGGACAGACTTCAC TCCCAGCCAGGTTCAGTGGACAGAGATTTTTT TACTGTCAGCAGAGAGCCTGAAGATTTTGCAGTTTAT TACTGTCAGCAGGAGAACACTGGCCTTTCACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA BIIB-9-3707 VL (aa) BIIB-9-3709 PRLLIYDASNRATGIPARFSGSGGTDFTLTISSLEPEDFAVY YCQQRDNWPFTFGGGTKVEIK CAGGTGCAGCTGGTGAAGGCTGAGGGTGAGGAAGCCTG GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT CACCAGCTACTATATGCACTGGGGTGAGGAAGGCCCTGGACAA GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT CACCAGCTACTATATGCACTGGGTGCACAGGCCCCTGGACAA KMCJOTA) GGACACGTCCACGAGAGATTCCAGGGCAGAGTCACCATGACCAG KMCJOTA) GGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCCTGACAA GGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCCTGACAA GGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCCTGACAAGAGATTGAGCACAGGACCCTGACCAGGACCAGGACCCTGACAAGAGATTCACATGGAGCTAGACCAGACCAGACCAGCACCAGACAGA			GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC
BIIB-9-3707 VL (HyKII. KUCJOTA) BIIB-9-3707 VL (HYKII. KUCJOTA) BIIB-9-3707 VL (aa) BIIB-9-3707 VL (aa) BIIB-9-3709 VH (HYKII. CCCAGCCAGGTTCAGTGGCAGTGGGCTGAAGATTTTGCAGGTGGAGAGAGA			CAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGT
1996		DIID 0 2707	TAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCT
TCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCAC TCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTAT TACTGTCAGCAGAGAGACACTGGCCTTTCACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA BIIB-9-3707 VL (aa) EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQA PRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVY YCQQRDNWPFTFGGGTKVEIK CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAGGAAGCCTG GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT CACCAGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAA BIIB-9-3709 GGGCTTGAGTGGGTGGGAATAATCAACCCTAGTGGTGGTAGCA KNCJOTA) GGACACGTCCACGAGAAGTTCCAGGGCAGAGTCACCATGACCAG KNCJOTA) BIIB-9-3709 VH (aa) PRILIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVY YCQQRDNWPFTFGGGTKVEIK CAGGTCAGCTGAGTCTGGGTGGAGAGCCCCTGGACAA GGGCCTCAGTGAAGGTTTCCTGCAAGGCCACAGAGCCCTTGACAA GGGCCTCACTACTATATGCACTGGGTGCAAAGCCCTTGACAA GGACACGTCCACGAGAAGTTCCAGGGCAGAGTCACCATGACCAG AGATCTGAGGACACAGTCTACATGGAGCTGAGCAGCCTG AGATCTGAGGACACAGGCCCTGTACATGGAGCAAAGGGAC CAAGAGATGTGGACAACTTCCACTGGGCCAGAGACGGAC CAAGAGATGTGGACTACTACATGGACCTAGTGGGCCAAAGGGAC CAAGGATGTGGACTACTACATGGACCTAGTGGGCCAAAGGGAC CACGGTCACCGTCTCCTCA PRLLIYDASNRATGIPARFSGSSSGTGTATCTAGGGCCAGAGAGCCTT CACCAGCTACTACTAGGAGCAAGGCCCTTGACAAGCCACC CAAGAGATGTGGACACAGTCTACATGGACCAAGGACCAGACCCTGACCAGAGACCAGCCACCCTGTCTTTGTCTC CACCAGCTACCGTCCTCCTCA PRLLIYDASNRATGIPARFSGSGSGTGTACTACTGGGCAAGGCCCTGACCAAGCAAGCACCCTGTCTTTGTCTC AGAGCTACCGTCCACAAAGTTCCAAGCACCCCTGTCTTTGTCTC CACCAGCTACCGTCTCCTCAA PRLLIYDASNRATGIPARFSGSTSYAQKFQGCCTTTTTGTCTCACCAGCACCCTGTCTTTTGTCTC TCTCACCAGCACAGACCAAAAAAAAAA	1006		CCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCACTGGCA
TCTCACCATCAGCAGCCTGAAGACTTTTGCAGTTTAT TACTGTCAGCAGAGAGACAACTGGCCTTTCACTTTTGGCGGAG GGACCAAGGTTGAGATCAAA 1997 BIIB-9-3707 VL (aa) EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQA PRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVY YCQQRDNWPFTFGGGTKVEIK CAGGTGCAGCTGGTGCAGTCTGGAGGAGAGCCTG GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT CACCAGCTACTATATGCACTGGGTGGACAAGGCCCCTGGACAA BIIB-9-3709 GGGCTTGAGTGGGTGGGAATAATCAACCCTAGTGGTGGTAGCA RUCJOTA) GGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCCG AGATCTGAGGACACGGCGGTGTACTACATGGAGCTGAGCAC CAAGAGATGTGGACTACTACATGGACCTAGTGGGCCAAAGGAC CAAGAGATGTGGACTACTACATGGACCTAGTGGGCCAAAGGAC CACGGTCACCGTCTCCTCA PBIIB-9-3709 VH (aa) QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ GLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS AGAATTGTGTTGACACAGGCCACCCTGTCTTTGTCTC	1996	(TCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCAC
BIIB-9-3707 EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQA PRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVY YCQQRDNWPFTFGGTKVEIK CAGGTGCAGCTGGTGCAGTCTGGAGTGAGGTAGAGCCTG GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT CACCAGCTACTATATGCACTGGGTGCAGAGGCCCTGGACAA BIIB-9-3709 GGGCTTGAGTGGGTGGGAATAATCAACCCTAGTGGTGGTAGCA KMCЛОТа) GGACACGTCCACGAGCACAGGCCCTGAGCAGGCCCTG AGATCTGAGGACACGGCGGTGTACTACATGGAGCTGAGCAGCCTG AGATCTGAGGACACGGCGGTGTACTACATGGAGCTGAGCAGC CAAGAGATGTGGACCATGACCAG CACGGTCACCAGGACCAGGCCGTCTCCTCA QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ GLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS GAAATTGTGTTGACACAGGCCACCCTGTCCTTGTCTC		кислота)	TCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTAT
BIIB-9-3707 VL (аа) EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQA PRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVY YCQQRDNWPFTFGGGTKVEIK CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTAGACACCTT CACCAGCTACTATATGCACTGGGTGCAAGGCACTGGACAA BIIB-9-3709 GGGCTTGAGTGGGTGGGAATAATCAACCCTAGTGGTAGCAA 8 HIB-9-3709 CAAGCTACCACGACACAGAAGTTCCAGGGCAGAGACCAGGCACAGGCACAGGCACAGAAGTTCCAGGGCAGAGACCAGGACCAGGACCAGGACACAGAAGTTCCAGGGCAGAGACCAGGACCAGGACCAGGACACAGAAGTTCAATGGACTAGACCAGGACAAGAAGTTCAATGGACTAGACCAGGAAGAAGTTCAATGGACTAGACAGAC			TACTGTCAGCAGAGAGACAACTGGCCTTTCACTTTTGGCGGAG
1997 BIIB-9-3707 VL (aa) PRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVY YCQQRDNWPFTFGGGTKVEIK CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAGGAAGCCTG GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT CACCAGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAA BIIB-9-3709 GGGCTTGAGTGGGTGGGAATAATCAACCCTAGTGGTGGTAGCA 1998 VH (нукл. CAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAG RKUCJOTA) 6GACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTG AGATCTGAGGACCTGCACCAGGACCGGCGGTGTACTACATGGACCTGAGCACCCCAAGACCGGAC CAAGAGATGTGGACTACTACATGGACGTATGGGGCAAAGGGAC CACGGTCACCGTCTCCTCA 1999 BIIB-9-3709 VH (aa) QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ GLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS 2000 BIIB-9-3709 GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC			GGACCAAGGTTGAGATCAAA
PRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVY YCQQRDNWPFTFGGGTKVEIK CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGAGGAAGCCTG GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT CACCAGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAA BIIB-9-3709 GGGCTTGAGTGGGTGGGAATAATCAACCCTAGTGGTGGTAGCA 1998 VH (Hykn. CAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAG KMCJOTA) GGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTG AGATCTGAGGACACGGCGGTGTACTACTGCGCCAGAGACGGAC CAAGAGATGTGGACTACTACATGGACGTATGGGGCAAAGGGAC CACGGTCACCGTCTCCTCA 2000 BIIB-9-3709 VH (aa) QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ GLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS 2000 BIIB-9-3709 GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC		BITE-9-3707	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQA
YCQQRDNWPFTFGGGTKVEIK CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTAGGAAGCCTG GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT CACCAGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAA BIIB-9-3709 GGGCTTGAGTGGGTGGGAATAATCAACCCTAGTGGTGGTAGCA Rислота) GGACACGTCCACGAGAAGTTCCAGGGCAGAGGCCCCTGACCAG Rислота) GGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTG AGATCTGAGGACACGGCGGTGTACTACATGGAGCTGAGCAGC CAAGAGATGTGGACTACCTCCTCA CACGGTCACCGTCTCCTCA BIIB-9-3709 VH (aa) QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ GLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS BIIB-9-3709 GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC	1997		PRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVY
GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT CACCAGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAA BIIB-9-3709 GGGCTTGAGTGGGTGGGAATAATCAACCCTAGTGGTGGTAGCA CAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAG CAAGCTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTG AGATCTGAGGACACGGCGGTGTACTACATGGAGCTGAGCAGAC CAAGAGATGTGGACTACTACATGGAGCTATGGGGCAAAGGGAC CAAGAGATGTGGACTACTACATGGACGTATGGGGCAAAGGGAC CAAGAGATGTGGACTACTACATGGACGTATGGGGCAAAGGGAC CAAGAGATGTGGACTACTACATGGACGTATGGGGCAAAGGGAC CAAGAGATGTGGACTACTACATGGACGTATGGGGCAAAGGGAC CAAGAGATGTGGACTACTACATGGACGTATGGGGCAAAGGGAC CAAGAGATGTGGACTACTACATGGACGTATGGGGCAAAGGGAC CAAGAGATGTGGACTACTACATGGACGTATGGGGCAAAGGGAC CAAGAGATGTGGACACTCTCCTCA OVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ GLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS OVGLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ GLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS		VII (aa)	YCQQRDNWPFTFGGGTKVEIK
BIIB-9-3709 CACCAGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAA BIIB-9-3709 GGGCTTGAGTGGGTGGGAATAATCAACCCTAGTGGTGGTAGCA VH (нукл. CAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAG KNCЛОТа) GGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTG AGATCTGAGGACACGGCGGTGTACTACTGCGCCAGAGACGGAC CAAGAGATGTGGACTACTACATGGACGTATGGGGCAAAGGGAC CACGGTCACCGTCTCCTCA QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ CLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS			CAGGTGCAGCTGGGGCTGAGGTGAGGAAGCCTG
1998BIIB-9-3709GGGCTTGAGTGGGTGGGAATAATCAACCCTAGTGGTGGTAGCA1998VH (нукл.CAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAGкислота)GGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGAGGACACGGCGGTGTACTACTGCGCCAGAGACGGACCAAGAGATGTGGACTACTACATGGACGTATGGGGCAAAGGGACСАССССТССТСАCACGGTCACCGTCTCCTCA1999VH (aa)QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS2000BIIB-9-3709GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC			GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT
1998VH(нукл.CAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAGкислота)GGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGAGGACACGGCGGTGTACTACTGCGCCAGAGACGGACСаАGAGATGTGGACTACTACATGGACGTATGGGGCAAAGGGACСаСGGTCACCGTCTCCTCA1999QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS2000BIIB-9-3709GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC			CACCAGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAA
кислота)GGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTG AGATCTGAGGACACGGCGGTGTACTACTGCGCCAGAGACGGAC CAAGAGATGTGGACTACTACATGGACGTATGGGGCAAAGGGAC CACGGTCACCGTCTCCTCA1999BIIB-9-3709 VH (aa)QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ GLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS2000BIIB-9-3709 BIIB-9-3709GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC		BIIB-9-3709	GGGCTTGAGTGGGTGGGAATAATCAACCCTAGTGGTGGTAGCA
AGATCTGAGGACACGGCGGTGTACTACTGCGCCAGAGACGGAC CAAGAGATGTGGACTACTACATGGACGTATGGGGCAAAGGGAC CACGGTCACCGTCTCCTCA BIIB-9-3709 VH (aa) QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ GLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS BIIB-9-3709 GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC	1998	VH (нукл.	CAAGCTACGCACAGAGTTCCAGGGCAGAGTCACCATGACCAG
CAAGAGATGTGGACTACTACATGGACGTATGGGGCAAAGGGAC CACGGTCACCGTCTCCTCA BIIB-9-3709 VH (aa) BIIB-9-3709 QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ GLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS BIIB-9-3709 GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC		кислота)	GGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTG
CACGGTCACCGTCTCCTCA BIIB-9-3709 VH (aa) BIIB-9-3709 QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ GLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS BIIB-9-3709 GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC			AGATCTGAGGACACGGCGGTGTACTACTGCGCCAGAGACGGAC
BIIB-9-3709 VH (aa) BIIB-9-3709 VH (ab) BIIB-9-3709 QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ GLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS BIIB-9-3709 GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC			CAAGAGATGTGGACTACATGGACGTATGGGGCAAAGGGAC
BIIB-9-3709 VH (aa) GLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS BIIB-9-3709 GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC 2000			CACGGTCACCGTCTCA
1999 VH (aa) GLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS BIIB-9-3709 GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC 2000		BTTB-0-3700	QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ
RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS BIIB-9-3709 GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC 2000	1999		GLEWVGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL
2000		vn (aa)	RSEDTAVYYCARDGPRDVDYYMDVWGKGTTVTVSS
	2000	BIIB-9-3709	GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC
· · · · · · · · · · · · · · · · · · ·	2000	VL (нукл.	CAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGT

	кислота)	TAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCT
		CCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCACTGGCA
		TCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCAC
		 TCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTAT
		TACTGTCAGCAGAGAGACAACTGGCCTTTCACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
		EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQA
2001	BIIB-9-3709	PRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVY
2001	VL (aa)	YCQQRDNWPFTFGGGTKVEIK
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAGGAAGCCTG
		GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT
	DIID 0 2720	CACCAGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAA
0000	BIIB-9-3720	GGGCTTGAGTGGATGGGAATAATCAACCCTAGTGGTGGTAGCA
2002	VH (нукл.	CAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAG
	кислота)	GGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTG
		AGATCTGAGGACACGGCGTGTACTACTGCGCCAGAGACGGAC
		CACAGCTTAGTGACTACATGGACGTATGGGGCAAAGGGAC
		CACGGTCACCGTCTCCA
	BIIB-9-3720	QVQLVQSGAEVRKPGASVKVSCKASGYTFTSYYMHWVRQAPGQ
2003	VH (aa)	GLEWMGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL
	VII (dd)	RSEDTAVYYCARDGPQLSDYYMDVWGKGTTVTVSS
		GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC
		CAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGT
	BIIB-9-3720	TAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCT
2004		CCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCACTGGCA
2004	(,,,,,,,,,,	TCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCAC
	кислота)	TCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTAT
		TACTGTCAGCAGAGAGACAACTGGCCTTTCACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	DITE 0 2722	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQA
2005	BIIB-9-3720	PRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVY
	VL (aa)	YCQQRDNWPFTFGGGTKVEIK
	BIIB-9-3727	CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTG
2006	VH (нукл.	GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT
	кислота)	CCATCATTACTATATGCACTGGGTGCGACAGGCCCCTGGACAA

		GGGCTTGAGTGGATGGGAATAATCAACCCTAGTGGTGGTCGGA
		CAGAGTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAG
		GGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTG
		AGATCTGAGGACACGGCGGTGTACTACTGCGCCAGAGACGGAC
		CAAGAGTCAGTGACTACATGGACGTATGGGGCAAGGGTAC
		AACTGTCACCGTCTCCTCA
	BIIB-9-3727	QVQLVQSGAEVKKPGASVKVSCKASGYTFHHYYMHWVRQAPGQ
2007	VH (aa)	GLEWMGIINPSGGRTEYAQKFQGRVTMTRDTSTSTVYMELSSL
	VII (44/	RSEDTAVYYCARDGPRVSDYYMDVWGKGTTVTVSS
		GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC
		CAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGT
	BIIB-9-3727	TAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCT
2008		CCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCACTGGCA
2000	(======================================	TCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCAC
	кислота)	TCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTAT
		TACTGTCAGCAGAGAGACAACTGGCCTTTCACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	BIIB-9-3727	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQA
2009		PRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVY
	VL (aa)	YCQQRDNWPFTFGGGTKVEIK
		CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTG
		GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT
		CACCGGTTACCCTATGCACTGGGTGCGACAGGCCCCTGGACAA
	BIIB-9-3745	GGGCTTGAGTGGATGGGATCGATCAACCCTAGTCGTGGTAGCA
2010	VH (нукл.	CAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAG
	кислота)	GGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTG
		AGATCTGAGGACACGGCGGTGTACTACTGCGCCAGAGACGGAC
		CAAGAGTCAGTGACTACTACATGGACGTATGGGGCAAGGGTAC
		AACTGTCACCGTCTCCA
	BIIB-9-3745 VH (aa)	QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYPMHWVRQAPGQ
2011		 GLEWMGSINPSRGSTSYAQKFQGRVTMTRDTSTSTVYMELSSL
		RSEDTAVYYCARDGPRVSDYYMDVWGKGTTVTVSS
	BIIB-9-3745	GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTC
2012	VL (нукл.	 CAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGT
	кислота)	TAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCT

		CCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCACTGGCA
		TCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCAC
		TCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTAT
		TACTGTCAGCAGAGAGACAACTGGCCTTTCACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
		EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQA
2013	BIIB-9-3745	PRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVY
2013	VL (aa)	
		YCQQRDNWPFTFGGGTKVEIK
	Ис:	ходное антитело: BIIB-9-578
		CAGCTGCAGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTT
		CGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCAT
		CAGCAGTAGTTACTACTGGGGCTGGATCCGCCAGCCCCCA
	BIIB-9-3780	GGGAAGGGCTGGAGTGGATTGGGAGTATCTCCTATAGTGGGA
2014	VH (нукл.	GCACCTACTACAACCCGTCCCTCAAGAGTCGAGTCACCATATC
	кислота)	CGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGTTCT
		GTGACCGCCGCAGACACGGCGGTGTACTACTGCGCTAGAGATA
		AGTACCAAGACTATAGTGTTGACATATGGGGCCAAGGGACAAT
		GGTCACCGTCTCCA
	BIIB-9-3780	QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPP
2015		GKGLEWIGSISYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSS
	VH (aa)	VTAADTAVYYCARDKYQDYSVDIWGQGTMVTVSS
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTG
	D	TAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTAT
		TGACAGCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCC
0016	BIIB-9-3780	CCTAAGCTCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGG
2016	VL (нукл. кислота)	TCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCAC
		TCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTAT
		TACTGTCAGCAGGCAAATTTCCTCCCTTTCACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
		DIQMTQSPSSVSASVGDRVTITCRASQGIDSWLAWYQQKPGKA
2017	BIIB-9-3780 VL (aa)	 PKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATY
		YCQQANFLPFTFGGGTKVEIK
	BIIB-9-3675	CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTT
2018	VH (нукл.	CGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCAT
	кислота)	CAGCAGTACGAGTTACTACTGGGTGTGGATCCGCCAGCCCCCA
	1010010101	

		GGGAAGGGGCTGGAGTGGATTGGGAGTATCACTGCGAGTGGGA
		GCACCTACTACAACCCGTCCCTCAAGAGTCGAGTCACCATATC
		CGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGTTCT
		GTGACCGCCGCAGACACGGCGGTGTACTACTGCGCCAGAGATA
		AGTACCAAGACTATTCATTCGACATATGGGGTCAGGGTACAAT
		GGTCACCGTCTCCA
	BIIB-9-3675	QLQLQESGPGLVKPSETLSLTCTVSGGSISSTSYYWVWIRQPP
2019	VH (aa)	GKGLEWIGSITASGSTYYNPSLKSRVTISVDTSKNQFSLKLSS
	VII (dd)	VTAADTAVYYCARDKYQDYSFDIWGQGTMVTVSS
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTG
		TAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTAT
	DITT 0 2675	TGACAGCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCC
	BIIB-9-3675	CCTAAGCTCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGG
2020	VL (нукл.	TCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCAC
	кислота)	TCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTAT
		TACTGTCAGCAGGCAAATTTCCTCCCTTTCACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	BIIB-9-3675	DIQMTQSPSSVSASVGDRVTITCRASQGIDSWLAWYQQKPGKA
2021		PKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATY
	VL (aa)	YCQQANFLPFTFGGGTKVEIK
		CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTT
		CGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCAT
	BIIB-9-3681	CAGCAGTGGGAGTTACTACTGGAATTGGATCCGCCAGCCCCCA
		GGGAAGGGCTGGAGTGGATTGGGAGTATCCAGCCTAGTGGGA
2022	VH (нукл.	GCACCTACTACAACCCGTCCCTCAAGAGTCGAGTCACCATATC
	кислота)	CGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGTTCT
		GTGACCGCCGCAGACACGGCGGTGTACTACTGCGCTAGAGATA
		AGTACCAAGACTATTCATTCGACATATGGGGTCAGGGTACAAT
		GGTCACCGTCTCCTCA
	_	QLQLQESGPGLVKPSETLSLTCTVSGGSISSGSYYWNWIRQPP
2023	BIIB-9-3681 VH (aa)	 GKGLEWIGSIQPSGSTYYNPSLKSRVTISVDTSKNQFSLKLSS
		VTAADTAVYYCARDKYQDYSFDIWGQGTMVTVSS
	BIIB-9-3681	GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTG
2024	VL (нукл.	TAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTAT
	кислота)	TGACAGCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCC
	137001010/	1 3.13.13.3 1 3.3 1 11.13.3 1 3.1 11.1 0.1 0.1 1.1 1.1 1.1 1.1 1.1 1.1

		CCTAAGCTCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGG
		TCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCAC
		TCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTAT
		TACTGTCAGCAGGCAAATTTCCTCCCTTTCACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	BIIB-9-3681	DIQMTQSPSSVSASVGDRVTITCRASQGIDSWLAWYQQKPGKA
2025	VL (aa)	PKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATY
		YCQQANFLPFTFGGGTKVEIK
		CAGCTGCAGCAGGAGTCGGGGCCCAGGACTGGTGAAGCCTT
		CGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCAT
		CAGCAGTGTTAGTTACTACTGGAATTGGATCCGCCAGCCCCCA
	BIIB-9-3684	GGGAAGGGCTGGAGTGGATTGGGAGTATCACTTATAGTGGGA
2026	VH (нукл.	GCACCCAGTACAACCCGTCCCTCAAGAGTCGAGTCACCATATC
	кислота)	CGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGTTCT
		GTGACCGCCGCAGACACGGCGGTGTACTACTGCGCTAGAGATA
		AGTACCAAGACTATTCATTCGACATATGGGGTCAGGGTACAAT
		GGTCACCGTCTCCTCA
	BIIB-9-3684 VH (aa)	QLQLQESGPGLVKPSETLSLTCTVSGGSISSVSYYWNWIRQPP
2027		GKGLEWIGSITYSGSTQYNPSLKSRVTISVDTSKNQFSLKLSS
		VTAADTAVYYCARDKYQDYSFDIWGQGTMVTVSS
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTG
		TAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTAT
	BIIB-9-3684 VL (нукл. кислота)	TGACAGCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCC
0000		CCTAAGCTCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGG
2028		TCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCAC
		TCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTAT
		TACTGTCAGCAGGCAAATTTCCTCCCTTTCACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
		DIQMTQSPSSVSASVGDRVTITCRASQGIDSWLAWYQQKPGKA
2029	BIIB-9-3684 VL (aa)	PKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATY
		YCQQANFLPFTFGGGTKVEIK
	BIIB-9-3698 VH (нукл. кислота)	CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTT
		CGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCAT
2030		 CGCTAGTAGTAGTTACTACTGGTCGTGGATCCGCCAGCCCCCA
		GGGAAGGGCTGGAGTGGATTGGGAGTATCCGGGGTAGTGGGA

		GCACCTACTACAACCCGTCCCTCAAGAGTCGAGTCACCATATC
		CGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGTTCT
		GTGACCGCCGCAGACACGGCGGTGTACTACTGCGCTAGAGATA
		AGTACCAAGACTATTCATTCGACATATGGGGTCAGGGTACAAT
		GGTCACCGTCTCCA
	BIIB-9-3698 VH (aa)	QLQLQESGPGLVKPSETLSLTCTVSGGSIASSSYYWSWIRQPP
2031		GKGLEWIGSIRGSGSTYYNPSLKSRVTISVDTSKNQFSLKLSS
		VTAADTAVYYCARDKYQDYSFDIWGQGTMVTVSS
		GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTG
		TAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTAT
	BIIB-9-3698	TGACAGCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCC
2032	VL (нукл.	CCTAAGCTCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGG
2032		TCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCAC
	кислота)	TCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTAT
		TACTGTCAGCAGGCAAATTTCCTCCCTTTCACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	DIID 0 2600	DIQMTQSPSSVSASVGDRVTITCRASQGIDSWLAWYQQKPGKA
2033	BIIB-9-3698 VL (aa)	PKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATY
		YCQQANFLPFTFGGGTKVEIK
	BIIB-9-3704	CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTT
		CACAGACCCTGTCCCTCACCTGTACTGTCTCTGGTGGCTCCAT
		CAGCAGTGGTGCGTACGCGTGGAGCTGGATCCGCCAGCACCCA
		GGGAAGGGCCTGGAGTGGATTGGGTACATCTATTACCAGGGGA
2034	VH (нукл.	AGACCTACTACAACCCGTCCCTCAAGAGTCGAGTTACCATATC
	кислота)	AGTAGACACGTCTAAGAACCAGTTCTCCCTGAAGCTGAGTTCT
		GTGACCGCCGCAGACACGGCGGTGTACTACTGCGCTAGAGATA
		AGTACCAAGACTATTCATTCGACATATGGGGTCAGGGTACAAT
		GGTCACCGTCTCCA
		QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGAYAWSWIRQHP
2035	BIIB-9-3704 VH (aa)	 GKGLEWIGYIYYQGKTYYNPSLKSRVTISVDTSKNQFSLKLSS
		VTAADTAVYYCARDKYQDYSFDIWGQGTMVTVSS
	BIIB-9-3704 VL (нукл. кислота)	GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTG
		TAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTAT
2036		TGACAGCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCC
		CCTAAGCTCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGG
		CCIAAGCICCIGAICIAIGCIGCAICCAGITTGCAAAGTGGGG

		TCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCAC
		TCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTAT
		TACTGTCAGCAGGCAAATTTCCTCCCTTTCACTTTTGGCGGAG
		GGACCAAGGTTGAGATCAAA
	BTTB-9-3704	DIQMTQSPSSVSASVGDRVTITCRASQGIDSWLAWYQQKPGKA
2037		PKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATY
	VL (aa)	YCQQANFLPFTFGGGTKVEIK

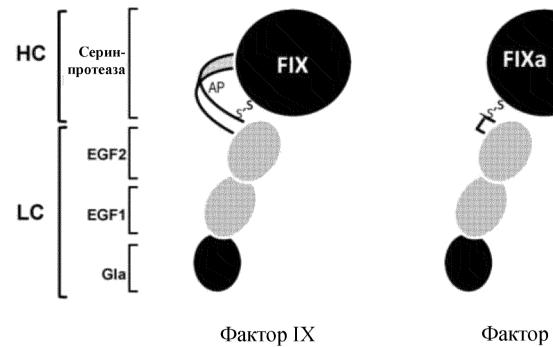
(aa) = аминокислотная последовательность; (nt) =

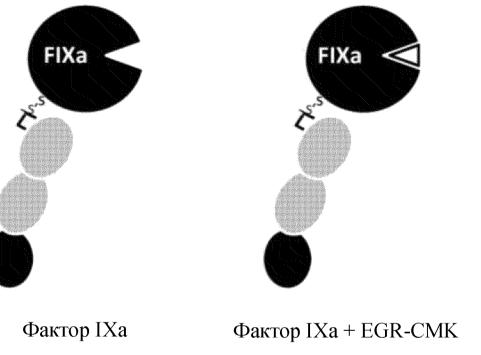
нуклеотидная последовательность

ТАБЛИЦА 7. CDR дочерних антител из примера 14

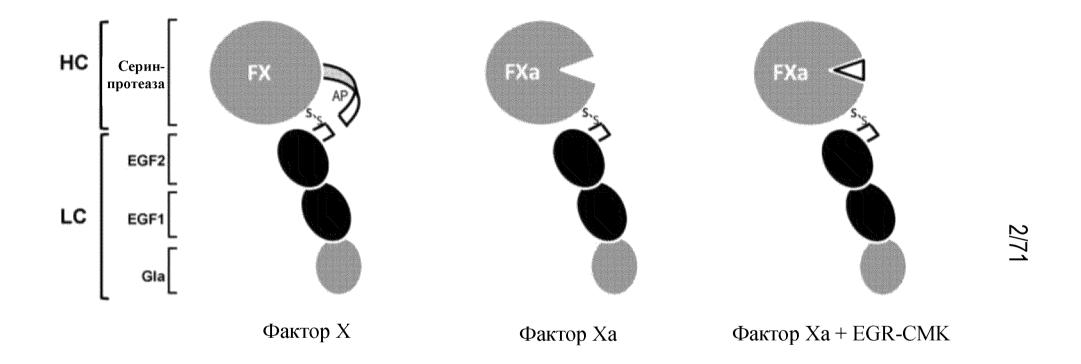
Антитело	VH-CDR1	VH-CDR2	VH-CDR3	VL-CDR1	VL-CDR2	VL-CDR3	
Исходное антитело: BIIB-9-484							
BIIB-9-	2038	2064	2090	2116	2142	2168	
3595							
BIIB-9-	2039	2065	2091	2117	2143	2169	
3601							
BIIB-9-	2040	2066	2092	2118	2144	2170	
3604							
BIIB-9- 3617	2041	2067	2093	2119	2145	2171	
BIIB-9-							
3618	2042	2068	2094	2120	2146	2172	
BIIB-9-							
3621	2043	2069	2095	2121	2147	2173	
BIIB-9-	2044	2070	2096	2122	2148	2174	
3647	2011	2070	2000	2122	2140	21/4	
BIIB-9-	2045	2071	2097	2123	2149	2175	
3649							
BIIB-9-	2046	2072	2098	2124	2150	2176	
3650							
BIIB-9-	2047	2073	2099	2125	2151	2177	
3654							
Исходное антитело: BIIB-9-1336							
BIIB-9- 3753	2048	2074	2100	2126	2152	2178	
3733							

BIIB-9- 3754	2049	2075	2101	2127	2153	2179
BIIB-9- 3756	2050	2076	2102	2128	2154	2180
BIIB-9- 3764	2051	2077	2103	2129	2155	2181
BIIB-9- 3766	2052	2078	2104	2130	2156	2182
	Исх	одное ант	итело: В	IB-9-619		
BIIB-9- 3707	2053	2079	2105	2131	2157	2183
BIIB-9- 3709	2054	2080	2106	2132	2158	2184
BIIB-9- 3720	2055	2081	2107	2133	2159	2185
BIIB-9- 3727	2056	2082	2108	2134	2160	2185
BIIB-9- 3745	2057	2083	2109	2135	2161	2187
	Исх	одное ант	итело: В	IB-9-578		
BIIB-9- 3780	2058	2084	2110	2136	2162	2188
BIIB-9- 3675	2059	2085	2111	2137	2163	2189
BIIB-9- 3681	2060	2086	2112	2138	2164	2190
BIIB-9- 3684	2061	2087	2113	2139	2164	2191
BIIB-9- 3698	2062	2088	2114	2140	2166	2192
BIIB-9- 3704	2063	2089	2115	2141	2167	2193


ФОРМУЛА ИЗОБРЕТЕНИЯ


- 1. Выделенное антитело или его антигенсвязывающая часть, которые специфически связываются с активированным фактором IX (FIXa) ("антитело к FIXa или его антигенсвязывающая часть"), где антитело к FIXa или его антигенсвязывающая часть предпочтительно связываются с FIXa в присутствии FIXa и зимогена фактора IX (FIXz), или где антитело к FIXa или его антигенсвязывающая часть связываются с FIXa с более высокой аффинностью связывания, чем аффинность связывания антитела к FIXa или его антигенсвязывающей части с FIXz.
- 2. Антитело к FIXa или его антигенсвязывающая часть по п. 1, которые перекрестно конкурируют или связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. 3A, фиг. 3B и фиг. 3C.
- 3. Антитело к FIXa или его антигенсвязывающая часть по п. 3, где эпитоп содержит аминокислотные остатки, приведенные в соответствии с нумерацией для химотрипсиногена, Н91, Н92, N93, Н101, D125, K126, E127, Y128, R165, Y177, N178, N179, S232, R233, Y234, V235, N236, W237, E240 и K241 последовательности тяжелой цепи FIXa или их комбинацию.
- 4. Антитело к FIXa или его антигенсвязывающая часть по пп. 1-3, которые содержат CDR1 VH, CDR2 VH и CDR3 VH, где (i) CDR1 VH предусматривает CDR1 VH, выбранную из группы, состоящей из CDR1 VH, представленных на фиг. 3A, фиг. 3B и фиг. 3C, под SEQ ID NO: 2058-2063, или CDR1 VH с одной или двумя мутациями; и/или (ii) CDR2 VH предусматривает CDR2 VH, выбранную из группы, состоящей из CDR2 VH, представленных на фиг. 3A, фиг. 3B и фиг. 3C, под SEQ ID NO: 2084-2089, или CDR2 VH с одной или двумя мутациями; и/или (iii) CDR3 VH предусматривает CDR3 VH, выбранную из группы, состоящей из CDR3 VH, представленных на фиг. 3A, фиг. 3B и фиг. 3C, под SEQ ID NO: 2084-2089, или CDR3 VH с одной или двумя мутациями; и/или где (iv) CDR1 VL предусматривает CDR1 VL, выбранную из группы, состоящей из CDR1 VL, представленных на фиг. 3A, фиг. 3B и фиг. 3C, под SEQ ID NO: 2136-2141, или CDR1 VL с одной или двумя мутациями; и/или (v)

- СDR2 VL предусматривает CDR2 VL, выбранную из группы, состоящей из CDR2 VL, представленных на фиг. 3A, фиг. 3B и фиг. 3C, под SEQ ID NO: 2162-2167, или CDR2 VL с одной или двумя мутациями; и/или (vi) CDR3 VL предусматривает CDR3 VL, выбранную из группы, состоящей из CDR3 VL, представленных на фиг. 3A, фиг. 3B и фиг. 3C, под SEQ ID NO: 2188-2193, или CDR3 VL с одной или двумя мутациями.
- 5. Антитело к FIXa или его антигенсвязывающая часть по пп. 1-4, содержащие VH VL, где И (a1) VHИ VLсоответственно SEQ ID NO: 31 и 221 (BIIB-9-484); (a2) VH и VL содержат соответственно SEQ ID NO: 19 и 209 (BIIB-9-440); (a3) VH и VL содержат соответственно SEQ ID NO: 115 и 301 (BIIB-9-882); (a4) VH и VL содержат соответственно SEQ ID NO: 23 и 213 (BIIB-9-460); (a5) VH и VL содержат соответственно SEQ ID NO: 127 и 313 (BIIB-9-433); (аб) VH и VL содержат соответственно SEQ И 235 (BIIB-9-619); (a7) VH и VLсодержат соответственно SEQ ID NO: 185 и 371 (BIIB-9-578); (a8) VH и VL содержат соответственно SEQ ID NO: 87 и 221 (BIIB-9-1335); или (а9) VH и VL содержат соответственно SEQ ID NO: 89 и 221 (ВІІВ-9-1336).
- 6. Выделенное антитело или его антигенсвязывающая часть, которые специфически связываются с зимогеном фактора X (FXz) ("антитело к FXz или его антигенсвязывающая часть"), где антитело к FXz или его антигенсвязывающая часть предпочтительно связываются с FXz в присутствии FXz и активированного фактора X (FXa).
- 7. Антитело к FXz или его антигенсвязывающая часть по п. 6, которые перекрестно конкурируют или связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. 12A и фиг. 12B.
- 8. Антитело к FXz или его антигенсвязывающая часть по п. 6 или п. 7, содержащие VH и VL, где (b1) VH и VL содержат соответственно SEQ ID NO: 423 и 611 (BIIB-12-915); (b2) VH и VL содержат соответственно SEQ ID NO: 427 и 615 (BIIB-12-917); или (b3) VH и VL содержат соответственно SEQ ID NO: 455 и 643 (BIIB-12-932).


- 9. Выделенное антитело или его антигенсвязывающая часть, которые специфически связываются с активированным фактором X (FXa) ("антитело к FXa или его антигенсвязывающая часть"), где антитело к FXa или его антигенсвязывающая часть предпочтительно связываются с FXa в присутствии FXz и FXa и/или связываются с FXa с более высокой аффинностью связывания, чем аффинность связывания антитела или его антигенсвязывающей части с FXz.
- 10. Антитело к FXa или его антигенсвязывающая часть по п. 9, которые перекрестно конкурируют с эталонным антителом, выбранным из группы, состоящей из антител, представленных на фиг. 12С, или связываются с тем же эпитопом, что и эталонное антитело, выбранное из группы, состоящей из антител, представленных на фиг. 12С.
- 11. Антитело к FXa или его антигенсвязывающая часть по п. 9 или п. 10, содержащие VH и VL, где VH и VL содержат соответственно SEQ ID NO: 559 и 747 (BIIB-12-925).
- 12. Биспецифическая молекула, содержащая антитело к FIX или его антигенсвязывающую часть по любому из пп. 1-5 и/или (ii) антитело к FX или его антигенсвязывающую часть по любому из пп. 6-11.
- 13. Нуклеиновая кислота, кодирующая антитело по любому из $\pi\pi$. 1-12.
- 14. Фармацевтическая композиция, содержащая антитело по любому из пп. 1-12, и нуклеиновую кислоту по п. 13, и фармацевтически приемлемый носитель.
- 15. Антитело по любому из пп. 1-12, нуклеиновая кислота по п. 13 или фармацевтическая композиция по п. 14 для применения в терапии.

По доверенности

ФИГ. 1А

ФИГ. 1В

Получение антитела

Осуществление процедур направленного отбора Определение последовательностей антител Экспрессия и очистка IgG

Определение характеристик антитела

Оценка кинетических показателей и специфичности с помощью BLI Анализ биофизического состояния

Определение функциональных характеристик

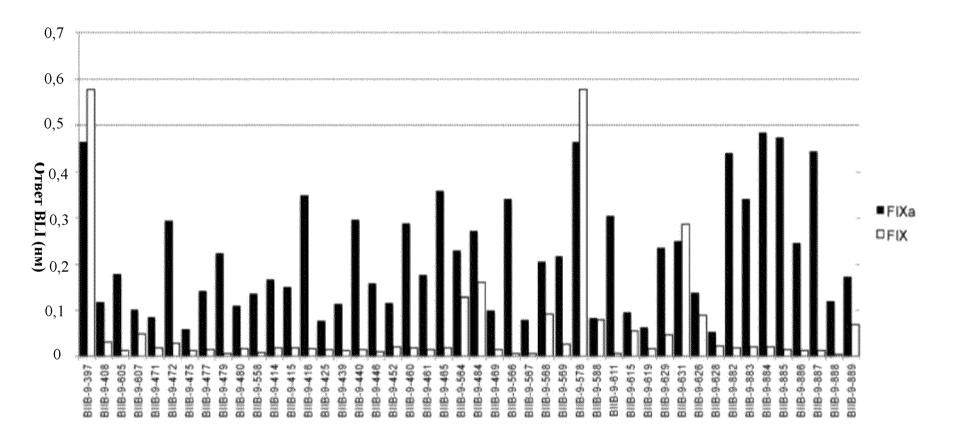
Анализ биспецифических молекул в отношении образования FXa в очищенной системе
Анализы свертывания плазмы крови с использованием биспецифических молекул

ФИГ. 2

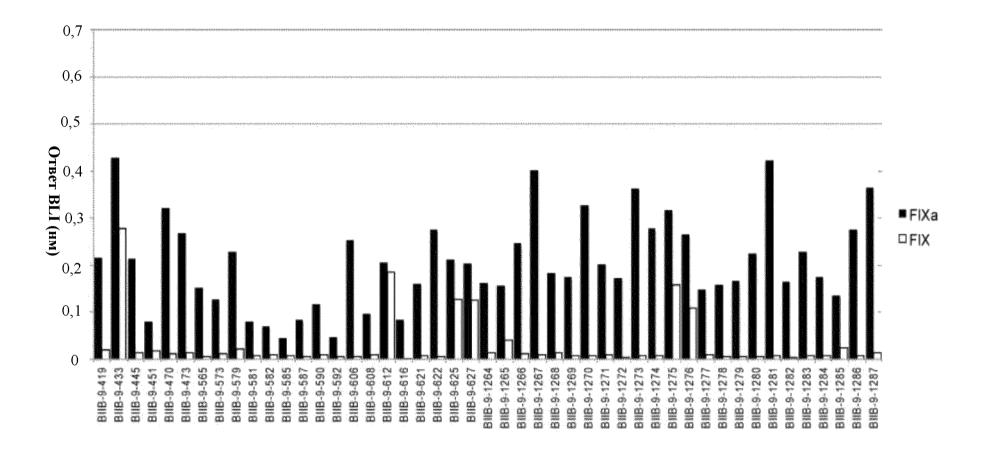
Антитело	НС зародышевог типа	о Длина H-CDR3	H-CDR1	H-CDR2	H-CDR3	LC зародышево го типа	Длина L-CDR3	L-CDR1	L-CDR2	E obra
888-9-605	16.5		FTFSSYAMS		AKKRKYYGSHNP	VK EUZ U	L.	ASLESSES WITA	AASSAU	CICIADVEPET
100 - 1247	VH4-59.6		35353111115		AROVGGVENGVEARD	Vk.1-33.3		SASSOTINIES	DAGALE!	elessa Fat
880-9-477	VE-3*2-333	, i.i.	FIFSINIAMS	ABGSGGSTYYADSYKO	ARGGV1625WARF	VK3-15-26	3.	ASICEVASEIA	GASTRAT	CODWNWPT
JUL-4-77	VH4-59.6	3,3,5	G9155YYW5	STATE OF THE PARTY OF	ARCHYOLYPUFO	VK L-Ga. 6		A504555WIA	KASSUES	CKYRUSET
886-9-480	VH4-08.6	12	rasasarrwa	STREET, THE PARTY OF	ARDOQDA GALDI	V. 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5		3080314151641510	LGSNRAS	MICAROPPWI
808-9-558	VH3-21.0		FTFSSYSMN	SESSSSSSSVVADSVKO	ARSYGYGYHOFDL	VK1-05.9		RASOSIGSWIA	KASSU 5	QQAG5Y5FT
8118-9-414	VH1-46.0		YTERSYYME	INFOCUSTS (AUXILIA)	ARDPYSYGMYYFRY	YKI-12LU		A SECTION OF	AASSLUS	QQGDVFPFT
NIII SELIK	VH1-46.0), E	YIFTSYYMH	INPOGSTSYAQKIQQ	AROGUSSGYYWON	VKIELZU		RASOGIDSWILA	AASSLOS	QQQQAHIJI
BEB-9-425	VH 1-46.0	1,0	YTETSYEMH	ils PSG6STSYACKFOG	ABBAINOVAYO	VK352024	7	RASONANOKA	GASSHAT	GOYOSHPYT
6110-9-440	VH4-39.3	The state of the s	5515550WW5	amedalmide del	ARSPRINKVRGENWEDE	VK4-01.0	7	KSSASVLYSSNER NYLA	WASTRES	DESALDED.
5116-9-452	VH1-46.0		YIMSYYMH	INPAGOS BYAQAFQU	ANDGRESYLWDII	VK3-15.0		JASOUVS NUA	GASTRAT	QOAN ZELL
8181849-460	VH1-46.0	10	VICTSYVMH	JNPSGGSTSYAGKFOG	ARDISTOGESSLYVYMOV	VL3-15-0		RANGSVSSNIA	GASTRAT	CICHOLFERI
0100-0-461	Visitation		METSYMM	INPSGGSTSYAGREGG	ARGPTOSSGYLOMOV	VKSP4556		MANGEN BALLA	GASTRAT	GOLDINA NEET
5//8-9-465	VH J-46.5	18	YTITSYYMY	IINESSOS ISTACALOS	ASSPIDATOL	VK1-05.21		RASOS NESVILA	DASSLES	CONDITION
800-9-564	VH4-08-4	13	YSISSIGYYWA	STRESSORT WIND ALKS	ARDPGYSWEVFDY	VK3F39.0	7	A A SERVICE STATE OF THE SERVI	AASSLQ5	GGSVAYFFT
8118-9-484	VHISTIL	.15	FIFSSYSMIN	SISSSS THYVADSVILG	ANDVGGYAGYYGMOV	VK1-33.2	\$	CJASCOPANITEN	DASNUET	CICIYANEFYT
0110-9-469	VH1-46.0		VIETSYVMH	#NESGGETSYAGETOR	AUDICKORSKIDEDL	7.05-15330		JACON San U	GASTRAT	COSNICET
800-9-566	VH1-46.5		YIFTSYMAY	UNIVERSAL MARKET	AUGUNINSYDADO	VI.5 15.6		LANGUAGE A	GASTRAT	COHERWAPPT
BHB-9-567	VHISHLO	15	VIFTSWARE	IINPSGGSTSYAOXFOG	ARIGRAWAYOGMOV	VK1-05:0	7	RASOSSINIA	DASSUES	COVERSET
81/6-9-569	VH 1:46.0	14	YTETSYYMH	JAPSGGSTSYAGKFOG	ARD6SGYSPYSF07	VK 1-13.8	9	CASCIDISMIN	DASNLAY	GOADDEPET
000-9-588	VH I - A E 9		TYTETSYYMAN	IINPSGGSTTVAGKAGG	ARDGGGSYOVWSGVWYDV	VK3-15.0		MASCHASSALA	GASTRAT	GGAYNWPFT
8118-9-611	VH1-46.0	13	YTETSYYMH	INPSGGSTSYAGKFOG	ARE VISRVAYE 3E	VK3-15.0	· · · · · · · · · · · · · · · · · · ·	RASCINESNIA	GASTRAT	GGONIHPYT
300-9-619	VHT-46.0		VIETSVERIE	IINPSGGSTSVACKFQG	ARESOPRIVSTOTYMOV	VK3-11.0		RASOSVASYLA	DASNIKAT	GOIGNWPFT
810-9-676	VH1-46.7		VIETSVYMA	VINESGGSTSVACKEDG	ASSECTABLE	VKI-05.6		MANORESIWIA	EASSLES	CODGSYPPLT
866-9-863	VH 1-46.0		VIFTSYVALA	IMPSGGSTSVACKFOR	ARCERTAINOR	VKIST		arasan ar birasa	DASNUT	GOADELPIT
8110-9-410	VH LABO		VIETSVIMH	JAPSGGSTSYACKFGS	ARGATEVASSEON	VEGELLETA		MASGISVASVI A	DISINKAT	CONSTREYT
0.000	VIA4-19 II		CS SSSSSW00	STATE OF THE STATE	All and the second second	VALUE		CONTRACTOR OF THE STATE OF THE	L	COVERED
8110-9-471	ViiI-23.0		PETERSYANAS	A STATE OF THE STA	AND THE VEHICLE OF STREET	V(3)211.0	1	LANCIS VISITA	DASNRAT	dansterr
888-9-565	VH4=39.0	15	03315355577 W.G	STYLESSTANDED	AllagiousseyAllevite	VK3-11.0		RASIONASNIA	DASNRAT	GGGSNUFFY
866-9-571	VH4-39.0		658555YYW6	SINVSGSTYVNPSUKS	ARE SKINGY DE	VK3-20.5		RASOSVSSSRA	CASSIAT	CICISHSPRYI
8100-9-579	VH Lab 5		VITTSYVAV	IMPSGGSTSVACKFOG	ARGPWYSYYMOV	VK 1-10 K		TAGE OF STATE	GASSLOS	COAFSERE
000-9-501	VH1-46.0		TOTAL STREET		ANDLYMEROVIES	VIC1-39 0		ASIestanius	AASSLOS	COSCUERT
808-9-582	Victor	The state of the s	YITTSYYMV	INPSGGSTSYAGKIGG	ARAPTYCYSYGMOV	VK1-33-0		GASGOSNYLN	DASNUT	GUADIGEFT
100000	VH4.10 T		GSISSSOV VALG		AREVGTYVGLOFWEGE	Vicion		A SECRETARIA	AASSLOS	GCAMSYELL
AUG-9-587	Visi -46.0	Ťi –	VIFTSVVARI	INPAGGATAVA OKTOG	ARGEPIGYEVEMOV			MARCE WIA	AASSEDS	TO A DESCRIPTION
000000000	UNIT-26.0		1171547321	INPSECSTATAL REC	ARDOEWAYIGMEN	VESTIL		LAST-ISVAS (ILA	E	COVENERLY
0110-01-207	V 6 4 5 TO 2		0500005557740	STYLEGISTY VALUE U.S.	AROSSYDSTOVALYVYGMOV	VI I F I I I I		LANGE STATE OF	44.5	0.0127071271
100.0.60	VIII AGE	14	пртуучын	IINPSOCSTS ACTION	ARTKWSSIPYGMOV	La les alto	-		DASHLET	de sin Frei
100	Visit 10	14	l deservice	SINVEGENTANPECKS	APORT TO ACADOM	Vice of Co.		RESCISVEYS SNAKNYLA	WASTRES	OURTAIN
BIIR ESTA	Vicinity of		11775	allar sees see a control		VICE IN	Single-control of the Control of	12.0.75.14	GASTRAT	GOADNER
110.0.62	VF44-39-0	11	GSISSES WA	SEYS GS TYVN PSLES	ARSGSISGSRFDY	VK4-01-0		ESSUSVEYS NIJKNYCA		OGFYCPPWI
8 (B-9-6.2		1	METSY MA	INPSGGSTSVACAFOR	ARSIGA TT VSV SFOI	VET IT			GASTRAT	OCHSTWEET
101.0	VH T-46.5	3.59 [].	Mars and		ARADYDAWSGYGGLGMOV	76.528.0			Los Novas	MOARERPAT
dia-d-1	7.1	, g.20	FTESSYDMH	SISSISSYIVYAUSVAG	AROVGGYAGYYGMOV	VK1-31.2		CASCOLANTIN	DASNUET	OCYANEPYT
THE SCHOOL SET SHOULD SET UP	VH3-71-7	1.7	PTFGSYDMN	SISSGESTITTALISTA	AROVGOVAGYYGMOV	VKI		CASODIANTIN	DASNUET	OCYANEPYI
150 THE REPORT OF THE REST OF THE RES	14420.888	6.7	1. 1. 12.21 (2007)	anastak arri (PECSYPA)	Tentrol & Falls (1979) & Fritish (1974)	447,333	7	Transcription (Fig.	Transfer t	ESSAGE PRIME FOR I

ФИГ. ЗА

Антитело	НС зародышевого типа	Длина H-CDR3	H-CDR1	H-CDR2	H-CDR3	LC зародышевого типа	Длина L-CDR3	L-CDR1	L-CDR2	L-CDR3
8118-9-408		20	YTETSYYMH	IINPSGGSTTYAQKFQG	ARDPGAYDDWSGYDDYGMDV		10	NASQSVSSYLA	DASNRAT	QQAFVWPPIT
808-9-416	VH1-46.0	18	YTETSYYMH	IINPSGGSTSYAQKFQG	AREGPMLDYPTYSNWFDP	VK3-11.14		RASQSVSSYLA	DSSNRAT	QQRVVWPPT
808-9-629	VH1-46.7	17	YTETSYYMH	VINPSGGSTSYAGKFQG	ARDPSQDYATGTGWFDP	VK1-33.10	9	CASCOISNYLN	DASNLET	GOLOSLPPT
808-9-885	VH1-46.0	1.9	YTETSYYMH	IINPSGGSTSYAQKFQG	AREGPMLOYPTYSNWFOP	VK3-11.6	9	RASQ5VSSYLA	DASKRAT	QQRVIWPPT


ФИГ. 3В

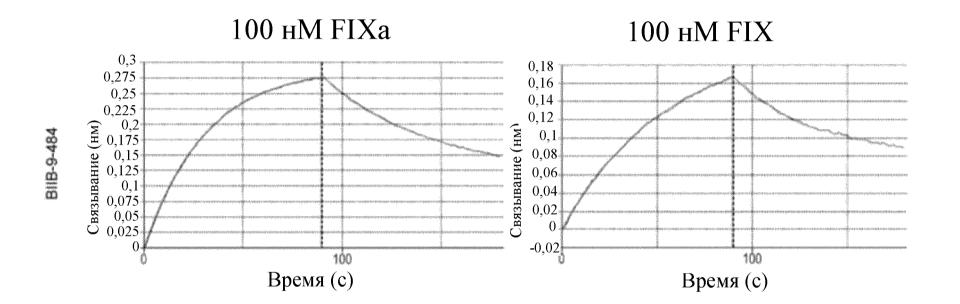
Антитело	НС Зародышев ого типа	Длина H-CDR3	H-CDR1	H-CDR2	H-CDR3	LC зародышевого типа	Длина L-CDR3	L-CDR1	L-CDR2	L-CDR3
8118-9-607	VH4-39.8	13	GSISSSSYYWG	SISYSGSTYYNPSLKS	ARDRGYSYEDFOL	VKI-05.6	9	RASQSISSWLA	KASSLES	QQAGRYPLT
888-9-471	VH4-31.0	16	G5I556GYYW5	YTYYSGSTYYNPSLKS	ARSGVSGSGSDNWFDP	VX3-11.2	ÿ	RASQSVSRYLA	DASNRAT	OCCYNYPFT
808-9-472	VH3-21.0	14	FTFSSYSMIN	SISSSSSYIYYADSVKG	ARGGRYSGSWSWNI	VK3-11.0	8	RASCISVSSYLA	DASNRAT	QQRSDWPT
8110-9-439	VH1-46.9	-13	YTFTSYYMH	HNPSGGSTTYAQKFQG	AREATESYYYMDV	VK3-11.14	9	RASQSVSSYLA	DSSNRAT	QQRDNWPFT
8118-9-446	VH1-69.9	14	GTFSSYAIS	GIIPIFGTASYAQKFQG	ARGLEVGYYGYFDY	VK3-20.8	9	RASQSVSSSYLA	GASRRAT	QQYGNSPLT
8118-9-568	VH4-39.0	13	GSISSSSYYWG	SIYYSGSTYYNPSLKS	ARDLGYAATYFDI.	VK1-33.0	8	QASQDISNYLN	DASNLET	QQYDDYLT
8#8-9-615	VH1-46.0	15	YTETSYYMH	INPSGGSTSYAQKEQG	ARDSPSSSSYW5LDL	VK3-11.0	9	RASQSVSSYLA	DASNRAT	QQSCHWPWT
808-9-628	VH1-46.0	1.5	YTETSYYMH	JINP5GGSTSYAQKFQG	AREPIAYGATLOL	VK3-20.4	ij	RASQSV550YLA	GASSRAT	QQYVVFPFT
8118-9-882	VH1-46.0	15	YTFTSYYMH	IINPSGGSTSYAQKFQG	ARGPTDSSGYLDMDV	VK3-15.20	9	RASQSVSSNLA	GA5TRAT	QQHDNFPPT
BIB-9-884	VH4-39.3	16	GSISSSOYYWG	SIYYSGSTYYNPSLKS	ARSPRHKVRGPNWFDP	VK3-20.0	9	RASQSVS5SYLA	GASSRAT	QQYHLLPPT
8118-9-886	VH1-46.0	14	YTFTSYYMH	HNPSGGSTSYAQKFQG	ARDPAHSYLDAFOI	VK1-12.0	9	RASQGISSWLA	AASSLOS	QQASSFPFT
BIIB-9-887	VH1-46.5	14	YTFTSYYMV	HMPSGGSTSYAQKFQG	ARDAEAHWIPGMDV	VK1-12.0	9	RASQGISSWLA	AASSLQS	QQA55FPFT
8/10-9-888	VH1-46.0	15	YTFTSYYMH	JINPSGGSTSYAQKFQG	ARGPTOSSGYLDMDV	VK3-15.0	9	RASQSVSSNLA	GASTRAT	QQAFNWPPT
811B-9-889	Vn4-39.0	- 15	GSISSSSYYWG	SIYYSGSTYYNPSLKS	ARDVGWYTEYFOL	VK3-15.0	.9	#ASOSVSSNIA	GASTRAT	QQAFNWPPT
BHB-9-433	VH4-39.5	13	GSISSSRYYWG.	SIYYSGSTYYNPSLXS	ARDAGYSAELFDY	VK3-11.0	9	RASQSVSSYLA	DASNRAT	QQSSAYPPT
8118-9-445	VH1-46.4	122	YTFTSYYIH	BNPSGG5TSYAQKFQG	ARDVGQDYWFDL	VK3-15.8	9	RASOSVSSNI A	SASTRAT	QQYDNFPFT
81/8-9-470	VH3-07.0	12	FTFSSYWMS	NIKQDGSEKYYVDSVKG	ARDAGIAWALDY	VK1-05.6	7	RASQSISSWLA	KASSLES	QHPHSWT
BIIB-9-625	VH4-39.6	13	GSISSSSYAWG	SIYYSGSTYYNPSLKS	ARDRGWYTEVLDI	VK1-39.0	9	RASQSISSYLN	AASSLQ5	QQSDTDPPT
BIID-9-1264	VH1-46.0	13	YTFTSYYMH	HNPSGGSTSYAQKFQG	ARDGDSSVYAFDY	VK1-33.1	9	QASQOITNYLN	DASNLET	QQVDOYPFT
8118-9-1265	VH4-39.0	13	GSISSSSYYWG	SIYYSGSTYYNPSLKS	ARDGRHYYELFDY	VK1-12.0	9	RASQGISSWLA	AASSLOS	OOGN5FPIT
8#8-9-1266	VH1-46.0	13	YTFTSYYMH	IINPSGGSTSYAQKFQG	ARDHGWAIYGMOV	VK3-11.14	9	RASOSVSSYLA	DSSNRAT	CORUNFEET
81(8-9-1267	VH1-46.0	1.3	YTETSYYMH	HNP5GG5T5YAQKFQG	ARDHGWAIYGMDV	VK4-01.0	9	KSSCISVLYSSNNKNYLA	WASTRES	COHYVEPET
81/8-9-1268	VH1-46.0	12	YTFTSYYMH	HNPSGGSTSYAQKFQG	ARDPPSWYVFOI	VK3-11.10	9	RASQSVSSYLA	DASNRAT	COATVWPFT
800-9-1269		1,7	YTETSYYMH	HNPSGGSTSYAQKFQG	ARORGOYYHFOL	VK1-12.0	9	RASOGISSWIA	AASSLOS	COASSEPET
8#8-9-1270	VH1-46.0	11	YTETSYYMH	IINPSGGSTSYAOKFOG	ARDTGGYAFDI	VK3.11.0	9	RASOSVSSYLA	DASNRAT	OOSADEPET
808-9-1271	VH1-46.0	11	YTETSYYMH	HNPSGGSTSYAQKFQG	ARDTGGYAFDI	VX3-15.0	9	RASOSVSSNLA	GASTRAT	OOGESEPET
BIIB-9-1272	VH1-46.0	11	YTETSYYMH	HNPSGGSTSYAGKFQG	ARDTGGYAFDI	TVK1-12.0	9	RASOGESSWIA	AASSLOS	QQASSEPET
BI/B-9-1273	VH1-46.0	11	YTFTSYYMH	HNPSGGSTSYAGKFQG	ARDTGGYAFDI	Tvx3-11.0	9	RASQSVSSYLA	DASNRAT	OOSANEPET
BIIB-9-1274	VH1-46.0	11	YTFTSYYMH	HNPSGGSTSYAOKFOG	ARDTGGYAFDI	VK1-12.0	9	RASOGISSWLA	AASSLOS	QQANSFP#T
8//8-9-1275	VH4-39.0	18	GSISSSSYYWG	SIYYSGSTYYNPSLKS	ARDVGRTYELFDI	Vid-12.0		RASOGISGWIA	AASSLOS	COANSIDIT
888-9-1276		13	GSISSSSYYWG	SIYYSGSTYYNPSUKS	ARDVGRTYELFDI	VK1-12.0	i i	RASOGESSWIA	AASSLOS	O/O/GNSEPIT
BIIB-9-1277	VH1-46.0	25	YTETSYYMH	IINPSGGSTSYAQKFQG	ARGGTGYYYG5G5RDGYHYYYGMDV		g	RASQSVSSYLA	DASNRAT	QQSANWPPT
Bl/B-9-1278	4	15	YTETSYYMV	HNPSGGSTSYAQKFQG	ARGPGELGYYLAFDI	VK3-15.0	ğ	RASOSVSSNIA	GASTRAT	QOHANEPPT
888-9-1279	VH1-46.0	15	YTETSYYMH	HNPSGGSTSYAQKFQG	TARGETOS SGYLDMDV	VX1-12.0	9	RASOGISSWLA	AASSLOS	OGASSEPPT
	Action to the second se	1.5	YTFTSYYMV	IINPSGGSTSYAQKFQG	ARGPWYSYYYMDV	VK1-39.0	9	RASOSESSILN	AASSLOS	OQAYSLPIT
888-9-1781	Martin Control	13	GSFSGYYWS	FIDHSGSTNYNPSLKS	ARTINSKYYGMOV	V£1-05.6	9	RASOSISSWIA	KASSLES	OOAISI PIT
888-9-1282		15	YTETSYYMV	IINPSGGSTSYACKFOG	ARVETVRYSVI ARDI	VK3-15.0	i i	RASOSVSSNLA	GASTRAT	OGHNHUTT
	VH1-46.5	Tis .	VIETSYVMV	IINPSGGSTSYAGKFOG	ARVPTYRYSYLAFIDI	VK1-12.0	9	RASOGISSWLA	AASSLOS	QQASSEPPT
CONTRACTOR OF THE PROPERTY OF	VH1-46.5	iš –	VIFISYMV	IINPSGGSTSYAQKFQG	ARVPTYRYSYLAFOI	VX3-15.11	q	RASQSVGSNLA	GASTRAT	COHNHURIT
808-9-1285	VH1-46.5	15	TYTETSYYMV	HNPSGG5T5YAQK#QG	ARVPTYRYSYLAFOI	Waiso I	g	RASOSVSSNEA	GASTRAT	COASNEPPT
8#B-9-1286	Accession of the Contract of t	13	YTFISYYMV	HNPSGGSTSYAQKFQG	ARVPTYRYSYLAFOI	VK1-12.0		PASOGISS WLA	AASSLOS	QQASSFPPT
harana and a second	VH4-39.3	16	GSISSSDYYWG	SIYYSGSTYYNPSUKS	ARSPRIKVRGPNWFOP	VX3-70.0	8	RASOSVSSSYLA	GASSRAT	GOYHLHPT


ФИГ. 3С

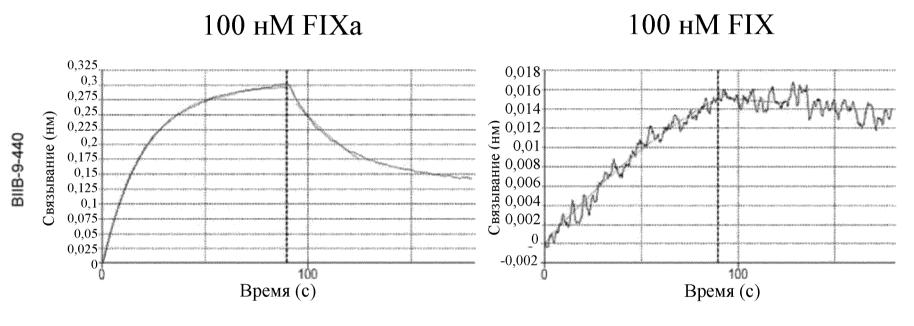
Антитело	НС зародышевого типа	Длина H-CDR3	H-CDR1	H-CDR2	H-CDR3	LC зародышево типа	Длина L-CDR3	L-CDR1	L-CDR2	L-CDR3
8/18-9-397	VH4-08.4	17	YSISSGYYWA	SIYHSGSTYYNPSUAS	ARDVWYVGGFDP	VK1-33.0	3	QASQDISNYLN	DASNLET	QQSDDHPPT
8/18-9-578	VH4-39.8	12	GS/SSSSYYWG	SI5Y5GSTYYNPSLK5	ARDKYQDYSFDI	VK1-12.3	9	RASQGIDSWLA	AASSLQS	QQANFLPFT
888-9-631	VH1-46.0	11	YTFTSYYMH	#NPSGGSTSYAQXFQG	ARAENRGDYEA	VK1-12.4	9	RASQGISRWLA	AASSLQS	QQRTSFPLT
8//8-9-612	VH1-46.0	-13	YTFT5YYMH	INPSGGSTSYAQKFQG	ARDAGYHWYGMDV	VK3-11.2	9	RASQSVSRYLA	DASNRAT	QQSSLFPLT

ФИГ. 3D

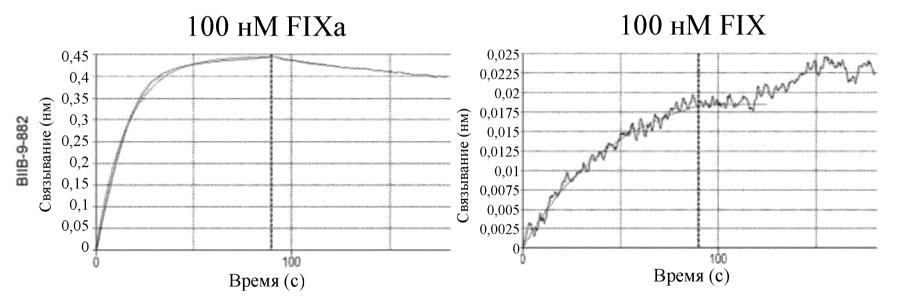
ФИГ. 4А

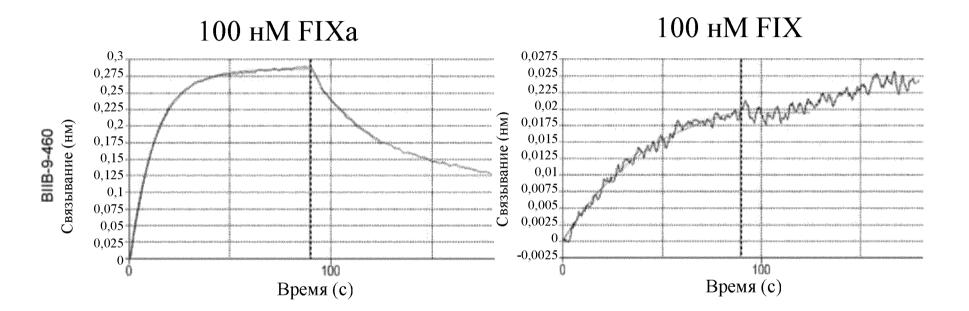


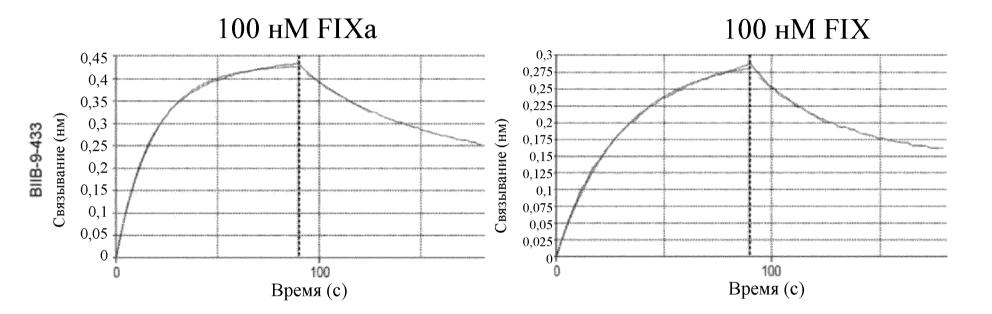
ФИГ. 4В


10/71

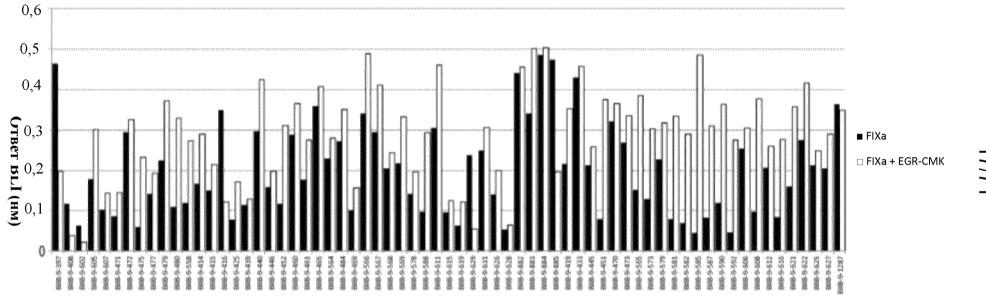
Антитепо	KD для FIXa (М) Ar	гитело	KD для FIXa
BIIB-9-397	4,888E-09		9.419	2,108E-08
BIIB-9-408	1,35962E-09		9.433	1,641E-08
BIIB-9-602	2,56E-09		9-445	2,02E-08
BIIB-9-605	8,63E-09		9-451	8,76E-09
BIIB-9-607	6,57E-09	1 400 1 1 400 1	9-470	1,964E-08
BIIB-9-471	9,114E-09		9-473	1,725E-08
BIIB-9-472	8,99E-09	· · · · · · · · · · · · · · · · · · ·	9-565	1,58E-08
BIIB-9-475	5,927E-09		9-573	8,58E-09
BIIB-9-477	8,635E-09		9-579	1,13E-08
BIIB-9-479	5,83E-08		9-581	1,13E-08
BIIB-9-480	7,508E-09		9-582	1,42E-08
BIIB-9-558	7,508E-09 1,10E-09		9-585	
BIIB-9-414	1,665E-08		9-587	1,24E-08 1,18E-08
BIB-9-415	AND DESCRIPTION OF THE PARTY OF		9-590	
BIIB-9-416	1,44E-08		9-592	1,13E-08
BIIB-9-425	2,985E-09	······································		2,17E-08
BIIB-9-439	5,458E-09		9-606 9-608	1,60E-08
Economic money and a second	1,557E-08	and the second s	CONTRACTOR	1,14E-08
BIIB-9-440	3,986E-08	NAME OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER,	9-612	1,40E-08
BIIB-9-446	1,751E-08	\$ 77 - 1 m	-9-616 -9-621	1,68E-08
BIIB-9-452	1,168E-08		9.622	1,67E-08
BIIB-9-460	2,015E-08			1,80E-08
BIIB-9-461	4,306E-08		9-625	1,13E-08
BIIB-9-465	1,978E-08	eronnen ann ann ann ann ann ann ann ann ann	9-627	2,33E-07
BIIB-9-564	1,74E-08		9-1264	1,494E-08
BIIB-9-484	3,77E-08		9-1265	5,977E-08
BIIB-9-469	1,328E-08		9-1266	4,26E-08
BIIB-9-566	2,14E-08		9-1267	1,155E-08
BIIB-9-567	2,06E-08		9-1268	5,153E-08
BIIB-9-568	5,50E-09		9-1269	4,508E-08
BIIB-9-569	7,05E-09		9-1270	2,42E-08
BIIB-9-578	4,91E-09	A	9-1271	4,448E-08
BIIB-9-588	1,65E-08		9-1272	4,562E-08
BIIB-9-611	1,86E-08		9-1273	2,087E-08
BIIB-9-615	2,32E-08		9-1274	2,845E-08
BIIB-9-619	1,19E-08		9-1275	2,22E-08
BIIB-9-629	2,56E-08		-9-1276	3,242E-08
BIIB-9-631	6,12E-08		9-1277	5,881E-08
BIIB-9-626	1,66E-07	un anno programma anno programma anno programma de la companya de la companya de la companya de la companya de	9-1278	6,625E-08
BIIB-9-628	1,08E-07		9-1279	4,088E-08
BIIB-9-882	2,312E-09		9-1280	5,168E-08
BIIB-9-883	1,751E-08	and the second s	-9-1281	1,679E-08
BIIB-9-884	1,789E-09	Commence of the Commence of th	9-1282	4,391E-08
BIIB-9-885	8,037E-10	BIIB	9-1283	3,705E-08
BIIB-9-886	3,076E-08	BIIB	9-1284	4,12E-08
BIIB-9-887	6,096E-09	BIIB	9-1285	6,017E-08
BIIB-9-888	6,558E-08	BIIB	9-1286	3,185E-08
BIIB-9-889	4,074E-08	BIIB	9-1287	6,6 87 E-10

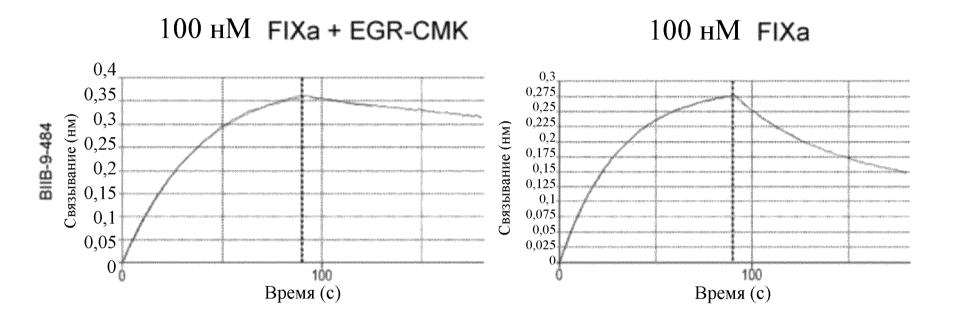

ФИГ. 5


ФИГ. 6А

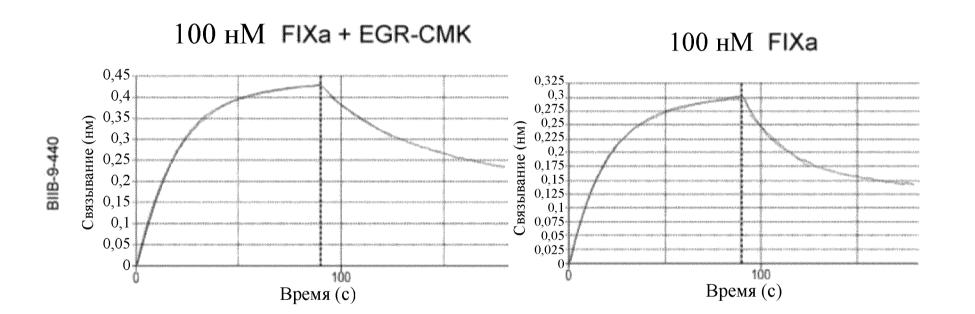

ФИГ. 6В

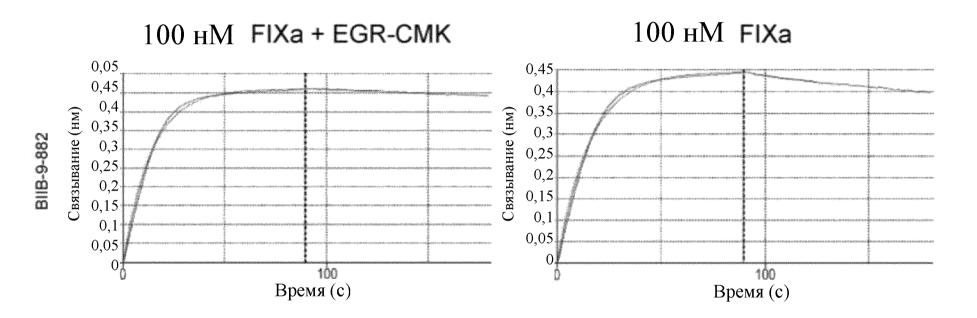
ФИГ. 6С

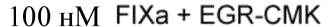

ФИГ. 6D

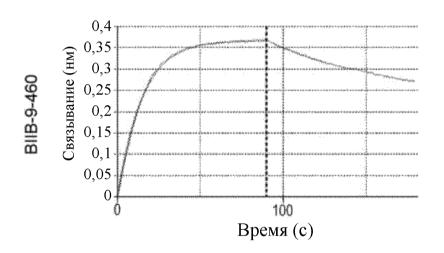

ФИГ. 6Е

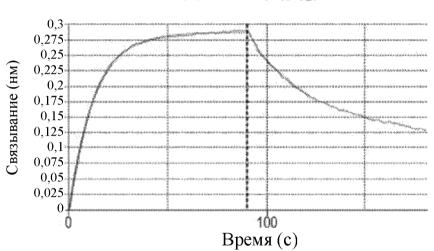
Антитело	FIX	FIXa
BIIB-9-484	1,3E-07	3,8E-08
BIIB-9-440	н.о.	4,0E-08
BIIB-9-882	н.о.	2,3E-09
BIIB-9-460	н.о.	2,0E-08
BIIB-9-433	4,1E-08	1,6E-08


ФИГ. 6F

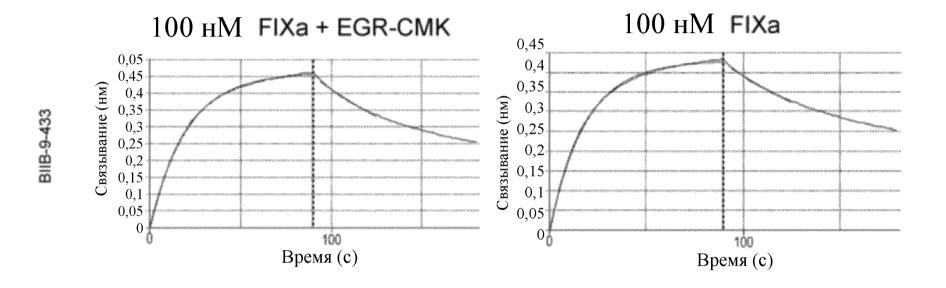

ФИГ. 7


ФИГ. 8А

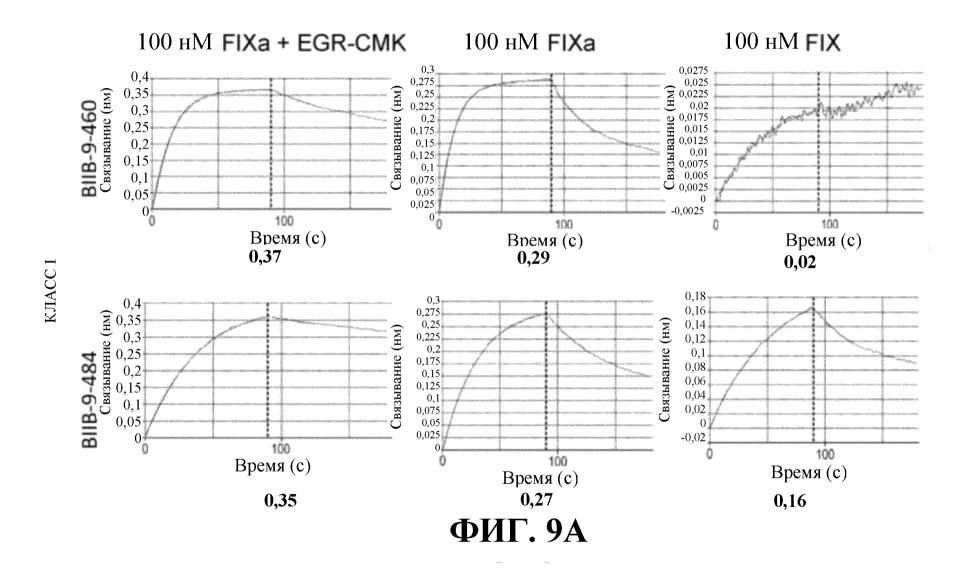

ФИГ. 8В

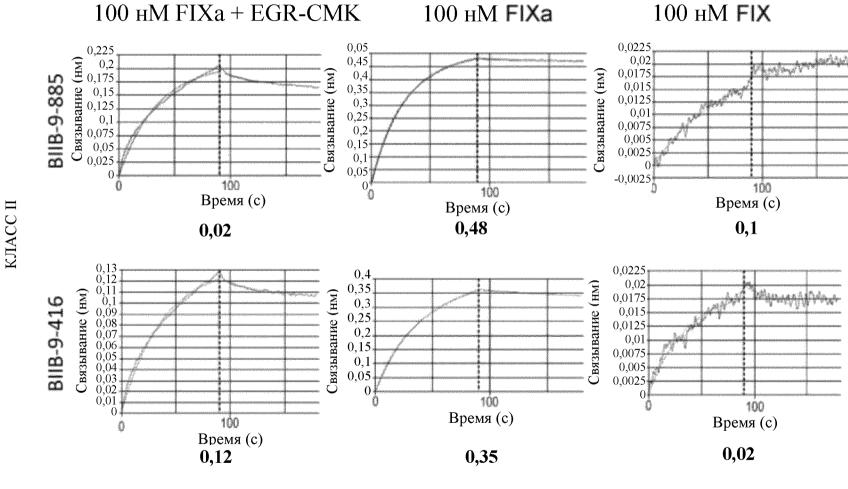


ФИГ. 8С

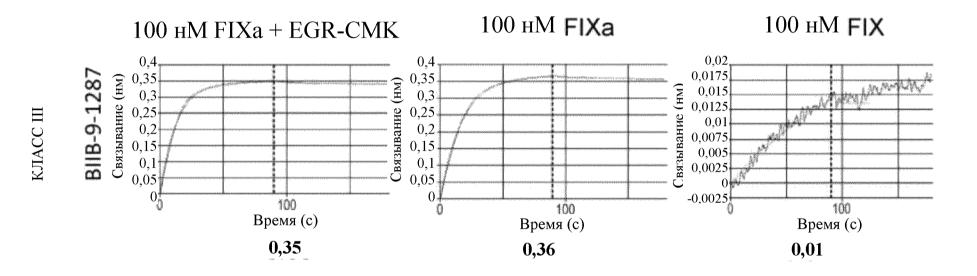


100 нМ **FIXa**

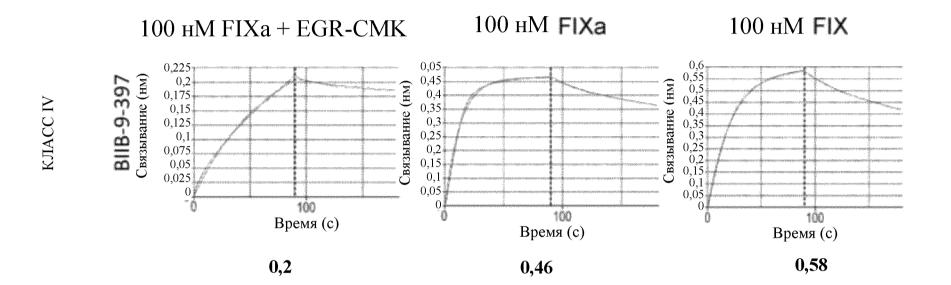

ФИГ. 8D



ФИГ. 8Е


Антитело	FIXa	FIXa+EGR-CMK
BIIB-9-484	3,8E-08	7,8E-09
BIIB-9-440	4,0E-08	2,3E-08
BIIB-9-882	2,3E-09	6,2E-10
BIIB-9-460	2,0E-08	6,8E-09
BIIB-9-433	3 1,64E-08	1,11E-08

ФИГ. 8F



ФИГ. 9В

ФИГ. 9С

ФИГ. 9D

КЛАСС І	КЛАСС II	КЛАСС III	КЛАСС IV
BIIB-9-605	BIIB-9-408	BIIB-9-607	BIIB-9-397
BIIB-9-475	BIIB-9-416	BIIB-9-471	BIIB-9-578
BIIB-9-477	BIIB-9-629	BIIB-9-472	BIIB-9-631
BIIB-9-479	BIIB-9-885	BIIB-9-439	BIIB-9-612
8118-9-480		BIIB-9-446	
BIIB-9-558		BIIB-9-568	
BIIB-9-414		BIIB-9-615	
9118-9-415		BIIB-9-628	
8118-9-425		BIIB-9-882	
8118-9-440		BIIB-9-884	
8118-9-452		BIIB-9-886	
8118-9-460		8119-9-887	
BIIB-9-461		BIIB-9-888	
BIIB-9-485		BIIB-9-889	
BIIB-9-564		BIIB-9-433	
8118-9-484		BIIB-9-445	
BIIB-9-469		BIIB-9-470	
BIIB-9-566		BIIB-9-625	
8118-9-567		BIIB-9-1264	
BIIB-9-569		BIIB-9-1265	
8118-9-588		BIIB-9-1266	
818-9-611		BIIB-9-1267	
BIIB-9-619		BIIB-9-1268	
8/18-9-626		BIIB-9-1269	
BIIB-9-883		BIIB-9-1270	
8116-9-419		BIIB-9-1271	
BIIB-9-451		BIIB-9-1272	
BIIB-9-473		BIIB-9-1273	
BIIB-9-565		BIIB-9-1274	
BIIB-9-573		BIIB-9-1275	
BIIB-9-579		BIIB-9-1276	
8118-9-581		BIIB-9-1277	
BIIB-9-582		BIIB-9-1278	
BIIB-9-585		BIIB-9-1279	
BIIB-9-587		BIIB-9-1280	
BIIB-9-590	- Arteriococicus de anterior gels contratos de contratos de contratos de contratos de contratos de contratos d	BIIB-9-1281	
BIIB-9-592		8118-9-1282	
BIIB-9-606		BIIB-9-1283	
BIIB-9-608		BIIB-9-1284	
BIIB-9-616		BIIB-9-1285	
BIIB-9-621		BIIB-9-1286	
BIIB-9-622		BIIB-9-1287	
BIIB-9-627			
BIIB-9-1335			
BIIB-9-1336			

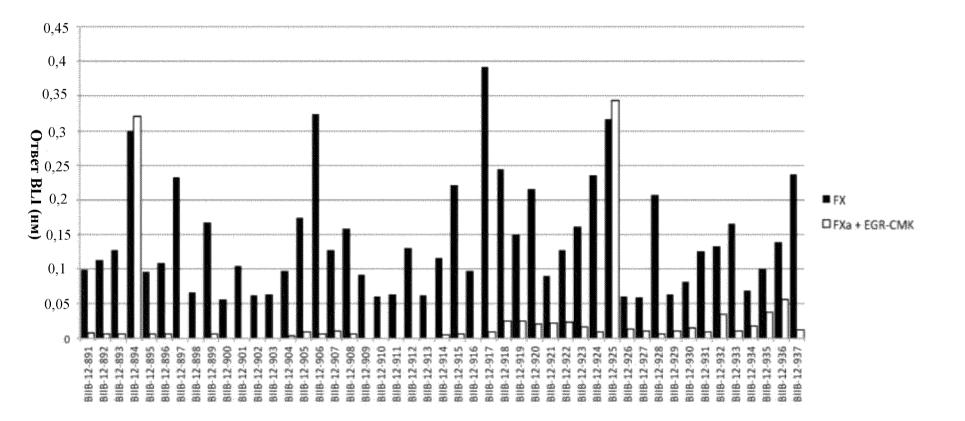
ФИГ. 10

29/71

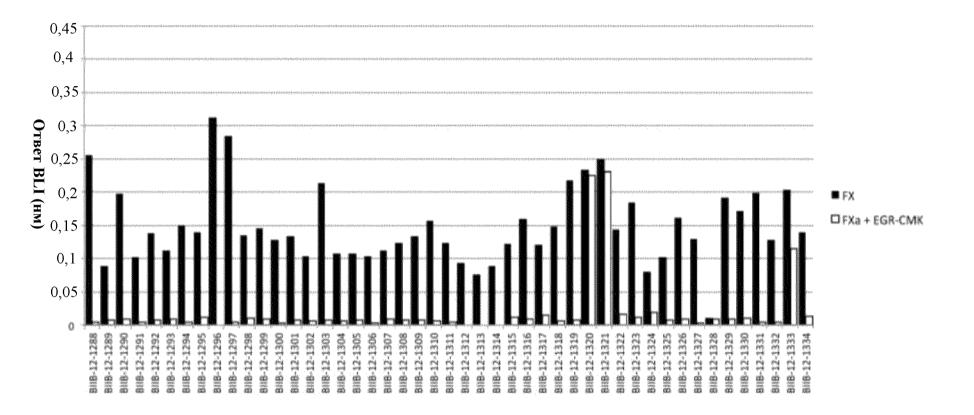
Антител <u>о</u>	Макс. дл. волны (нм)) Антитело	Макс. дл. волны
BIIB-9-397	535,35	BIIB-9-419	529,42
BIIB-9-408	529,98	BIIB-9-433	547,09
BIIB-9-605	530,23	BIIB-9-445	529,71
BIIB-9-607	527,53	BIIB-9-451	528,87
BIIB-9-471	528,56	BIIB-9-470	529,13
BIIB-9-472	527,22	BIIB-9-473	529,45
BIIB-9-475	529,98	BIIB-9-565	526,56
BIIB-9-477	529,54	BIIB-9-573	528,68
BIIB-9-479	527,16	BIIB-9-579	528,65
BIIB-9-480	528,55	BIIB-9-581	529,58
BIIB-9-558	530,68	BIIB-9-582	530,31
BIIB-9-414	529,34	BIIB-9-585	529,30
BIIB-9-415	528,47	BIIB-9-587	530,10
BIIB-9-416	528,61	BIIB-9-590	527,64
BIIB-9-425	529,81	BIIB-9-592	527,74
BIIB-9-439	530,13	BII8-9-606	529,53
BIIB-9-440	529,96	BIIB-9-608	528,48
BIIB-9-446	528,74	BIIB-9-612	528,48
BIIB-9-452	527,77	BIIB-9-616	529,50
BIIB-9-460	529,05	BIIB-9-621	529,01
BIIB-9-461	529,90	BIIB-9-622	528,39
BIIB-9-465	530,09	BIIB-9-625	528,86
BIIB-9-564	529,70	BIIB-9-627	528,83
BIIB-9-484	529,29	BIIB-9-1264	528,16
BIIB-9-469	529,31	BIIB-9-1265	527,57
BIIB-9-566	536,21	BIIB-9-1266	530,96
BIIB-9-567	535,09	BIIB-9-1267	528,97
BIIB-9-568	527,97	BIIB-9-1268	528,52
BIIB-9-569	528,49	BIIB-9-1269	528,45
BIIB-9-578	529,38	BIIB-9-1270	529,30
BIIB-9-588	528,46	BIIB-9-1271	529,21
BIIB-9-611	530,05	BIIB-9-1272	529,29
BIIB-9-615	530,08	BIIB-9-1273	529,39
BIIB-9-619	528,84	BIIB-9-1274	528,93
BHB-9-629	529,53	BIIB-9-1275	532,92
BIIB-9-631	529,97	BIIB-9-1276	528,25
BIIB-9-626	529,94	BIIB-9-1277	528,84
BIIB-9-628	529,24	BII8-9-1278	516,04
BIIB-9-882	530,24	BIIB-9-1279	529,61
BIIB-9-883	529,37	BIIB-9-1280	528,38
BIIB-9-884	529,79	BIIB-9-1281	532,96
BIIB-9-885	528,66	BIIB-9-1282	529,96
BIIB-9-886	529,80	BIIB-9-1283	530,83
BIIB-9-887	529,42	BIIB-9-1284	529,95
BIIB-9-888	529,73	BIIB-9-1285	533,96
BIIB-9-889	527,79	BIIB-9-1286	530,97
		BIIB-9-1287	529,92 !

ФИГ. 11

Антитело	НС зародышево го типа	Длина H-CDR3	H-CDR1	H-CDR2	H-CDR3	LC зародышев ого типа	Длина L-CDR3	L-CDR1	L-CDR2	L-CDR3
BUB-12-891	VH1-464	14	TTFTSYTTH	PAPSGGSTSYAQRFQG	ARASTRO (SAFE)	VK4-01.0	9	KSSCSVLYSSMAKNICA	Animalainin marini	Annalis and the second
848-12-892	VH1-46.0	3.4	YTETSYYMH	HAPSOCSTSYACATOS	ARGIGARTETATOL	VK3-11.0	3	PASCEVSSYLA	DASHRAT	CORINIPIT
885-12-893	VH1-46.5	16	TTFTSYMMV	ENFSCGSTSYACKFOG	ARONCAROLYSPICATOR	VK1-12.10		RASCIGISSWIA	AASSLOS	COAAAFFFT
818-12-895	VH1-45.0	13	TTTTSYTMM	IMPSGGSTSYAGK/QC	ARGGGYKSRG87f	AK1-15'0	9	PASCICIONIA	AASSLOS	QQASSEPFT
818-12-896	VH1-46.0	13	ALELZAAMH	INPSGGSTSYAQUOQG	ARGIC/QQPRG/OX	VK1-12.0	9	RASCKITSSWEA	AASSLOS	CICANSPIT
888-12-897	VH4-39.0	34	G5/5555YYWG	STEELSTEELS	AREGRETTEGO MECO	383-200	3	RASCISVISSINA	GASSRAT	CCDGMFFT
BUB-12-896	VH1-46.9	-12	YTHTSYYMH	IMPSGGSTTY#CKFQG	ARGURNIRATO	VKL-05-12	9	PASCASSWIA	DASSLES	COVMERTE
848-12-899	VH1-46.0	14	TTFTSYMH	INPSGGSTSYACKFOK	ARGERTSSENTOL	VK4-01:0	9	CSSCSVI YSSNANYI A	WASTRES	GOSYTUPET
808-12 900	VH1-46.8	15	TTETSTYMH	SMPGGGSTSYAQXFQX	ARSGGMENT CARDY	VK1-05-6	8	RASCISISSWILA	KASSLES	QQTRSTFT
888-12-901	VH1-46.6	15	THESTENS	INFECTIVACE CO.	ARSHIPREFERENCE	VK3-11.0	9	PASCSVSSVLA	DASHBAT	OCSANFFIT
888 12 902	VH1-46.8	- 15	THEISTEAM	PAPGGGSTSTAQEFQG	ARCEPRIATENTO	VK4-01.20	9	KSSQSVLYSSNARNYLA	WASTRES	QQSESTPET
BHB-12-903	VM2-46.0	3.3	TIFISTIMH	alessastista (kilo)	ARDIGITAGAIGI	3.634.1.3	9	MASSESSES A	CASMRAT	QQRAN,NPP1
8/8-12-904	VH3-30.0	11	FTFSSYGMH	VISYOSISMAYYALISVAL	ARGSGRSGYHY	VK3-15-0	. 9	MASCOVSSMIA	GASTRAT	COATNAPT
808-12-905	43.40.0	9	FTFSSYGM#	VISTOGSNETTADSVEG	AKGG TROT		9	RASCONNON A	GASSAAT	CONTEMPER
848-12-906	243-301	9	FILESCHEAD	VISTOGSAKTTAÜSVILG	AKSSRHI OY	78.3-21.13	. 9		CASNIKAT	225504997
888-12-907	VH4-08-4	11	YSOSGYTWA	ATTRICKS TO SERVICE	ARESON SCAA!	VK2-28.1	9	ASSOSILIYSAGYMYLD	LGSAWAS	MORLGLPPT
808-12-908	VH3-30.0	9	FTFSSYGMH	VISITERS NATITALIS VALS	ALCOPICATO.	VAL-12-15	9	RASCIGISSIALA	GASSLOS	COCSSUMI
888-12-909	VM3-30.0	12	FTFSSYGMM	VIOTOGSMETTALISVES	AKGKHRRSSF (K	VK3-11.0	. 🦠	RASCOSVSSYLA	CASMITAT	GQLSDWPFT
808-12-910	VH4-31.5	14	GSGSGGYYMS	SYYSGSTYYMPSLKS	4.00	VK1-39.0	9	#ASC(SISSTEN	AASSLOS	GOLSHIPT
898-12-911	VH3-30.0		FTFSSYSMH	VISTOGSNXYYADSVKG	ABGRGMOV	VK3-11.0	9	KASCSVSSYLA	CASHRAT	O.C. School Co.
846-12-912	VH3-30.0	1.1	FTFSSYGMH	VISTORISMETTA USVKO		VK3-15.0	9	AASQSV5SALA	GASTRAT	QCFHN PFT
848-12-913	VH1-18-0	#	YTTTSYGIS	WISAYNGNTNYAGKLOG	A.C.3 (5.8)	VK3-15.0	10	AASQSVSSALA	GASTRAT	GGYAPYPPLT
848-12-914	VH1-46.0	12	THEFT	RNPSGGSTSYACKFOG	ARAPRINGTMEN	VK1-39.0	9	RA5Q5855YLN	AASSLOS	QQQYNTPLT
888-12-915	VH4-39.5	10	CASSATTMO	SYYSGSTYPNPSUS	ARVGGGTANF	VAZ-28.5	9	RSSQSUHSNGTNYLD	LASMEAS	MICARCEPIAT
898-12-916	VH1-46.0	14	YTTTSYYMH	WMPSGGSTSYAQKEQG	ARCONDATABLE	VX1-39.0	9	RASQSSSYUN	AASSLOS	Qualify I
888-12-917	VH5-51.1	13	YSFTTYWAG	RYPGOSOTRYSPSFQG	ARGRERERGEEDY	VK3-15.0	9	RAICSVSSNIA	GASTRAT	QQL/AHPFT
848-12-918	VH3-30.0	11	FTFSSYGMH	VISYOG SNKTYADSYRG	AKSLOGRAFON	VK1-39.3	3	RASCS/SRYLN	AASSL05	COFFERT
888-12-919	V#14457	15	TTTTSTYMH	VANESCOSTO (ACADO)	ARGANAVOREYADE	W1.05.6	8	RASCISTS WIA	KASSLES	30,753977
BHB-12-920	VH1.18.8	30	1011010101	MISPYNGNTMYAGRUDG	ARGISCHTIME	VX3-15.8	9	AAS SANSANIA	SASTRAT	COANAYPFT
808-12-921	VH3-30.0	13	FTF553GMH	VISTORIS NACYYADSVIKO	AN VOIDEGT RAFT P	VK3-12-4	9	RASOCISEMIA	AA35/05	COCAVERU
BRS 12-922	VH J-46 0		YTETSYMM	MYSG GOTTA MICE	ABRORIAGN	VK2-28 0	9	RSSQS(LHSNGYNYL)	LOSARAS	SEC 41 CTP/I
808-12-923	VH 1-46/0	13	YTELSTYMH	ENPSGUSTSYACKFOLG	ARCAS Y SIRAF	VX.1-05.6		RASCISISSINIA	KASSLES	QQFKSLSFT
848-12-924	VH3-30.0	17	FIFESTOMH	VISITEGENEYI AUSVEG	AKGKS55PKANP	VX1-17.0	9	RANCOSSINIA	AA35,03	
888-12-926	VH1-46.0	14	YUFTSYMM	(N#555551514C)(1)	A STEEL MARKET ASSETS	VX3-15.0	9	A4303V335TA	CASTRAIL	CORSONER
888 12 927		14	111111111111111111111111111111111111111	A	ARGERIANTYTHIS	VK3-15.0	9	FASSESSES	GASTRAT	0.00
808 12 929			1115010-004	VISYOKISAKYYADSVYIG	AKGGTYLDI	VI.3-23.1	9	RASCSVIKSSRLA	GASSAT	100000
818-12-929	VH1-46.0	12	YTETSYYMH	RNFSGGS151ACKFOG	ARDQGYSRS#SI	V8.4-01.20	9	KSSQSV1YSSMNKNYLA	WASTRES	CONFERENCE
BNB-12-930	VHI-45.0		YUTTSYYMIH	DMSGGSTSYACKFOG	ARVROXATILIZOH	VK4-01.4		KSSCSYLFSSNAKNYLA	WASTRES	CONFERM
B18-12-931	VH1-45.6	.17	THERMAN	MAYSGGSTSYACKFOG	ARCHICETGRYTTYMUV	VK3-15.0	9	RASCISVSSNIA	CASTRAT	CCAAYWYWI
808-12-932	VH3-30.0	13	FTFSSYGMH	VISTOGSNKYTADSVKG	ARLGYRGASAFOI	VX1-39.0	8	RASCESSIVA	AASSL05	CONSERVE
898-12-933	VH3-30.0	11	FTFSSYGMH	VISTERGENETYALISVEG	ARLPRETGTAY	VK3-20.0	9	RASQSVSSSYLA	GASSRAT	QQYSASPIT
848-12-934	V43-35.0	13	FTFSSYGMH	VSYDOSNA YVADSVAG	ARLSGGPSYGMOV	170-15.20	9	TAGGERSALA	GASTRAT	CONSTRUCT
889-12-935	100	13	FTF55YGMH	VISYOCISMATYADSVAG	ARTICY GATCHEON	V83-20.5	- 3	RASQSVSSSFLA	CASSAAT	GGYSSSPIT
	543-23	10		ADE SCIENTIFICATIONS		133.5	<u> </u>	EAST VISIN A	GASTRAT	
3 17 3 17		14	7777577	PMP34.63131ACA103		142.280	9		GSARAS	


ФИГ. 12А

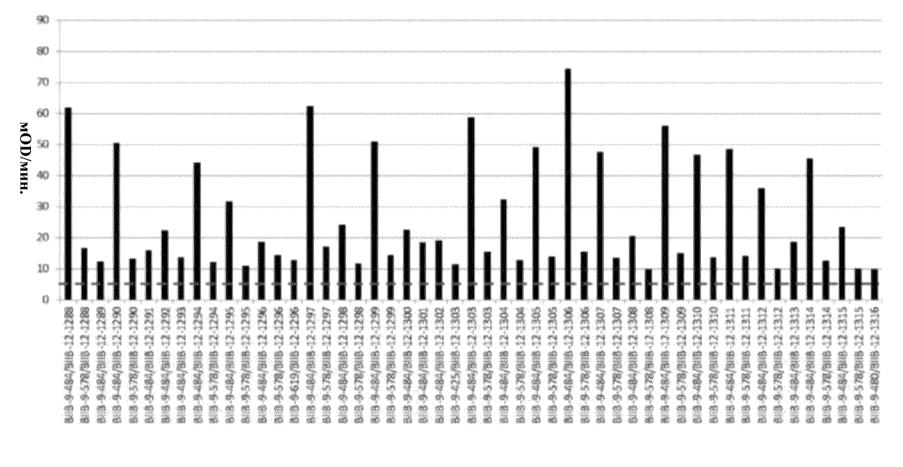
Антитело	НС зародышевого типа	Длина H-CDR3	H-CDR1	H-CDR2	H-CDR3	LC зародышево го типа	Длина L-CDR3	L-CDR1	L-CDR2	L-CDR3
848-12-1288	VH1-46.0	19	YTEGYMH	INPRAGSISYAQXIQS	ARGGANOTGSSRWWFFOL	VX4-01.0	Ħ	CSCSVLYSSNIKNY), A	WASTRES	QQSFNTPFT
8/88-12-1289	VHI-66.5	18	YERISTYME	BNPGGGSTSYAGKFQG	ARGPPRIYATGSHNWFOP	YK4-01.0	9	KSSQSVLYSSNNKNYLA	WASTRES	QQYYASPFT
848-12-1290	VH1-46.8	1.3	YTETSYYMH	IAM GGGSTSYACKFOG	AREGGROVEGMOV	VX1-12.0	9	RASQGISSWLA	AASSLOS	QQGFSFPFT
848-12-1291	VH1-46.0	13	YEFTSYEMH	RAPSGSTST4QKFQG	ARSREMWVGYFDI	VX3-11-0	9	RASCISVISTICA	CASSIA	CONTRACT
586-12-1292	VH1-46.4	14	TIFISTYM	UNPSGGSTSYAQXFQG	45.770777255777	VX3-11.14	9	RASIJSVSSTLA	DSSNRAT	CICIALNEPET
848-12-1293	VH1-46.0	1.3	YTETSYYMNI	HMPSGGSTSYAQKFQG	ARG SGGRANGLEV	VK1-12.0	. 9	RASOGISSWIA	AASSLQ5	QQANIFPFT
809-12-1294	VH12-46.0	12	TIFISTYMH	Mersicas SYACKI Ca	ARG RSSRUMOV	VX.1-CA.6	9	RASCISISSIVILA	KASSLES	COVNTERFT
848-12-1295	VH12-46-5	17	YTTTSYYMV	IMP5GGSTSFAQXFQG	ARVOSAITOROSYSMOV	VX1-12.7		RASJGISSWLA	AASALOS	QQAISLPIT
885-12-1296	VH3-23.2	15	FTFSTYAMS	AISGSGGSTYTADSVKG	AKGESHIYYUWSEL	vk3-20.0	9	*ASQSVSSSYLA	GASSRAT	QQYAQSPLT
848-12-1297	VH3-30.0	14	FTFSSYGMH	VISYEXGSNK TYACKVKG	A85GGQTH8RSMOV	VX3-11.2	9	RASCISVSRYLA	DASNRAT	QQGNNWPPT
6468-12-1298	VH3-30.0	11	FTFSSYGMH	VISTO GENERAL TRADSTRICT		VX1-12.0	9	RASOGISSWLA	AA55L025	QQTNSUIT
8#8-12-1299	VHG-30.0	11	FTFS5YGMH	VISYDGSNKYYADSVKG	ARGSSRRAYVY	VK3-15.0	9	RASCISVSSNIA	GASTRAT	COLNNEPT
888-12-1300	VH3-30.0	9	FIFSSYGMH	VISYDGSNKYYADSVKG	ARCONOMA	VX1-12.0	9	#ASCEGISSWILA	AASSLOS	QQASSEPPT
8#8-12-1301	VH3-30.0	12	FTF55YGMH	VISYDGSNKTYAD5VKG	ARTGNYGRGMPY	VK3-11.6	9	#ASOSVSSYLA	DASKRAT	QQSSSWPFT
8#8-12-1302	VH1-18.1	12	YIFTNYGIS	WISAYNGNINYAQKLQG	ARARSOWRAFOI	VX3-15.0	9	RASCISVSSMLA	GASTRAT	QQVNNLPLT
848-12-1303	VH3-30.0	1.1	FIF5SYGMH	VISTORISH KITALISM IS	ARGEISRUCCH	VK1-39.0	9	RASCOSSION	AASSLOS	COATSLE
848-12-1304	VH3-30.0	11	FTF55YGMH	VISYDGSNKYYADSVAG	A CORPOSER CO	VK3-15.0	9	RASCISVSSRILA	GASTRAT	QQANVUFUT
8/48-12-1305	VHG-30.0	13	FTFSSYGMH	VISYDGSNKYYADSVKG	AX.CCGRWSSOFCH	VK3-11.0	9	RASQSVSSYLA	DASNRAT	QQSANWPPT
898-12-1306	VH4-31.5	9	G5455/G/GYYWS	3175-G517114-5L85	ARCAGGS AV		. 3	KSSQSVLYSSNIKKNILA	WASTRES	QQSVMTPLI
848-12-1307	VH4-08.4	15	15855GYYWA	SYMSESTYWYSLAS	ARGPLPRSROLATOR	VK1-39.15	9	RASCISSSFUA	AA55LQ5	QQTYSTPLT
888-12-1308	1913-2010	-13	FTFSSYGMH	VISYDESNKYYADSYXG	ARGPRALGTAFDI	VK3-20.4	9	RAGES ASSESSMENT	GASSRAT	QQAGSFPFT
848-12-13-5	VH3-30.0	12	FTF55YGMH	VOYLAGINKT AUGVAG	ARGRYTSRYFOR	VXIII 20	9	RASCISSIVIA	44553 Q5	QQANSURI
848-12-1310	VH3-21.0	-15	FTFSSYSMA	SISSSSTTY ADSVAG	ARLGGYGSSQRYFGL	VK3-11.2	9	RASCISVORVIA	DASNRAT	EQASNIMPPT
848-12-1311	VH3-30.0	9	FTFSSYGMH	VEYDGARKYADAKG	AXGRHXWAV	VX3-11.0		FASTISMS Y A	DASMRAT	QQASNU997
8/08-12-1312	VH65-303.0	10	FTFSSYGMH	VISTOGSPIKTYADSVAG	ARGMORWICY	VK1-12.0	9	RASCESSIANIA	AA551.05	QQA55FPFT
848-12-1313	VH3-30.0	9	FTF551GMH	VISTOGSNATTADSVAG	Assertion	VK3-15.0	9	RASCISVSSNILA	GASTRAT	COMMITTEE
898-12-1314	V153-30.0	9	FTF5SYGMH	VISYDGSNKYYADSVKG	ANG NYAGO	VK1-12.0	9	BASQG355WLA	AASSLOS	QQANFFPIT
8//8-12-1315	VH3-46.5	1.5	YTETSYTMEY	MARSESSI SYAONADI	ARCEPSKEVIYEUY	VX3-15.0	10	PASSISYSSEA	GASTRAT	QQVENWFFWI
888-12-1316	VH3-30.0	11	FileSSNEMAL	VISYD GSNA YYAUSVKG	AKSGOYRAFDI	VX1-12.0	9	RASOGISSINIA	AASSLOS	COMMERCI
848-12-1317	VAGE 30.0	10	FTF551GMH	VISTORSMATTADSVAG	ARGVGGHDTR	VX1-12.0	9	PAGE SESSION LA	AASSLOS	QQRHSLPPT
848-12-1318	VH3-30.0	-18	FTF5SYGMH	VOYDGSNAMAJOVAG	ARKGOYESGSYSGRAFGI	VX3-11.0	.9	RASOSVSSYLA	DASNRAT	COLUMNITY
5/48-12-1319	VH3-30.0	11	FTFSSYGMH	VISYOGSNKYYADSVAG	ARTGYRASVYY	VK3-15.0	. 9	RASCISVSSNLA	GASTRAT	QQASNEPPT
888 12 1322	VHQ-46.4	1.5	TO ET SYMME	BAPSGGSTSYACKED	APSROPHIRGOVERY DI	VX.4-01.20	9	KSSQSVLYSSVINKNYLA	WASTRES	0.000
888-12-1323	VH145.4	12	TTFTSYNH	Mars 085151A04100	ARGRETEROLDY	VK1-12.0	9	RASQG/SSWLA	AASSLOS	COAMPET
808-12-1324	VH12-46.5	-13	YTETSYYMV	MARSGOSTSYACK/TOG	ARLPRYSKRGLDV	VK3-11.14	8	RASOSVSSYLA	DSSNRAT	COLVSWPT
848-12-1325	VF1,-46.5	10	1000000000	ONE SECTION AND LESS	ARGGRYMICE	VX.1-05.6		FASCISIONI A	KASSLES	0.053/21/28/
848-12-1326	VH3-23.6	15	FTFSSYAMS	TISGOGGSTYYADSVKG	AKC/NYRRYGYGMOV	VX3-20.1	9	RASQ5VRSSYLA	GASSRAT	QQAYSSALI
848-12-1327	VH3-30.0	15	FTFSSYGMH	VISYOGSNKYYADSVKG	AXLGLARGGGYGMOV	VK3-15.0	9	RASQSVSSNLA	GASTRAT	QQYIBB PPT
848-12-1328	V#4-39.0	19	GBISBSSTYWG	SITESGSTYYNESIKS	ARCHATYSCHOTYYYGMOV	VK3-15.0	9	RASCISVISMI, A	GASTRAT	CACAPTAS YPUT
848-12-1329	VH3-30.0	1.2	FTFSSYGMH	VISYOGSNKYYADSVAG	ARGGAGSRYFCH	VK3-15.6	9	RASCESVSSNLA	SASTRAT	QQVENWPFT
888-12-1330	VH3-30.0	11	FTFSSYGMH	VISYOGSNKYYADSVKG	A (C (C (A (A (A (A (A (A (A (VK1-39.0	9	RASOSISSION	AASSLOS	QQAYSVPIT
898-12-1331	ViG-30.0	11	FTFSSYGMH	VSYDGSNKYYADSVKG	AXVENNEGROY	VK3-11.0	9	RASCISVISTIA	DASHRAT	CORVINIPIT
848-12-1332	VH1-46.5	1.2	YTETSYYMS	I/MPSGGSTSYAC#FOG	ARL GRKSRVF DI	VK1-12.0	9	PASSISISSIVIA	AASSLOS	GGVNSFPLT
BHB-12-1333	VH1-46.5	1.4	YTFTSYYMV	INPSGGSTSYALKFQG	ARICSROTPLATOI	VK3-15.0	8	RASQSVSSNLA	GASTRAT	CCVNTWPT
888-12-1334	VH3-30.0	13	FTFSSYGMH	VISYOGSNIKYYADSVIKG	ARVPRKQTGHV5Y	VK2-28.5	9	ASSOCIAL ENGINEER	LASHRAS	MORIGIPANT


ФИГ. 12В

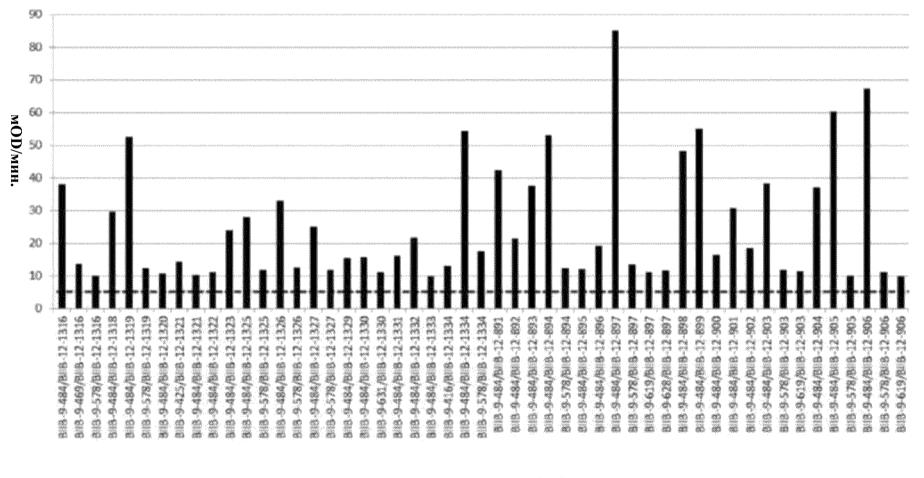
Антитело	НС зародышевого типа	Длина H-CDR3	H-CDR1	H-CDR2	H-CDR3	LC зародышевого типа	Длина L-CDR3	L-CDR1	L-CDR2	L-CDR3
8#8-12-894	VH4-39.0	14	GSISSSSYYWG	SIYYSGSTYYNPSLKS	AREGAHSSMAGLDV	VK1-33.0	-9	QASQDISNYLN	DASNLET	QQDDALPFT
8#8-12-925	VH3-23.0	16	ETESSYAMS	AISGSGGSTYYADSVKG	AKGPRYYWYSWYFDL	VK3-20.0	9	RASQSVSSSYLA	GASSRAT	QQSGG5PLT
808-12-132	10 VH4-39.0		GSISSSSYYWG	SIYYSGSTYYNPSLKS	ARGSGLLVREHYYYYMDY	/ VK3-39.0	9	RASOSISSYLN	AASSLOS	QQADDTPWT
BHB-12-132	11 VH1-69.0		GTFSSYAIS	GIIPIFGTANYAQKFQG	ARTPOTSSATO	VK3-11.14	9	RASQSVSSYLA	DSSNRAT	OOFTNLPYT

ФИГ. 12С

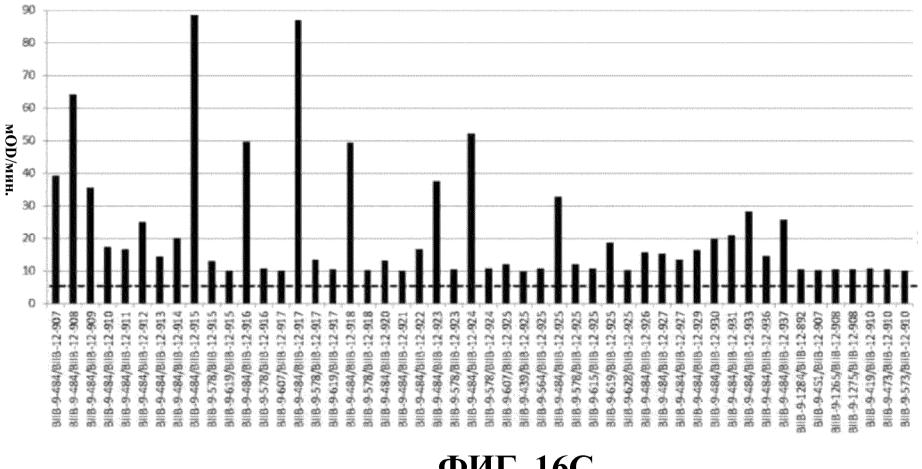
ФИГ. 13А

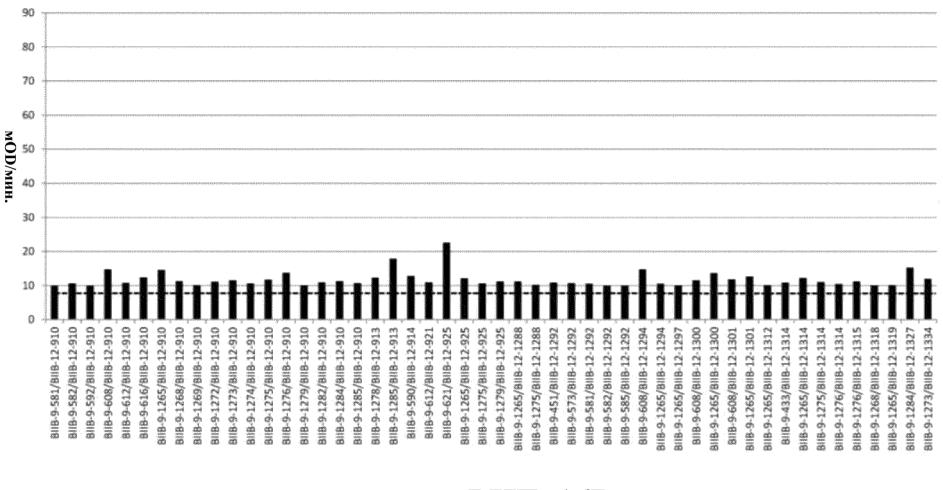

ФИГ. 13В

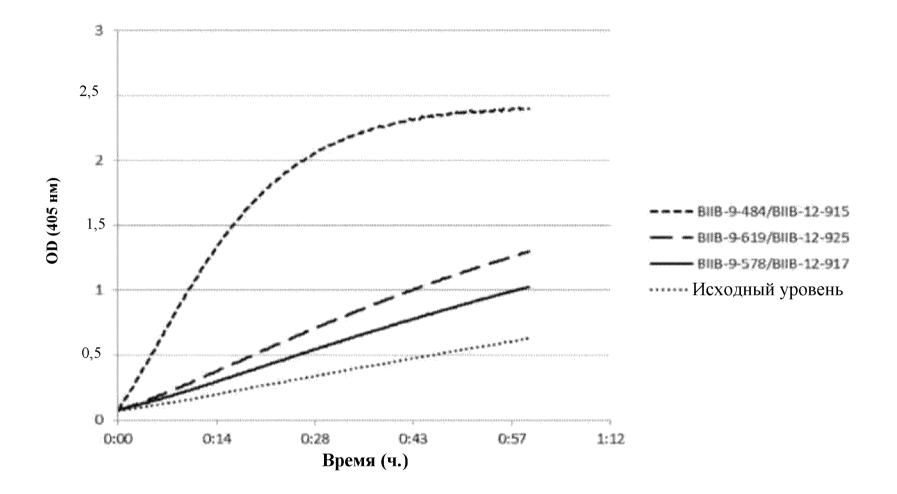
35/71

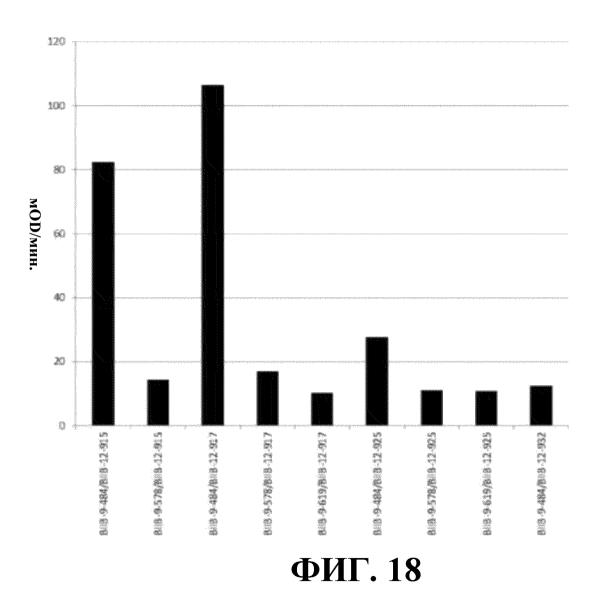

Антитело	KD	Антитело	KD
	для Fx (М)	MITHICIO	для Fx (М)
B B-12-891	6.52 E-08	BIIB-12-1288	
BIB-12-892	3,32E-08	BIIB-12-1289	4,80E-08
BliB-12-893	5,22E-08	BIIB-12-1290	1,61E-08
BIIB-12-894	3,80E-08	BIIB-12-1291	4,26E-08
BIB-12-895	2,63E-08	BIIB-12-1292	6,55 E-08
BIB-12-896	6,34E-08	BIIB-12-1293	2,60E-08
BIIB-12-897	6.80	BIIB-12-1294	3,73E-08
BIB-12-898	1.85E-06	BIIB-12-1295	4,26E-08
BIB-12-899	3,42E-08	BIIB-12-1296	8,39E-09
BIB-12-900	2,58E-08	Bi(B-12-1297	2,68 - 08
BIIB-12-901	*************************	B∥B-12-1298	3,35E-08
BIIB-12-902	Н. О. Н. О.	BliB-12-1299	5,08E-08
BIIB-12-903	н. о.	BI/B-12-1300	4,86E-08
BIIB-12-904	4,23 E-08	BIIB-12-1301	6,50E-08
BIB-12-905	4,84E 08	BIIB-12-1302	6,41E-08
BIIB-12-906	3,96E	BIIB-12-1303	2.59E-08
BIIB-12-907	5.20E-08	BIIB-12-1304	5,05E-08
BIB-12-908	3,40E-08	BIIB-12-1305	3,88E-08
BIIB-12-909	6,97E-08	BIIB-12-1306	4,70E-08
BIIB-12-910	Н. О.	BI/B-12-1307	1,98E-08
BIB-12-911	н. о.	BIIB-12-1308	4,15E-08
BIIB-12-912	3,11E-08	BIIB-12-1309	4,99E-08
BIIB-12-913	7,85E-08	BIIB-12-1310	4,61 E-08
BIIB-12-914	4,81E-08	BIIB-12-1311	2,90E-08
BIIB-12-915	3,44E-08	BIIB-12-1312	1,47 E -08
BIIB-12-916	1,56 E-08	BIIB-12-1313	н. о.
BIIB-12-917	3,15 E- 08	BIIB-12-1314	1,04E-08
BIIB-12-918	2,77 E-08	BIIB-12-1315	5,32E-08
BIIB-12-919	2,31E-08	BIIB-12-1316	4,50E-08
BIIB-12-920	2,77 E-08	BIIB-12-1317	2,71 E-08
BIIB-12-921	2,31 E-08	BIIB-12-1318	5,61 E-08
BIIB-12-922	3,86E-08	BIIB-12-1319	3,10E-08
BIIB-12-923	3,38E-08	BIIB-12-1320	8,27E-09
BIIB-12-924	2,23E-08	BIIB-12-1321	1,06 E-08
BIIB-12-925	1,09 E-08	BIIB-12-1322	3,61 E-08
BIIB-12-926	2,40E-08	BIIB-12-1323	3,86E-08
BIIB-12-927	2,66E-08	BIIB-12-1324	6,77E-08
BIIB-12-928	2,31 E-08	BIIB-12-1325	1,78E-08
BIIB-12-929	1,52E-08	BIIB-12-1326	2,41 E-08
BIIB-12-930	5,60 E-0 8	BIIB-12-1327	3,83E-08
BIIB-12-931	1,35E-08	BIIB-12-1328	Н. О.
BIIB-12-932	2,93E-08	BIIB-12-1329	4,85E-08
BIIB-12-933	5,03E-08	BIIB-12-1330	5,68E-08
BIIB-12-934	6,02 E-08	BIIB-12-1331	3,85 E-08
BIIB-12-935	3,88E-08	BIIB-12-1332	5,35E-08
BIIB-12-936	6,60 E-08	BIIB-12-1333	1,60E-08
BIIB-12-937	2,37E-08	BIIB-12-1334	1,88 € 08

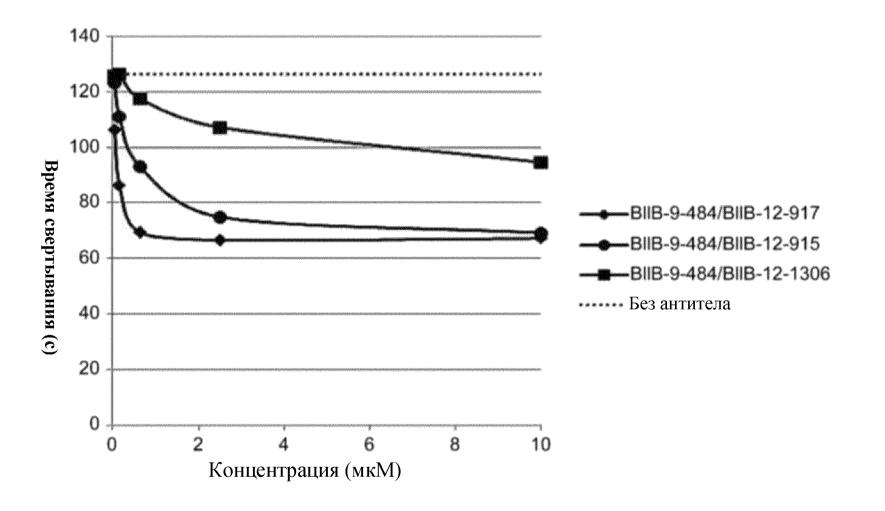
Антитело	Макс. дл. волны (1	нм) Антитело	Макс. дл. волны (нм)
BIIB-12-891	528,88	BIIB-12-1288	529,68
BIIB-12-892	529,53	BIIB-12-1289	530,86
BIIB-12-893	530,40	BIIB-12-1290	531,49
BIIB-12-894	530,59	BIIB-12-1291	533,17
BIIB-12-895	529,99	BIIB-12-1292	528,68
BIIB-12-896	529,68	BIIB-12-1293	528,81
BIIB-12-897	529,14	BIIB-12-1294	530,51
BIIB-12-898	529,91	BIIB-12-1295	529,75
BIIB-12-899	533,54	BIIB-12-1296	529,47
BIIB-12-900	529,13	BIIB-12-1297	530,22
BIIB-12-901	535,43	BIIB-12-1298	530,52
BIIB-12-902	531,77	BIIB-12-1299	529,90
BIIB-12-903	528,73	BIIB-12-1300	530,07
BIIB-12-904	529,93	BIIB-12-1301	530,19
BIIB-12-905	530,62	BIIB-12-1302	528,21
BIIB-12-906	528,81	BIIB-12-1303	530,05
BIIB-12-907	541,42	BIIB-12-1304	529,72
BIIB-12-908	530,11	BIIB-12-1305	529,84
BIIB-12-909	529,40	BIIB-12-1306	529,48
BIIB-12-910	530,16	BIIB-12-1307	532,34
BIIB-12-911	530,50	BIIB-12-1308	529,67
BIIB-12-912	529,80	BIIB-12-1309	529,75
BIIB-12-913	540,29	BIIB-12-1310	528,99
BIIB-12-914	529,20	BIIB-12-1311	528,39
BIIB-12-915	529,96	BIIB-12-1312	529,90
BIIB-12-916	530,17	BIIB-12-1313	528,58
BIIB-12-917	529,80	BIIB-12-1314	530,47
BIIB-12-918	530,28	BIIB-12-1315	542,27
BIIB-12-919	530,18	BIIB-12-1316	529,49
BIIB-12-920	529,94	BIIB-12-1317	530,25
BIIB-12-921	529,94	BIIB-12-1318	528,88
BIIB-12-922	531,83	BIIB-12-1319	529,54
BIIB-12-923	529,89	BIIB-12-1320	527,06
BIIB-12-924	529,57	BIIB-12-1321	529,74
BIIB-12-925	531,20	BIIB-12-1322	530,38
BIIB-12-926	530,28	BIIB-12-1323	532,29
BIIB-12-927	531,04	BIIB-12-1324	532,29
BIIB-12-928	530,05	BIIB-12-1325	530,76
BIIB-12-929	530,19	BIIB-12-1326	539,37
BIIB-12-930	528,85	BIIB-12-1327	530,08
BIIB-12-931	532,72	BIIB-12-1328	526,12
BIIB-12-932	527,83	BIIB-12-1329	529,03
BIIB-12-933	529,39	BIIB-12-1330	529,03
BIIB-12-934	529,85	BIIB-12-1331	528,88
BIIB-12-935	529,67	BIIB-12-1332	531,90
BIIB-12-936	529,23	BIIB-12-1333	528,75
BIIB-12-937	533,24	BIIB-12-1334	529,60


ФИГ. 15

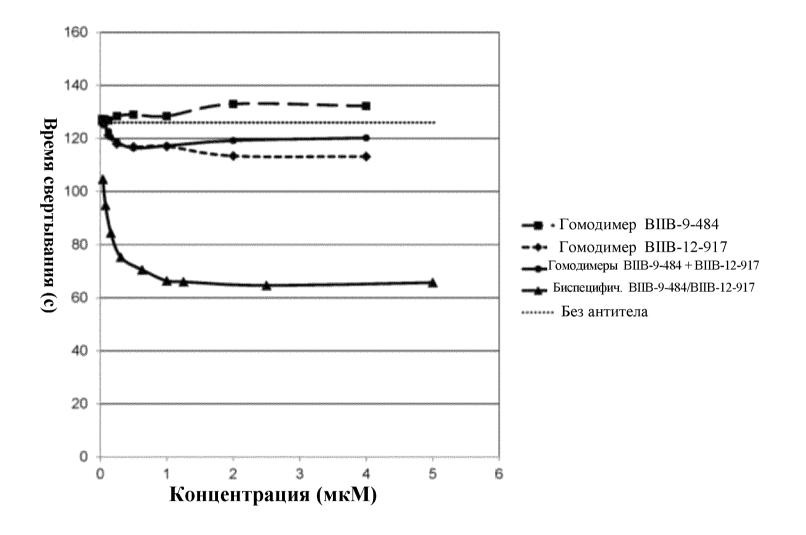

ФИГ. 16А


ФИГ. 16В

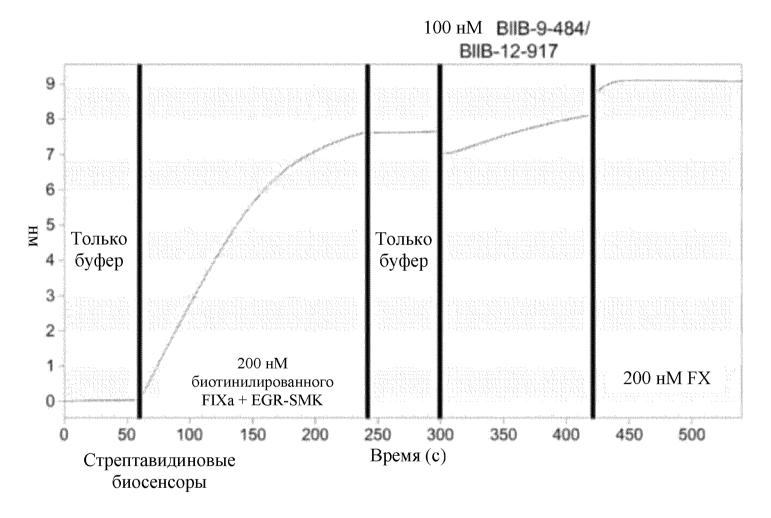

ФИГ. 16С



ФИГ. 16D

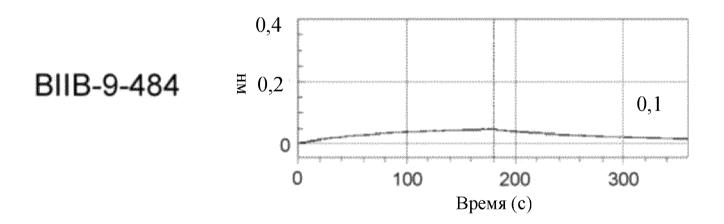


ФИГ. 17



ФИГ. 19

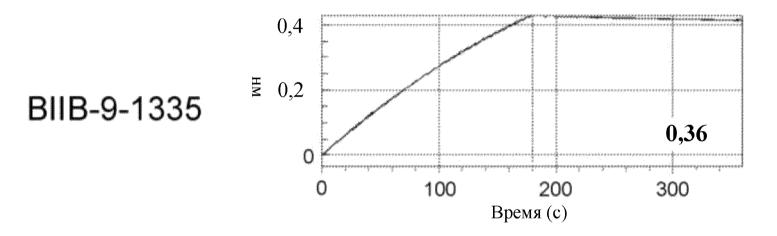
ФИГ. 20


ФИГ. 21

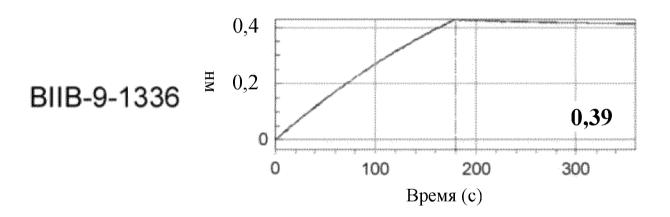
Антитело	НС зародышево го типа	Длина H-CDR3	H-CDR1	H-CDR2	H-CDR3	LC ародышевого типа	Длина L-CDR3	L-CDR1	L-CDR2	L-CDR3
0.00-9-131	VH3-21.2		FTFSSYDMH	SISS G SSYIYYADSVKG	ARDVGGYAGYYGMDV	VK1-33.2	- P	QASQDIANYLN	DASNLET	QQYANEPYT
808-9-1330	VH3-21.2	1.5	FTF G SYDMN	SISS GE SYIYY AE SVKG	ARDVGGYAGYYGMDV	VK1-33-2	9	QASQOIANYIN	DASALET	QQYANFPYT
808-9-484	VH3-21.0	15	FTFSSYSMN	SISSSSSYTYADSVKG	AROVGGYAGYYGMDV	VK1-33.2	9	QASQDIANYUN	DASNLET	QQYANFPYT

		VH-CDR1	VH-CDR2
BIIB-9-484	EVQLVESGGGLVKPGGSLRLSCAASGFT	PSSYSMNWVRQAPGKGLEWVSS	ISSSSSYIYA
BIIB-9-1335	EVQLVESGGGLVKPGGSLRLSCAASGFT	:FSSYDMHWVRQAPGKGLEWVSS	ISSGSSYIYYA
BIIB-9-1336	EVOLVESGGGLVKPGGSLRLSCAASGFT	FGSYDMNWVRQAPGKGLEWVSS	ISSGESYIYYA
	*******	******	*******
	VH-CDR2	VH-CDR3	
BIIB-9-484	DSVKGRFTISRDNAKNSLYLQMNSLRAE	DTAVYYCARDVGGYAGYYGMDV	WGQGTTVTVSS
BIIB-9-1335	DSVKGRFTISRDNAKNSLYLQMNSLRAE	:DTAVYYCARDVGGYAGYYGMDV	WGQGTTVTVSS
BIIB-9-1336	ESVKGRFTISRDNAKNSLYLQMNSLRAE	:DTAVYYCARDVGGYAGYYGMDV	WGQGTTVTVSS

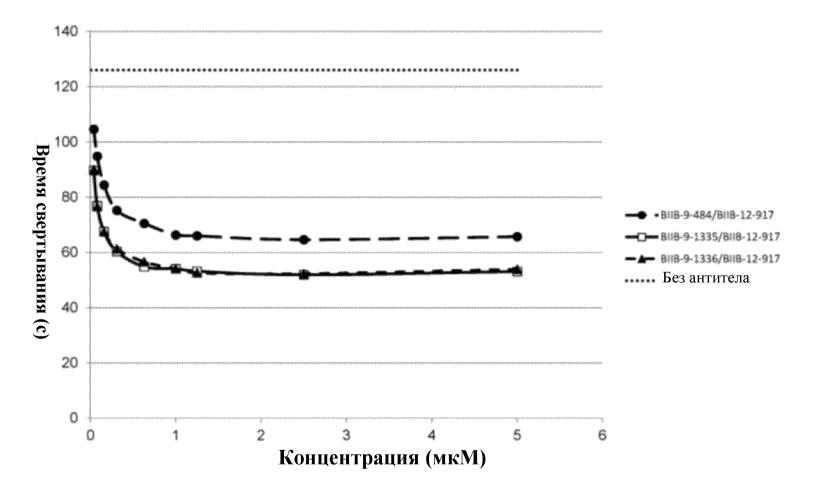
		VL-CDR1	VL-CDR2
BIIB-9-484	DIQMTQSPSSLSASVGDRVTITCQASQI)IANYLNWYQQKPGKAPKLLIYD	ASNLETGVPSR
BIIB-9-1335	DIOMTOSPSSLSASVGDRVTITCOASOL		
BIIB-9-1336	DIOMTOSPSSLSASVGDRVTITCOASOL		
and the same state of			skolika kitania di kita
		VL-CDR3	
BIIB-9-484	FSGSGSGTDFTFTISSLQPEDIATYYC	QYANFPYTFGGGTKVEIK	
BIIB-9-1335	FSGSGSGTDFTFTISSLQPEDIATYYC	<u>QYANFPYT</u> FGGGTKVEIK	
BIIB-9-1336	FSGSGSGTDFTFTISSLQPEDIATYYC	XOYANFPYTFGGGTKVEIK	
	******	*****	


ФИГ. 22

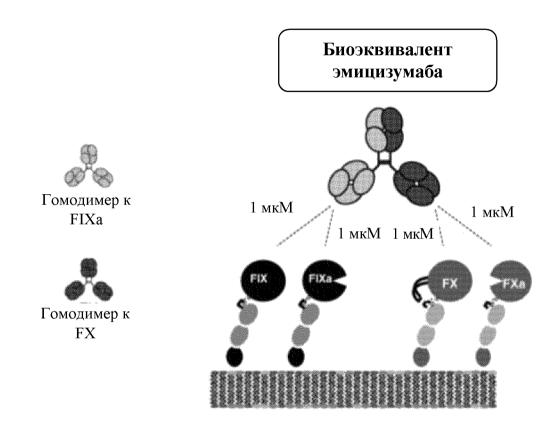
10 нМ **FIXa**

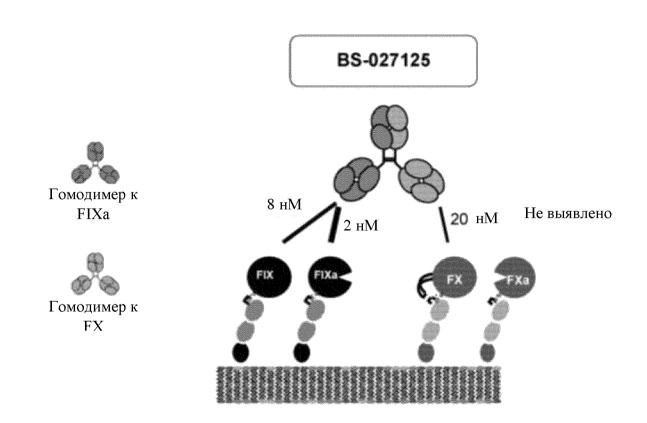

ФИГ. 22В

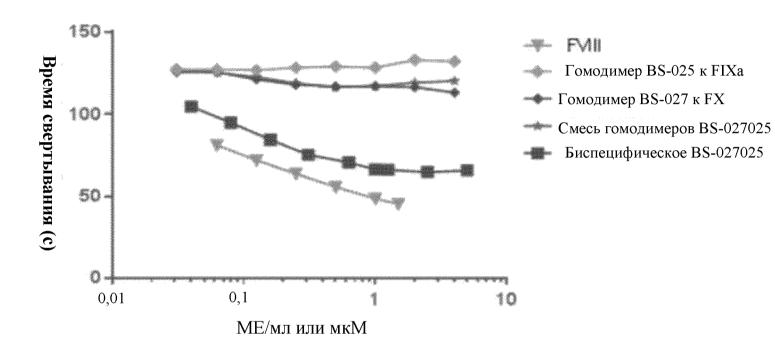
10 нМ **FIXa**

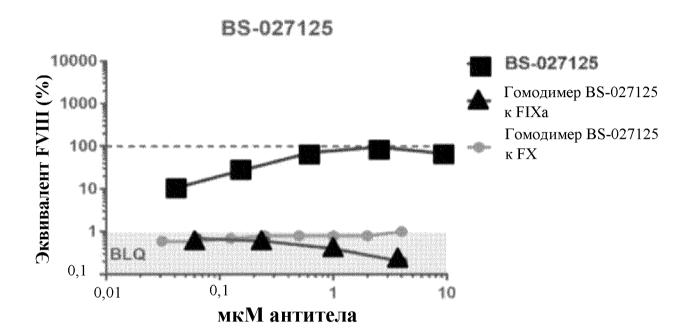


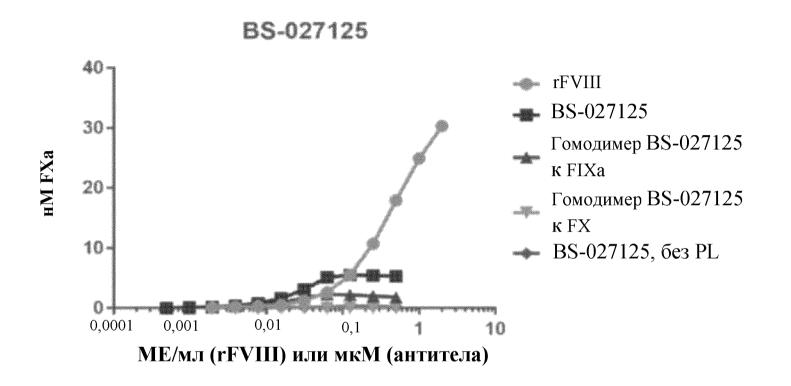
ФИГ. 22С


10 нМ **FIXa**

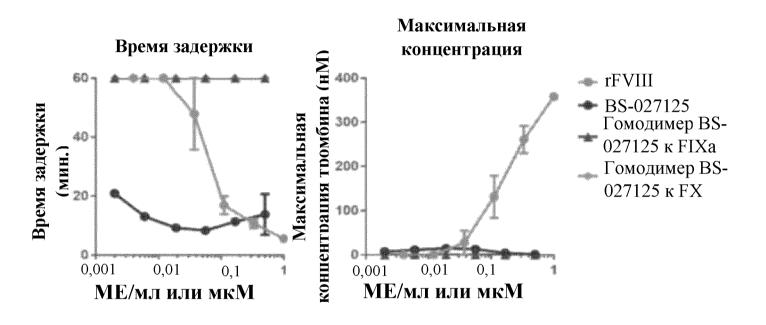

ФИГ. 22D


ФИГ. 23

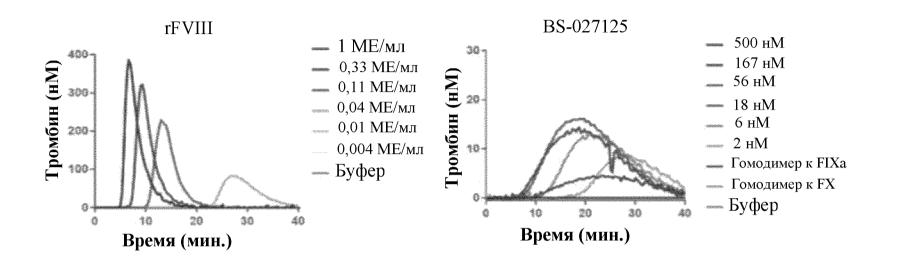

ФИГ. 24А


ФИГ. 24В

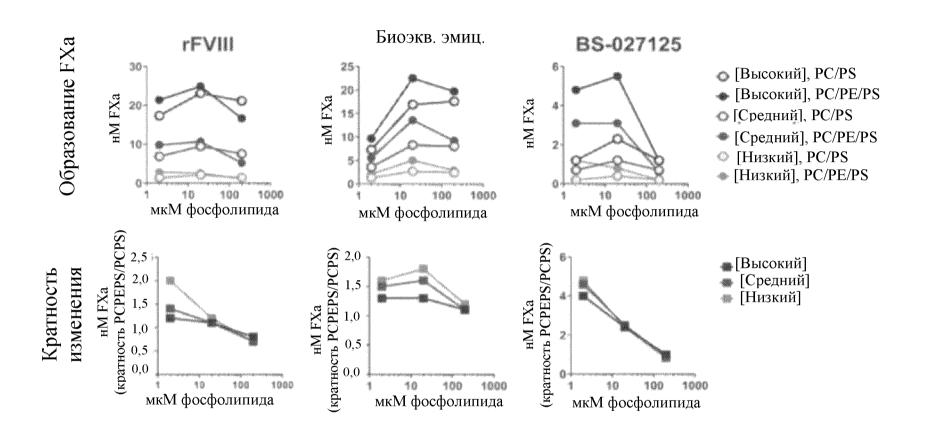
ФИГ. 25

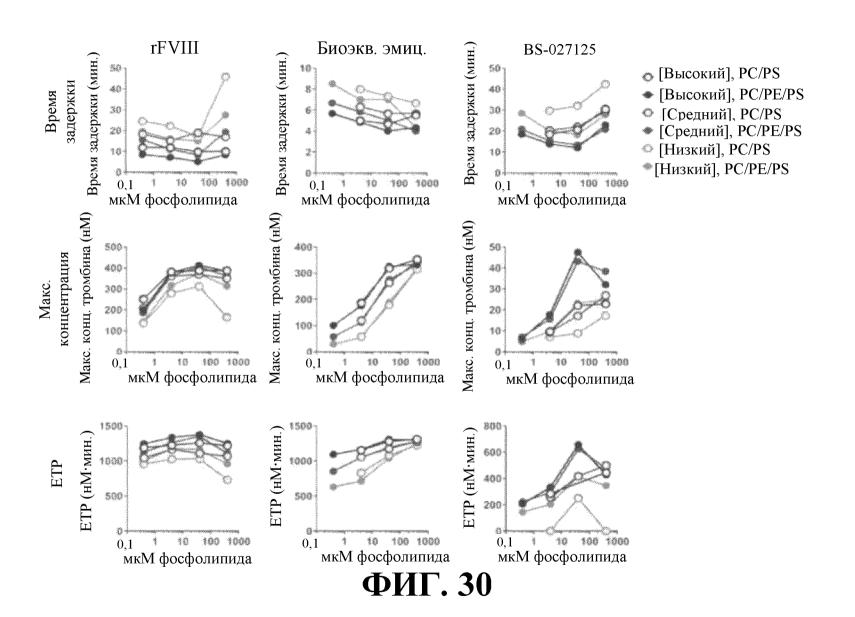


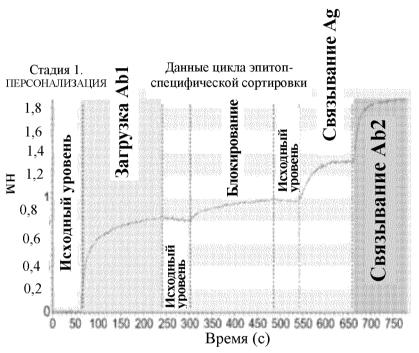
ФИГ. 26



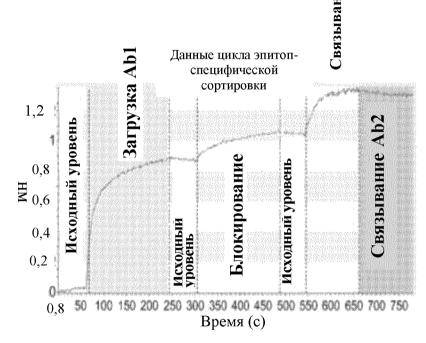
ФИГ. 27


BS-027125

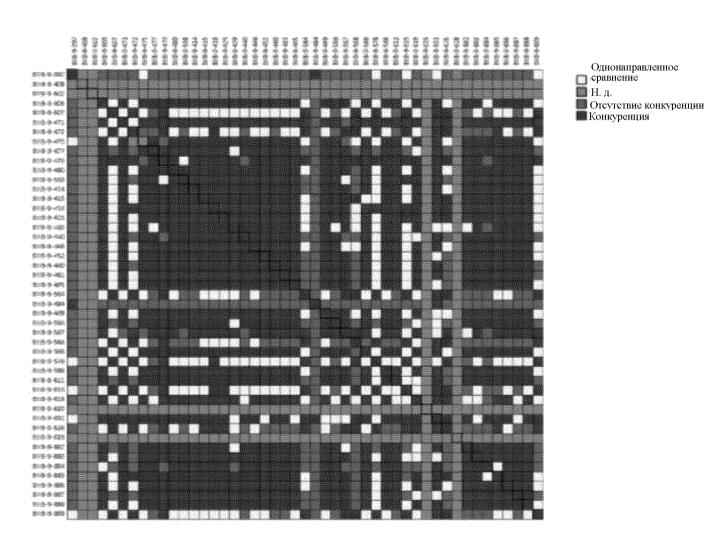

ФИГ. 28А

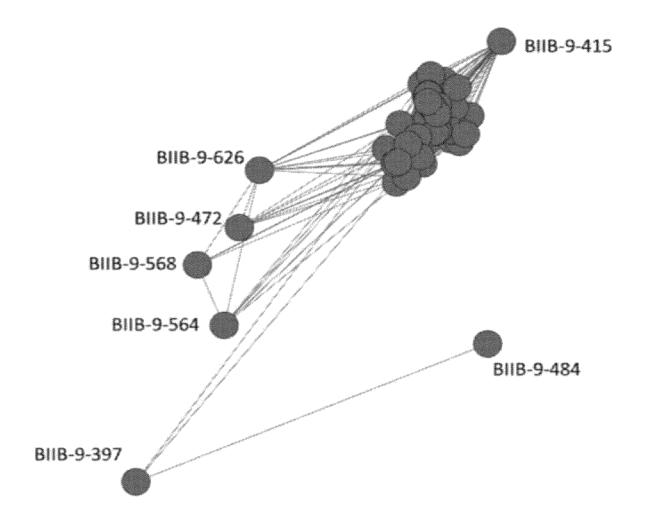


ФИГ. 28В


ФИГ. 29

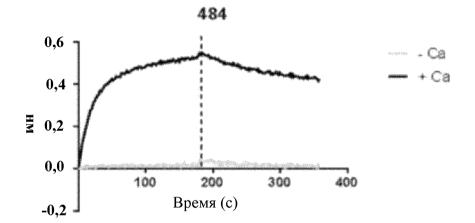
Неконкурентное

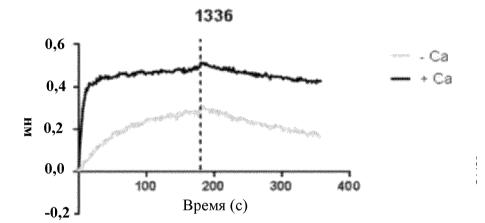

ФИГ. 31А


Конкурентное

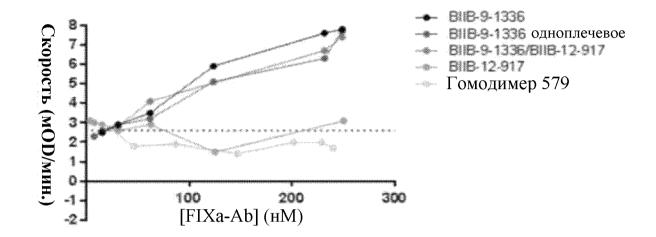
ФИГ. 31В

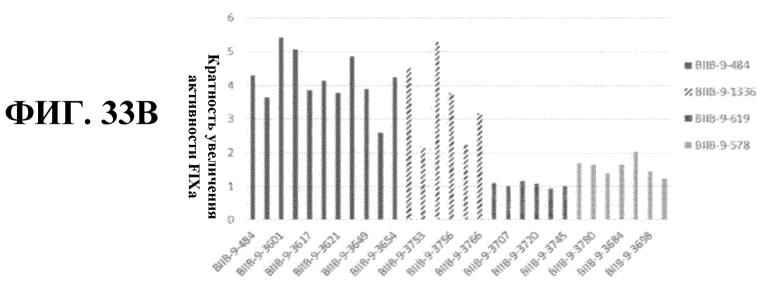
Однонаправленное

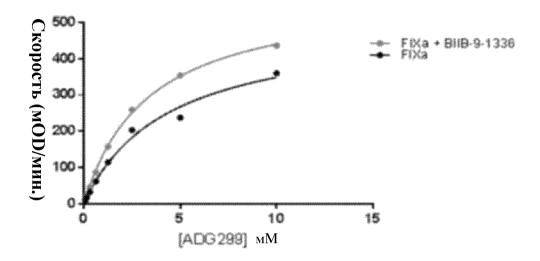



ФИГ. 31С

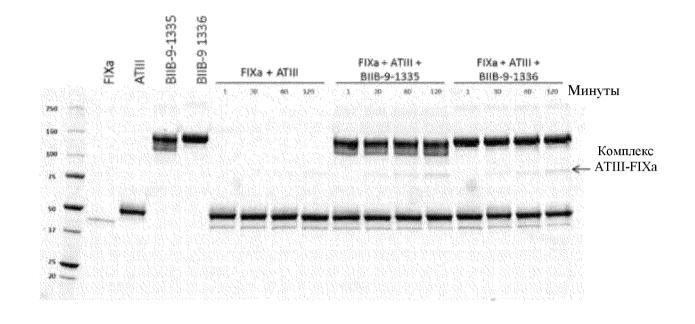
ФИГ. 31D



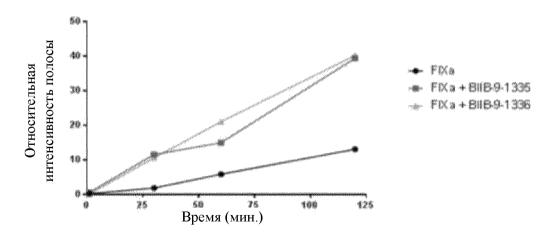


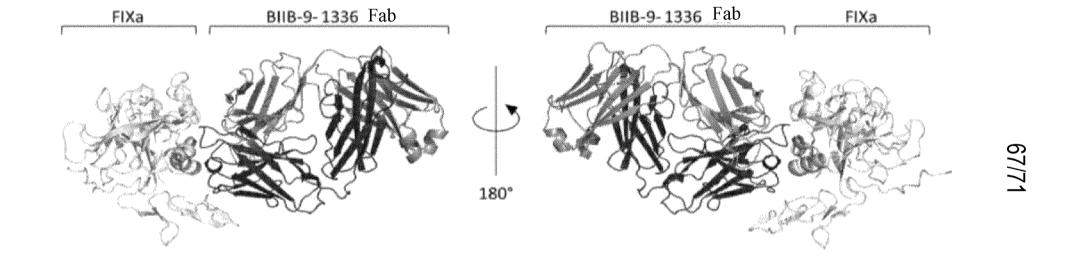

ФИГ. 32А

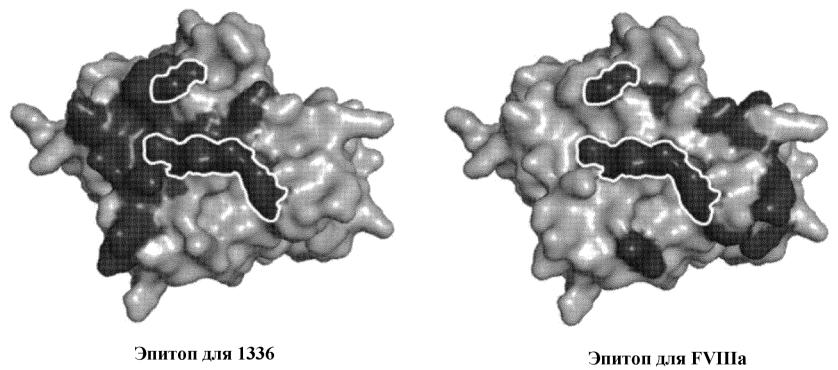
ФИГ. 32В



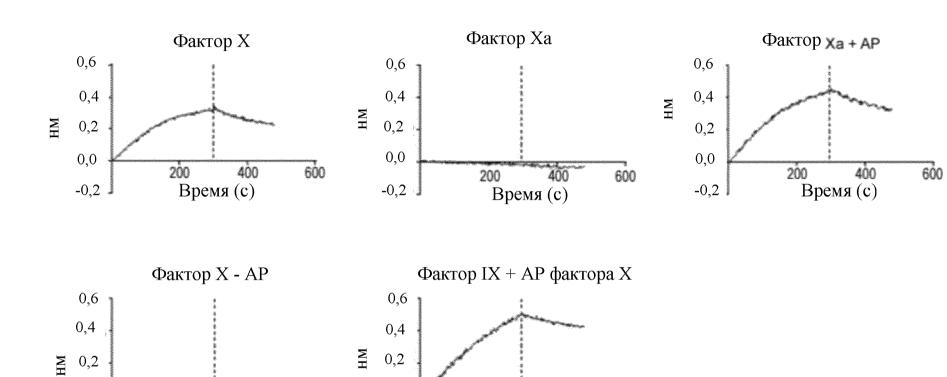
ФИГ. 33С


Ф	ИГ	7	3	2	D
¥	KII	•	J	J	IJ


	K _M	V _{max}
FIXa		500 мОД/мин.
FIXa + BIIB-9-1336	3,4 мМ	538 мOD/мин.


ФИГ. 34А

ФИГ. 35



ФИГ. 36

1336	FVIIIa
H91	<u>N93</u>
H92	N100
<u>N93</u>	K132
H101	<u>R165</u>
D125	R170
K126	F174
E127	T175
Y128	N178
<u>R165</u>	H185
Y177	R233
<u>N178</u>	(Y137)
N179	(T172)
5232	(E202)
R233	(G205)
Y234	
V235	Note transmission of the feet to the state of the state o
N236	
W237	
E240	
K241	
K100*	

ФИГ. 37

^{*}легкая цепь FIXа в соответствии с нумерацией для химотрипсиногена

0,0

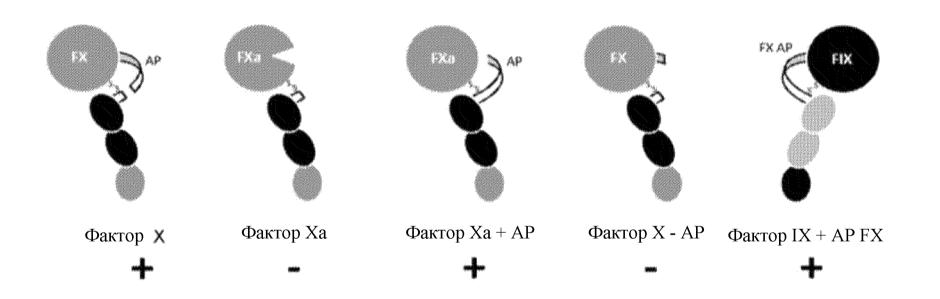
-0,2

400

600

²⁰⁰ 400 Время (с)

0,0


-0,2

ФИГ. 38А

400

600

200 400 Время (c)

ФИГ. 38В