(19)

патентное ведомство

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

- (45) Дата публикации и выдачи патента 2020.12.30
- (51) Int. Cl. C07D 405/14 (2006.01) A61K 31/4439 (2006.01) *A61P 31/10* (2006.01)

- (21) Номер заявки 201791645 (22) Дата подачи заявки
 - 2016.01.14

(54) НОВЫЕ СОЛИ И ПОЛИМОРФЫ SCY-078

- (31) PCT/CN2015/070967
- (32) 2015.01.19
- (33) CN

- (43) 2018.01.31
- (86) PCT/US2016/013356
- (87) WO 2016/118396 2016.07.28
- (71)(73) Заявитель и патентовладелец: СКАЙНЕКСИС, ИНК. (US)
- (72) Изобретатель: Чжан И (CN)
- (74) Представитель: Фелицына С.Б. (RU)

(56) WO-A1-2010019203

)36874

B

SCY-078 является ингибитором глюкансинтазы с антимикробной активностью. В данном (57) документе раскрыты новые соли SCY-078, выбранные из цитрата, гиппурата, мезилата и фумарата, а также их полиморфные формы. Раскрытие изобретения также относится к фармацевтическим композициям, способам применения и к способам получения солей и полиморфов SCY-078.

Для настоящего изобретения испрашивается преимущество приоритета по международной заявке № РСТ/СN 2015/070967, поданной 19 января 2014 г., которая полностью включена в данный документ посредством ссылки.

SCY-078 (или "соединение 1") представляет собой ингибитор глюкансинтазы, полезный в качестве противогрибкового соединения. SCY-078 полезен для лечения, среди прочего, инвазивного кандидоза и инвазивного аспергиллеза. Другие противомикробные свойства SCY-078 раскрыты, например, в патенте США № 8188085, соответствующие части которого включены в данный документ посредством ссылки.

SCY-078 имеет следующую химическую структуру:

Настоящее раскрытие относится, среди прочего, к фармацевтически приемлемым солям SCY-078 и полиморфам этих солей. В другом воплощении указанные соли и их полиморфы проявляют определенную кинетику растворимости. Более высокая кинетическая растворимость может иметь значение в составах, таких как внутривенные составы. В еще одном воплощении соли и их полиморфы проявляют определенную гигроскопичность. Было обнаружено, что гигроскопичность играет важную роль в приготовлении твердых лекарственных форм и выборе эксципиентов. Настоящее раскрытие дополнительно относится, среди прочего, к способам получения фармацевтически приемлемых солей SCY-078 и их полиморфов.

Настоящее раскрытие дополнительно направлено, среди прочего, на фармацевтические композиции, содержащие фармацевтически приемлемые соли SCY-078 и их полиморфы. В другом воплощении настоящее раскрытие относится к способам получения фармацевтических композиций, содержащих фармацевтически приемлемые соли SCY-078 и их полиморфы, подходящим для инъекций или внутривенного введения. В еще одном воплощении настоящее раскрытие относится к способу лечения грибковых инфекций путем введения фармацевтически приемлемых солей SCY-078 и их полиморфов.

Краткое описание чертежей

Фиг. 1 представляет собой спектр порошковой рентгеновской дифракции XRPD для фосфата SCY-078 из примера 1.

Фиг. 2 представляет кривую DSC и кривую TGA фосфата SCY-078 из примера 1.

Фиг. 3 представляет собой XRPD для кристаллического свободного основания SCY-078 (десольват MeOH), партия 1 из примера 2.

Фиг. 4 представляет кривую DSC и кривую TGA для кристаллического свободного основания SCY-078 (MeOH десольват), партия 1 из примера 2.

Фиг. 5 представляет собой XRPD для кристаллического свободного основания SCY-078 (десольват MeOH), партия 2 из примера 2.

Фиг. 6 представляет кривую DSC и кривую TGA для аморфного свободного основания SCY-078 из примера 3.

Фиг. 7 представляет собой XRPD SCY-078 HCl типа А из примера 7.

Фиг. 8 представляет кривую DSC и кривую TGA SCY-078 HCl типа A из примера 7.

Фиг. 9 представляет собой XRPD для цитрата SCY-078 типа А из примера 8.

Фиг. 10 представляет кривую DSC и кривую TGA для цитрата SCY-078 типа A из примера 8.

Фиг. 11 представляет собой XRPD для гиппурата SCY-078 типа А из примера 9.

Фиг. 12 представляет кривую DSC и кривую TGA для гиппурата SCY-078 типа A из примера 9.

Фиг. 13 представляет собой XRPD для гиппурата SCY-078 типа В из примера 10, наложенный на XRPD для гиппурата SCY-078 типа А из примера 9.

Фиг. 14 представляет кривую DSC и кривую TGA для гиппурата SCY-078 типа В из примера 10.

Фиг. 15 представляет собой XRPD для гиппурата SCY-078 типа C, описанного в примере 11, наложенный на XPRD для гиппурата SCY-078 типа A, гиппурата типа B и гиппурата типа B, нагретого до 175°C.

Фиг. 16 представляет кривую циклической DSC для гиппурата SCY-078 типа В и гиппурата SCY-078 типа С в примере 11.

Фиг. 17 представляет собой XRPD для фумарата SCY-078 типа А из примера 12.

Фиг. 18 представляет кривую DSC и кривую TGA для фумарата SCY-078 типа A из примера 12.

Фиг. 19 представляет собой XRPD для фумарата SCY-078 типа В из примера 13.

Фиг. 20 представляет кривую DSC и кривую TGA для фумарата SCY-078 типа В из примера 13.

Фиг. 21 представляет собой XRPD для гликолята SCY-078 типа А из примера 14.

Фиг. 22 представляет кривую DSC и кривую TGA для гликолята SCY-078 типа A из примера 14.

Фиг. 23 представляет собой XRPD для мезилата SCY-078 типа А из примера 15.

Фиг. 24 представляет кривую DSC и кривую TGA для мезилата SCY-078 типа A из примера 15.

Фиг. 25 представляет собой XRPD для SCY-078 кальция типа А из примера 16.

Фиг. 26 представляет кривую DSC и кривую TGA для SCY-078 кальция типа A из примера 16.

Фиг. 27 представляет собой XRPD для полученного в большем масштабе гиппурата SCY-078 типа В из примера 17.

Фиг. 28 представляет кривую DSC и кривую TGA для полученного в большем масштабе гиппурата SCY-078 типа В из примера 17.

Фиг. 29 представляет собой изотермический график DVS для полученного в большем масштабе гиппурата SCY-078 типа В из примера 17.

Фиг. 30 представляет собой XRPD для полученного в большем масштабе гиппурата SCY-078 типа В перед DVS, после DVS и в сравнении с гиппуратом типа А из примера 17.

Фиг. 31 представляет собой XRPD для полученного в большем масштабе фумарата SCY-078 типа А из примера 18.

Фиг. 32 представляет кривую DSC и кривую TGA для полученного в большем масштабе фумарата SCY-078 типа A из примера 18.

Фиг. 33 представляет собой изотермический график DVS для полученного в большем масштабе фумарата SCY-078 типа A из примера 18.

Фиг. 34 представляет собой XRPD для полученного в большем масштабе мезилата SCY-078 типа А из примера 19.

Фиг. 35 представляет кривую DSC и кривую TGA для полученного в большем масштабе мезилата SCY-078 типа A из примера 19.

Фиг. 36 представляет собой изотермический график DVS для полученного в большем масштабе мезилата SCY-078 типа A из примера 19.

Фиг. 37 представляет собой XRPD для полученного в большем масштабе фосфата SCY-078 типа А из примера 20.

Фиг. 38 представляет кривую DSC и кривую TGA для полученного в большем масштабе фосфата SCY-078 типа A из примера 20.

Фиг. 39 представляет собой изотермический график DVS для полученного в большем масштабе фосфата SCY-078 типа A из примера 20.

Фиг. 40 представляет собой XRPD для полученного в большем масштабе цитрата SCY-078 типа А из примера 21.

Фиг. 41 представляет кривую DSC и кривую TGA для полученного в большем масштабе цитрата SCY-078 типа A из примера 21.

Фиг. 42 представляет собой изотермический график DVS для полученного в большем масштабе цитрата SCY-078 типа A из примера 21.

Фиг. 43 представляет собой XRPD для полученного в большем масштабе цитрата SCY-078 типа А из примера 26.

Фиг. 44 представляет кривую DSC и кривую TGA для полученного в большем масштабе цитрата SCY-078 типа A из примера 26.

Фиг. 45 представляет собой XRPD для цитрата SCY-078 типа А из примера 38.

Фиг. 46 представляет кривую DSC и кривую TGA для цитрата SCY-078 типа A из примера 38.

Фиг. 47 представляет собой изотермический график DVS для цитрата SCY-078 типа A из примера 38.

Фиг. 48 представляет собой XRPD для цитрата SCY-078 типа А после усовершенствования способа из примера 38.

Фиг. 49 представляет кривую DSC и кривую TGA для цитрата SCY-078 типа A после усовершенствования способа из примера 38.

Фиг. 50 представляет собой изотермический график DVS для цитрата SCY-078 типа A после усовершенствования способа из примера 38.

Фиг. 51 представляет собой XRPD для цитрата SCY-078 типа В из примера 39.

Фиг. 52 представляет кривую DSC и кривую TGA для цитрата SCY-078 типа В из примера 39.

Фиг. 53 представляет собой XRPD для цитрата SCY-078 типа Е из примера 40.

Фиг. 54 представляет собой XRPD для цитрата SCY-078 типа Е из примера 40 до и после хранения.

Фиг. 55 представляет собой XRPD для цитрата SCY-078 типа F из примера 41.

Фиг. 56 представляет кривую DSC и кривую TGA для цитрата SCY-078 типа F из примера 41.

Фиг. 57 представляет собой XRPD для цитрата SCY-078 типа М из примера 42.

Фиг. 58 представляет кривую DSC и кривую TGA для цитрата SCY-078 типа M из примера 42.

Фиг. 59 представляет собой изотермический график DVS для цитрата SCY-078 типа М из примера 42.

036874

Фиг. 60 представляет собой XRPD для цитрата SCY-078 типа M из примера 42 при переменных температурах.

Фиг. 61 представляет собой XRPD для цитрата SCY-078 типа N из примера 43.

Фиг. 62 представляет собой XRPD для цитрата SCY-078 типа N из примера 43 до и после сушки.

Фиг. 63 представляет собой XRPD для цитрата SCY-078 типа О из примера 44.

Фиг. 64 представляет собой XRPD для цитрата SCY-078 типа Q из примера 45.

Фиг. 65 представляет собой XRPD для цитрата SCY-078 типа Q из примера 45 до и после сушки.

Фиг. 66 представляет собой XRPD для цитрата SCY-078 типа R из примера 46.

Фиг. 67 представляет собой XRPD для цитрата SCY-078 типа R из примера 46 до и после сушки.

Фиг. 68 представляет собой XRPD для цитрата SCY-078 типа S из примера 47.

Фиг. 69 представляет кривую DSC и кривую TGA для цитрата SCY-078 типа S из примера 47.

Фиг. 70 представляет собой изотермический график DVS типа SCY-078 типа S из примера 47.

Фиг. 71 представляет собой XRPD для цитрата SCY-078 типа S из примера 47 при переменных температурах.

На фиг. 72 показаны паттерны XRPD для цитрата SCY-078 типы С, I, J и P из примера 48.

На фиг. 73 показаны паттерны XRPD для суспензионного превращения цитрата SCY-078 типа А или типа В в тип N из примера 50.

На фиг. 74 показаны паттерны XRPD для цитрата SCY-078 типа Q после сушки из примера 50.

На фиг. 75 показаны паттерны XRPD для цитрата SCY-078 типов R, E и M из примера 51.

На фиг. 76 показаны паттерны XRPD для цитрата SCY-078 типа М в ацетоне из примера 51.

На фиг. 77 показаны паттерны XRPD для цитрата SCY-078 типа М в ацетонитриле из примера 51.

На фиг. 78 показаны паттерны XRPD для цитрата SCY-078 типа М в MeOH/IPAc из примера 51.

На фиг. 79 показаны паттерны XRPD для цитрата SCY-078 типа М в гептане из примера 51.

На фиг. 80 показаны паттерны XRPD для цитрата SCY-078 типа М после тестирования стабильности из примера 52.

На фиг. 81 показаны паттерны XRPD для цитрата SCY-078 типа S после тестирования стабильности из примера 52.

Фиг. 82 представляет собой XRPD для цитрата SCY-078 типа А из примера 53.

Фиг. 83 представляет кривую DSC и кривую TGA для цитрата SCY-078 типа A из примера 53.

Фиг. 84 представляет кривую DSC и кривую TGA для цитрата SCY-078 типа A из примера 53.

Фиг. 85 представляет собой XRPD для трифторацетата SCY-078 типа А из примера 54.

Фиг. 86 представляет кривую DSC и кривую TGA для трифторацетата SCY-078 типа A из примера 54.

Фиг. 87 представляет собой XRPD для трифторацетата SCY-078 типа A до и после хранения из примера 54.

Фиг. 88 представляет собой XRPD для трифторацетата SCY-078 типа В из примера 55.

Фиг. 89 представляет кривую DSC и кривую TGA для трифторацетата SCY-078 типа В из примера 55.

Фиг. 90 представляет кривую DVS для трифторацетата SCY-078 типа В из примера 55.

Фиг. 91 представляет собой наложение XRPD для трифторацетата SCY-078 типа В до и после DVS из примера 55.

Фиг. 92 представляет собой наложение XRPD для трифторацетата SCY-078 типа В при изменении относительной влажности из примера 55.

Фиг. 93 представляет собой наложение VT-XRPD для трифторацетата SCY-078 типа A из примера 55.

Фиг. 94 представляет собой XRPD для SCI-078 HCl типа I из примера 56.

Фиг. 95 представляет кривую DSC и кривые TGA для SCY-078 HCl типа I из примера 56.

Фиг. 96 представляет собой DVS-кривую для SCI-078 HCl типа I из примера 56.

Фиг. 97 представляет собой наложение XRPD для SCY-078 HCl типа I до и после DVS из примера 56.

Фиг. 98 представляет собой XRPD для SCY-078 HCl типа II из примера 57.

Фиг. 99 представляет кривую DSC и кривую TGA для SCY-078 HCl типа II из примера 57.

Фиг. 100 представляет кинетические кривые растворимости для трифторацетата SCY-078 типов А и В и для SCI-078 HCl типа I в SGF из примера 58.

Фиг. 101 представляет собой наложение XRPD для трифторацетата SCY-078 типа A в SGF из примера 58.

Фиг. 102 представляет собой наложение XRPD для трифторацетата SCY-078 типа В в SGF из примера 58.

Фиг. 103 представляет собой наложение XRPD для SCY-078 HCl типа I в SGF из примера 58.

Фиг. 104 показаны кинетические кривые растворимости трифторацетата SCY-078 типов А и В и

SCI-078 HCl типа I из примера 59.

Фиг. 105 представляет собой наложение XRPD для трифторацетата SCY-078 из примера 59.

Фиг. 106 представляет собой наложение XRPD для трифторацетата SCY-078 типа В из примера 59.

Фиг. 107 представляет собой наложение XRPD для SCI-078 HCl типа I из примера 59.

Фиг. 108 показаны кинетические кривые растворимости для трифторацетата SCY-078 типа A и B и для SCY-078 HCl типа I из примера 60.

Фиг. 109 представляет собой наложение XRPD для трифторацетата SCY-078 типа А из примера 60.

Фиг. 110 представляет собой наложение XRPD для трифторацетата SCY-078 типа В из примера 60.

Фиг. 111 представляет собой наложение XRPD для SCI-078 HCl типа I из примера 60.

Фиг. 112 показаны кинетические кривые растворимости для трифторацетата SCY-078 типов А и В и для SCI-078 HCl из примера 61.

Фиг. 113 представляет собой наложение XRPD для трифторацетата SCY-078 типа А из примера 61.

Фиг. 114 представляет собой наложение XRPD для трифторацетата SCY-078 типа В из примера 61.

Фиг. 115 представляет собой наложение XRPD для SCI-078 HCl типа I из примера 61.

Фиг. 116 представляет кинетические кривые растворимости для трифторацетата SCY-078 типов А и В и для SCI-078 HCl типа I из примера 62.

Фиг. 117 представляет собой наложение XRPD для трифторацетата SCY-078 из примера 62.

Фиг. 118 представляет собой наложение XRPD для трифторацетата SCY-078 типа В из примера 62.

Фиг. 119 представляет собой наложение XRPD SCI-078 HCl типа I из примера 62.

Фиг. 120 представляет собой наложение XRPD для трифторацетата SCY-078 типа А при 25°C/60% RH из примера 63.

Фиг. 121 представляет собой наложение XRPD для трифторацетата SCY-078 типа А при 40°С/75% RH из примера 63.

Фиг. 122 представляет собой наложение XRPD для трифторацетата SCY-078 типа А при 60°С из примера 63.

Фиг. 123 представляет собой наложение XRPD для трифторацетата SCY-078 типа В при 25°С/60% RH из примера 63.

Фиг. 124 представляет собой наложение XRPD для трифторацетата SCY-078 типа В при 40°С/75% RH из примера 63.

Фиг. 125 представляет собой наложение XRPD для трифторацетата SCY-078 типа В при 60°С из примера 63.

Фиг. 126 представляет собой наложение XRPD для SCI-078 HCl типа I при 25°C/60% RH из примера 63.

Фиг. 127 представляет собой наложение XRPD для SCY-078 HCl типа I при 40°C/75% RH из примера 63.

Фиг. 128 представляет собой наложение XRPD для SCY-078 HCl типа I при 60°С из примера 63.

Подробное описание

Все числа, используемые в данном документе, в том числе в примерах и формуле изобретения, следует понимать как предваряемые термином "около", если не указано обратное, например, если не приведена определенная точность. Если прямо не указано иное, все диапазоны, приведенные в данном документе, включают граничные точки.

Используемые в данном документе формы единственного числа включают множественные числа, если из контекста не следует иное.

Термины "SCY-078" и "соединение 1" относятся к соединению, показанному ниже, и относятся к форме свободного основания, если не указано иное. Другим названием SCY-078 является (1S,4aR,6aS,7R,8R,10aR,10bR,12aR,14R,15R)-15-[[(2R)-2-амино-2,3,3-триметилбутил]окси]-8-[(1R)-1,2-диметилпропил]-14-[5-(4-пиридинил)-1H-1,2,4-триазол-1-ил]-1,6,6a,7,8,9,10,10a,10b,11,12,12a-додека-гидро-1,6a,8,10a-тетраметил-4H-4a-пропано-2H-фенантро[1,2-с]пиран-7-карбоновая кислота.

Термин "HCl" относится к соляной кислоте. Термин "Са" относится к кальцию.

Термины "фармацевтически приемлемая соль" и т.п. следует понимать как включающие указанное далее, но не ограниченные им: соли цитрата, соли гиппурата, соли фумарата, соли гликолята, соли мези-

лата и соли кальция.

Используемые в данном документе фразы, такие как "SCY-078 соль", "SCY-078 соли", "соль SCY-078", "соли SCY-078", "фармацевтически приемлемая соль SCY-078" и "их фармацевтически приемлемые соли" следует понимать как соли в различных формах, например полиморфы, раскрытые в данном документе. Кроме того, используемые в данном документе фразы, такие как "фосфат SCY-078", "цитрат SCY-078", "гиппурат SCY-078", "гликолят SCY-078", "мезилат SCY-078", "фумарат SCY-078" и "SCY-078 кальция", следует понимать как соли в различных формах, например описанные в данном документе полиморфы.

Термин "растворитель" и т.п. относится к любому подходящему водному или органическому растворителю. Растворители включают, не ограничиваясь указанным, метанол, уксусную кислоту, тетрагидрофуран, 2-метилтетрагидрофуран, 1,4-диоксан, н-метил-2-пирролидон, диметилсульфоксид, диметилацетамид, изопропиловый спирт, ацетонитрил, ацетон, этилацетат, воду и их смеси.

Термин "фармацевтически приемлемый носитель" и т.п. относится к ингредиенту, который совместим с SCY-078 и не вреден для здоровья пациента. Фармацевтически приемлемые носители включают, не ограничиваясь указанным, одно или несколько из следующих: водные носители и растворители, такие как вода, солевые растворы и спирты; буферы; поверхностно-активные вещества; диспергирующие агенты; инертные разбавители; консерванты; суспендирующие агенты; эмульгаторы; смягчающие средства; загустители; эмульгаторы; антиоксиданты и стабилизирующие агенты. Другие дополнительные ингредиенты, которые могут быть включены в фармацевтические композиции по изобретению, общеизвестны в данной области техники и могут быть описаны, например, в Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., который включен в данный документ посредством ссылки.

Термин "инъекция" и т.п. относится к введению композиции в тело шприцем, полой иглой и т.п. Термин "инъекция" и т.п. включает, не ограничиваясь указанным, внутривенные инъекции, включая те, которые подразумевают введение с использованием пакета для внутривенного вливания, содержащего разбавитель.

Термин "эффективное количество" относится к количеству активного ингредиента, которое при введении объекту уменьшает, по меньшей мере, некоторые из симптомов или останавливает развитие идентифицированного заболевания или состояния. Термины "заболевание" или "состояние" включают, не ограничиваясь указанным, инфекции, такие как грибковые инфекции. Примерные дозировочные количества можно найти, например, в патенте США № 8188085, соответствующие части которого включены в данный документ посредством ссылки.

Термин "Å" относится к ангстремам. Такие термины, как "20" или "2 Th.", относятся к градусам 2 тета.

Следует понимать, что пики XRPD, приведенные в данном документе, соответствуют точности $\pm 0,2$ для пиков 20 и эквивалентную точность для d-расстояний согласно закону Брэгга. Настоящее раскрытие также полностью включает раздел 941 Фармакопеи Соединенных Штатов. Национальный формуляр от 2014 г. (USP 37/NF 32, т. 1), относящийся к исследованию характеристик кристаллических и частично кристаллических твердых веществ с помощью рентгеновской порошковой дифракции.

Настоящее раскрытие относится, среди прочего, к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата. В следующем воплощении соль SCY-078 выбирают из гиппурата SCY-078 типа А, гиппурата SCY-078 типа В. В другом воплощении соль SCY-078 выбирают из фумарата SCY-078 типа А и фумарата SCY-078 типа В. В еще одном воплощении соль представляет собой соль цитрата SCY-078. Еще в одном воплощении соль представляет собой цитрат SCY-078 типа А.

Настоящее раскрытие дополнительно относится к фармацевтически приемлемым солям SCY-078, которые имеют химическую чистоту по меньшей мере 90%. В другом воплощении фармацевтически приемлемые соли SCY-078 имеют химическую чистоту по меньшей мере 95%. В следующем воплощении фармацевтически приемлемые соли SCY-078 имеют химическую чистоту по меньшей мере 98%. В еще одном воплощении фармацевтически приемлемые соли SCY-078 имеют химическую чистоту по меньшей мере 98%. В еще одном воплощении фармацевтически приемлемые соли SCY-078 имеют химическую чистоту по меньшей мере 99%. В еще одном воплощении настоящее раскрытие относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет химическую чистоту по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 98% или по меньшей мере 99%.

Настоящее раскрытие дополнительно относится к фармацевтически приемлемым солям SCY-078, которые имеют кинетическую растворимость по меньшей мере 2 мг/мл через 4 ч в декстрозном буфере при pH 5,5. В одном воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью по меньшей мере 4 мг/мл через 4 ч в декстрозном буфере при pH 5,5. В другом воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью от 2 до 5 мг/мл через 4 ч в декстрозном буфере при pH 5,5. В еще одном воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью от 2 до 5 мг/мл через 4 ч в декстрозном буфере при pH 5,5. В еще одном воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью от 4 до 5 мг/мл через 4 ч в декстрозном буфере при pH 5,5. В еще одном воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью, большей, чем у SCY-078 (в виде свободного основания), через 4 ч в декстрозном буфере при pH 5,5.

Настоящее раскрытие дополнительно относится к фармацевтически приемлемым солям SCY-078, которые имеют кинетическую растворимость по меньшей мере 2 мг/мл через 24 ч в декстрозном буфере при pH 5,5. В одном воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью по меньшей мере 4 мг/мл через 24 ч в декстрозном буфере при pH 5,5. В другом воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью по меньшей мере 8 мг/мл через 24 ч в декстрозном буфере при pH 5,5. В следующем воплощении фармацевтически приемлемые соли SCY-078 имеют кинетическую растворимость от 2 до 9 мг/мл через 24 ч в декстрозном буфере при pH 5,5. В еще одном воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью от 4 до 9 мг/мл через 24 ч в декстрозном буфере при pH 5,5. В еще одном воплощении фармацевтически приемлемые соли SCY-078 областью от 8 до 9 мг/мл через 24 ч в декстрозном буфере при pH 5,5.

Настоящее раскрытие дополнительно относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет кинетическую растворимость от 2 до 5 мг/мл через 4 ч в декстрозном буфере при pH 5,5. В одном воплощении раскрытие относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет кинетическую растворимость от 4 до 5 мг/мл через 4 ч в декстрозном буфере при pH 5,5.

В еще одном воплощении раскрытие относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет кинетическую растворимость от 2 до 9 мг/мл через 24 ч в декстрозном буфере при pH 5,5. В еще одном воплощении раскрытие также относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет кинетическую растворимость от 4 до 9 мг/мл через 24 ч в декстрозном буфере при pH 5,5. В другом воплощении раскрытие относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет кинетическую растворимость от 4 до 9 мг/мл через 24 ч в декстрозном буфере при pH 5,5. В другом воплощении раскрытие относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет кинетическую растворимость от 8 до 9 мг/мл через 24 ч в декстрозном буфере при pH 5,5.

Настоящее раскрытие дополнительно относится к фармацевтически приемлемым солям SCY-078, которые имеют кинетическую растворимость по меньшей мере 2 мг/мл через 4 ч в фосфатном буфере при pH 6,0. В одном воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью по меньшей мере 4 мг/мл через 4 ч в фосфатном буфере при pH 6,0. В другом воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью от 2 до 5 мг/мл через 4 ч в фосфатном буфере при pH 6,0. В еще одном воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью от 4 до 5 мг/мл через 4 ч в фосфатном буфере при pH 6,0.

В еще одном воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью по меньшей мере 4,5 мг/мл через 24 ч в фосфатном буфере при pH 6,0. В одном воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью по меньшей мере 7 мг/мл через 24 ч в фосфатном буфере при pH 6,0. В другом воплощении фармацевтически приемлемые соли SCY-078 имеют кинетическую растворимость от 4,5 до 8 мг/мл через 24 ч в фосфатном буфере при pH 6,0. В еще одном воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимость от 7 до 8 мг/мл через 24 ч в фосфатном буфере при pH 6,0.

Настоящее раскрытие дополнительно относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет кинетическую растворимость от 1 до 5 мг/мл через 4 ч в фосфатном буфере при pH 6,0. В одном воплощении раскрытие относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет кинетическую растворимость от 4 до 5 мг/мл через 4 ч в фосфатном буфере при pH 6,0.

В другом воплощении раскрытие относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет кинетическую растворимость от 4 до 8 мг/мл через 24 ч в фосфатном буфере при pH 6,0. В еще одном воплощении раскрытие относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет кинетическую растворимость от 7 до 8 мг/мл через 24 ч в фосфатном буфере при pH 6,0.

Настоящее раскрытие дополнительно относится к фармацевтически приемлемым солям SCY-078, которые имеют кинетическую растворимость по меньшей мере 16 мг/мл через 1 ч в среде SGF. В одном воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью по меньшей мере 17 мг/мл через 1 ч в среде SGF. В другом воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью по меньшей мере 18 мг/мл через 1 ч в среде SGF. В еще одном воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью по меньшей мере 18 мг/мл через 1 ч в среде SGF. В еще одном воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью по меньшей мере 18 мг/мл через 1 ч в среде SGF.

Настоящее раскрытие дополнительно относится к фармацевтически приемлемым солям SCY-078,

которые обладают кинетической растворимостью от 17 до 21 мг/мл через 1 ч в среде SGF. В другом воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью от 18 до 21 мг/мл через 1 ч в среде SGF. В еще одном воплощении фармацевтически приемлемые соли SCY-078 имеют кинетическую растворимость от 20 до 21 мг/мл через 1 ч в среде SGF.

Настоящее раскрытие дополнительно относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет кинетическую растворимость от 12 до 21 мг/мл через 1 ч в среде SGF. В одном воплощении раскрытие относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет кинетическую растворимость от 13 до 21 мг/мл через 1 ч в среде SGF. В другом воплощении раскрытие относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет кинетическую растворимость от 13 до 21 мг/мл через 1 ч в среде SGF. В другом воплощении раскрытие относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет кинетическую растворимость от 18 до 21 мг/мл через 1 ч в среде SGF. В еще одном воплощении раскрытие относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет кинетическую растворимость от 18 до 21 мг/мл через 1 ч в среде SGF. В еще одном воплощении раскрытие относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет кинетическую растворимость от 20 до 21 мг/мл через 1 ч в среде SGF.

Настоящее раскрытие дополнительно относится к фармацевтически приемлемым солям SCY-078, которые имеют кинетическую растворимость по меньшей мере 17 мг/мл через 24 ч в среде FaSSIF. В одном воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью по меньшей мере 22 мг/мл через 24 ч в среде FaSSIF. В другом воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью от 17 до 22 мг/мл через 24 ч в среде FaSSIF. В еще одном воплощении фармацевтически приемлемые соли SCY-078 обладают кинетической растворимостью от 21 до 22 мг/мл через 24 ч в среде FaSSIF.

Настоящее раскрытие дополнительно относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет кинетическую растворимость от 17 до 22 мг/мл через 24 ч в среде FaSSIF. В одном воплощении раскрытие относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет кинетическую растворимость от 21 до 22 мг/мл через 24 ч в среде FaSSIF.

Настоящее раскрытие дополнительно относится к фармацевтически приемлемым солям SCY-078, имеющим любую из раскрытых кинетических растворимостей и имеющим сорбцию воды не выше 7% при 25° C и относительной влажности 80%, определяемую DVS. В одном воплощении фармацевтически приемлемые соли SCY-078 имеют сорбцию воды от 2 до 7% при 25° C и относительную влажность 80%, определяемую DVS. В другом воплощении фармацевтически приемлемые соли SCY-078 имеют сорбцию воды от 2 до 7% при 25° C и относительную влажность 80%, определяемую DVS. В еще одном воплощении фармацевтически приемлемые соли SCY-078 имеют сорбцию влажность 80%, определяемую DVS. В еще одном воплощении фармацевтически приемлемые соли SCY-078 имеют сорбцию воды от 6 до 7% при 25° C и относительную влажность 80%, определяемую DVS.

Настоящее раскрытие дополнительно относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет сорбцию воды от 2 до 7% при 25°C и относительной влажности 80%, определяемую DVS. В одном воплощении раскрытие относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет сорбцию воды от 3 до 7% при 25°C и относительной влажности 80%, определяемую DVS.

В одном воплощении раскрытие относится к фармацевтически приемлемым солям SCY-078, где соль выбрана из цитрата, гиппурата, мезилата и фумарата и где соль имеет сорбцию воды от 6 до 7% при 25°C и относительной влажности 80%, определяемую DVS.

Настоящее раскрытие дополнительно относится к солям гиппурата SCY-078, таким как гиппурат SCY-078 типа А, гиппурат SCY-078 типа В и гиппурат SCY-078 типа С. В одном воплощении гиппурат SCY-078 типа А имеет XRPD, содержащий пики в одном или нескольких из следующих мест.

036874

Таблица А

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-paccтояние [Å]	Относ. инт. [%]
6,276484	353,472400	0,102336	14,08226	12,90
7,023845	139,782300	0,307008	12,58545	5,10
7,900725	1475,766000	0,127920	11,19048	53,85
8,241444	302,522300	0,102336	10,72859	11,04
9,723080	945,921800	0,089544	9,09681	34,52
11,283030	414,659200	0,102336	7,84238	15,13
11,492390	300,886600	0,076752	7,69998	10,98
12,610210	2740,558000	0,089544	7,01982	100,00
12,910370	765,158500	0,063960	6,85728	27,92
13,561180	243,791900	0,153504	6,52963	8,90
14,149930	371,812900	0,102336	6,25924	13,57
15,182550	1607,490000	0,102336	5,83577	58,66
15,806230	690,955800	0,179088	5,60688	25,21
16,673670	482,323700	0,179088	5,31709	17,60
17,068480	365,833300	0,127920	5,19498	13,35
18,200570	206,779900	0,153504	4,87432	7,55
18,933070	395,979900	0,153504	4,68736	14,45
19,293830	277,037400	0,102336	4,60052	10,11
19,924160	251,428800	0,204672	4,45638	9,17
20,583290	158,800000	0,204672	4,31514	5,79
21,951230	220,614300	0,153504	4,04923	8,05
23,477450	72,922780	0,409344	3,78934	2,66
24,511240	99,987140	0,255840	3,63181	3,65
24,954920	117,325600	0,153504	3,56824	4,28
25,993010	108,058000	0,204672	3,42804	3,94
28,257860	72,489400	0,409344	3,15822	2,65
31,063590	95,037750	0,179088	2,87907	3,47
31,653730	62,090590	0,307008	2,82673	2,27

Например, гиппурат SCY-078 типа имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 11,20, 7,02 и 5,84 Å. В другом примере гиппурат SCY-078 типа A имеет спектр XRPD, содержащий один или несколько пиков при градусах 20 7,90, 12,6 и 15,18.

В одном воплощении гиппурат SCY-078 типа В имеет спектр XRPD, содержащий пики в одном или нескольких из следующих мест.

Таблица В

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
5,887601	118,925500	0,102336	15,01151	9,56
6,889384	462,675400	0,063960	12,83077	37,19
7,277837	251,176000	0,051168	12,14678	20,19
8,767134	927,066800	0,076752	10,08643	74,52
9,945603	1143,995000	0,102336	8,89377	91,96
10,843500	681,448200	0,102336	8,15925	54,78
11,822440	140,502200	0,127920	7,48575	11,29
12,417990	1244,014000	0,089544	7,12805	100,00
13,714490	435,466500	0,089544	6,45698	35,00
14,608760	1242,496000	0,102336	6,06367	99,88
15,050420	474,015800	0,102336	5,88670	38,10
16,071560	476,890000	0,127920	5,51491	38,33
16,476910	708,831400	0,102336	5,38014	56,98
16,857150	185,689200	0,102336	5,25963	14,93
17,289970	422,781900	0,127920	5,12893	33,99
17,612420	996,474200	0,089544	5,03575	80,10
18,405510	186,288500	0,153504	4,82051	14,97
19,118560	303,851800	0,127920	4,64230	24,43
19,623870	158,474700	0,153504	4,52389	12,74
20,218430	314,377200	0,153504	4,39218	25,27
21,746130	200,050600	0,153504	4,08695	16,08
23,075880	129,668200	0,204672	3,85436	10,42
23,853540	106,856400	0,204672	3,73044	8,59
25,372290	96,670350	0,204672	3,51048	7,77
29,216870	66,396300	0,230256	3,05670	5,34
32,714200	31,053470	0,614016	2,73748	2,50

Например, гиппурат SCY-078 типа В имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 8,90, 7,13 и 6,10 Å.

В другом примере гиппурат SCY-078 типа В имеет спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 9,95, 12,42 и 14,61.

		Палинина алала			
Пол. [°2Th.]	Высота [имп/с]	Гюлуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]	
3,027072	11818,150000	0,051168	29,18766	100,00	
5,916137	351,270000	0,102336	14,93916	2,97	
6,916698	947,910600	0,102336	12,78016	8,02	
7,251646	624,847700	0,076752	12,19059	5,29	
8,761702	1828,733000	0,076752	10,09268	15,47	
9,962105	2404,236000	0,102336	8,87907	20,34	
10,897800	1593,408000	0,102336	8,11872	13,48	
11,868550	552,254500	0,102336	7,45677	4,67	
12,432300	2880,441000	0,127920	7,11988	24,37	
12,857840	525,634600	0,076752	6,88518	4,45	
13,091360	511,764400	0,115128	6,76288	4,33	
13,709840	1112,219000	0,102336	6,45916	9,41	
14,555290	3086,294000	0,153504	6,08582	26,11	
14,984610	1215,693000	0,102336	5,91241	10,29	
15,341160	506,870800	0,153504	5,77579	4,29	
16,136210	1315,742000	0,089544	5,49296	11,13	
16,453540	1710,358000	0,153504	5,38772	14,47	
16,897030	606,324900	0,102336	5,24730	5,13	
17,280760	1171,798000	0,127920	5,13164	9,92	
17,591700	2258,867000	0,102336	5,04163	19,11	
18,190770	538,754800	0,127920	4,87692	4,56	
18,425670	516,831300	0,179088	4,81528	4,37	
19,151570	950,084500	0,102336	4,63437	8,04	
19,602330	487,956400	0,127920	4,52881	4,13	
20,234760	861,917600	0,153504	4,38867	7,29	
20,860030	424,598600	0,153504	4,25851	3,59	
21,725360	459,496200	0,307008	4,09081	3,89	
22,532320	498,240700	0,102336	3,94610	4,22	
23,078810	380,947900	0,127920	3,85388	3,22	

В одном воплощении гиппурат SCY-078 типа С имеет спектр XRPD, содержащий пики в одном или несколы

0,307008 Например, гиппурат SCY-078 типа X имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 29,19, 8,88, 7,12 и 6,09 Å.

0,409344

0,102336

0,102336

0,204672

0,153504

0,307008

0.511680

0,307008

0,204672

0,307008

3,77752

3,72728

3,50919

3,44740

3,27997

3,22262

3.04622

2,90002

2,56525

2,52271

2,41264

1,76

3,20

2,97

1,75

1,63

1,22

1 46

0,73

0,76

0,59

0,47

23,551950

23,874020

25,381750

25,844490

27,188450

27,681830

29.319670

30,833510

34,979000

35,588330

37,270360

208.488500

377,598600

351,553600

207,070300

192,463400

144,369000

172.870900

86,432220

90,330020

69,479680

55,666410

В другом примере гиппурат SCY-078 типа X имеет спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 3.03, 9,96, 12,43 и 14,56.

Настоящее раскрытие дополнительно относится к фумаратным солям SCY-078, таким как фумарат SCY-078 типа А и фумарат SCY-078 типа В. В одном воплощении фумарат SCY-078 типа А имеет спектр XRPD, содержащий пики в одном или нескольких в следующих местах.

Таблица D

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
7,747007	167,350400	0,153504	11,41218	2,00
8,493147	8373,572000	0,102336	10,41119	100,00
9,346397	181,715800	0,204672	9,46257	2,17
9,931064	167,355100	0,153504	8,90676	2,00
10,442940	371,960600	0,089544	8,47130	4,44
10,706620	463,482500	0,076752	8,26326	5,54
11,231160	490,618200	0,153504	7,87848	5,86
13,030860	311,426800	0,102336	6,79415	3,72

13,700070	569,254300	0,102336	6,46374	6,80
14,895760	234,024600	0,153504	5,94748	2,79
15,204970	269,752200	0,153504	5,82722	3,22
16,350790	434,953000	0,127920	5,42135	5,19
16,976580	3015,489000	0,115128	5,22289	36,01
17,726110	1152,135000	0,230256	5,00370	13,76
18,205910	303,920500	0,102336	4,87290	3,63
18,863510	267,939100	0,153504	4,70449	3,20
20,164360	63,804870	0,409344	4,40383	0,76
20,898390	184,877000	0,102336	4,25078	2,21
21,419940	168,417300	0,102336	4,14844	2,01
22,228150	318,867400	0,127920	3,99940	3,81
23,936960	77,330220	0,307008	3,71763	0,92
25,533030	318,681700	0,089544	3,48874	3,81
26,114530	59,303240	0,204672	3,41236	0,71
26,883130	111,136200	0,204672	3,31652	1,33
30,876670	38,684340	0,614016	2,89607	0,46
50,010010	50,001510	0,011010	2,07007	0,10

Например, фумарат SCY-078 типа A имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 10,41, 5,22 и 5,00 Å.

В другом примере фумарат SCY-078 типа А имеет спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 8,49, 16,98 и 17,73.

В одном воплощении фумарат SCY-078 типа В имеет спектр XRPD, содержащий пики в одном или нескольких из следующих мест.

Таблица Е

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
5,449312	94,567020	0,307008	16,21786	19,92
6,318422	110,456500	0,409344	13,98888	23,26
9,799620	153,670200	0,614016	9,02593	32,36
10,577440	403,264100	0,255840	8,36388	84,93
10,995710	322,682700	0,089544	8,04665	67,96
11,970210	133,555200	0,307008	7,39367	28,13
13,136230	472,855300	0,102336	6,73989	99,58
13,551710	408,076200	0,102336	6,53417	85,94
14,201760	320,510900	0,204672	6,23651	67,50
15,712210	472,732700	0,076752	5,64022	99,56
16,216750	474,828900	0,076752	5,46586	100,00
16,849640	211,687300	0,204672	5,26195	44,58
20,391740	103,586500	0,358176	4,35524	21,82
21,343910	97,997770	0,409344	4,16305	20,64
28,564840	34,739620	0,614016	3,12498	7,32

Например, фумарат SCY-078 типа В имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 8,36, 6,74, 6,53, 5,64 и 5,47 Å.

В другом примере фумарат SCY-078 типа В имеет спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 10,58, 13,14, 13,55, 15,71 и 16,22.

Настоящее раскрытие дополнительно относится к гликолятным солям SCY-078. В одном воплощении гликолят SCY-078 имеет спектр XRPD, содержащий пики в одном или нескольких из следующих мест.

Таблица F

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
7,879599	291,814000	0,127920	11,22044	54,74
8,983378	233,086200	0,204672	9,84412	43,72
9,855934	117,677600	0,153504	8,97448	22,07
11,483230	269,580500	0,204672	7,70610	50,56
12,311460	163,106800	0,358176	7,18949	30,59
14,259570	285,813400	0,179088	6,21136	53,61
14,651000	437,366100	0,102336	6,04628	82,04
15,433320	533,138100	0,102336	5,74151	100,00
16,892280	103,441500	0,614016	5,24877	19,40
18,826490	177,863500	0,204672	4,71365	33,36
20,401140	101,236100	0,307008	4,35325	18,99
21,743970	54,436950	0,614016	4,08735	10,21
24,981860	29,298130	0,614016	3,56445	5,50

Например, гликолят SCY-078 имеет спектр XRPD, содержащий один или несколько пиков при dрасстояниях 11,22, 6,21, 6,05 и 5,74 Å.

В другом примере гликолят SCY-078 имеет спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 7,88, 14,26, 14,65 и 15,43.

Настоящее раскрытие дополнительно относится к мезилатным солям SCY-078. В одном воплощении мезилат SCY-078 имеет спектр XRPD, содержащий пики в одном или нескольких из следующих мест.

Таблица G

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева	d-расстояние	Отн. Инт. [%]
. ,		[*21h.]	[A]	
5,321569	44,016770	0,307008	16,60688	3,75
6,654286	233,467600	0,076752	13,28355	19,89
8,041747	243,835400	0,204672	10,99455	20,77
9,224843	236,712900	0,153504	9,58698	20,16
10,179890	547,128100	0,089544	8,68960	46,60
10,532080	592,551800	0,089544	8,39980	50,47
11,692820	225,932500	0,409344	7,56843	19,24
12,670270	361,926000	0,102336	6,98668	30,83
14,316750	537,652200	0,102336	6,18668	45,80
14,751260	1174,011000	0,102336	6,00541	100,00
15,645660	347,928600	0,204672	5,66406	29,64
16,537910	485,586600	0,179088	5,36043	41,36
17,477180	328,731900	0,127920	5,07441	28,00
18,838670	252,134300	0,307008	4,71063	21,48
19,613670	351,448500	0,153504	4,52622	29,94
21,008230	254,102200	0,204672	4,22880	21,64
22,068870	130,646600	0,307008	4,02791	11,13
23,475460	151,601600	0,204672	3,78965	12,91
25,592960	130,952000	0,153504	3,48071	11,15

Например, мезилат SCY-078 имеет спектр XRPD, содержащий один или несколько пиков при dрасстояниях 10,99, 6,99 и 6,01 Å.

В другом примере мезилат SCY-078 имеет спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 8,04, 12,67 и 14,75.

Настоящее раскрытие относится также к кальциевым солям SCY-078. В одном воплощении SCY-078 кальция имеет спектр XRPD, содержащий пики в одном или нескольких из следующих мест.

Таблица Н

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
5,330948	1222,647000	0,063960	16,57768	100,00
8,684942	82,143680	0,307008	10,18170	6,72
9,624508	215,229600	0,127920	9,18975	17,60
10,625810	286,722000	0,153504	8,32591	23,45
13,358050	110,336200	0,307008	6,62846	9,02
14,092620	101,325400	0,307008	6,28456	8,29
15,952080	1188,492000	0,153504	5,55594	97,21
16,282720	334,685300	0,153504	5,44386	27,37
17,853110	104,842700	0,153504	4,96839	8,58
19,638160	74,407610	0,307008	4,52063	6,09
29,434800	171,668200	0,204672	3,03457	14,04
30,178030	59,353870	0,153504	2,96150	4,85
31,428330	37,765730	0,307008	2,84648	3,09

Например, SCY-078 кальция имеет спектр XRPD, содержащий один или несколько пиков при dрасстояниях 16,58, 5,56 и 5,44 Å.

В другом примере SCY-078 кальция имеет спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 5,33, 15,95 и 16,28.

Настоящее раскрытие дополнительно относится к цитратным солям SCY-078, таким как цитрат SCY-078 типа A, типа B, типа E, типа F, типа M, типа N, типа O, типа Q, типа R и типа S. B одном воплощении цитратная соль SCY-078 содержит по меньшей мере один из типа A, типа B, типа E, типа F, типа M, типа N, типа O, типа Q, типа R и типа S.

Настоящее раскрытие дополнительно относится к цитратной соли SCY-078, содержащей тип А. В одном воплощении цитратная соль SCY-078 состоит, по существу, из типа А. В другом воплощении цитратная соль SCY-078 содержит по меньшей мере 98% типа А. В следующем воплощении цитратная соль SCY-078 содержит по меньшей мере 99% типа А.

В одном воплощении цитрат SCY-078 типа А стабилен в течение по меньшей мере 1 недели при хранении при 60°С. В другом воплощении цитрат SCY-078 типа А стабилен в течение по меньшей мере 1 недели при хранении при 25°С и относительной влажности 60%. В следующем воплощении цитрат SCY-078 типа А стабилен в течение по меньшей мере 1 недели при хранении при 40°С и относительной влажности 75%.

В следующем воплощении цитрат SCY-078 типа А имеет равновесную растворимость 38 мг/мл в незабуференной воде при температуре окружающей среды. В еще одном воплощении цитрат SCY-078 типа А имеет приблизительную растворимость от 40 до 42 мг/мл при комнатной температуре по мень-

шей мере в одном растворителе, выбранном из числа метанола, изопропилового спирта, уксусной кислоты, тетрагидрофурана, 2-метилтетрагидрофурана, 1,4-диоксана, N-метил-2-пирролидона, диметилсульфоксида и диметилацетамида. В еще одном воплощении цитрат SCY-078 типа А имеет сорбцию воды 6% при 25°С и относительной влажности 80%, определяемую DVS.

В одном воплощении цитрат SCY-078 типа А обладает кинетической растворимостью 4 мг/мл через 4 ч в декстрозном буфере при pH 5,5. В другом воплощении цитрат SCY-078 типа А имеет кинетическую растворимость 8 мг/мл через 24 ч в декстрозном буфере при pH 5,5. В следующем воплощении цитрат SCY-078 типа А имеет кинетическую растворимость 5 мг/мл через 4 ч в фосфатном буфере при pH 6,0. В еще одном воплощении цитрат SCY-078 типа А имеет кинетическую растворимость 8 мг/мл через 24 ч в фосфатном буфере при рН 6,0.

В одном воплощении цитрат SCY-078 типа А обладает кинетической растворимостью 21 мг/мл через 1 ч в среде SGF. В другом воплощении цитрат SCY-078 типа А имеет кинетическую растворимость 4 мг/мл через 24 ч в среде FeSSIF. В еще одном воплощении цитрат SCY-078 типа А имеет кинетическую растворимость 10 мг/мл через 1 ч в среде FaSSIF. В следующем воплощении цитрат SCY-078 типа А обладает кинетической растворимостью 21 мг/мл через 4 ч в среде FaSSIF.

Настоящее раскрытие дополнительно относится к цитратной соли SCY-078, содержащей цитрат SCY-078 типа А. В одном воплощении цитрат SCY-078 типа А имеет спектр XRPD, содержащий пики в одном или нескольких из следующих мест.

Таблица I

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
5,400273	434,322700	0,102336	16,36502	3,34
7,453872	13000,820000	0,191880	11,86031	100,00
9,201639	691,948300	0,204672	9,61110	5,32
10,831710	404,555000	0,153504	8,16811	3,11
11,485080	936,115200	0,179088	7,70486	7,20
12,491050	954,805500	0,179088	7,08652	7,34
13,191360	1776,320000	0,204672	6,71184	13,66
15,020350	1342,537000	0,204672	5,89842	10,33
15,664830	532,278900	0,179088	5,65717	4,09
15,955570	613,057500	0,127920	5,55474	4,72
16,751250	951,729000	0,153504	5,29264	7,32
17,978130	170,323300	0,204672	4,93412	1,31
19,591770	472,971000	0,204672	4,53123	3,64
22,213400	146,982900	0,204672	4,00202	1,13
23,845740	34,469910	0,614016	3,73164	0,27
25,160050	117,741100	0,307008	3,53961	0,91
28,761350	129,234400	0,255840	3,10407	0,99
30,356250	332,945100	0,230256	2,94452	2,56
32,317870	87,151140	0,307008	2,77014	0,67
34,725480	74,664570	0,511680	2,58339	0,57

Например, цитрат SCY-078 типа A имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 11,86, 7,70, 7,09, 6,71, 5,90 и 5,29 Å.

В другом примере цитрат SCY-078 типа А имеет спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 7,45, 11,49, 12,49, 13,19, 15,02 и 16,75.

Настоящее раскрытие дополнительно относится к цитратной соли SCY-078, содержащей цитрат SCY-078 типа В. В одном воплощении цитрат SCY-078 типа В имеет спектр XRPD, содержащий пики в одном или нескольких из следующих мест.

Таблица Ј

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
5,561437	214,772000	0,127920	15,89114	18,87
6,920576	1138,274000	0,115128	12,77301	100,00
9,319721	77,009080	0,307008	9,48959	6,77
11,144180	155,075600	0,153504	7,93978	13,62
11,729970	201,281900	0,153504	7,54455	17,68
13,405240	187,402700	0,358176	6,60523	16,46
15,225970	237,746900	0,204672	5,81923	20,89
16,813690	449,144100	0,153504	5,27312	39,46
18,219030	148,764600	0,204672	4,86942	13,07
19,324790	108,017600	0,153504	4,59322	9,49
20,531330	143,254500	0,127920	4,32594	12,59
23,721410	34,728650	0,307008	3,75092	3,05
26,000800	68,151450	0,204672	3,42703	5,99
29,343000	18,852780	0,614016	3,04385	1,66

Например, цитрат SCY-078 типа В имеет спектр XRPD, содержащий один или несколько пиков при

d-расстояниях 15,89, 12,77, 7,54, 5,82 и 5,27 Å.

В другом примере цитрат SCY-078 типа В имеет спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 5,56, 6,92, 11,73, 15,23 и 16,81.

Настоящее раскрытие дополнительно относится к цитратной соли SCY-078, содержащей цитрат SCY-078 типа Е. В одном воплощении цитрат SCY-078 типа Е имеет спектр XRPD, содержащий пики в одном или нескольких следующих местах.

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
5,524293	92,779970	0,307008	15,99790	5,74
7,256628	1616,341000	0,179088	12,18224	100,00
11,438900	216,111400	0,281424	7,73586	13,37
14,135060	246,012400	0,255840	6,26579	15,22
15,755470	336,295500	0,255840	5,62483	20,81
16,331430	208,920100	0,255840	5,42773	12,93
17,088060	99,712520	0,409344	5,18907	6,17
21,127980	46,130650	0,614016	4,20511	2,85
31,562360	23,421260	0,614016	2,83470	1,45

Например, цитрат SCY-078 типа Е имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 12,18, 7,74, 6,27, 5,62 и 5,43 Å.

В другом примере цитрат SCY-078 типа Е имеет спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 7,26, 11,44, 14,14, 15,76 и 16,33.

Настоящее раскрытие дополнительно относится к цитратной соли SCY-078, содержащей цитрат SCY-078 типа F. В одном воплощении цитрат SCY-078 типа F имеет спектр XRPD, содержащий пики в одном или нескольких из следующих мест.

Таблица L

Таблица К

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
3,633823	273,473300	0,204672	24,31535	100,00
8,094996	83,291080	0,307008	10,92235	30,46
14,004250	57,266020	0,818688	6,32402	20,94
17,742840	88,241520	0,307008	4,99902	32,27

Например, цитрат SCY-078 типа F имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 24,32 и 5,00 Å.

В другом примере цитрат SCY-078 типа F имеет спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 3,63 и 17,74.

Настоящее раскрытие дополнительно относится к цитратной соли SCY-078, содержащей цитрат SCY-078 типа М. В одном воплощении цитрат SCY-078 типа М имеет спектр XRPD, содержащий пики в одном или нескольких из следующих мест.

Таблица М

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
5,572099	251,586000	0,179088	15,86076	9,89
7,341430	2543,546000	0,332592	12,04171	100,00
9,506812	193,442600	0,307008	9,30326	7,61
11,507120	612,058600	0,281424	7,69016	24,06
12,151790	217,504900	0,255840	7,28359	8,55
14,166310	475,291100	0,179088	6,25204	18,69
15,796090	798,112100	0,255840	5,61046	31,38
16,373100	704,236700	0,179088	5,41401	27,69
17,342680	236,560600	0,511680	5,11346	9,30
18,264100	127,099200	0,307008	4,85751	5,00
20,028560	111,330700	0,307008	4,43338	4,38
21,230190	166,125100	0,255840	4,18509	6,53
22,124240	151,032300	0,358176	4,01795	5,94
23,019390	107,550400	0,307008	3,86369	4,23
25,286220	144,601600	0,511680	3,52223	5,69
27,656070	79,447100	0,358176	3,22556	3,12
28,430390	56,622940	0,409344	3,13945	2,23
29,646340	75,432070	0,614016	3,01339	2,97
32,376530	74,417430	0,307008	2,76525	2,93
36,534050	34,760060	0,614016	2,45955	1,37
38,139080	26,017290	0,614016	2,35966	1,02

Например, цитрат SCY-078 типа М имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 12,04, 7,69, 6,25, 5,61 и 5,41 Å.

В другом примере цитрат SCY-078 типа М имеет спектр XRPD, содержащий один или несколько

036874

пиков при значениях градусов 20 7,34, 11,51, 14,17, 15,80 и 16,37.

Настоящее раскрытие дополнительно относится к соли цитрата SCY-078, содержащей цитрат SCY-078 типа N. В одном воплощении цитрат SCY-078 типа N имеет спектр XRPD, содержащий пики в одном или нескольких из следующих мест.

Таблица N

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
5,410849	486,098000	0,076752	16,33306	9,13
7,067553	5326,844000	0,089544	12,50771	100,00
10,838060	670,175200	0,063960	8,16333	12,58
11,383920	1260,568000	0,089544	7,77310	23,66
11,924900	315,766000	0,153504	7,42166	5,93
12,367310	352,822800	0,153504	7,15714	6,62
12,923310	1574,956000	0,089544	6,85044	29,57
14,132120	1282,157000	0,102336	6,26708	24,07
15,162450	1604,350000	0,102336	5,84346	30,12
16,256930	1496,153000	0,089544	5,45244	28,09
16,676790	891,116500	0,115128	5,31610	16,73
16,898590	608,961300	0,102336	5,24682	11,43
17,769210	633,106100	0,127920	4,99166	11,89
18,512560	1119,245000	0,102336	4,79287	21,01
20,764100	264,835400	0,102336	4,27797	4,97
21,599360	277,781400	0,127920	4,11439	5,21
22,726850	204,007000	0,102336	3,91276	3,83
23,066060	336,013100	0,153504	3,85598	6,31
24,489610	243,365100	0,127920	3,63497	4,57
28,491330	175,736200	0,179088	3,13287	3,30
30,668850	84,372280	0,307008	2,91522	1,58
33,097360	34,363080	0,614016	2,70666	0,65
36,308500	40,510880	0,716352	2,47431	0,76

Например, цитрат SCY-078 типа N имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 12,51, 7,77, 6,85, 6,27, 5,84, 5,45 и 4,79 Å.

В другом примере цитрат SCY-078 типа N имеет спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 7,07, 11,38, 12,92, 14,13, 15,16, 16,26 и 18,51.

Настоящее раскрытие дополнительно относится к соли цитрата SCY-078, содержащей цитрат SCY-078 типа О. В одном воплощении цитрат SCY-078 типа О имеет спектр XRPD, содержащий пики в одном или нескольких из следующих мест.

Таблица О

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
3,214240	359,101800	0,409344	27,48844	9,56
5,562890	564,632100	0,102336	15,88699	15,03
7,082335	3757,717000	0,115128	12,48164	100,00
11,908250	1208,103000	0,089544	7,43200	32,15
14,197590	602,552700	0,115128	6,23833	16,04
16,178670	447,137400	0,179088	5,47864	11,90
16,755170	956,290800	0,115128	5,29141	25,45
28,567280	48,759020	0,307008	3,12472	1,30

Например, цитрат SCY-078 типа О имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 12,48, 7,43 и 5,29 Å.

В другом примере цитрат SCY-078 типа О имеет спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 7,08, 11,91 и 16,76.

Настоящее раскрытие дополнительно относится к соли цитрата SCY-078, содержащей цитрат SCY-078 типа Q. В одном воплощении цитрат SCY-078 типа Q имеет спектр XRPD, содержащий пики в одном или нескольких из следующих мест.

Таблица Р

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	D-расстояние [Å]	Отн. Инт. [%]
5,686347	449,970600	0,102336	15,54234	13,51
6,300879	3329,599000	0,140712	14,02779	100,00
6,890776	1871,585000	0,076752	12,82818	56,21
8,441730	95,233120	0,153504	10,47449	2,86
9,785571	136,396600	0,153504	9,03885	4,10
11,334590	1386,986000	0,140712	7,80682	41,66
11,733060	826,632000	0,102336	7,54257	24,83
12,939760	265,781600	0,409344	6,84177	7,98
13,691820	190,778000	0,153504	6,46762	5,73
14,156830	332,781500	0,153504	6,25620	9,99
14,496570	455,453300	0,102336	6,11034	13,68
15,135910	594,105600	0,153504	5,85365	17,84
15,903400	540,737100	0,127920	5,57284	16,24
17,010910	1588,263000	0,127920	5,21243	47,70
17,296950	476,914900	0,127920	5,12687	14,32
18,962100	570,585000	0,204672	4,68025	17,14
20,190720	395,466100	0,102336	4,39814	11,88
20,646480	601,591200	0,153504	4,30207	18,07
21,298380	208,197100	0,153504	4,17185	6,25
22,025220	160,183700	0,307008	4,03579	4,81
22,719750	205,611500	0,204672	3,91397	6,18
23,633070	128,288000	0,307008	3,76474	3,85
25,991160	157,744000	0,204672	3,42828	4,74
27,462080	37,389280	0,307008	3,24790	1,12
28,950740	597,140100	0,140712	3,08419	17,93
34,085010	29,835660	0,511680	2,63046	0,90

Например, цитрат SCY-078 типа Q имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 14.03, 12,83, 7,81, 7,54 и 5,21 Å.

В другом примере цитрат SCY-078 типа Q имеет спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 6,30, 6,89, 11,33, 11,73 и 17,01.

Настоящее раскрытие дополнительно относится к соли цитрата SCY-078, содержащей цитрат SCY-078 типа R. В одном воплощении цитрат SCY-078 типа R имеет спектр XRPD, содержащий пики в одном или нескольких из следующих мест.

Таблица Q

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
6,143884	611,904200	0,153504	14,38589	100,00
11,248800	143,606900	0,255840	7,86616	23,47
14,059410	351,488100	0,204672	6,29933	57,44
14,636960	372,993000	0,204672	6,05205	60,96
16,413500	550,672100	0,102336	5,40078	89,99
17,742000	362,377400	0,614016	4,99926	59,22
19,697290	248,048100	0,307008	4,50719	40,54
22,159300	133,589200	0,409344	4,01167	21,83
30,197650	27,706020	0,614016	2,95963	4,53

Например, цитрат SCY-078 типа R имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 14,39, 6,05, 5,40 и 5,00 Å.

В другом примере цитрат SCY-078 типа R имеет спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 6,14, 14,64, 16,41 и 17,74.

Настоящее раскрытие дополнительно относится к цитратной соли SCY-078, содержащей цитрат SCY-078 типа S. В одном воплощении цитрат SCY-078 типа S имеет спектр XRPD, содержащий пики в одном или нескольких из следующих мест.

Таблица R

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
5,512446	1020,013000	0,089544	16,03226	16,16
7,296105	6310,710000	0,153504	12,11641	100,00
8,443163	252,219900	0,230256	10,47272	4,00
11,057440	582,228600	0,179088	8,00186	9,23
12,004950	2714,326000	0,166296	7,37235	43,01
14,346070	536,999100	0,204672	6,17410	8,51
16,812800	1626,861000	0,127920	5,27340	25,78
19,482230	106,142000	0,358176	4,55646	1,68
22,188280	88,048920	0,409344	4,00650	1,40
24,046320	53,183810	0,818688	3,70096	0,84

Например, цитрат SCY-078 типа S имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 16.03, 12,12, 7,37 и 5,27 Å.

В другом примере цитрат SCY-078 типа S имеет спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 5,51, 7,30, 12,00 и 16,81.

Настоящее раскрытие дополнительно относится к способу получения фармацевтически приемлемой соли SCY-078, включающему объединение, по меньшей мере, следующих компонентов: (i) свободного основания SCY-078; (ii) слабой органической кислоты; и (iii) жидкого носителя. Слабая органическая кислота может быть выбрана из известных в данной области техники. В одном воплощении слабая органическая кислота выбрана из лимонной кислоты, фумаровой кислоты, метансульфоновой кислоты и гиппуровой кислоты. В другом воплощении слабая органическая кислота представляет собой лимонную кислоту. В следующем воплощении жидкий носитель представляет собой растворитель или смесь растворителей, и по меньшей мере одно из свободного основания SCY-078 и слабой органической кислоты растворимо в растворителе или смеси растворителей. В еще одном воплощении жидкий носитель содержит по меньшей мере одно из этанола, изопропилового спирта, ацетонитрила, ацетона, этилацетата и смеси тетрагидрофуран/вода. В еще одном воплощении жидкий носитель содержит этанол. В одном во площении способ дополнительно включает смешивание с (iv) антирастворителем. В другом воплощении антирастворитель включает N-гептан.

В одном воплощении способ дополнительно включает перемешивание комбинации, по меньшей мере, компонентов (i)-(iii). В следующем воплощении способ дополнительно включает перемешивание комбинации, по меньшей мере, компонентов (i)-(iii) в течение по меньшей мере 24 ч. В другом воплощении способ дополнительно включает перемешивание и нагревание комбинации, по меньшей мере, компонентов (i)-(iii). В следующем воплощении способ дополнительно включает перемешивание и нагревание комбинации, по меньшей мере, компонентов (i)-(iii). В следующем воплощении способ дополнительно включает перемешивание и нагревание комбинации, по меньшей мере, компонентов (i)-(iii). В следующем воплощении способ дополнительно включает перемешивание и нагревание комбинации, по меньшей мере, компонентов (i)-(iii) до температуры от 40 до 60°С. В еще одном воплощении способ дополнительно включает перемешивание и нагревание комбинации, по меньшей мере, компонентов (i)-(iii) до температуры от 40 до 60°С. В еще одном воплощении способ дополнительно включает перемешивание и нагревание комбинации, по меньшей мере, компонентов (i)-(iii) до температуры от 40 до 60°С. В еще одном воплощении способ дополнительно включает перемешивание и нагревание комбинации, по меньшей мере, компонентов (i)-(iii) до температуры от 40 до 60°С в течение по меньшей мере 60 мин.

В одном воплощении способ дополнительно включает перемешивание и нагревание комбинации, по меньшей мере, компонентов (i)-(iii) и добавление к комбинации, по меньшей мере, компонентов (i)-(iii) антирастворителя через по меньшей мере 14 ч. В еще одном воплощении антирастворителем является N-гептан.

В одном воплощении способ дополнительно включает перемешивание и нагревание комбинации, по меньшей мере, компонентов (i)-(iii); добавление к комбинации, по меньшей мере, компонентов (i)-(iii) антирастворителя через по меньшей мере 14 ч и охлаждение комбинации, по меньшей мере, компонентов (i)-(iii). В следующем воплощении охлаждение осуществляют до температуры от 0 до 20°C. В другом воплощении охлаждение осуществляют до температуры от 0 до 20°C со скоростью 0,25°C/мин.

Настоящее раскрытие дополнительно относится к способам получения соли цитрата типа A SCY-078. В одном воплощении способ включает десольватацию по меньшей мере одной из цитратной соли SCY-078 типа B, типа N и типа Q. В следующем воплощении десольватация включает сушку в атмосфере азота. В еще одном воплощении десольватация включает сушку под вакуумной фильтрацией.

Настоящее раскрытие дополнительно относится к фармацевтическим композициям, содержащим фармацевтически приемлемую соль SCY-078 и фармацевтически приемлемый носитель. Фармацевтически приемлемый носитель может быть выбран, среди прочего, из одного или нескольких из следующих: вода, солевые растворы, буферы и спирты. В одном воплощении фармацевтически приемлемая соль в фармацевтической композиции выбрана из цитрата, гиппурата, мезилата и фумарата. В еще одном воплощении фармацевтически приемлемая соль представляет собой соль цитрата. В еще одном воплощении фармацевтически приемлемая соль SCY-078 представляет собой цитрат SCY-078 типа А.

Согласно некоторым воплощениям фармацевтически приемлемая соль SCY-078 может состоять, по существу, из указанной кристаллической формы. В соответствии с некоторыми воплощениями фармацевтически приемлемая соль SCY-078 может содержать указанный кристалл в комбинации с одной или несколькими другими кристаллическими формами. Фармацевтически приемлемая соль SCY-078 может, например, содержать указанную кристаллическую форму вместе с менее чем 10% другой кристаллической формы (формами), например менее 5%, менее 2% или менее 1%.

В одном воплощении фармацевтическая композиция производится путем растворения фармацевтически приемлемой соли SCY-078 в фармацевтически приемлемом носителе. Фармацевтически приемлемый носитель может быть выбран, среди прочего, из одного или нескольких из следующих: вода, солевые растворы, буферы и спирты. В другом воплощении фармацевтическая композиция подходит для инъекций человеку. В следующем воплощении фармацевтическая композиция подходит для внутривенной инъекции человеку. В другом воплощении фармацевтически приемлемая соль представляет собой соль цитрата. В еще одном воплощении фармацевтически приемлемая соль SCY-078 представляет собой цитрат SCY-078 типа А.

Настоящее раскрытие дополнительно относится к способам получения фармацевтической композиции, содержащей фармацевтически приемлемые соли SCY-078 и фармацевтически приемлемый носитель. Фармацевтически приемлемый носитель может быть выбран, среди прочего, из одного или нескольких из следующих: вода, солевые растворы, буферы и спирты. В одном воплощении фармацевтически приемлемая соль SCY-078 растворяется в фармацевтически приемлемом носителе в течение 1 ч. В другом воплощении фармацевтически приемлемая соль SCY-078 растворяется в фармацевтически приемлемом носителе в течение 24 ч. В следующем воплощении фармацевтически приемлемая соль представляет собой соль цитрата. В еще одном воплощении фармацевтически приемлемая соль SCY-078 представляет собой цитрат SCY-078 типа А.

Настоящее раскрытие дополнительно относится к способам лечения грибковой инфекции у пациента, нуждающегося в этом. Например, способы включают лечение инвазивного кандидоза и инвазивного аспергиллеза. В одном воплощении способ включает введение пациенту, нуждающемуся в этом, фармацевтической композиции, содержащей эффективное количество фармацевтически приемлемой соли SCY-078. В другом воплощении фармацевтически приемлемая соль представляет собой соль цитрата. В следующем воплощении фармацевтически приемлемая соль SCY-078 представляет собой цитрат SCY-078 типа А. В другом воплощении фармацевтическая композиция подходит для инъекций человеку. В еще одном воплощении фармацевтическая композиция подходит для внутривенной инъекции человеку.

Примеры

Ниже описаны материалы и методы, используемые для всех примеров, если не указано иное.

Таблица 1

Тип	Аббревиатура/ Акроним	Полное название/Описание
Растворитель	ACN	Ацетонитрил
	DCM	Дихлорметан
	DMA	Диметиламин
	DMAc	Диметилацетамид
	DMSO	Диметилсульфоксид
	EtOH	Этиловый спирт
	EtOAc	Этилацетат
	IPA	Изопропиловый спирт
	IPAc	Изопропилацетат
	MeOH	Метанол
	MIBK	Метилизобутилкетон
	MTBE	Метил-трет-бутиловый эфир
	NMP	N-метил-2-пирролидон
	THF	Тетрагидрофуран
Биорелевантные	SGF	Имитация желудочного сока
Среды	FaSSIF	Имитация интестинальной жидкости в состоянии
		голода
	FeSSIF	Имитация интестинальной жидкости в состоянии
		сытости
Методы	DSC	Дифференциальная сканирующая калориметрия
	DVS	Динамическая паровая сорбция
	HPLC	Высокоэффективная жидкостная хроматография
	TGA	Термогравиметрический анализ
	XRPD	Дифракция рентгеновских лучей на порошке
Другие	FB	Свободное основание
	NF	Новая форма
	RH	Относительная влажность
	RT	Комнатная температура

Дифракция рентгеновских лучей на порошке (XRPD).

Методы и материалы.

Для проведения анализа XRPD использовался рентгеновский порошковый дифрактометр PANanalytical Empryean. Ниже приведены типичные параметры XRPD. Для анализа использовался Data Viewer (версия 1.4a) от PANanalytic.

Длина волны рентгеновского	Cu, ka, Ka1 (Å): 1,540598, Ka2 (Å): 1,544426
излучения	Коэффициент интенсивности Ка2/Ка1: 0,50
Настройки рентгеновской трубки	45 кВ, 40 мА
Щель расходимости	автоматическая
Режим сканирования	непрерывный
Диапазон сканирования (°2 ТН)	3° - 40°
Размер шага (°2 ТН)	0,0130 или 0,0170
Скорость сканирования (°/мин)	~10

Дифференциальная сканирующая калориметрия (DSC).

DSC выполнялась с помощью TA Q2000 DSC от TA Instruments. Для проведения DSC образец линейно нагревали от комнатной температуры до желаемой температуры со скоростью нагрева 10° С/мин, используя N₂ в качестве продувочного газа и завальцованный тигель. Для анализа результатов использовали Universal Analysis 2000 (TA Instruments).

Термогравиметрический анализ (TGA).

ТGA выполняли с помощью TA Q500/Q5000 TGA от TA Instruments. Для выполнения TGA образец нагревали от комнатной температуры до желаемой температуры со скоростью нагрева 10°С/мин, используя N₂ в качестве продувочного газа. Для анализа результатов использовали Universal Analysis 2000 (TA

Instruments). Температуру калибровали с использованием никеля и массы с использованием стандартных масс ТА и проверяли на обезвоживание и разложение моногидрата оксалата кальция.

Динамическая паровая сорбция (DVS).

Термин "DVS" означает процедуру, описанную ниже. Относительную влажность при 25°С калибровали против точки разжижения при поглощении влаги из атмосферы LiCl, Mg (NO₃)₂ и KCl.

Температура	25°C
Расход и скорость газа	N ₂ , 200 мл/мин
dm/dt	0,002%/мин
Мин. длительность стабильности dm/dt	10 мин.
Макс. время равновесия	180 мин.
Диапазон RH	95% RH - 0% RH - 95% RH
Размер шага RH	10% (90% RH - 0% RH - 90% RH)
	5% (90% RH - 95% RH - 90% RH)

DVS солей SCY-078 исследовали в соответствии с вышеуказанным способом с использованием размера образца 10-20 мг. DVS измеряли с использованием системы Surface Measurement Systems (SMS) DVS Intrinsic.

Метод высокоэффективной жидкостной хроматографии (HPLC).

Agilent 1260 HPLC с детектором DAD использовали для проверки растворимости или для проверки чистоты и стабильности. Для всех тестируемых соединений, отличных от трифторацетатных солей (типа A и B) и солей HCl типа I и II, условия и параметры, используемые для измерения растворимости, показаны в табл. 2A, а для измерения стабильности показаны в табл. 3A. Условия и параметры, используемые для растворимости солей трифторацетата (типа A и B) и солей HCl типа I и II, показаны в табл. 2B, а стабильность показана в табл. 3B. Системную пригодность тестировали путем инъецирования стандартных растворов пять раз в каждой последовательности образцов, и относительное стандартное отклонение площадей пиков составляло менее 2%.

Таблица 2А

Колонка	53#: Eclipse plus C1	53#: Eclipse plus C18, 4.6*150 мм, 3.5 мкм			
Мобильная фаза	А: 0,1% HClO ₄ в H	2OB: ACN			
Градиентная система	Время (мин)	%A	%B		
	0	70	30		
	1	70	30		
	7	5	95		
	8	5	95		
	8,1	70	30		
	12	70	30		
Скорость потока	1,0 мл/мин				
Вводимый объём	10 мкл				
Длина волны детектора	255 нм				
Время выполнения	12 мин.				
Температура колонки	40°C				
Температура автосамплера	RT				

Таблица 2В

Колонка	Waters C18 110A, 4	Waters C18 110А, 4.6*150 мм, 5 мкм			
Мобильная фаза	А: 0,1% ТFA в H ₂ C	A: 0,1% TFA в H ₂ O; B: 0,1% TFA в ацетонитриле			
Градиентная система	Время (мин)	%B			
	0	5			
	1	5			
	9	95			
	11	95			
	11,1	5			
	15	5			
Скорость потока	1,0 мл/мин				
Вводимый объём	10 мкл				
Длина волны детектора	УФ при 255 нм				
Время выполнения	15 мин				
Температура колонки	40°C				
Температура автосамплера	RT				

Таблица ЗА

Колонка	Phenomenex, Gemini C18, 4.6X150 мм, 3 мм			
Мобильная фаза	А: 0,1% НСЮ4 в Н2	O B: ACN		
Градиентная система	Время (мин)	% A	% B	
	0,0	63	37	
	5,0	43	57	
	15,0	38	62	
	20,0	10	90	
	30,0	10	90	
	31,0	63	37	
	36,0	63	37	
Скорость потока	1,0 мл/мин	·		
Вводимый объём	10 мкл			
Длина волны детектора	УФ в течение 210 м	ин		
Время выполнения	36,0 мин			
Температура колонки	40°C			
Температура пробоотборника	RT			
Разбавитель	ACN			

Таблица ЗВ

Колонка	Waters C18 110A, 4.6*150 мм, 5 мкм		
Мобильная фаза	A: 0,1% TFA в H ₂ O; B: 0,1% TFA в ацетонитриле		
Градиентная система	Время (мин)	% B	
	0, 0	5	
	23	95	
		1	
	27	95	
	27,1	5	
	30	5	
Скорость потока	1,0 мл/мин		
Вводимый объём	10 мкл		
Длина волны детектора	270 мин.		
Время выполнения	30,0 мин		
Температура колонки	40°C		
Температура пробоотборника	RT		

Приготовление сред SGF.

Термин "среда SGF" означает раствор, приготовленный по следующему способу. Хлорид натрия (0,2 г) и Triton X-100 (0,1 г) объединяли в колбе на 100 мл. Затем добавляли деионизированную воду. Смесь перемешивали до полного растворения всех твердых веществ. Затем добавляли 12N HCl (200 мкл) и значение рН проверяли с помощью рН-метра. рН доводили до 1,8 с помощью 1N HCl или 1N NaOH. После установления желаемого рН раствор разбавляли до необходимого объема деионизированной водой.

Подготовка среды FaSSIF.

Термин "среда FaSSIF" означает раствор, приготовленный по следующему способу. Растворяющий буфер FaSSIF получали путем растворения малеиновой кислоты (0,222 г) в 45 мл очищенной воды. pH доводили точно до 6,4 с использованием 1N NaOH.

Среду FaSSIF получали добавлением таурохолата натрия (0,161 г), хлорида натрия (0,398 г) и лецитина (0,0156 г) в мерную колбу на 100 мл. Затем добавляли 40 мл деионизированной воды. Раствор обрабатывали ультразвуком до прозрачности. Затем добавляли 45 мл растворяющего буфера FaSSIF. pH доводили до 6,5 с помощью 1N NaOH или 1N HCl. После достижения желаемого pH раствор разбавляли до объема деионизированной водой.

Альтернативную среду ("альтернативная среда FaSSIF") использовали для изучения трифторацетатных солей (тип A и B) и соли HCl типа I. Более конкретно, среду получали путем взвешивания 0,17 г одноосновного фосфата натрия (NaH₂PO₄, безводного), 0,021 г гидроксида натрия и 0,31 г хлорида натрия в мерную колбу на 50 мл и растворения приблизительно с 48 мл очищенной воды. pH доводили точно до 6,5 с использованием 1M HCl или 1M NaOH и разбавляли до объема очищенной водой. Затем добавляли 0,11 г порошка SIF, перемешивали и обрабатывали ультразвуком до полного растворения порошка. Раствор уравновешивали в течение 2 ч при комнатной температуре перед использованием. Раствор можно хранить при комнатной температуре в течение 48 ч или 4°C в течение 7 дней и перед применением должен быть уравновешен до RT.

Приготовление FeSSIF.

Термин "среда FeSSIF" означает раствор, приготовленный по следующему способу. Растворяющий буфер FeSSIF получали путем растворения малеиновой кислоты (0,638 г) и NaCl (0,728 г) в 100 мл очищенной воды. pH доводили точно до 5,8 с использованием 1N NaOH или 1N HCl.

Среду FeSSIF получали путем добавления таурохолата натрия (0,269 г), лецитина (0,078 г), олеата

натрия (0,012 г) и глицерилмоноолеата (0,089) в колбу на 50 мл. Затем добавляли 2,5 мл растворяющего буфера FeSSIF. Раствор обрабатывали ультразвуком. Затем добавляли дополнительно 12,5 мл растворяющего буфера FeSSIF по 1 мл поэтапно, с образованием эмульсии. Раствор переносили в мерную колбу на 50 мл и разбавляли до объема растворяющим буфером FeSSIF.

Альтернативную среду ("альтернативная среда FeSSIF") использовали для изучения трифторацетатных солей (типа A и B) и соли HCl типа I. Более конкретно, среду получали путем переноса 0,41 мл ледяной кислоты и взвешивания 0,20 г гидроксида натрия, 0,59 г хлорида натрия в мерную колбу на 50 мл. Все это растворяли приблизительно 48 мл очищенной воды. pH доводили до 5,0 с использованием 1M HCl или 1M NaOH и разбавляли до объема очищенной водой. Добавляли 0,56 г порошка SIF, перемешивали и обрабатывали ультразвуком до полного растворения порошка. Раствор можно хранить при комнатной температуре в течение 48 ч или 4°C в течение 7 дней и перед использованием следует уравновесить до RT.

Декстрозный буфер (рН 5,5).

Приготовление. Термины "декстрозный буфер при pH 5,5" и "декстрозный буфер (pH 5,5)" означают раствор, приготовленный по следующему способу. Декстрозу (0,5 г) добавляли в мерную колбу на 100 мл. Затем добавляли 1М HCl или 1М NaOH для доведения pH буфера до pH 5,5.

Ацетатный буфер (рН 5,5).

Приготовление. Ацетатный буфер (pH 5,5), используемый для трифторацетатных солей (тип A и B) и соли HCl типа I, получали путем помещения 0,60 г ацетата натрия (NaC₂H₃O₂·3H₂O) в мерную колбу на 100 мл, добавления 3 мл 2M раствора уксусной кислоты и последующего добавления очищенной воды до объема.

Фосфатный буфер (рН 6,0).

Приготовление. Термины "фосфатный буфер при рН 6,0" и "фосфатный буфер (рН 6,0)" означают раствор, полученный по следующему способу. Раствор 0,2М KH₂PO₄ (25 мл) и 0,2М NaOH (5,6 мл) готовили в мерной колбе на 100 мл. рН проверяли с помощью рН-метра. Затем добавляли воду до объема.

Альтернативную среду ("фосфатная (pH 6,0) альтернативная среда") использовали для изучения трифторацетатных солей (типа A и B) и соли HCl типа I. Более конкретно, среду получали путем растворения 2,72 г 0,2М одноосновного фосфата калия (KH₂PO₄) в очищенной воде и разбавления очищенной водой до 100 мл. 0,8 г 0,2М гидроксида натрия в очищенной воде разбавляли очищенной водой до 100 мл. Затем 50 мл 0,2М одноосновного раствора фосфата калия помещали в мерную колбу на 200 мл, добавляли 5,6 мл 0,2М раствора гидроксида натрия и затем добавляли очищенную воду до объема.

Фосфатный буфер (рН 7,5).

Получение. Термины "фосфатный буфер при рН 7,5" и "фосфатный буфер (рН 7,5)" означают раствор, полученный по следующему способу. Раствор 0,2М КН₂РО₄ ⁽²⁵ мл) и 0,2М NaOH (40,2 мл) готовили в мерной колбе на 100 мл. рН проверяли с помощью рН-метра. Затем добавляли воду до необходимого объема.

Кинетическая растворимость солей SCY-078.

Термин "кинетическая растворимость" по отношению к солям SCY-078 означает следующую процедуру. Сначала 15 мг, 50 мг или 100 мг одной из солей SCY-078 помещали в пластиковые центрифужные пробирки объемом 4 мл вместе с 1,7 мл соответствующей среды или 2,0 мл воды. Для декстрозного буфера при pH 5,5 фосфатного буфера при pH 6,0 и фосфатного буфера при pH 7,5, использовали 15 мг соли SCY-078. В среде SGF, среде FeSSIF и среде FaSSIF использовали 50 мг соли SCY-078. Для воды использовали 100 мг соли SCY-078. Была зарегистрирована фактическая масса каждого образца. Затем пробирку закрывали и образцы суспензии перемешивали во вращающем инкубаторе (25 об/мин) при комнатной температуре. Образцы отбирали через 1, 4 и 24 ч соответственно. Для каждого образца 0,5 мл аликвоты суспензии переносили в пробирку для центрифугирования на 1,5 мл и центрифугировали. Затем образцы фильтровали через центрифужную фильтровальную пробирку (0,45 мкм) при 8000 об/мин при комнатной температуре в течение 3 мин.

Трифторацетатные соли (тип A и B) и соль HCl типа I испытывали, используя следующую альтернативную процедуру. Во-первых, 15, 36 или 90 мг твердого вещества взвешивали в пластиковой пробирке объемом 4 мл и добавляли 3 мл соответствующей среды перед помещением суспензии во вращающий инкубатор (25 об/мин). Для SCF использовали 90 мг твердого вещества. Для FaSSIF, ацетатного буфера (pH 5,5) и фосфатного буфера (pH 6,0) использовали 15 мг твердого вещества. Для FaSSIF использовали 36 мг твердого вещества. 1,0 мл аликвоты суспензии отбирали для центрифугирования, при этом надосадочную жидкость использовали для HPLC и измерения pH, а твердый остаток для характеризации с помощью XRPD через 1, 4 и/или 24 ч.

Приблизительная растворимость солей SCY-078.

Термин "приблизительная растворимость" по отношению к солям SCY-078 означает процедуру, описанную в этом абзаце. Для проведения каждого эксперимента образец пробной соли SCY-078 (~2 мг) добавляли в стеклянный флакон объемом 3 мл. Затем пошагово добавляли растворитель (100 мкл на шаг) во флаконы до тех пор, пока твердые вещества не растворялись или не достигался общий объем 2 мл.

Равновесная растворимость солей SCY-078.

Термин "равновесная растворимость" по отношению к солям SCY-078 означает процедуру, описанную в этом абзаце. Равновесную растворимость соли SCY-078 оценивали в воде при комнатной температуре. Сначала соль SCY-078 (~50 мг) взвешивали в пробирке объемом 1,5 мл с последующим добавлением 1,0 мл воды, а затем образец перемешивали (800 об/мин) при комнатной температуре в течение 24 ч. Образец центрифугировали, а остаточное твердое вещество анализировали с помощью XRPD и измеряли концентрацию надосадочной жидкости с помощью HPLC.

Визуализация микроскопией в поляризованной свете.

Микроскопические изображения в поляризованном свете (PLM) фиксировали при комнатной температуре с использованием вертикального микроскопа Axio Lab A1, оснащенного камерой ProgRes® CT3. Образец помещали между предметным стеклом и покровным стеклом до проведения микроскопии в поляризованном свете для визуализации.

Пример 1.

SCY-078 фосфат: фосфатную соль SCY-078 получали из свободного основания SCY-078, которую получали с использованием известных процедур. См., например, патент США № 8188085. Свободное основание SCY-078 (10,0 г) помещали в реактор емкостью 250 мл. Добавляли этанол (50 мл), этилацетат (30 мл), уксусную кислоту (1,5 мл) и воду (1 мл) и смесь перемешивали при комнатной температуре в течение 10 мин. Полученный гомогенный раствор нагревали до 50°С и раствор фосфорной кислоты (1,74 г) в этилацетате медленно добавляли к раствору при 50°С в течение 1 ч. Полученную суспензию медленно охлаждали до комнатной температуры и перемешивали в течение ночи при комнатной температуре. Суспензию фильтровали и влажный осадок дважды промывали 20 мл смешанных растворителей (этанол: этилацетат:вода = 5:5:0,1), затем дважды этилацетатом (1 мл). Влажный осадок сушили в вакууме с продувкой азотом в течение 3 ч и затем сушили в вакуумной печи в течение ночи, получая 11,08 г не совсем белого кристалла. Время удерживания соединения составляло 4,08 мин, измеренное с помощью HPLC с использованием колонки Ascentis Express C18 со стандартным градиентом: 10-95% В в течение 6 мин (A=0,1% фосфорная кислота, B=ацетонитрил), 2 мин мертвое время, 2 мин время перерыва; скорость потока: 1,8 мл/мин (УФ-детектирование при 245 нм, 40°С).

Фосфат SCY-078 характеризовали XRPD, согласно которому соединение является кристаллическим (фиг. 1). Значения 20 и d-расстояния подытожены в табл. 4. Кривая DSC фосфата SCY-078 показала два эндотермических пика при 48,1°C и 267°C (фиг. 2). Снижение массы на 6,6% наблюдалось вплоть до 155,4°C на кривой TGA (фиг. 2).

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
3,446579	121,838400	0,153504	25,63591	8,36
6,002339	410,263500	0,127920	14,72481	28,14
6,926787	321,574500	0,153504	12,76157	22,05
7,923199	635,487400	0,179088	11,15879	43,58
9,163023	1458,149000	0,230256	9,65152	100,00
9,949172	420,112200	0,153504	8,89059	28,81
10,395180	355,706200	0,204672	8,51011	24,39
11,606700	1098,847000	0,179088	7,62440	75,36
11,998390	742,370400	0,153504	7,37637	50,91
12,509650	1152,457000	0,230256	7,07603	79,04
14,390130	1325,262000	0,179088	6,15529	90,89
15,561700	1295,270000	0,230256	5,69443	88,83
16,742160	847,559600	0,230256	5,29549	58,13
17,427190	694,495600	0,179088	5,08885	47,63
18,989620	584,788500	0,204672	4,67353	40,10
19,700330	472,891400	0,204672	4,50650	32,43
20,641180	788,029700	0,153504	4,30316	54,04
22,864060	331,310800	0,204672	3,88959	22,72
24,026930	187,756700	0,307008	3,70391	12,88
25,365620	208,707200	0,358176	3,51139	14,31
28,405150	77,468630	0,614016	3,14218	5,31
30.814330	70.380370	0.818688	2.90179	4.83

Таблица 4

Пример 2. Кристаллическое свободное основание SCY-078 (десольват МеОН).

Десольват МеОН получали следующим образом.

Фосфатную соль SCY-078 (10,0 г) загружали в 250 мл реактор. Добавляли карбонат натрия (50 мл 10%-го раствора) при 20°С и перемешивали. Добавляли 2-метилтетрагидрофуран (100 мл) и интенсивно перемешивали при 20°С до полного растворения твердых веществ. Смесь оставляли стоять в течение 30 мин, чтобы позволить разделиться двум прозрачным слоям, и органический слой дважды промывали деионизированной водой (40 мл). Промытый органический слой переносили в реакционный сосуд емкостью 125 мл и перемешивали при 500 об/мин, нагревали до 50°С и дистиллировали в парциальном ва-

кууме при 50°С до объема 40 мл. Добавляли метанол (80 мл) к реакционному сосуду при 50°С, который затем охлаждали до 40°С; через 2 ч образовались кристаллы. Затем объем перегоняли до 50 мл при 40°С при парциальном вакууме в течение 16 ч. Затем проводили перегонку с постоянным объемом при 40°С, добавляя метанол (40 мл) в течение 2 ч. Затем добавляли воду (20 мл) в течение 2 ч. Затем реакционный сосуд охлаждали до 20°С в течение 2 ч, а затем суспензию выдерживали при 20°С в течение 2 ч. Затем смесь фильтровали и полученный влажный осадок промывали 20 мл 4:1 раствора метанола и воды. Влажный осадок высушивали под струей азота при комнатной температуре в течение 16 ч. Анализ XRPD подтвердил, что сухой остаток является десольватированным сольватом метанола (выход 89%, чистота: 99,1%).

Были приготовлены две партии MeOH десольвата и охарактеризованы с помощью XRPD, DSC и TGA (фиг. 3-5). Паттерны XRPD показали, что соединение является кристаллическим. Значения 20 и dрасстояния из партии 1 и партии 2 приведены в табл. 5а и 5b соответственно. Кривая DSC для десольвата MeOH партии 1 показала эндотерму при ~55,0°C и экзотерму при ~281,5°C. Кривая DSC для десольвата MeOH партии 2 показала эндотерму при ~56,1°C и экзотерму при ~279,2°C. Кривая TGA партии 1 показала потерю массы на 4,7% до 120°C. Кривая TGA партии 1 показала потерю массы на 6,6% до 120°C. Кривая TGA партии 2 показала потерю массы на 4,9% до 120°C.

Таблица 5а

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
6,763088	656,275900	0,153504	13,07009	7,96
7,007256	762,055000	0,127920	12,61520	9,24
7,747366	5938,858000	0,179088	11,41165	72,02
8,156786	1751,303000	0,179088	10,83975	21,24
9,712988	1115,822000	0,153504	9,10623	13,53
10,141860	2106,808000	0,076752	8,72210	25,55
12,584090	950,310500	0,153504	7,03433	11,52
13,014360	1356,119000	0,127920	6,80272	16,45
13,486330	1749,145000	0,102336	6,56570	21,21
13,729600	2433,802000	0,076752	6,44991	29,52
14,005940	8245,783000	0,166296	6,32326	100,00
14,405120	4246,837000	0,140712	6,14892	51,50
14,876760	4956,689000	0,127920	5,95503	60,11
15,210400	2019,649000	0,089544	5,82515	24,49
15,545740	4247,989000	0,153504	5,70024	51,52
15,924930	1123,799000	0,127920	5,56535	13,63
16,357440	911,992900	0,102336	5,41916	11,06
16,653970	1230,506000	0,153504	5,32333	14,92
17,281780	1476,632000	0,115128	5,13134	17,91
18,290550	2584,896000	0,127920	4,85054	31,35
18,910970	2762,926000	0,089544	4,69279	33,51
19,423650	3792,983000	0,166296	4,57006	46,00
20,154410	631,061700	0,153504	4,40598	7,65
21,211700	1085,950000	0,153504	4,18870	13,17
22,103930	642,381300	0,153504	4,02160	7,79
22,813500	357,089200	0,153504	3,89809	4,33
23,851840	485,307900	0,204672	3,73070	5,89
24,372350	254,224300	0,153504	3,65219	3,08
25,127990	631,886600	0,204672	3,54405	7,66
25,582260	817,763400	0,230256	3,48214	9,92
25,946780	361,733700	0,127920	3,43404	4,39
27,215450	399,894700	0,204672	3,27677	4,85
31,598700	117,418900	0,358176	2,83152	1,42
34,043420	360,328100	0,179088	2,63357	4,37
35,453150	228,142700	0,204672	2,53202	2,77
37,397760	89,968660	0,204672	2,40471	1.09

Таблица 5b

Пол. [°2Th.]	Высота [имп/с]	Высота [имп/с] Полуширина слева d-расстояние [Å]		Отн. Инт. [%]
6,689568	495,508900	0.076752	13.21357	7.10
6,958760	795,039300	0.076752	12,70301	11,39
7,719929	6977,127000	0,102336	11,45214	100,00
8,113519	1569,148000	0.076752	10,89746	22,49
9,660554	883,585800	0,089544	9,15554	12,66
10,105090	1377,370000	0,063960	8,75376	19,74
12,511740	551,167400	0,076752	7,07485	7,90
12,972470	906,794200	0,102336	6,82459	13,00
13,432450	898,612700	0,051168	6,59191	12,88
13,698610	1280,818000	0,063960	6,46442	18,36
13,963580	6943,854000	0,102336	6,34235	99,52
14,354450	3936,292000	0,102336	6,17051	56,42
14,833880	3242,652000	0,102336	5,97215	46,48
15,161830	1072,948000	0,102336	5,84370	15,38
15,499310	3840,597000	0,115128	5,71721	55,05
15,870270	694,539900	0,063960	5,58440	9,95
16,294450	561,885100	0,102336	5,43997	8,05
16,589520	716,170000	0,076752	5,34387	10,26
17,231620	1048,768000	0,089544	5,14616	15,03
18,228150	1455,529000	0,089544	4,86701	20,86
18,853630	2320,288000	0,102336	4,70693	33,26
19,358690	2769,789000	0,127920	4,58525	39,70
20,105050	319,040400	0,153504	4,41669	4,57
21,158160	854,556900	0,089544	4,19918	12,25
22,060990	457,091300	0,127920	4,02933	6,55
22,755630	189,699300	0,153504	3,90788	2,72
23,818130	259,770000	0,102336	3,73590	3,72
24,629730	250,065300	0,153504	3,61461	3,58
25,034030	415,901700	0,102336	3,55714	5,96
25,544070	535,863500	0,179088	3,48726	7,68
25,883800	303,412800	0,102336	3,44225	4,35
27,200370	321,682800	0,102336	3,27856	4,61
27,597540	179,014900	0,102336	3,23227	2,57
28,068430	126,035900	0,409344	3,17911	1,81
29,974950	124,045000	0,153504	2,98110	1,78
31,402190	89,293980	0,614016	2,84879	1,28
32,603460	118,588300	0,204672	2,74652	1,70
33,988800	247,854700	0,179088	2,63768	3,55
35,391040	161,830400	0,153504	2,53632	2,32

Пример 3. Аморфное свободное основание SCF-078.

Для получения аморфного свободного основания SCY-078 в флакон объемом 3 мл добавляли десольват MeOH (50 мг). Затем к флакону десольвата MeOH добавляли DCM (0,5 мл). Полученный раствор десольвата MeOH и DCM образует прозрачный раствор. Раствор выпаривали досуха из открытого флакона при 50°C.

Твердое вещество, полученное после выпаривания, характеризовали с помощью XRPD, TGA, DSC и DVS. Спектр XRPD показал, что тестируемый образец является аморфным. Кривые DSC и TGA аморфного образца демонстрировали переход в стеклообразное состояние при ~189,1°C (фиг. 6). Кривая TGA показала потерю массы на 4,2% до 150°C. Кривая DVS показала, что образец гигроскопичен с поглощением воды -4,8% при 80% RH, 25°C. Спектр XRPD, выполненный после DVS, не продемонстрировали изменения формы.

Пример 4. Кинетическая растворимость свободного основания SCY-078.

Кинетическую растворимость десольвата MeOH SCY-078 и аморфного свободного основания SCY-078 оценивали в среде SGF, среде FaSSIF, среде FeSSIF, декстрозовом буфере (pH 5,5), фосфатном буфере (pH 6,0) и фосфатном буфере (pH 7,5) при комнатной температуре. Сначала твердый десольват MeOH SCY-078 или аморфное свободное основание SCY-078 (~15 мг) взвешивали во флаконе объемом 4 мл. Затем добавляли соответствующую среду (3,0 мл) и суспензии перемешивали во вращающемся инкубаторе (25 об/мин) при комнатной температуре в течение 1, 4 и 24 ч соответственно. После перемешивания 0,5 мл суспензии центрифугировали и фильтровали (0,45 мкм). Остаточные твердые вещества анализировали с помощью XRPD и измеряли надосадочную жидкость с помощью HPLC и pH-метра.

В результате (табл. 6) было показано, что и десольват MeOH, и аморфное свободное основание проявляют высокую растворимость в SGF и FeSSIF. Результаты также показали, что как десольват MeOH, так и аморфное свободное основание только умеренно растворимы в FaSSIF и буферах с pH 5,5, pH 6,0 и pH 7,5.

Изменение твердой формы наблюдалось во время измерений растворимости десольвата MeOH в FeSSIF, FaSSIF, буфера с pH 5,5 и 6,0. Кроме того, были обнаружены три новые кристаллические формы

(1001.0). 1 pri nobbie wopmbi ooosna tenbi kak noban wopma 1, 2 n s.	((табл.	6).	Три нов	ые формы	і обозначены і	как новая ф	орма 1, 2 и 3.
--	---	--------	-----	---------	----------	----------------	-------------	----------------

Таблица 6

Кинетическая растворимость свободного основания SCY-078					
Deemonumouu	Начальная	Время	Растворимость	<u>п</u> П	the server
гастворитель	форма	(часы)	(мг/мл)	pri	форма
		1	> 5,3 *	2,8	N/A
SGF	Десольв. ^{\$}	4	> 5,3 *	2,8	N/A
		24	> 5,3 *	2,8	N/A
		1	> 5.2 *	2.1	N/A
	Аморф	4	> 5.2 *	2.2	N/A
	1	24	> 5.2 *	2.2	N/A
		1	3.3	5.1	NF 1
	Десольв.	4	3.5	5.1	NF 1
E GOVE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	24	3.5	5.1	NF 1
FeSSIF		1	3.0	5,1	Аморф.
	Аморф.	4	3,7	5,1	Аморф.
		24	3,8	5,1	Аморф.
		1	ND	6,6	NF 1
	Десольв.	4	ND	6,6	NF 1
E-COIE		24	ND	6,6	NF 1
Fassir	Аморф.	1	0,017	6,6	Аморф.
		4	<0,51 мкг/мл	6,6	Аморф.
		24	ND	6,6	Аморф.
	Десольв.	1	N/A	N/A	N/A
		4	0,0008	7,2	NF 2
Euchon nH 5.5		24	ND	7,1	NF 2
вуфер рп 5,5	Аморф.	1	N/A	N/A	N/A
		4	ND	6,8	Аморф.
		24	ND	6,9	Аморф.
		1	N/A	N/A	N/A
	Десольв.	4	0,045	6,2	NF 1
Euton nH 6.0		24	0,60	6,1	NF 3
Bywep pri 0.0		1	N/A	N/A	N/A
	Аморф.	4	<0,51 мкг/мл	6,1	Аморф.
		24	0,0024	6,1	Аморф.
		1	N/A	N/A	N/A
	Десольв.	4	0,0024	7,3	Десольв.
PH 7.5 Sydema		24	0,0025	7,4	Десольв.
1117,5 буфора		1	N/A	N/A	N/A
	Аморф.	4	ND	7,4	Аморф.
		24	ND	7,4	Аморф.
*: Получен прозрачн	ый раствор				
N/A: нет данных					
NF: Новая форма					
десольв.: Десольват					
Л. не оонаружено	autaorpo				
Аморф аморфное в	ещество				
ф. десольват меон					

Пример 5. Приблизительная растворимость десольвата MeOH SCOL-078.

Приблизительную растворимость десольвата MeOH SCY-078 измеряли в 20 растворителях при комнатной температуре (25±3°С). Сначала десольват MeOH (~2 мг) добавляли в стеклянный флакон объемом 3 мл. Затем соответствующий растворитель добавляли поэтапно (100 мкл) до тех пор, пока раствор не стал визуально прозрачным или не был достигнут общий объем 2 мл. Результаты приведены в табл. 7.

Таблица 7

Приблизительная растворимость свободного основания SCY-078 при RT				
Растворитель	Растворимость (мг/мл)			
MeOH	5,4 < S <6,3			
EtOH	2,6 < S <3,0			
IPA	7,0 < S <11,0			
Уксусная кислота	S> 25,0			
ACN	2,6 < S <2,9			
Ацетон	8,3 <s <12,5<="" td=""></s>			
MIBK	S> 29,0			
EtOAc	S> 23,0			
iPrOAc	10,5 < S <21,0			
MTBE	S> 23,0			
THF	S> 23,0			
2-MeTHF	S> 25,0			
1,4-диоксан	S> 37,0			
NMP	S> 45,0			
DMSO	S> 32,0			
CHCl ₃	S> 33,0			
Толуол	6,8 < S <8,5			
Гептан	S <2,2			
DMA	S> 40,0			
H_2O	S <1,9			

Пример 6. Исследование солей свободного основания SCY-078.

Исследование солей свободного основания десольвата MeOH SCY-078 проводилось с использованием 108 различных условий, разработанных с использованием 18 кислот в 6 растворителях (табл. 8). Исследование солей проводили сначала путем приготовления раствора свободной соли OCO-078 десольвата MeOH с последующим смешиванием с эквимолярным раствором кислоты. Этот раствор перемешивали при комнатной температуре в течение ночи.

Для осадков твердые вещества выделяли и анализировали с помощью XRPD. Прозрачные растворы медленно выпаривали досуха при комнатной температуре.

Исследование солей (табл. 8) показало, что были обнаружены семь кристаллических солей (восемь кристаллических форм) SCY-078: HCl тип A, цитрат типа A, гиппурат типа A, фумарат типа A, фумарат типа B, гликолят типа A, мезилат тип A и соль Ca типа A. В ходе исследования солей были обнаружены четыре кристаллические формы свободного основания SCY-078, которые были идентифицированы как свободное основание ("FB") типа A, B, C и D.

Таблица 8

Растворитель						
Кислота	EtOH (A)	Ipa (B)	ACN (C)	Ацетон (D)	EtOAc (E)	ТНF/H2O (19:1. об./об.) (F)
HCI	масло	масло	Соль HC1 типа А	Соль HCl типа А	аморфный	масло
H ₃ PO ₄	масло	масло	масло	масло	масло	масло
Малеиновая кислота	аморфный	аморфный	FB типа А	аморфный	аморфный	аморфный
Лимонная кислота	аморфный	аморфный	Цитрат типа А	аморфный	FB типа A	аморфный
Гиппуровая кислота	FB типа В	FB типа В	Гиппурат типа А	Гиппурат типа А	Гиппурат типа А	Низкая кристалличность
Адипиновая кислота	аморфный	FB типа А	FB типа А	FB Тип С	аморфный	аморфный
Фумариновая кислота	аморфный	аморфный	Фумарат типа А	FB Тип D	Фумарат типа В	аморфный
Глютаровая кислота	аморфный	FB типа А	FB типа А	FB Тип С	FB типа А	аморфный
Гликолевая кислота	FB типа В	FB типа В	FB типа В	FB Тип С	FB типа В	Гликолят типа А
D-глутаминовая кислота	десольват МеОН + кислота	FB типа А	FB типа А	FB Тип С	FB типа А	аморфный
Уксусная кислота	масло	масло	аморфный	аморфный	аморфный	масло
Муциновая кислота	аморфный	аморфный	FB Тип D	FB Тип D	FBTypeD	аморфный
L-яблочная кислота	аморфный	аморфный	FB типа А	FB Тип С	FB типа А	аморфный
Бензойная кислота	десольват МеОН	FB типа А	FB типа A	FB Тип С	FB типа А	аморфный
Метансульфоновая кислота	аморфный	аморфный	FB типа В	Мезилат типа А	FB типа В	аморфный
Малоновая кислота	аморфный	аморфный	FB типа A	аморфный	FB типа A	аморфный
Этансульфоновая кислота	аморфный	масло	FB типа В	FB типа В	FB типа В	аморфный
Ca(OH)2	Ca(OH)2	Ca(OH)2	FB типа А	FB Тип С	Ca(OH)2	Соль Са типа А

Все вышеуказанные эксперименты по формированию соли проводили при RT с использованием 1,0 мол. экв. кислоты.

FB: свободное основание.

Пример 7. SCY-078 HCl тип А.

SCY-078 HCl тип A, полученный из исследования солей в примере 6, характеризовали с помощью XRPD, DSC и TGA (фиг. 7-8). Полученная в результате диаграмма XRPD подтвердила, что SCY-078 HCl типа A является слабо кристаллическим и имеет уникальную форму по сравнению с десольватом MeOH свободного основания. Значения 20 и d-расстояния подытожены в табл. 9. Кривая DSC показала эндотерму при 48,5°C (температура начала). Кривая TGA показала потерю массы на 14,4% до 130°C.

Таблица 9

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
5,635436	167,080400	0,153504	15,68264	21,28
9,023307	62,106750	0,307008	9,80065	7,91
11,313240	785,111500	0,179088	7,82150	100,00
14,217720	329,207600	0,179088	6,22955	41,93
16,983670	169,700900	0,204672	5,22073	21,61
18,224350	96,247500	0,409344	4,86801	12,26
32,709530	91,332090	0,153504	2,73786	11,63

Пример 8. Цитрат SCY-078 типа А (молярная эквивалентность - противоион/API 1).

Цитрат SCY-078 тип A, полученный из исследования солей в примере 6, характеризовали с помощью XRPD, DSC и TGA (фиг. 9-10). Полученный в результате спектр XRPD свидетельствует о том, что цитрат SCY-078 типа A является кристаллическим и представляет собой уникальную форму по сравнению с десольватом MeOH свободного основания. Значения 20 и d-расстояния подытожены в табл. 10. Кривая DSC показала две эндотермы при 36,2°C и 194,8°C (температура начала). Кривая TGA продемонстрировала потерю массы 5,1% до 100°C.

Образец нагревали до 100°С и затем охлаждали до комнатной температуры. XRPD проводили после нагревания и охлаждения до комнатной температуры. Полученный спектр XRPD показал, что изменений в форме не было. Характеризация с помощью DSC и TGA также выполнялась после нагревания и охлаждения. Кривая DSC показала две эндотермы при 39,9°С и 194,8°С (температуры начала). Кривая TGA показала потерю массы на 5,3% до 100°С.

Таблица 10

Пол. [°2Th.]	Iол. [°2Th.] Высота [имп/с] Полуширина [°2Th.]		d-расстояние [Å]	Отн. Инт. [%]
5,448309	886,677500	0,140712	16,22084	29,56
7,551316	2999,844000	0,153504	11,70747	100,00
9,280401	338,350200	0,204672	9,52971	11,28
10,933390	532,481900	0,102336	8,09237	17,75
11,525650	1003,802000	0,140712	7,67783	33,46
12,550580	416,868300	0,204672	7,05304	13,90
13,236060	1150,251000	0,153504	6,68928	38,34
15,063710	476,465200	0,153504	5,88154	15,88
16,766510	1157,775000	0,204672	5,28786	38,59
18,032270	212,464400	0,153504	4,91943	7,08
19,686700	214,063600	0,307008	4,50959	7,14
22,220460	123,975800	0,153504	4,00077	4,13
30,421720	65,589230	0,358176	2,93833	2,19
34,915250	28,764450	0,614016	2,56979	0,96

Пример 9. Гиппурат SCY-078 типа А (молярный эквивалент противоиона/API 2.0).

Гиппурат SCY-078 типа A, полученный из исследования солей в примере 6, характеризовали с помощью XRPD, DSC и TGA (фиг. 11-12). Спектр XRPD для гиппурата SCY-078 типа A показал, что образец является кристаллическим и имеет уникальную форму по сравнению с десольватом MeOH свободного основания. Кривая DSC показала три эндотермы при 36,3°C, 104,6°C и 165,5°C (температуры начала) и одну экзотерму при 201,9°C (температура начала). Кривая TGA показала потерю массы на 4,9% до 150°C.

Пример 10. Гиппурат SCY-078 типа В.

Гиппурат SCY-078 типа В получали нагреванием гиппурата типа A до 150°C с последующим охлаждением образца до комнатной температуры. Гиппурат SCY-078 типа В характеризовали с помощью XRPD, DSC и TGA (фиг. 13-14). Спектр XRPD показал, что образец является кристаллическим и имеет уникальную форму по сравнению с гиппуратом SCY-078 типа А. Кривая DSC показала две эндотермы при 39,6°C и 166,4°C (температуры начала) и одну экзотерму при 201,4°C (температура начала). Кривая ТGА показала потерю 1,8% массы до 150°С.

Пример 11. Гиппурат SCY-078 типа С.

Цикл DSC и XRPD проводили для исследования событий фазового перехода во время процесса нагревания-охлаждения гиппурата SCY-078 типа В (фиг. 15-16). Наложение XRPD и кривой DSC подтвердило температуру плавления гиппурата SCY-078 типа В при 163,9°C с последующей перекристаллизацией аморфной фазы при 208,8°C и формированием новой безводной фазы. Новая фаза ангидрата - гиппурат SCY-078 типа C.

Пример 12. Фумарат SCY-078 типа А (молярный эквивалент противоиона/API 1.0).

Фумарат SCY-078 тип А, полученный из исследования солей в примере 6, характеризовали с помощью XRPD, DSC и TGA (фиг. 17-18). Спектр XRPD показал, что образец является кристаллическим и является уникальной формой по сравнению с десольватом MeOH свободного основания. Кривая DSC фумарата SCY-078 типа А показала эндотерму при 33,1°C и температуру плавления при 207,3°C (температура начала). Кривая TGA показала потерю массы на 2,4% до 120°C.

Образец фумарата SCY-078 типа А нагревали до 120°С и затем давали остыть до комнатной температуры. Затем повторяли характеризацию с помощью XRPD, DSC и TGA. Спектр XRPD не продемонстрировал изменений формы после нагрева и охлаждения. Кривая DSC нагретого-охлажденного фумарата SCY-078 типа А демонстрировала две эндотермы при 38,4°С и 207,1°С (температуры начала). Кривая TGA нагретого-охлажденного фумарата SCY-078 типа А показала потерю массы 2,0% до 120°С.

Пример 13. Фумарат SCY-078 типа В (молярный эквивалент противоиона/API 0.8).

Фумарат SCY-078 типа В, полученный из исследования солей в примере 6, характеризовали с помощью XRPD, DSC и TGA (фиг. 19-20). Спектр XRPD фумарата SCY-078 типа В показал, что образец слабо кристалличен и что он является уникальной формой по сравнению с десольватом MeOH свободного основания. Кривая DSC фумарата SCY-078 типа В показала две эндотермы при 37,9°C и 178,5°C (температура начала). Кривая TGA показала потерю массы на 13,4% до 300°C.

Пример 14. Гликолят SCY-078 типа А (молярный эквивалент противоиона/API 2.0).

Гликолят SCY-078 тип A, полученный из исследования солей в примере 6, характеризовали с помощью XRPD, DSC и TGA (фиг. 21-22). Спектр XRPD гликолята SCY-078 типа A показал, что образец является кристаллическим и уникальной формой по сравнению с сольватом MeOH свободного основания. Кривая DSC образца отображала две эндотермы при 35,9°C и 159,6°C (температуры начала). Кривая TGA показала потерю массы на 6,6% до 100°C.

Пример 15. Мезилат SCY-078 типа А (молярный эквивалент противоиона/API 1.0).

Мезилат SCY-078 тип A, полученный из исследования солей в примере 6, характеризовали с помощью XRPD, DSC и TGA (фиг. 23-24). Спектр XRPD показал, что образец является кристаллическим и является уникальной формой по сравнению с десольватом MeOH свободного основания. Кривая DSC показала эндотерму при 44,2°C и температуру плавления при 260,0°C (температуры начала). TGA показала потерю массы на 4,5% до 120°C.

Далее образец мезилата SCY-078 типа А нагревали до 120°С, а затем давали остыть до комнатной температуры. После этого повторяли характеризацию с помощью XRPD, DSC и TGA. Спектр XRPD не показал изменений формы после нагрева и охлаждения. Кривая DSC нагретого-охлажденного мезилата SCY-078 типа А показала эндотерму при 59,7°С и температуру плавления при 257,4°С (температуры начала). Кривая TGA нагретого-охлажденного мезилата SCY-078 типа А показала потерю массы на 9,4% до 120°С.

Пример 16. SCY-078 кальция типа А.

SCY-078 кальция тип A, полученный из исследования солей в примере 6, характеризовали с помощью XRPD, DSC и TGA (фиг. 25-26). Спектр XRPD показал, что образец является кристаллическим и является уникальной формой по сравнению с десольватом MeOH свободного основания. Кривая DSC показала две эндотермы при 147,3°C и 230,8°C (температуры начала). Кривая TGA показала потерю массы на 5,3% до 170°C.

Пример 17. Приготовление и характеризация полученного в большем масштабе гиппурата SCY-078 типа В.

Для получения в большем масштабе гиппурата SCY-078 типа В готовили раствор гиппуровой кислоты (122,8 мг) и десольвата MeOH SCY-078 (500,3 мг) в ACN (5,0 мл). Затем суспензию перемешивали (500 об/мин) при комнатной температуре в течение 28 ч. После перемешивания некоторую часть суспензии фильтровали и выделенное твердое вещество проверяли с помощью XRPD для подтверждения гиппурата SCY-078 типа А. Суспензию фильтровали и сушили при 150°С в течение 1 ч перед характеризацией. Наконец, твердое вещество проверяли с помощью XRPD, чтобы подтвердить гиппурат SCY-078 типа В.

Полученный в большем масштабе гиппурат SCY-078 типа В был проанализирован с помощью XRPD, DSC, TGA и DVS (фиг. 27-30). Полученный в результате спектр XRPD свидетельствовал о том, что гиппурат SCY-078 типа В был успешно получен в увеличенном масштабе. Значения 20 и d-

расстояния подытожены в табл. 11. Кривая DSC показала две эндотермы при 34,5°C и 164,4°C и одну экзотерму при 205,2°C (температуры начала). Кривая TGA показала потерю массы 0,9% до 130°C. Кривая DVS показала, что образец гигроскопичен с поглощением воды ~3,5% при 25°C и 80% RH. Второй спектр XRPD, выполненный после DVS, показал, что гиппурат SCY-078 типа В преобразовался в гиппурат SCY-078 типа A после эксперимента DVS.

Таблица 11

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
3,027072	11818,150000	0,051168	29,18766	100,00
5,916137	351,270000	0,102336	14,93916	2,97
6,916698	947,910600	0,102336	12,78016	8,02
7,251646	624,847700	0,076752	12,19059	5,29
8,761702	1828,733000	0,076752	10,09268	15,47
9,962105	2404,236000	0,102336	8,87907	20,34
10,897800	1593,408000	0,102336	8,11872	13,48
11,868550	552,254500	0,102336	7,45677	4,67
12,432300	2880,441000	0,127920	7,11988	24,37
12,857840	525,634600	0,076752	6,88518	4,45
13,091360	511,764400	0,115128	6,76288	4,33
13,709840	1112,219000	0,102336	6,45916	9,41
14555000	2006 20 1000	0.150504	6.00502	26.11
14,555290	3086,294000	0,153504	6,08582	26,11
14,984610	1215,693000	0,102336	5,91241	10,29
15,341160	506,870800	0,153504	5,77579	4,29
16,136210	1315,742000	0,089544	5,49296	11,13
16,453540	1710,358000	0,153504	5,38772	14,47
16,897030	606,324900	0,102336	5,24730	5,13
17,280760	1171,798000	0,127920	5,13164	9,92
17,591700	2258,867000	0,102336	5,04163	19,11
18,190770	538,754800	0,127920	4,87692	4,56
18,425670	516,831300	0,179088	4,81528	4,37
19,151570	950,084500	0,102336	4,63437	8,04
19,602330	487,956400	0,127920	4,52881	4,13
20,234760	861,917600	0,153504	4,38867	7,29
20,860030	424,598600	0,153504	4,25851	3,59
21,725360	459,496200	0,307008	4,09081	3,89
22,532320	498,240700	0,102336	3,94610	4,22
23,078810	380,947900	0,127920	3,85388	3,22
23,551950	208,488500	0,409344	3,77752	1,76
23,874020	377,598600	0,102336	3,72728	3,20
25,381750	351,553600	0,102336	3,50919	2,97
25,844490	207,070300	0,204672	3,44740	1,75
27,188450	192,463400	0,153504	3,27997	1,63
27,681830	144,369000	0,307008	3,22262	1,22
29,319670	172,870900	0,511680	3,04622	1,46
30,833510	86,432220	0,307008	2,90002	0,73
34,979000	90,330020	0,204672	2,56525	0,76
35,588330	69,479680	0,307008	2,52271	0,59
37,270360	55,666410	0,307008	2,41264	0,47

Пример 18. Приготовление и характеризация полученного в большем масштабе фумарата SCY-078 типа А.

Для получения в большем масштабе фумарата SCY-078 типа А готовили раствор фумаровой кислоты (79,8 мг) и десольвата MeOH SCY-078 (501,9 мг) в ACN (15,0 мл). Затем суспензию перемешивали (500 об/мин) при комнатной температуре в течение 28 ч. После перемешивания некоторую часть суспензии фильтровали и выделенное твердое вещество проверяли с помощью XRPD для подтверждения фумарата SCY-078 типа А. Наконец, суспензию фильтровали и сушили при 30°C в течение 4 ч в вакууме перед характеризацией.

Характеризация полученного в большем масштабе фумарата SCY-078 типа А включает XRPD, DSC, TGA и DVS (фиг. 31-33). Полученный в результате спектр XRPD показал, что фумарат SCY-078 типа А был успешно получен в увеличенном масштабе. Значения 20 и d-расстояния подытожены в табл. 12. Кривая DSC показала эндотерму при 39,9°C и эндотерму плавления при 208,4°C (температуры начала). Кривая TGA показала потерю массы 1,7% до 150°C. Кривая DVS показала, что образец гигроскопичен с поглощением воды 2,5% при относительной влажности 80%, 25°C.

Второй спектр XRPD, выполненный после DVS, показал, что фумарат SCY-078 типа А не претерпевал изменения формы.

Таблица 12

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева	d-расстояние	Отн. Инт. [%]
6 7002 52	200.001200	[°21h.]	[A]	
6,708362	290,801200	0,153504	13,17659	2,14
7,779830	2540,992000	0,102336	11,36410	18,74
8,490587	13558,710000	0,127920	10,41433	100,00
9,362659	1986,519000	0,102336	9,44617	14,65
9,964151	661,033600	0,127920	8,87725	4,88
10,417770	2882,948000	0,115128	8,49171	21,26
10,694630	3478,282000	0,127920	8,27250	25,65
11,221780	3785,363000	0,140712	7,88504	27,92
11,875520	519,613200	0,153504	7,45241	3,83
12,271310	357,834700	0,127920	7,21292	2,64
13,008060	5831,607000	0,140712	6,80600	43,01
13,729940	1780,661000	0,127920	6,44975	13,13
14,640000	1169,640000	0,076752	6,05080	8,63
14,888350	2319,347000	0,078000	5,94549	17,11
14,955620	2471,802000	0,076752	5,92381	18,23
15,225230	1608,774000	0,089544	5,81951	11,87
16,171470	1276,652000	0,076752	5,48106	9,42
16,429100	2604,447000	0,140712	5,39569	19,21
16,942700	6000,498000	0,140712	5,23326	44,26
17,442280	1878,502000	0,063960	5,08448	13,85
17,749440	3552,116000	0,140712	4,99718	26,20
18,202980	2297,875000	0,127920	4,87368	16,95
18,928920	1597,690000	0,140712	4,68838	11,78
20,028870	591,031400	0,127920	4,43332	4,36
20,258840	480,204800	0,102336	4,38351	3,54
20,868380	1498,769000	0,127920	4,25683	11,05
21,397940	1555,987000	0,089544	4,15266	11,48
21,879750	1130,218000	0,127920	4,06229	8,34
22,217300	1475,131000	0,102336	4,00133	10.88
22,591130	913,600300	0,102336	3,93596	6,74
23,385000	425,684600	0.153504	3.80411	3.14
23,950880	915,135300	0,204672	3,71550	6,75
24,627720	245.047100	0.153504	3.61490	1.81
25,499420	1445,187000	0.089544	3,49326	10.66
26,148510	509,814300	0,179088	3,40800	3.76
26,502880	512,161300	0,127920	3,36323	3.78
26.881710	614,926800	0.153504	3.31669	4.54
27.716900	269,647600	0.255840	3 21862	1.99
28,552140	414.549300	0.153504	3,12634	3.06
29.217330	471 259100	0 153504	3 05666	3.48
29.558860	525,910500	0.204672	3.02211	3.88
30.043740	270,781000	0.204672	2.97444	2.00
30,962340	570.115500	0.307008	2.88825	4.20
33,133860	264 449500	0 179088	2,70376	1.95
33,967430	212 730600	0 179088	2,63929	1.57
34 456190	314 358700	0.179088	2,00929	2 32
35 316070	163 009400	0 179088	2,00257	1 20
35 928310	161 442300	0.307008	2,34155	1 10
55,726510	101,772300	0,507000	2,79902	1,12
37,556590	162,885200	0,153504	2,39491	1,20

Пример 19. Приготовление и характеризация полученного в большем масштабе мезилата SCY-078 типа А.

Для получения в большем масштабе мезилата SCY-078 типа А готовили раствор метансульфоновой кислоты (66,7 мг) и десольвата MeOH SCY-078 (500,00 мг) в ACN (6,0 мл). Затем суспензию перемешивали (500 об/мин) при комнатной температуре в течение 28 ч. После перемешивания некоторую часть суспензии фильтровали и выделенное твердое вещество проверяли с помощью XRPD для подтверждения мезилата SCY-078 типа А. Наконец, суспензию фильтровали и сушили при 30°C в течение 4 ч в вакууме перед характеризацией.

Характеризация полученного в большем масштабе мезилата SCY-078 типа А включает XRPD, DSC, TGA и DVS (фиг. 34-36). Полученный в результате спектр XRPD показал, что мезилат SCY-078 типа А был успешно получен в увеличенном масштабе. Значения 20 и d-расстояния подытожены в табл. 13. Кривая DSC показала эндотерму при 45,1°C и эндотерму плавления при 252,5°C (температуры начала). Кривая TGA показала потерю массы на 5,5% до 150°C. Кривая DVS показала, что образец гигроскопичен с поглощением воды 11,5% при 25°C и 80% RH. Второй спектр XRPD, выполненный после DVS, показал, что мезилат SCY-078 типа A не имеет изменения формы.

Таблица 13

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
3,460873	6386,923000	0,076752	25,53007	100,00
5,977580	779,662100	0,063960	14,78574	12,21
7,966391	2528,494000	0,089544	11,09839	39,59
9,108506	1390,758000	0,089544	9,70916	21,78
9,950825	1211,786000	0,102336	8,88911	18,97
11,611990	1031,845000	0,076752	7,62094	16,16
11,923410	791,823600	0,102336	7,42258	12,40
12,425240	1268,865000	0,089544	7,12391	19,87
13,944550	688,156900	0,102336	6,35096	10,77
14,380410	848,725700	0,102336	6,15943	13,29
14,769580	2671,218000	0,089544	5,99800	41,82
15,556400	1399,797000	0,102336	5,69636	21,92
15,933420	664,503200	0,102336	5,56241	10,40
16,662350	540,586700	0,102336	5,32067	8,46
17,361270	955,468500	0,127920	5,10802	14,96
18,265030	453,378300	0,153504	4,85726	7,10
18,734480	812,380000	0,102336	4,73660	12,72
19,019690	850,304100	0,102336	4,66621	13,31
19,260210	762,325000	0,153504	4,60847	11,94
19,645310	613,773700	0,127920	4,51900	9,61
20,566280	436,518500	0,127920	4,31867	6,83
21,974920	571,254200	0,127920	4,04491	8,94
22,483420	374,000100	0,255840	3,95457	5,86
24,101950	210,447500	0,153504	3,69255	3,29
25,009440	137,497300	0,204672	3,56058	2,15
26,043990	151,416700	0,204672	3,42144	2,37
27,012060	72,724460	0,307008	3,30098	1,14
28,443410	214,270100	0,153504	3,13804	3,35
34,283540	45,493190	0,511680	2,61568	0,71

Пример 20. Приготовление и характеризация полученного в большем масштабе фосфата SCY-078 типа А.

Для получения в большем масштабе фосфата SCY-078 типа А готовили раствор фосфорной кислоты (87,2 мг) и десольвата MeOH SCY-078 (501,1 мг) в EtOH/EtOAc/уксусной кислоте/H₂O (6,0 мл, 5:3: 0,15:0,1 об./об./об./об.). Затем суспензию перемешивали (500 об/мин) при комнатной температуре в течение 28 ч. После перемешивания некоторую часть суспензии фильтровали и выделенное твердое вещество проверили с помощью XRPD и указали как фосфат SCY-078 типа А. Наконец, суспензию фильтровали и сушили при 30°C в течение 4 ч в вакууме перед характеризацией.

Характеризация полученного в большем масштабе фосфата SCY-078 типа А включает XRPD, DSC, TGA и DVS (фиг. 37-39). Спектр XRPD для полученного в большем масштабе фосфата SCY-078 типа А сравнивали с другим образцом фосфата. Сравнение спектра XRPD подтвердило определенные пиковые сдвиги, которые обозначены звездочкой. Значения 20 и d-расстояния фосфата SCY-078 типа А приведены в табл. 14. Кривая DSC показала две эндотермы при 43,5°C и 261,6°C (температуры начала). Кривая TGA показала потерю массы на 5,7% до 100°C. Кривая DVS показала, что образец гигроскопичен с поглощением воды 12,5% при 25°C и 80% RH. Второй спектр XRPD, выполненный после DVS, показал, что фосфат SCY-078 типа А не имеет изменения формы.

Таблица 14

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
3,510749	3822,958000	0,063960	25,16747	100,00
3,777221	1538,172000	0,089544	23,39256	40,24
6,351771	817,179700	0,089544	13,91551	21,38
6,974826	213,577600	0,153504	12,67379	5,59
7,884021	2248,860000	0,089544	11,21415	58,83
8,064520	922,909900	0,076752	10,96356	24,14
9,551988	811,444000	0,179088	9,25936	21,23
9,893185	731,339200	0,127920	8,94077	19,13
11,410930	713,463600	0,153504	7,75476	18,66
11,807790	1002,811000	0,127920	7,49500	26,23
12,234010	806,819600	0,153504	7,23483	21,10

12,657670	895,228700	0,127920	6,99361	23,42
14,562960	1550,900000	0,102336	6,08263	40,57
15,413370	939,681700	0,204672	5,74889	24,58
15,841220	831,733000	0,307008	5,59457	21,76
17,560630	1113,197000	0,409344	5,05048	29,12
18,775820	475,510700	0,153504	4,72626	12,44
20,576380	320,212100	0,307008	4,31657	8,38
22,143260	373,653900	0,204672	4,01454	9,77

Пример 21. Приготовление и характеризация полученного в большем масштабе цитрата SCY-078 типа А (молярная эквивалентность - противоион/АРІ 1.0).

Для получения в большем масштабе цитрата SCY-078 типа А готовили раствор лимонной кислоты (130,7 мг) и десольвата MeOH SCY-078 (501,6 мг) в ACN (15,0 мл). Затем суспензию перемешивали (500 об/мин) при комнатной температуре в течение 30 ч. После перемешивания некоторую часть суспензии фильтровали и выделенное твердое вещество проверяли с помощью XRPD для подтверждения цитрата SCY-078 типа А. Наконец, суспензию фильтровали и сушили при 30°C в течение 4 ч в вакууме перед характеризацией.

Характеризация полученного в большем масштабе цитрата SCY-078 типа А включает XRPD, DSC, TGA и DVS (фиг. 40-42). Спектр XRPD показал, что цитрат SCY-078 типа А был успешно получен в увеличенном масштабе. Значения 20 и d-расстояния подытожены в табл. 15. Кривая DSC показала эндотерму при 38,5°C и эндотерму плавления при 183,7°C (температуры начала). Кривая TGA показала потерю массы на 4,1% до 110°C. Кривая DVS показала, что образец гигроскопичен с поглощением воды 6,4% при относительной влажности 80%, 25°C. Второй спектр XRPD, выполненный после DVS, показал, что цитрат SCY-078 типа A не изменил форму.

Таблица 15

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
5,448098	1112,016000	0,102336	16,22147	25,78
7,430264	4314,252000	0,153504	11,89794	100,00
8,687142	329,877800	0,153504	10,17913	7,65
9,219851	511,870400	0,153504	9,59216	11,86
9,657531	424,140300	0,255840	9,15840	9,83
10,883410	1078,439000	0,051168	8,12942	25,00
11,515250	2094,987000	0,115128	7,68474	48,56
13,187380	2396,469000	0,089544	6,71386	55,55
14,126680	799,280200	0,255840	6,26949	18,53
14,845300	757,431100	0,230256	5,96758	17,56
16,818410	2913,176000	0,127920	5,27165	67,52
18,364160	492,518400	0,153504	4,83127	11,42
19,381840	490,181800	0,307008	4,57983	11,36
20,774420	185,062500	0,307008	4,27587	4,29
22,213250	308,712600	0,204672	4,00205	7,16
23,587350	109,338400	0,818688	3,77193	2,53
29,871450	85,095400	0,307008	2,99120	1,97

Пример 22. Химическая характеризация солей SCY-078.

Химическую чистоту каждой из полученных в большем масштабе солей SCY-078 (гиппурат типа В, фумарат типа А, мезилат типа А, фосфат типа А и цитрат типа А) испытывали с использованием хроматограмм HPLC. Хроматограммы пяти соединений показали, что каждое соединение имеет чистоту более 99% (табл. 16).

Таблица 16

Химическая характеризация солей SCY-078			
Соединение	Чистота		
Гиппурат типа В	99,19		
Фумарат типа А	99,90		
Мезилат типа А	99,91		
Фосфат типа А	99,91		
Цитрат типа А	99,89		

Пример 23. Оценка значения pH солей SCY-078 в воде.

Было протестировано значение pH для насыщенных солевых растворов SCY-078 (т.е. гиппурата типа B, фумарата типа A, мезилата типа A, фосфата типа A и цитрата типа A). Для проверки pH раствор каждого соединения уравновешивали при комнатной температуре с использованием вращающегося инкубатора (25 об/мин) в течение 1 ч и 24 ч перед измерением. Результаты (табл. 17) показали, что значения pH каждой из тестируемых солей находятся в диапазоне от 3,0 до 5,0.

Таблица 17

Значение pH насыщенных растворов солей SCY-078 в H ₂ O			
Форма соли	рН 1 ч	рН 24 ч	
Гиппурат типа В	4,6	4,2	
Фумарат типа А	4,4	3,8	
Мезилат типа А	3,4	3,6	
Фосфат типа А	3,4	3,6	
Цитрат типа А	3,5	3,8	

Пример 24. Оценка кинетической растворимости солей SCY-078.

Кинетическая растворимость гиппурата SCY-078 типа В, фумарата SCY-078 типа А, мезилата SCY-078 типа А, фосфата SCY-078 типа А и цитрата SCY-078 типа А была измерена в декстрозном буфере при pH 5,5, фосфатном буфере при pH 6,0, фосфатном буфере при pH 7,5, среде SGF, среде FeSSIF и среде FaSSIF в соответствии со способом, описанным выше. После фильтрации 0,2 мл надосадочной жидкости собирали для количественной оценки HPLC. Оставшийся раствор собирали для измерения pH. Оставшееся твердое вещество собирали для характеризации с помощью XRPD. Результаты приведены в табл. 18.

Таблица 18

	Кинети	ческая раствор	имость (мг/мл)	солей SCY-02	78	
Charter	Время	Гиппурат	Фумарат	Мезилат	Фосфат	Цитрат
Среды	(часы)	типа В	типа А	типа А	типа А	типа А
Помотрории ий	1 час	0,54	0,05	1,4	0,10	0,67
буфер (nH 5 5)	4 часа	1,7	0,46	2,5	0,09	4,2
оуфер (рт 5,5)	24 часа	4,4	2,1	4,3	0,04	8,3
A aataanna ii	1 час	<loq< td=""><td>0,07</td><td>0,16</td><td><loq< td=""><td>0,75</td></loq<></td></loq<>	0,07	0,16	<loq< td=""><td>0,75</td></loq<>	0,75
буфер (pH 6 0)	4 часа	0,04	1,2	0,13	<loq< td=""><td>4,7</td></loq<>	4,7
оуфер (р11 0,0)	24 часа	0,47	4,7	0,04	<loq< td=""><td>7,5</td></loq<>	7,5
Фаафати ий	1 час	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Фосфатный Sydon (nH 7 5)	4 часа	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
оуфер (ртт 7,3)	24 часа	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
	1 час	12,4	13,4	17,8	9,2	20,6
SGF	4 часа	15,0	17,7	20,5	16,0	21,4
	24 часа	21,8	23,4	22,5	21,2	21,1
	1 час	3,4	2,2	1,2	0,89	0,39
FeSSIF	4 часа	<loq< td=""><td>0,51</td><td>1,5</td><td>1,3</td><td>2,5</td></loq<>	0,51	1,5	1,3	2,5
	24 часа	0,003	0,02	1,6	1,5	4,2
	1 час	<loq< td=""><td><lod< td=""><td><loq< td=""><td>0,006</td><td>9,5</td></loq<></td></lod<></td></loq<>	<lod< td=""><td><loq< td=""><td>0,006</td><td>9,5</td></loq<></td></lod<>	<loq< td=""><td>0,006</td><td>9,5</td></loq<>	0,006	9,5
FaSSIF	4 часа	0,0007	2,8	0,29	0,17	20,7
	24 часа	<loq< td=""><td>17,0</td><td>0,44</td><td>1,0</td><td>21,6</td></loq<>	17,0	0,44	1,0	21,6
LOD: 0,07 мкг/мл LOQ: 0,22 мкг/мл						

Пример 25. Оценка стабильности солей SCY-078.

Для проверки химической и физической стабильности солей образцы солей помещали в три разных условия в течение одной недели: (1) открытую чашку при 25°C с относительной влажностью 60%; (2) открытую чашку при 40°C с относительной влажностью 75% и (3) закрытую чашшку при 60°C без контроля влажности.

Химическую и физическую стабильность фумарата SCY-078 типа A и цитрата SCY-078 типа A испытывали, как описано выше (табл. 19). XRPD показало, что ни один из фумарата SCY-078 типа A и цитрата SCY-078 типа A не претерпел изменений формы в ходе исследования.

Таблица 19

Результат измерения стабильности солей SCY-078				
Образец	Состояние	% примесей, определенный с помощью HPLC		
Livmon	Исходный	0,34		
цитрат	25°С/60% RH - 1 неделя	0,09		
типа А	40°С/75% RH - 1 неделя	0,10		
	·			
	60°С - 1 неделя	0,17		
	Исходный	0,12		
фумарат Тип А	25°С/60% RH - 1 неделя	0,09		
	40°С/75% RH - 1 неделя	0,10		
	60°С - 1 неделя	0,10		

Пример 26. Полученный в большем масштабе цитрат SCY-078 тип А.

Второе получение в большем масштабе цитрата SCY-078 типа А проводилось для получения 2,5 г через реактивный ACN. Для масштабного увеличения растворяли в ACN (80 мл) десорват SCY-078 МеОН (2,5 г) и лимонную кислоту (660 мг). Полученный раствор перемешивали со скоростью 1000

036874

об/мин при комнатной температуре в течение 30 ч и затем выделяли твердое вещество. Полученное твердое вещество сушили при 50°С в вакууме в течение ночи.

Спектр XRPD (фиг. 43) показал, что цитрат SCY-078 типа А был успешно увеличен в масштабе и что он является высококристаллическим. Значения 20 и d-расстояния подытожены в табл. 20. Кривая DSC (фиг. 44) продемонстрировала два эндотермических пика при 56,7°C и 187,1°C (температуры начала). Кривая TGA (фиг. 44) показала потерю массы 7,9% до 150°C.

Пол. [°2Th.]	Высота [имп/с]	Полуширина слева [°2Th.]	d-расстояние [Å]	Отн. Инт. [%]
5,400273	434,322700	0,102336	16,36502	3,34
7,453872	13000,820000	0,191880	11,86031	100,00
9,201639	691,948300	0,204672	9,61110	5,32
10,831710	404,555000	0,153504	8,16811	3,11
11,485080	936,115200	0,179088	7,70486	7,20
12,491050	954,805500	0,179088	7,08652	7,34
13,191360	1776,320000	0,204672	6,71184	13,66
15,020350	1342,537000	0,204672	5,89842	10,33
15,664830	532,278900	0,179088	5,65717	4,09
15,955570	613,057500	0,127920	5,55474	4,72
16,751250	951,729000	0,153504	5,29264	7,32
17,978130	170,323300	0,204672	4,93412	1,31
19,591770	472,971000	0,204672	4,53123	3,64
22,213400	146,982900	0,204672	4,00202	1,13
23,845740	34,469910	0,614016	3,73164	0,27
25,160050	117,741100	0,307008	3,53961	0,91
28,761350	129,234400	0,255840	3,10407	0,99
30,356250	332,945100	0,230256	2,94452	2,56
32,317870	87,151140	0,307008	2,77014	0,67
34,725480	74,664570	0,511680	2,58339	0,57

Пример 27. Приблизительная растворимость цитрата SCY-078 Тип А.

Приблизительная растворимость цитрата SCY-078 типа A из примера 26 была определена в 19 растворителях при комнатной температуре (25±3°C) в соответствии с процедурой, описанной выше, и приведена в табл. 21 ниже.

1 аблица 21	1	l'a(Блица	21
-------------	---	------	-------	----

Таблица 20

Растворитель	Растворимость (мг/мл)
MeOH	> 42,4
EtOH	<1,0
IPA	> 40,0
Уксусная кислота	> 41,0
ACN	<1,1
Ацетон	1,6 < S <1,7
MIBK	<1,0
EtOAc	<1,0
IPAc	<1,1
MTBE	<1,0
THF	> 41,0
2-MeTHF	> 41,8
1,4-диоксан	> 41,0
NMP	> 40,6
DMSO	> 40,6
DCM	<1,0
Толуол	<1,0
Гептан	<1,1
DMAc	> 40,8

Пример 28. Кинетическая растворимость цитрата SCY-078 типа А в воде.

Кинетическая растворимость цитрата SCY-078 типа А из примера 26 оценивалась в соответствии с процедурой, описанной выше. После центрифугирования образцов остаточные твердые вещества анализировали с помощью XRPD и концентрации надосадочной жидкости, измеренной с помощью HPLC. Результаты (табл. 22) показали, что цитрат SCY-078 типа А частично превращается в аморфный в воде через 24 ч и демонстрирует медленную скорость растворения и растущую растворимость в воде от 1 до 24 ч.

Таблица 22

Кинетическая растворимость цитрата SCY-078 типа А в воде				
	Начальное	1 час	4 часа	24 часа
pH	8,0	3,3	3,3	3,4
Растворимость (мг/мл)		18,6	26,7	41,4
Форма	Цитрат типа А	Цитрат типа	Цитрат	Цитрат типа А +
		A	типа А	аморфный

Затем кинетическую растворимость цитрата SCY-078 типа А сравнивали со смесью аморфного сво-

бодного основания SCY-078/лимонной кислоты. Сравнение кинетической растворимости проводили в воде при комнатной температуре и измеряли через 1, 4 и 24 ч с соотношением растворяемого к растворителю 20 мг/мл и 50 мг/мл. Результаты (табл. 23) показали, что цитрат SCY-078 типа А показывает более высокую скорость растворения и равновесную растворимость в воде, чем смесь аморфного свободного основания SCY-078/лимонной кислоты.

Таблица 23

Сравнение кинетической растворимости смеси свободного основания SCY-078/ лимонной кислоты и цитрата SCY-078 типа А					
Исходный материал	Время pH Форма XRPD		Растворимость (мг/мл)		
Свободное основание Лимонная	1 час	2,7	аморфный	3,0	
кислота 20 мг/мл	4 часа	2,9	аморфный	5,1	
	24 часа	3,5	аморфный	10,1	
Свободное основание Лимонная	1 час	2,7	аморфный	2,9	
кислота 50 мг/мл	4 часа	2,8	аморфный	16,8	
	24 часа	3,2	аморфный	28,1	
Цитрат типа А 20 мг/мл	1 час	3,5	Цитрат типа А	3,5	
	4 часа	3,4	Цитрат типа А	8,3	
	24 часа	3,3	Цитрат типа А	17,0	
Цитрат типа А 50 мг/мл	1 час	3,4	Цитрат типа А	6,5	
	4 часа	3,3	Цитрат типа А	14,5	
	24 часа	3,2	Цитрат типа А	33,9	

Оставшиеся твердые вещества после измерения растворимости физической смеси свободного основания: лимонной кислоты при молярном соотношении 1:1 в воде были аморфными. Для определения формы аморфного вещества проводили ЯМР в жидкости на спектрометре Bruker 400M NMR с использованием CD₃OD. Спектр показал количество атомов водорода, отнесенных к лимонной кислоте, как 3,12, что соответствует 0,78 экв. лимонной кислоты. Это менее 1:1 для моноцитрата и указывает на то, что это смесь, которая содержит в основном аморфную соль цитрата с небольшим количеством аморфного свободного основания.

Пример 29. Равновесная растворимость солей SCY-078 в воде.

Равновесная растворимость цитрата SCY-078 типа A из примера 26 в воде определялась с использованием способа, описанного выше. Результаты показали, что цитрат SCY-078 типа A обнаруживает растворимость 38,1 мг/мл в воде, причем нерастворенный материал становится аморфным после перемешивания в воде в течение 24 ч.

Затем для дальнейшего изучения растворимости цитрата SCY-078 типа А в воде цитрат типа А испытывали в течение 24 ч при трех соотношениях растворенного вещества к растворителю: 0,3 мг/мл, 2,0 мг/мл и 50,6 мг/мл. В каждом испытании использовали магнитную мешалку и начинали с исходного pH 8,0. Результаты (табл. 24) показали, что цитрат SCY-078 типа А обладает зависимой от концентрации растворимостью в воде.

Таблица 24

Зависимая от концентрации растворимость цитрата SCY-078 типа А в воле			
Соотношение твердое	Соотношение твердое Растворимость через 24 часа Конечное р		
вещество/растворитель (мг/мл)	(мг/мл)	· · · · · ·	
0,3	<0,3 (суспензия)	5,1	
2,0	> 2.0 (прозрачный)	4,2	
50,6	38,1	3,4	

Пример 30. Кинетическая растворимость аморфного цитрата SCY-078 в воде.

Аморфный цитрат SCY-078 готовили в различных условиях, включая лиофилизацию из фосфатного буфера (pH 6,0), лиофилизацию из воды и быстрое испарение в THF. Результаты приведены в табл. 25. Если в таблице указано "ограниченное количество твердого вещества", то это означает, что твердого вещества не было достаточно для XRPD-анализа твердой формы.

Лиофилизация в фосфатном буфере (pH 6,0).

Для лиофилизации в фосфатном буфере (pH 6,0) аморфный цитрат SCY-078 готовили путем получения вначале 50 мМ буфера pH 6,0. Затем цитрат типа A (30 мг) взвешивали во флаконе объемом 20 мл. Затем к флакону добавляли буфер pH 6 (20 мл) и перемешивали при комнатной температуре в течение 24 ч. Образцы фильтровали и надосадочную жидкость охлаждали до -15°C в течение 2 ч. Наконец, замороженные образцы лиофилизировали при -50°C в течение 12 ч. Более крупную порцию (150 мг) готовили, используя ту же процедуру, что и указанная выше. Кинетическая растворимость второй партии лиофилизированного продукта в воде измеряли в соответствии с вышеописанной процедурой за исключением того, что использовали 150 мг твердого вещества и 1,0 мл воды. После центрифугирования образцов остаточные твердые вещества анализировали с помощью XRPD и концентрацию надосадочной жидкости измеряли с помощью HPLC.

Лиофилизация в воде.

Для лиофилизации в воде сначала получали аморфный цитрат взвешиванием цитрата типа А (150

036874

мг) во флаконе объемом 20 мл. Затем добавляли 10 мл воды для полного растворения твердого вещества. Раствор фильтровали и помещали при -20°C до замерзания. Наконец, образец лиофилизировали при -50°C в течение 24 ч. Кинетическую растворимость лиофилизированного продукта в воде измеряли в соответствии с вышеописанной процедурой за исключением того, что использовали 120 мг твердого вещества и 1,5 мл воды. После центрифугирования образцов остаточные твердые вещества анализировали с помощью XRPD и концентрацию надосадочной жидкости измеряли с помощью HPLC.

Быстрое выпаривание в THF.

Для быстрого выпаривания в THF вначале получали аморфный цитрат взвешиванием цитрата типа А из примера 26 (~150 мг) во флаконе объемом 20 мл. Затем добавляли THF (3 мл) для полного растворения твердого вещества. Раствор фильтровали под вытяжным шкафом для быстрого выпаривания. Кинетическую растворимость в воде продукта в воде измеряли в соответствии с вышеуказанной процедурой за исключением того, что использовали 120 мг твердого вещества и 1,5 мл воды. После центрифугирования образцов остаточные твердые вещества анализировали с помощью XRPD и концентрацию надосадочной жидкости измеряли с помощью HPLC.

Таблица 25

Таблица 26

Кинетическая растворимость аморфного цитрата SCY-078 в воде				
Начальное твердое вещество	Время	Растворимость (мг/мл)	pН	форма
Лиофилизация в буфере с pH 6,0	1 час	0,14	5,1	аморфный
	4 часа	0,39	5,1	аморфный
	24 часа	1,5	5,1	аморфный
Лиофилизация в воде (pH 8,0)	1 час	55,4	3,1	аморфный
	4 часа	54,7	3,3	NA
	24 часа	55,5	3,2	NA
Быстрое испарение в ТНF (pH 8,0)	1 час	44,5	3,2	аморфный
	4 часа	50,2	3,2	NA
	24 часа	52,8	3,2	NA

NA: Ограниченное количество твердого вещества для XRPD.

Пример 31. Медленное выпаривание цитрата SCY-078 типа А.

Эксперименты по медленному выпариванию проводились в 12 различных системах растворителей. Цитрат SCY-078 типа A из примера 26 (10 мг) растворяли растворителем (0,05-0,25 мл) для каждого образца в стеклянной пробирке объемом 3 мл. Визуально прозрачные растворы подвергали медленному выпариванию при комнатной температуре досуха. Полученные твердые вещества затем выделяли для анализа XRPD, который показал, что кристаллическая форма не была получена. Результаты приведены в табл. 26.

Эксперименты по медленному выпариванию		
Растворитель	Форма	
MeOH	аморфный	
IPA	аморфный	
Уксусная кислота	аморфный	
THF	аморфный	
MeOH/ACN, 9/1	аморфный	
IPA/Ацетон, 9/1	аморфный	
THF/EtOAc, 9/1	аморфный	
MeOH/H ₂ O, 9/1	аморфный	
ТНF/ацетон, 9/1	аморфный	
IPA/DCM, 9/1	аморфный	
MeOH/MTBE 9/1	аморфный	
THE/EtOH 0/1	avondur už	
1111/11/011, 7/1	аморфпын	

Пример 32. Конверсия суспензии цитрата SCY-078 типа А.

Эксперименты по конверсии суспензии проводились в 50 условиях. Цитрат SCY-078 типа A из примера 26 (~10 мг) суспендировали в каждом растворителе (0,5 мл). Суспензии перемешивали в течение 3 дней при комнатной температуре (табл. 27) или 50°С (табл. 28). После перемешивания твердые вещества выделяли для анализа XRPD. Если суспензии превращались в прозрачные растворы при суспендировании, прозрачные растворы подвергали медленному выпариванию при комнатной температуре. Результаты показали, что были обнаружены цитрат SCY-078 типа B и смеси цитрата SCY-078 типа A и цитрата SCY-078 типа B. Весь обнаруженный цитрат SCY-078 типа C идентифицировали как форму свободного основания.
Таблица 27

Эксперименты по конверсии суспензии при RT			
Растворитель	Форма		
EtOH	Тип В		
ACN	Тип В		
Ацетон	Тип В		
MIBK	Тип В		
EtOAc	Тип В		
IPAc	Тип В		
MTBE	аморфный		
1,4-диоксан	Аморфный, путем медленного выпаривания		
DCM	Тип В		
Толуол	Тип В		
Гептан	Тип В		
МеОН/ацетон, 1/19	Тип В		
IPA/гептан, 1/19	Тип В		
ТНF/толуол, 1/19	Тип В		
NMP/EtOH, 1/19	аморфный		
NMP/ацетон, 1/19	аморфный		
NMP/IPAc, 1/19	аморфный		
NMP/DCM, 1/19	Тип С		
DMSO/ACN, 1/19	Тип С		
DMSO/MIBK, 1/19	Тип С		
DMSO/EtOAc, 1/19	Тип С		
DMSO/толуол, 1/19	Тип С		
DMAc/EtOH, 1/19	Тип С		
DMAc/ацетон, 1/19	Тип С		
DMAc/MTBE, 1/19	Тип С		

Таблица 28

Эксперименты по конверсии суспензии при 50°С			
Растворитель	Форма		
EtOH	Тип В		
ACN	Тип В		
Ацетон	Тип А + В		
MIBK	Тип В		
EtOAc	аморфный		
IPAc	Тип В		
MTBE	аморфный		
1,4-диоксан	Аморфный, путем медленного выпаривания		
DCM	Тип В		
Толуол	Тип А + В		
Гептан	Тип В		
МеОН/ацетон, 1/19	Тип А + В		
IPA/гептан, 1/19	Тип В		
ТНГ/толуол, 1/19	Тип А + В		
NMP/EtOH, 1/19	аморфный		
NMP/ацетон, 1/19	аморфный		
NMP/IPAc, 1/19	аморфный		
NMP/DCM, 1/19	аморфный		
DMSO/ACN, 1/19	Тип С		
DMSO/MIBK, 1/19	Тип С		
DMSO/EtOAc, 1/19	Тип С		
DMSO/толуол, 1/19	Тип С		
DMAc/EtOH, 1/19	аморфный		
DMAc/ацетон, 1/19	Тип С		
DMAc/MTBE, 1/19	Тип С		

Пример 33. Добавление обратимого антирастворителя цитрата SCY-078 тип А.

Эксперименты с добавлением обратимого антирастворителя проводились в 14 условиях. Цитрат SCY-078 типа A из примера 26 (~10 мг) растворяли в каждом растворителе (0,1 мл), получая прозрачный раствор. Этот раствор добавляли по каплям в стеклянный флакон, содержащий 2,0 мл каждого антирастворителя при комнатной температуре. Выделяли осадок для анализа XRPD. Для прозрачных растворов проводились эксперименты по медленному выпариванию. Результаты, представленные в табл. 29, показали, что были получены цитрат SCY-078 типа E и цитрат SCY-078 типа F. Цитрат SCY-078 типа D и цитрат SCY-078 типа J идентифицировали как форму свободного основания.

Таблица 29

Эксперименты по добавлению обратимых антирастворителей при RT			
Растворитель	Антирастворитель	Наблюдения	Форма
MeOH	IPAc	Осаждение	Тип Е
MeOH	DCM	Прозрачный	Аморфный путем медленного
			выпаривания
IPA	EtOH	Прозрачный	Прозрачный раствор после
			медленного выпаривания при RT в
			течение 2 недель
IPA	MTBE	Осаждение	аморфный
IPA	Толуол	Осаждение	Тип F
THF	ACN	Осаждение	Тип D
THE	MIBK	Осажление	аморфный
THE	Гептан	Осаждение	аморфный
NMP	ACN	Прозрачный	Прозрачный раствор после
		ripospa mom	мелленного выпаривания при RT в
			течение 2 недель
NMP	Толуол	Прозрачный	Прозрачный раствор после
			медленного выпаривания при RT в
			течение 2 недель
DMSO	EtOH	Прозрачный	Тип Ј
DMSO	DCM	Прозрачный	Аморфный путем медленного
			выпаривания
DMAc	DCM	Прозрачный	Аморфный путем медленного
			выпаривания
DMAc	Толуол	Прозрачный	Прозрачный раствор после
			медленного выпаривания при RT в
			течение 2 недель

Пример 34. Паровая диффузия твердого вещества цитрата SCY-078 типа А.

Эксперименты по паровой диффузии твердого вещества проводились с использованием четырех растворителей при комнатной температуре. Цитрат SCY-078 типа A из примера 26 (~10 мг) помещали в стеклянный флакон емкостью 3 мл. Затем флакон запечатывали в стеклянный флакон объемом 20 мл с растворителем (3 мл). Систему выдерживали при комнатной температуре в течение шести дней, что было достаточным временем для взаимодействия органических паров с твердыми частицами. Твердые вещества характеризовали с помощью XRPD для идентификации кристаллических форм. Результаты (табл. 30) показали, что были образованы цитрат SCY-078 типа A и цитрат SCY-078 типа B.

Таблица 30

Эксперименты по паровой диффузии твердого вещества			
Растворитель	Форма		
EtOH	Тип А		
EtOAc	Тип В		
Ацетон	Тип А		
DCM	Тип А		

Пример 35. Паровая диффузия раствора SCY-078 цитрат типа А.

Эксперименты по паровой диффузии раствора проводились в 5 условиях при комнатной температуре. Цитрат SCY-078 типа A из примера 26 (~10 мг) растворяли в растворителе для получения прозрачного раствора в стеклянном флаконе объемом 3 мл. Затем флакон запечатывали в стеклянном флаконе емкостью 20 мл с летучим антирастворителем (3 мл). Систему выдерживали при комнатной температуре в течение шести дней, что давало достаточное время для осаждения. Поскольку никакого осаждения не наблюдалось, образцы медленно выпаривали досуха при комнатной температуре. Твердые вещества отделяли и анализировали с помощью XRPD. Результаты (табл. 31) показали, что кристаллическая форма не была получена.

Таблица 31

Эксперименты по паровой диффузии раствора			
Растворитель	Антирастворитель	Наблюдения	Форма
Уксусная	EtOH	Прозрачный	Аморфный путем медленного
кислота			выпаривания
DMSO	Ацетон	Прозрачный	Аморфный путем медленного выпаривания
DMAc	IPAc	Прозрачный	Прозрачный раствор после медленного
			выпаривания при RT в течение 2 недель
IPA	DCM	Прозрачный	Аморфный путем медленного выпаривания
NMP	MTBE	Прозрачный	Прозрачный раствор после медленного
			выпаривания при RT в течение 2 недель

Пример 36. Полимер-индуцированная кристаллизация цитрата SCY-078 типа А. Эксперименты по полимер-индуцированной кристаллизации проводились в четырех условиях.

Цитрат SCY-078 типа A из примера 26 (~10 мг) растворяли в растворителе (0,1-0,8 мл) в стеклянном флаконе объемом 3 мл. Смешанный полимер (~1,0 мг) добавляли в визуально прозрачные растворы. "Смешанный полимер" представлял собой смесь шести полимеров (поливиниловый спирт, поливинилхлорид, поливинилпирролидон, поливинилацетат, гипромеллозу и метилцеллюлозу) при массовом отношении 1,0. Все образцы затем медленно выпаривали при комнатной температуре досуха. Полученные твердые вещества были выделены для анализа XRPD. Результаты (табл. 32) показали, что кристаллическая форма не наблюдалась.

Таблица 32

Эксперименты по лимер-индуцированной кристаллизации			
Растворитель	Форма		
MeOH	аморфный		
THF	аморфный		
1,4-диоксан	аморфный		
MeOH/EtOH, 9/1	аморфный		
МеОН/ацетон, 9/1	аморфный		

Пример 37. Медленное охлаждение цитрата SCY-078 типа А.

Эксперименты по медленному охлаждению проводились в 10 условиях (табл. 33). Цитрат SCY-078 типа A из примера 26 (~10 мг) суспендировали в растворителе (0,1-0,2 мл) при 50°С. Суспензии фильтровали при 50°С и фильтраты собирали и охлаждали от 50 до 5°С со скоростью 0,1°С/мин. Все растворы были прозрачными и подвергались медленному выпариванию при комнатной температуре для индукции осаждения. Твердые вещества выделяли для анализа XRPD. Результаты (табл. 33) показали, что были получены цитрат SCY-078 типа C и цитрат SCY-078 типа J, и что цитрат SCY-078 типа C и цитрат SCY-078 типа J являются формами свободного основания.

Таблица 33

Эксперименты с медленным охлаждением				
Растворитель, об./об. Наблюдение (5°С) Форма				
МеОН/толуол, 9/1	Прозрачный	аморфный		
IPA/ACN, 9/1	Прозрачный	аморфный		
IPA/EtOAc, 9/1	аморфный			
ТНF/толуол, 9/1	Прозрачный	аморфный		
THF/DCM, 9/1	Прозрачный	аморфный		
NMP/MTBE, 9/1 Прозрачный амо		аморфный		
DMSO/ацетон, 9/1	Прозрачный	Тип С		
DMAc/IPAc, 9/1	Прозрачный	Тип Ј		
DMAc/ACN, 9/1	Прозрачный	Тип Ј		

Пример 38. SCY-078 цитрат типа А с помощью реакционной кристаллизации.

Цитрат SCY-078 тип A был получен реакционной кристаллизацией в ACN. Спектр XRPD показал отличительные дифракционные пики (фиг. 45). Кривая DSC показала два эндотермических пика при 56,7°C и 187,1°C (температуры начала) (фиг. 46). Кривая TGA показала потерю массы на 7,9% до 150°C (фиг. 46). График DVS показал поглощение воды 7,0% при относительной влажности 80% (фиг. 47). После анализа DVS изменений формы не было.

Цитрат SCY-078 типа A также тестировался с помощью анализа XRPD с переменной температурой. Не наблюдалось изменений формы при нагревании цитрата SCY-078 типа A до 120°C, с последующим охлаждением до 25°C, что указывает на то, что цитрат SCY-078 типа A является безводным.

После разработки процесса кристаллизации цитрат SCY-078 типа А демонстрировал более высокую кристалличность и меньшую поверхностную адсорбцию влаги (фиг. 49). Кривая DSC показала два эндотермических пика при 41,7°C и 194,8°C (температуры начала). Кривая TGA показала потерю массы 2,9% до 150°C. Анализ DVS показал, что поглощение воды составляет 6,5% при 25°C и относительной влажности 80%. После анализа DVS изменений формы не наблюдалось. ¹H-ЯМР-спектр в CD₃OD показал, что молярное соотношение свободного основания и лимонной кислоты составляет 1:1, что указывает на то, что цитрат SCY-078 типа А представляет собой моноцитрат.

Пример 39. Цитрат SCY-078 типа В.

Цитрат SCY-078 типа В был получен путем конверсии суспензии при комнатной температуре в ACN. Цитрат SCY-078 типа В также может быть получен суспендированием цитрата SCY-078 типа A в различных органических растворителях, таких как EtOH, ACN, ацетон, MIBK, EtOAc, IPAc, DCM, толуол, гептан, меOH/ацетон (1/19, об./об.), IPA/гептан (1/19, об./об.) и THF/толуол (1/19, об./об.). Цитрат SCY-078 типа В быстро преобразуется в тип A в вакууме или потоке N₂ при комнатной или повышенной температуре.

Спектр XRPD для цитрата SCY-078 типа В показал отличительные дифракционные пики (фиг. 51). Кривая DSC показала три эндотермических пика при 70,8°C, 190,6°C и 202,9°C (пиковые температуры) (фиг. 52). Кривая TGA отображает потерю массы на 10,3% до 150°C (фиг. 52).

Пример 40. Тип цитрата SCY-078 Е.

Цитрат SCY-078 тип Е был получен путем сушки метастабильного сольвата SCY-078 цитрата типа R из MeOH/IPAc. Спектр XRPD демонстрирует кристаллическую форму образца (фиг. 53). Цитрат SCY-078 тип Е нестабилен в условиях окружающей среды, так как он быстро превращается в новую форму (цитрат SCY-078 типа M) после воздействия воздухом в течение 2 дней (фиг. 54).

Пример 41. Тип цитрата SCY-078 F.

Цитрат SCY-078 тип F был получен путем добавления обратимого антирастворителя в IPA/толуоле в соответствии со способом, описанным в примере 33 и табл. 29. Спектр XRPD показал, что цитрат SCY-078 типа F является слабокристаллическим (фиг. 55). Кривая DSC показала широкий эндотермический пик при 37,3°C (температура начала) (фиг. 56). Кривая TGA показала потерю массы на 11,8% до 120°C (фиг. 56).

Пример 42. Тип цитрата SCY-078 типа М.

Цитрат SCY-078 тип M был получен путем хранения цитрата SCY-078 типа E в условиях окружающей среды в течение 2 дней. Спектр XRPD для цитрата SCY-078 типа M показал отличительные дифракционные пики (фиг. 57). Кривая DSC показала два эндотермических пика при 125,8°C и 193,3°C (температуры начала) (фиг. 58). Кривая TGA показала потерю массы на 11,4% до 150°C (фиг. 58). График DVS показал 11,0% поглощение воды при 25°C и относительной влажности 80% (фиг. 59). После DVS цитрат SCY-078 типа M превращается в частично аморфный.

Анализ XRPD также проводили при переменных температурах, при котором паттерны XRPD получали при 25°C, затем при 150°C и, наконец, снова при 25°C (фиг. 60). Наблюдался сдвиг дифракционных пиков, что указывает на то, что тип M, вероятно, является канальным гидратом.

Пример 43. Тип цитрата SCY-078 N.

Цитрат SCY-078 тип N получали суспендированием цитрата SCY-078 типа B в EtOH при комнатной температуре в течение двух недель. Цитрат SCY-078 типа N можно также получить, экспонируя цитрат SCY-078 типа A парами этанола в течение 8 дней или суспендируя цитрат SCY-078 типа A в EtOH в течение 2 ч. Спектр XRPD для цитрата SCY-078 типа N указывает на то, что он является высококристаллическим (фиг. 61). Цитрат SCY-078 тип N преобразуется в цитрат SCY-078 типа A после вакуумной сушки при комнатной температуре (фиг. 62), что указывает на то, что цитрат SCY-078 типа N представляет собой метастабильный сольват EtOH, который быстро превращается в цитрат SCY-078 типа A под вакуумом или с помощью сушки воздухом/N₂ при температуре окружающей среды или при повышенной температуре.

Пример 44. Цитрат SCY-078 типа О.

Цитрат SCY-078 типа О был получен суспендированием цитрата SCY-078 типа М в ацетоне при комнатной температуре в течение 19 ч. Спектр XRPD для цитрата SCY-078 типа О показал, что он является высококристаллическим с отличительными дифракционными пиками (фиг. 63). Цитрат SCY-078 типа О преобразуется в цитрат SCY-078 типа S в условиях окружающей среды или в вакууме.

Пример 45. Цитрат SCY-078 типа Q.

Цитрат SCY-078 типа Q был получен при проведении реакционной кристаллизации свободного основания и лимонной кислоты (1:1) в EtOH без затравки. Цитрат SCY-078 тип N последовательно получали, когда реакционную кристаллизацию проводили с использованием затравок из цитрата SCY-078 типа N или цитрата SCY-078 типа A. Спектр XRPD показал, что цитрат SCY-078 типа Q является высококристаллическим с характерными дифракционными пиками (фиг. 64). Цитрат SCY-078 типа Q может превращаться в цитрат SCY-078 типа A после вакуумной сушки при комнатной температуре, что указывает на то, что цитрат SCY-078 типа Q представляет собой метастабильный сольват EtOH (фиг. 65).

Стабильность двух сольватов EtOH, цитрата SCY-078 типа N и цитрата SCY-078 типа Q оценивали, измеряя их растворимость при 5°C и 20°C (табл. 34). Растворимость измеряли путем суспендирования образцов цитрата SCY-078 типа N и SCY-078 типа Q в EtOH в течение 24 ч с помощью магнитной мешалки со скоростью перемешивания 1000 об/мин. Цитрат SCY-078 типа Q проявлял более низкую растворимость, чем цитрат SCY-078 типа N в EtOH при 5°C и 20°C, что указывает на то, что цитрат SCY-078 типа Q термодинамически более стабилен в EtOH от 5 до 20°C. Анализ XRPD оставшихся влажных осадков после экспериментов по растворимости не показал изменения формы для цитрата SCY-078 типа Q и цитрата SCY-078 типа N.

Таблица 34

Растворимость (мг/мл) цитрата SCY-078 типа N и цитрата SCY-078 типа Q в EtOH при разных				
температурах				
Температура (°С) Тип N Тип Q				
5 24,4 17,4				
20 27,1 25,9				

Пример 46. Тип цитрата SCY-078 R.

Цитрат SCY-078 тип R получали суспендированием цитрата SCY-078 типа M в MeOH/IPAc (1/14, об./об.) в течение 17 ч. Цитрат SCY-078 тип R также может быть получен путем добавления обратимого

антирастворителя в MeOH/IPAc. Спектр XRPD показал, что цитрат SCY-078 типа R является слабокристаллическим (фиг. 66). Анализ XRPD также показал, что цитрат SCY-078 типа R представляет собой метастабильный сольват, который может легко превращаться в цитрат SCY-078 типа S при сушке на воздухе и в цитрат SCY-078 типа M после вакуумной сушки (фиг. 67).

Пример 47. Цитрат SCY-078 типа S.

Цитрат SCY-078 типа S может быть получен путем сушки образца цитрата SCY-078 типа O в условиях окружающей среды или в вакууме. Паттерны XRPD показали смещение дифракционных пиков после преобразования из цитрата SCY-078 типа O в цитрат SCY-078 типа S (фиг. 68). Кривая DSC показала два эндотермических пика при 35,7°C и 188,0°C (температуры начала) (фиг. 69). Кривая TGA отображает потерю массы на 6,6% до 100°C (фиг. 69). Диаграмма DVS показала 8,2% поглощения воды при 25°C и 80% RH для цитрата SCY-078 типа S (фиг. 70). Анализ XRPD после DVS показал сдвиги пиков. Анализ XRPD далее проводился при переменных температурах от 30 до 120°C и обратно до 40°C и показал сдвиг дифракционных пиков (фиг. 71).

Пример 48. Диспропорционирование цитратной соли SCY-078.

Кристаллические формы цитрата SCY-078, названные типом С, типом I, типом J и типа типом Р, наблюдались либо во время исследования полиморфа, либо при исследовании взаимосвязи взаимопревращения различных форм цитрата SCY-078. Образцы XRPD четырех форм (фиг. 72) продемонстрировали, что цитрат SCY-078 типа С и цитрат SCY-078 типа J являются формами свободного основания и что цитрат SCY-078 типа I и цитрат SCY-078 типа Р, вероятно, являются формами свободного основания.

Цитрат SCY-078 тип I был получен в системе DMSO/EtOH. Цитрат SCY-078 типа P получали суспендированием цитрата SCY-078 типа M в системе ацетона/H₂O. Цитрат SCY-078 тип A диспропорционируется в свободное основание (цитрат SCY-078 типа C, который превращается в цитрат SCY-078 типа J при сушке) при суспендировании в системах EtOH/H₂O, ацетоне/H₂O и BuOH/H₂O. Суспендирование цитрата SCY-078 типа A или испарение раствора цитрата в DMSO, DMAc и DCM-родственных корастворителях также приводили к диспропорционированию.

Пример 49. Взаимопревращение между цитратом SCY-078 типа А и цитратом В.

Эксперименты с суспензией проводились с использованием цитрата SCY-078 типа A в разных органических растворителях, чтобы понять взаимопревращение между цитратом SCY-078 типа A и цитратом SCY-078 тип B. Цитрат SCY-078 типа A (~20 мг) суспендировали в растворителе (0,5 мл) в стеклянном флаконе объемом 1,5 мл. После того как суспензии подвергали ультразвуковой обработке в течение 1 ч или перемешивали в течение 6 ч при комнатной температуре, оставшиеся твердые вещества выделяли для анализа XRPD. Результаты (табл. 35) показали, что цитрат SCY-078 типа B может быть получен из различных органических растворителей. Цитрат SCY-078 тип B также получали из цитрата SCY-078 типа A суспендированием в EtOH, ACN, ацетоне, MIBK, EtOAc, IPAc, DCM, толуоле, гептане, MEOH/ацетоне (1/19), IPA/гептане (1/19), THF/толуоле (1/19) или путем паровой диффузии твердого вещества в EtOAc. Цитрат SCY-078 тип B может превращаться в цитрат SCY-078 тип A путем сушки в атмосфере N_2 или в вакууме при комнатной температуре.

Таблица 35

Сводка способов получения цитрата SCY-078 типа В						
Растворитель	Растворитель Получение Форма, влажная суспензия Сушки № 1 Какуум- Форма пос. фильтрованная сушки № 1 Какуум- сушки № 1 Какуум- фильтрованная сушки № 1 Какуум- сушки № 1 Какуум- фильтрованная суспензия КТ					
ACN	Ультразвук в течение 1 часа	Тип В	Тип А	Тип А		
DCM	Ультразвук в течение 1 часа	Тип В	Тип А	Тип А		
EtOAc	Перемешивание в течение 6 часов	Тип В	Тип В	Тип А		

Пример 50. Интерпретация между цитратом SCY-078 типа A, цитратом SCY-078 типа N и цитратом SCY-078 типа Q.

Цитрат SCY-078 типа N может быть получен путем суспендирования цитрата SCY-078 типа A (или цитрата SCY-078 типа B) в EtOH с использованием ультразвука или при комнатной температуре в течение 1 ч. Цитрат SCY-078 типа N быстро преобразуется в цитрат SCY-078 типа A с помощью вакуумной фильтрации (фиг. 73).

Цитрат SCY-078 типа Q был получен путем реакционной кристаллизации свободного основания десольвата MeOH и лимонной кислоты (1: 1) в EtOH без затравки. После сушки в вакууме при комнатной температуре цитрат SCY-078 типа Q превращается в цитрат SCY-078 типа A (фиг. 74). Изучение взаимопревращения между цитратом SCY-078 типа A, цитратом SCY-078 типа N и цитратом SCY-078 типа Q приведено ниже в табл. 36.

Таблица 36

Конверсия суспензии цитрата SCY-078 типа А или цитрата SCY-078 типа В в цитрат SCY-078 Тип				
	-	N		-
Исходный материал	Способ	Растворитель	Форма, влажная	Форма, вакуумная
			суспензия	сушка
Тип А	Обработка ультразвуком	EtOH	Тип N	Тип А
Тип В	Обработка ультразвуком	EtOH	Тип N	Не измерялось
МеОН- десольват/лимонная кислота (1: 1)	Реакционная кристаллизация	EtOH	Тип Q	Тип А

Пример 51. Связь взаимопревращения около канального гидрата цитрата SCY-078 типа М.

Метастабильный сольват цитрата SCY-078 тип R получали добавлением обратимого антирастворителя в MeOH/IPAc. Цитрат SCY-078 тип R преобразовали в цитрат SCY-078 типа E после сушки в вакууме при комнатной температуре, а затем цитрат SCY-078 типа M получали путем хранения цитрата SCY-078 типа E в условиях окружающей среды в течение 2 дней (фиг. 75). Было обнаружено, что цитрат SCY-078 типа R превращается в цитрат SCY-078 типа M непосредственно при вакуумной сушке при комнатной температуре.

Эксперименты с суспензией проводили на цитрате SCY-078 типа M в отдельных органических растворителях. Результаты (табл. 37) показали, что цитрат SCY-078 типа M превращается в цитрат SCY-078 типа O после суспендирования в ацетоне в течение 17 ч, а цитрат SCY-078 типа O превращается в цитрат SCY-078 типа S после сушки на воздухе (фиг. 76). Цитрат SCY-078 тип M превращается в цитрат SCY-078 типа A при суспендировании в ACN (фиг. 77) и превращается в метастабильный сольват цитрата SCY-078 типа R в корастворителе MeOH/IPAc (фиг. 78). Цитрат SCY-078 тип R превращается в цитрат SCY-078 типа S после сушки на воздухе и превращается обратно в цитрат SCY-078 типа M после вакуумной сушки при комнатной температуре. Изменение формы не наблюдалось при суспендировании цитрата SCY-078 типа M в гептане (фиг. 79).

Таблица 37

Результаты экспериментов по суспендированию цитрата SCY-078 типа М в органических					
	растворителях				
Растворитель	Состояние	Твердая форма			
Ацетон	10 минут ультразвука/влажный	аморфный			
	17 часов (суспензия) влажный	Тип О			
	17 ч (суспензия) сухой в условиях окружающей среды	Тип S			
ACN	10 минут ультразвука/влажный	Тип М			
	17 часов (суспензия) влажный	Тип В			
	17 ч (суспензия) сухой в условиях окружающей среды	Тип А			
Гептан	10 минут ультразвука/влажный	Тип М			
	17 часов (суспензия) влажный	Тип М			
	17 ч (суспензия) сухой в условиях окружающей среды Тип М				
МеОН/ІРАс (5/70, об/об)	10 минут ультразвука/влажный	Тип М			
	17 часов (суспензия) влажный	Тип R *			
	17 ч (суспензия) сухой в условиях Тип S окружающей среды				
* Тип R преобразуется в тип М после вакуумной сушки при RT					

Пример 52. Изучение стабильности цитрата SCY-078 типа A, цитрата SCY-078 типа M и цитрата SCY-078 типа S.

Как описано в примере 25 и табл. 19, цитрат SCY-078 типа А физически/химически стабилен в испытанных условиях в течение не менее 1 недели. Для проверки физической и химической стабильности цитрата SCY-078 типа М и цитрата SCY-078 типа S каждый из них был помещен в три разных условия: (1) открытая чашка при 25°C с относительной влажностью 60%; (2) открытая чашка при 40°C с относительной влажностью 75% и (3) закрытая чашка при 60°C без контроля влажности. Цитрат SCY-078 типа М тестировали в течение 4 дней, а цитрат SCY-078 типа S тестировали в течение 1 недели (фиг. 80-81).

Результаты (табл. 38) показали, что цитрат SCY-078 типа М был физически и химически стабильным при 25°С и относительной влажности 60% в течение по меньшей мере 4 дней. Одно изменение дифракционного пика и потерю частичной кристалличности наблюдали в образце XRPD для цитрата SCY-078 типа М после хранения при 40°С и относительной влажности 75%. Это согласуется с предыдущим наблюдением в примере 42 о том, что цитрат SCY-078 типа М частично превращается в аморфный после анализа DVS. Примеси цитрата SCY-078 типа М увеличивались в закрытых условиях при 60°С в течение 4 дней. Цитрат SCY-078 тип S физически и химически стабилен в закрытых условиях при 60°C в течение одной недели. Наблюдались сдвиги пиков дифракции для образцов, хранящихся при 25°C и относительной влажности 60% и 40°C и относительной влажности 75%.

Таблица 38

Физическая и химическая стабильность цитрата SCY-078 Тип М и цитрат SCY-078 Тип S				
Образец	Состояние	ие % примеси с помощью HPLC Твердая фо		
-	Начальное	0,42	Тип М	
$T_{\rm M} M (4 mm)$	25°C/60% RH	0,39	Тип М	
Тип М (4 дня)	40°C/75% RH	0,00	Тип М*	
	60°С закрыто	0,63	Тип М	
Тип S (1 неделя)	Начальное	0,10	Тип S	
	25°C/60% RH	0,03	Тип S**	
	40°C/75% RH	0,03	Тип S**	
	60°С закрытое	0,11	Тип S	
* Было обнаружено одно изменение пика для образца				
** Для образцов наблюдались сдвиги пиков				

Пример 53. Альтернативный способ получения цитрата SCY-078 типа А.

В реактор емкостью 10 л загружали фосфат SCY-078 (450 г, содержание свободного основания в фосфате составляло 85,6% согласно HPLC). 2-MeTHF (2,25 л) загружали в тот же реактор. 10% Na₂CO₃ водный раствор (2,25 л) при 20°C загружали в реакционную смесь в течение 25 мин. Суспензию перемениивали при 20°C в течение 20 мин и затем давали остыть в течение 30 мин. Органический слой собирали и промывали 1,8 л насыщенного водного раствора NaCl дважды, а затем дополнительно промывали 1,8 л деионизированной воды один раз.

Органический слой переносили в 4-литровый кристаллизатор. Реактор промывали 250 мл 2-МеТНF и жидкость переносили в кристаллизатор, содержащий органический слой. Раствор концентрировали в кристаллизаторе до 900 мл при 50°C. В кристаллизатор загружали 900 мл метанола и смесь охлаждали до 40°C. Смесь перемешивали при 40°C в течение 1 ч (прозрачный). В кристаллизатор добавляли 4,5 г затравки и суспензию выдерживали при 40°C в течение 1 ч. Затем смесь концентрировали до 900 мл при 40°C. Затем кристаллизатор загружали 900 мл метанола и снова концентрировали до 900 мл при 40°C. Эту стадию повторяли еще дважды, а маточный раствор анализировали с помощью газовой хроматографии. Смесь охлаждали до 10°C в течение 2 ч и затем выдерживали при 10°C в течение не менее 3 ч. Маточный раствор отбирали для определения концентрации раствора с помощью HPLC. Суспензию фильтровали и осадок сушили в вакууме при 35°C в течение 12 ч.

Для получения соли цитрата использовали 10-литровый снабженный рубашкой кристаллизатор с накладной мешалкой с двумя крыльчатками. Диаметр крыльчатки составлял 13 см. Сначала в 10-литровый кристаллизатор (кристаллизатор 1) добавляли EtOH (500 мл) и перемешивали (300 об/мин). Температуру кристаллизатора 1 поддерживали при 25°С. В кристаллизатор 1 добавляли свободное основние SCY-078 (242,09 г). Другой объем EtOH (500 мл) загружали в кристаллизатор 1. Кристаллизатор 1 нагревали до 50°С. Раствор лимонной кислоты, полученный растворением лимонной кислоты (58,22 г) в EtOH (758 мл), загружали в кристаллизатор 1 за 35 мин. Кристаллизатор 1 нагревали до 55°С и перемешивали в течение 20 мин. Затем кристаллизатор 1 охлаждали до 50°С в течение 20 мин.

После охлаждения постороннее вещество фильтровали (размер пор 30-50 мкм) и фильтрат переносили в другой 10 -литровый кристаллизатор (кристаллизатор 2). Фильтр промывали EtOH (5 мл) и переносили в кристаллизатор 2. Смесь в кристаллизаторе 2 перемешивали при 50°C в течение 30 мин. Затем затравочную суспензию, которую готовили из затравки (13,22 г), обработанной ультразвуком и диспергированной в 50/50 EtOH/n-гептане (68 мл), быстро загружали в кристаллизатор 2. Смесь в кристаллизаторе 2 выдерживали при 50°C в течение 2 ч. Кристаллизатор 2 затем загружали п-гептаном (1758 мл) в течение 12 ч при 50°C. Смесь снова выдерживают при 50°C в течение 2 ч. Из полученной смеси отбирали образец для анализа XRPD и микроскопии.

Смесь охлаждали до 20°С в течение 2 ч и затем перемешивали при 20°С в течение 3 ч. Партию фильтровали и осадок промывали раствором 1:1 ЕtOH/n-гептан (500 мл). Осадок продували N₂ в течение 60 мин. Наконец, осадок высушивали при 45-55°С с продувкой N₂.

В итоге получали 241 г продукта с выходом 86,4%. Анализ XRPD показал, что продукт представляет собой высококристаллический цитрат SCY-078 типа А (фиг. 82). Кривая TGA показала потерю массы 2,2% до 150°С (фиг. 83). Кривая DSC показала температуру плавления 197,8°С (температура начала) (фиг. 83). Полученные кристаллы были стержнеобразными со средним размером 34,2 мкм (фиг. 84).

Пример 54. Получение и характеризация трифторацетата SCY-078 типа А.

Аморфное свободное основание SCY-078 (994,3 мг) и трифторуксусная кислота (молярное отношение свободного основания/кислоты - 1/1) взвешивались в 5 мл флаконе с последующим добавлением 5 мл ацетонитрила. Смесь суспендировали при комнатной температуре с помощью магнитной мешалки со скоростью перемешивания 1000 об/мин в течение 4 дней. Суспензию центрифугировали и сушили в вакууме при комнатной температуре в течение ночи.

Трифторацетат SCY-078 типа А является высококристаллическим, как показано в XRPD (фиг. 85). Кривая TGA показала потерю массы 1,1% до 120°С (фиг. 86). DSC (фиг. 86) показало два эндотермических пика, один при 65,8°С и 229,8°С. Трифторацетат типа А превращался в тип В после хранения в условиях окружающей среды в течение 2 дней (фиг. 87). Молярное отношение трифторацетата типа А (кислота: свободное основание) было определено равным 1:1 путем подтверждения с помощью HPLC-IC.

Пример 55. Получение и характеризация трифторацетата SCY-078 тип В.

Трифторуксусную кислоту (331,5 мг) добавляли в ацетонитрил (8 мл) в стеклянном флаконе емкостью 20 мл с последующим добавлением аморфного свободного основания SCA-078 типа A (молярное отношение свободного основания/кислоты = 1/1). Смесь перемешивали при комнатной температуре с помощью магнитной мешалки со скоростью перемешивания 600 об/мин в течение 24 ч. Суспензию фильтровали под вакуумом и сушили при комнатной температуре в течение 20 ч. Получили трифторацетат типа A (2,18 г), который превращается в трифторацетат типа В после хранения в условиях окружающей среды в течение почти 1 месяца.

Трифторацетат SCF-078 типа В является высококристаллическим, как показано в XRPD (фиг. 88). На кривой TGA наблюдается снижение массы на 4,7% до 120°С (фиг. 89). DSC (фиг. 89) показывает два эндотермических пика, один при 92,8°С и 230,0°С. Из-за обратимого превращения трифторацетата типа A и типа В молярное отношение трифторацета типа В (кислота: свободное основание) постулируется как 1:1, такое же, что и у типа А.

Из DVS (фиг. 90) наблюдалось 3,4 мас.% поглощения воды при 25°C/80% RH, что указывает на то, что тип В умеренно гигроскопичен. DVS выявило потенциальное изменение формы относительно RH, по оценкам, между 30% RH и 40% RH. Трифторацетат SCY-078 типа В превращается в тип A после DVS, как показано на фиг. 91.

Чтобы исследовать переходные отношения трифторацетата типа A и типа B, оба образца хранились в камерах с переменной относительной влажностью для мониторинга любого изменения формы. Сводка о трифторацетате типа B, хранящегося при изменяющейся относительной влажности, приведена в табл. 39, а наложение паттернов XRPD показано на фиг. 92. Трифторацетат типа B превращается в тип A только при высокой относительной влажности (97% RH), тогда как тип B стабилен при низкой относительной влажности (<22% RH). Проводили XRPD с варьирующейся температурой (VT) для трифторацетата типа A. Наложение паттернов VT-XRPD показано на фиг. 93. Тип A преобразуется в тип B после нагревания до 120°C.

Таблица 39

Относительная влажность	0%	22%	97%					
ТFA типа B	Тип В	Тип В	Тип А					
Паттерны XRPD получали после хранения в течение 24 часов.								

Пример 56. Получение и характеризация SCY-078 HCl типа I.

342,7 мкл концентрированной HCl (37,5%) диспергировали в 40 мл ацетона. Добавляли 2,0 мг свободного основания SCY-078 типа A (молярное отношение свободного основания/кислоты = 1/1,5). Суспензию растворяли в биохимическом инкубаторе для проведения циклов нагревания-охлаждения (50-20°C) с помощью магнитной мешалки со скоростью перемешивания 600 об/мин. Суспензию охлаждали до 5°C со скоростью 0,1°C/мин и выдерживали при 5°C в течение 17 ч. Влажный осадок фильтровали под вакуумом и сушили при комнатной температуре в течение 20 ч. Получили SCI-078 HCl I типа (2,06 г).

SCY-078 HCl типа I является высококристаллическим, как показано в XRPD (фиг. 94). Наблюдалось снижение массы на 4,2% до 120°C на кривой TGA (фиг. 95). DSC (фиг. 95) показывает три эндотермических пика, один при 46,2°C, один при 115,5°C и один при 274,3°C. Молярное соотношение SCY-078 HCl типа I (кислота: свободное основание) определялось равным 1,5:1 с использованием HPLC-IC.

Из DVS (фиг. 96) наблюдалось 6,1 мас.% поглощения воды при относительной влажности 25°C/80%, что указывает на то, что HCl тип I умеренно гигроскопичен. После характеризации с помощью DVS изменение формы не наблюдалось, как показано на фиг. 97.

Пример 57. Получение и характеризация SCY-078 HCl типа II.

SCY-078 HCl типа II получали суспендированием HCl типа I в ацетатном буфере (pH 5,5) в течение 4 ч. Спектр XRPD (фиг. 98) указывает, что тип II является высококристаллическим. TGA показывает, что HCl тип II демонстрирует потерю массы 6,9% до 150°C, а DSC показывает эндотермический пик при 48,3°C (температура начала), как показано на фиг. 99.

Пример 58. Растворимость трифторацетата типа A, типа B и HCl типа I измеряли в SGF при температуре окружающей среды. Примерно 90 мг твердого образца взвешивали в центрифужную пробирку объемом 4 мл и добавляли 3 мл буфера SGF перед помещением суспензии во вращающийся инкубатор (25 об/мин). 1,0 мл аликвоты суспензии отбирали для центрифугирования (10000 об/мин, 3 мин), надосадочную жидкость анализировали с помощью HPLC и измерения pH, а твердое вещество характеризовали с помощью XRPD через 1 ч, 4 ч и 24 ч соответственно. Результаты подытожены в табл. 40, а кривые растворимости показаны на фиг. 100. Все три соли проявляют высокую растворимость в SGF (>20 мг/мл в течение 24 ч). Трифторацетат типа В превращается в тип А в SGF через час. Однако не наблюдалось изменений формы трифторацетата типа А и HCl типа I в SGF. Паттерны XRPD остаточного твердого вещества показаны на фиг. 101, 102 и 103.

Таблица 40

Исколиций	1 час			4 yaca			24 часа		
материал	S	pН	Изменение формы	S	pН	Изменение формы	S	pН	Изменение формы
TFA типа A	15,9	2,2	нет	19,8	2,2	нет	23,2	2,1	нет
TFA типа B	14,3	2,0	Да (Тип А)	18,4	2,0	Да (Тип А)	21,4	1,8	Да (Тип А)
HCl типа I	11,7	1,7	нет	17,7	1,9	нет	25,1	1,8	нет

S: растворимость, мг/мл.

Пример 59. Растворимость трифторацетата типа А, типа В и гидрохлорида типа I измеряли в альтернативной среде FaSSIF при температуре окружающей среды. Примерно 15 мг твердого образца взвешивали в пластиковой пробирке объемом 4 мл и добавляли 3 мл среды перед помещением суспензии во вращающий инкубатор (25 об/мин). 1,0 мл аликвоты суспензии отбирали для центрифугирования, при этом надосадочную жидкость анализировали с помощью HPLC и измерения pH, а твердое вещество характеризовали с помощью XRPD через 1 ч, 4 ч и 24 ч соответственно. Результаты подытожены в табл. 41, а кривые растворимости показаны на фиг. 104. Все три соли проявляют слабую растворимость в альтернативной среде FaSSIF (<0,01 мг/мл через 24 кинетических часа). Трифторацетат типа В превращается в тип А через час. Однако не наблюдалось изменений формы трифторацетата типа A и HCl типа I. Паттерны XRPD остаточного твердого вещества показаны на фиг. 105, 106 и 107.

Таблица 41

Исходиний	1 час			4 часа			24 часа			
материал	S	pН	Изменение формы	S	pН	Изменение формы	S	pН	Изменение формы	
TFA типа A	<lod< td=""><td>6,5</td><td>нет</td><td><lod< td=""><td>6,4</td><td>нет</td><td><lod< td=""><td>6,4</td><td>нет</td></lod<></td></lod<></td></lod<>	6,5	нет	<lod< td=""><td>6,4</td><td>нет</td><td><lod< td=""><td>6,4</td><td>нет</td></lod<></td></lod<>	6,4	нет	<lod< td=""><td>6,4</td><td>нет</td></lod<>	6,4	нет	
TFA типа В	<lod< td=""><td>6,4</td><td>Да (Тип А)</td><td><lod< td=""><td>6,4</td><td>Да (Тип А)</td><td><lod< td=""><td>6,3</td><td>Да (Тип А)</td></lod<></td></lod<></td></lod<>	6,4	Да (Тип А)	<lod< td=""><td>6,4</td><td>Да (Тип А)</td><td><lod< td=""><td>6,3</td><td>Да (Тип А)</td></lod<></td></lod<>	6,4	Да (Тип А)	<lod< td=""><td>6,3</td><td>Да (Тип А)</td></lod<>	6,3	Да (Тип А)	
HCl типа I	0,0033	5,0	нет	0,0017	5,3	нет	0,0046	5,1	нет	
0		1		000/1	1					

S: растворимость, мг/мл; LOD: 0,00064 мг/мл.

Пример 60. Растворимость трифторацетата типа А, типа В и HCl типа I измеряли в альтернативной среде FeSSIF при температуре окружающей среды. Примерно 36 мг твердого образца взвешивали в пластиковую пробирку объемом 4 мл и добавляли 3 мл среды перед помещением суспензии во вращающийся инкубатор (25 об/мин). 1,0 мл аликвоты суспензии отбирали для центрифугирования, при этом надосадочную жидкость анализировали с помощью HPLC и измерения pH, а твердое вещество характеризовали с помощью XRPD через 1 ч, 4 ч и 24 ч соответственно. Результаты подытожены в табл.42, а кривые растворимости показаны на фиг. 108. Все три соли проявляют растворимость ~3 мг/мл в течение первого часа. HCl типа I демонстрирует равновесную растворимость 3,5 мг/мл в течение 24 ч, тогда как трифторацетат (как тип A, так и тип B) демонстрирует снижение растворимости через час. Трифторацетат типа A превращается в тип B через час. Однако не наблюдалось изменений формы трифторацетата типа B и гидрохлорида типа I. Паттерны XRPD остаточного твердого вещества были включены в фиг. 109, 110 и 111.

Таблица 42

Исколиций	1 час			4 часа			24 часа			
материал	S	pН	Изменение формы	S	pН	Изменение формы	S	pН	Изменение формы	
ТFA типа A	3.0	5,0	Да (Тип В)	2,1	5,0	Да (Тип В)	0,5	5,0	Да (Тип В)	
TFA типа B	3,3	5,0	нет	3,0	5,0	нет	1,1	4,9	нет	
HCl типа I	2,9	4,8 нет		3,5	4,8	нет	3,5	4,9	нет	

S: растворимость, мг/мл.

Пример 61. Растворимость трифторацетата типа А, типа В и HCl типа I измеряли в ацетатном буфере (pH 5,5) при температуре окружающей среды. Примерно 15 мг твердого образца взвешивали в пластиковую пробирку объемом 4 мл и добавляли 3 мл буфера ацетата с pH 5,5, после чего суспензию оставляли во вращающемся инкубаторе (25 об/мин). 1,0 мл аликвоты суспензии отбирали для центрифугирования, при этом надосадочную жидкость использовали для HPLC и измерения pH, а твердое вещество для характеризации с помощью XRPD через 4 ч и 24 ч соответственно. Результаты подытожены в табл.43, а кривые растворимости показаны на фиг. 112. Трифторацетат типа А проявляет более высокую растворимость в ацетатном буфере с pH 5,5, и никакого изменения формы не наблюдалось. Тем не менее, тип В превращается в тип A в ацетатном буфере с pH 5,5. Хотя HCl типа I проявляет более низкую растворимость в ацетатном буфере с pH 5,5 по сравнению с трифторацетатом, HCl типа I превращается в тип II в ацетатном буфере с pH 5,5. Спектры XRPD остаточного твердого вещества были включены в фиг. 113, 114 и 115.

Таблица 43

Исходный		4 ча	nca	24 часа			
материал	S	pН	Изменение формы	S	pН	Изменение формы	
TFA типа A	1,9	5,5	нет	3,5	5,4	нет	
TFA типа B	0,89	5,4	да (Тип А + В)	2,2	5,2	да (Тип А)	
HCl типа I	0,59	4,8	Да (Тип II)	1,1	4,9	Да (Тип II)	

S: растворимость, мг/мл.

Пример 62. Растворимость трифторацетата типа А, типа В и HCl типа I измеряли в фосфатной альтернативной среде (pH 6,0) при температуре окружающей среды. Примерно 15 мг твердого образца взвешивали в пластиковую пробирку объемом 4 мл и добавляли 3 мл среды перед помещением суспензии во вращающийся инкубатор (25 об/мин). 1,0 мл аликвоты суспензии отбирали для центрифугирования, при этом надосадочную жидкость анализировали с помощью HPLC и измерения pH, а твердое вещество характеризовали с помощью XRPD в течение 4 ч и 24 ч соответственно. Результаты подытожены в табл. 44, а кривые растворимости показаны на фиг. 116. HCl типа I проявляет более высокую растворимость, тогда как трифторацетат типа А проявляет более низкую растворимость. Трифторацетат типа А сначала преобразуется в тип В через 4 ч и обратно в тип А через 24 ч, тогда как тип В преобразуется в тип А через 24 ч. Не наблюдалось изменений формы HCl типа I. Спектры XRPD остаточного твердого вещества были включены в фиг. 117, 118 и 119.

Таблица 44

Исходный		4	часа	24 часа			
материал	S	pН	Изменение формы	S	pН	Изменение формы	
TFA типа A	0,28	5,8	5,8 Да (Тип В)		5,5	Вернуться к форме А	
TFA типа В	0,39	5,3	нет	2,7	4,9	Да (Тип А)	
HCl типа I	1.2	2 3,9 нет		4,1	4,4	нет	

S: растворимость, мг/мл.

Пример 63. Оценка физико-химической стабильности трифторацетата типа А, трифторацетата типа В и типа HCl проводилась при 25°C/60% RH, 40°C/75% RH и 60°C в течение 1, 2, 4 и 8 недель. В экспериментах приблизительно 20 мг твердого вещества помещали в стеклянный флакон объемом 1,5 мл. Флаконы хранили в условиях при 25°C/60% RH (не закрытыми), 40°C/75% RH (не закрытыми) и 60°C (закрытыми) в течение 8 недель. Затем для проверки кристаллической формы твердого вещества использовали анализ XRPD и использовали HPLC для определения профиля чистоты через 1, 2, 4 и 8 недель. Из результатов стабильности, суммированных в табл. 45, видно, что трифторацетат типа А, так и HCl типа I являются физически и химически стабильными в условиях при 25°C/60% RH, 40°C/75% RH и 60°C в течение 8 недель. Изменение формы твердого вещества трифторацетата типа А через 2 и 4 недели предположительно являлось следствием воздействия воздуха, когда образец был вынут для характеризации с помощью XRPD. Трифторацетат типа В химически стабилен, однако физически нестабилен, что подтверждается превращением в тип А в этих условиях. Наложение спектров XRPD для трифторацетата типов А и В и HCl типа I в условиях стрессового воздействия показаны на фиг. 120-128.

Таблица 45

	Исходная		25°C/6	0% RH	40°C/7	5% RH	60°С (закрытый)	
Соль	Соль чистота	Бремя	Чистота	Твердая	Чистота	Твердая	Чистота	Твердая
	HPLC	(недели)	HPLC	форма	HPLC	форма	HPLC	форма
		1	99,9%	Тип А	99,9%	Тип А	99,9%	Тип А
		2	99,9%	Тип В	99,9%	Тип В	99,9%	Тип В
ТFA типа А 99,9%	99,9%	4	99,9%	Тип А + В	99,9%	Тип А + В	99,9%	Тип А + В
		6	-	Тип А	-	Тип А	-	Тип А
		8	99,9%	Тип А	99,9%	Тип А	99,9%	Тип А
		1	99,9%	Тип А	99,9%	Тип А	99,9%	Тип А
ТFA типа В 99,9%	00.0%	2	99,9%	Тип А	99,9%	Тип А	99,9%	Тип А
	99,9%	4	99,9%	Тип А	99,9%	Тип А	99,9%	Тип А
		8	99,9%	Тип А	99,9%	Тип А	99,9%	Тип А
		1	99,9%	Тип I	99,9%	Тип I	99,9%	Тип I
HCl		2	99,9%	Тип I	99,9%	Тип I	99,9%	Тип I
типа I	99,9%	4	99,9%	Тип I	99,9%	Тип I	99,9%	Тип I
		8	99,9%	Тип I	99,9%	Тип I	99,9%	Тип I

Изменение формы твердого вещества трифторацетата типа A через 2 и 4 недели предположительно являлось следствием воздействия воздуха, когда образец вынимали для характеризации с помощью XRPD.

ФОРМУЛА ИЗОБРЕТЕНИЯ

выбранная из цитрата, гиппурата, мезилата и фумарата.

2. Соль по п.1, отличающаяся тем, что фармацевтически приемлемая соль соединения 1 имеет химическую чистоту по меньшей мере 99%.

3. Соль по п.1, отличающаяся тем, что фармацевтически приемлемая соль соединения 1 имеет кинетическую растворимость, соответствующую одному или нескольким из следующего:

от 2 до 5 мг/мл или от 4 до 5 мг/мл через 4 ч в декстрозном буфере при рН 5,5,

от 2 до 9 мг/мл, от 4 до 9 мг/мл или от 8 до 9 мг/мл через 24 ч в декстрозном буфере при рН 5,5,

от 1 до 5 мг/мл или от 4 до 5 мг/мл через 4 ч в фосфатном буфере при рН 6,0,

от 4 до 8 мг/мл или от 7 до 8 мг/мл через 24 ч в фосфатном буфере при рН 6,0,

от 12 до 21 мг/мл, от 13 до 21 мг/мл, от 18 до 21 мг/мл или от 20 до 21 мг/мл через 1 ч в среде SGF или

от 17 до 22 мг/мл или от 21 до 22 мг/мл через 24 ч в среде FaSSIF.

4. Соль по п.1, отличающаяся тем, что фармацевтически приемлемая соль соединения 1 характеризуется сорбцией воды от 2 до 7%, от 3 до 7% или от 6 до 7% при 25°С и относительной влажности 80%, определяемой методом DVS.

5. Соль по п.1, отличающаяся тем, что фармацевтически приемлемая соль представляет собой цитратную соль.

6. Цитратная соль по п.5, отличающаяся тем, что цитратная соль соединения 1 содержит кристаллическую форму цитрата типа A, где

кристаллическая форма цитрата типа А имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 11,86, 7,70, 7,09, 6,71, 5,90 и 5,29 Å, и/или спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 7,45, 11,49, 12,49, 13,19, 15,02 и 16,75.

7. Цитратная соль по п.5, отличающаяся тем, что цитратная соль соединения 1, по существу, состоит из кристаллической формы цитрата типа A, или цитратная соль соединения 1 включает по меньшей мере 98% кристаллической формы цитрата типа A или по меньшей мере 99% кристаллической формы цитрата типа A,

где кристаллическая форма цитрата типа А имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 11,86, 7,70, 7,09, 6,71, 5,90 и 5,29 Å, и/или спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 7,45, 11,49, 12,49, 13,19, 15,02 и 16,75.

8. Цитратная соль по п.6 или 7, отличающаяся тем, что кристаллическая форма цитрата типа А стабильна в течение по меньшей мере 1 недели при хранении при 60°С, при 25°С и относительной влажности 60% или при 40°С и относительной влажности 75%.

9. Цитратная соль по п.6 или 7, отличающаяся тем, что кристаллическая форма цитрата типа А имеет равновесную растворимость 38 мг/мл в незабуференной воде при комнатной температуре.

10. Цитратная соль по п.6 или 7, отличающаяся тем, что кристаллическая форма цитрата типа А имеет растворимость от 40 до 42 мг/мл при комнатной температуре по меньшей мере в одном растворителе, выбранном из метанола, изопропилового спирта, уксусной кислоты, тетрагидрофурана, 2-метилтетрагидрофурана, 1,4-диоксана, N-метил-2-пирролидона, диметилсульфоксида и диметилацетамида.

11. Цитратная соль по п.6 или 7, отличающаяся тем, что кристаллическая форма цитрата типа А имеет кинетическую растворимость, соответствующую по меньшей мере одному из следующего:

4 мг/мл через 4 ч в декстрозном буфере при рН 5,5,

8 мг/мл через 24 ч в декстрозном буфере при рН 5,5,

5 мг/мл в течение 4 ч в фосфатном буфере при рН 6,0,

8 мг/мл через 24 ч в фосфатном буфере при pH 6,0,

21 мг/мл через 1 ч в среде SGF,

4 мг/мл через 24 ч в среде FeSSIF,

10 мг/мл через 1 ч в среде FaSSIF или

21 мг/мл через 4 ч в среде FaSSIF.

12. Цитратная соль по п.6 или 7, отличающаяся тем, что кристаллическая форма цитрата типа A характеризуется сорбцией воды 6% при 25°C и относительной влажности 80%, определяемой методом DVS.

13. Цитратная соль по п.5, отличающаяся тем, что цитратная соль соединения 1 содержит кристаллическую форму цитрата типа В, где

кристаллическая форма цитрата типа В имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 15,89, 12,77, 7,54, 5,82 и 5,27 Å, и/или спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 5,56, 6,92, 11,73, 15,23 и 16,81.

14. Цитратная соль по п.5, отличающаяся тем, что цитратная соль соединения 1 содержит кристаллическую форму цитрата типа Е, где

кристаллическая форма цитрата типа Е имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 12,18, 7,74, 6,27, 5,62 и 5,43 Å, и/или спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 7,26, 11,44, 14,14, 15,76 и 16,33.

15. Цитратная соль по п.5, отличающаяся тем, что цитратная соль соединения 1 содержит кристаллическую форму цитрата типа F, где

кристаллическая форма цитрата типа F имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 24,32 и 5,00 Å, и/или спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 3,63 и 17,74.

16. Цитратная соль по п.5, отличающаяся тем, что цитратная соль соединения 1 содержит кристаллическую форму цитрата типа М, где

кристаллическая форма цитрата типа М имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 12,04, 7,69, 6,25, 5,61 и 5,41 Å, и/или спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 7,34, 11,51, 14,17, 15,80 и 16,37.

17. Цитратная соль по п.5, отличающаяся тем, что цитратная соль соединения 1 содержит кристаллическую форму цитрата типа N, где

кристаллическая форма цитрата типа N имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 12,51, 7,77, 6,85, 6,27, 5,84, 5,45 и 4,79 Å, и/или спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 7,07, 11,38, 12,92, 14,13, 15,16, 16,26 и 18,51.

18. Цитратная соль по п.5, отличающаяся тем, что цитратная соль соединения 1 содержит кристаллическую форму цитрата типа О, где

кристаллическая форма цитрата типа О имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 12,48, 7,43 и 5,29 Å, и/или спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 7,08, 11,91 и 16,76.

19. Цитратная соль по п.5, отличающаяся тем, что цитратная соль соединения 1 содержит кристаллическую форму цитрата типа Q, где

кристаллическая форма цитрата типа Q имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 14.03, 12,83, 7,81, 7,54 и 5,21 Å, и/или спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 6,30, 6,89, 11,33, 11,73 и 17,01.

20. Цитратная соль по п.5, отличающаяся тем, что цитратная соль соединения 1 содержит кристаллическую форму цитрата типа R, где

кристаллическая форма цитрата типа R имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 14,39, 6,05, 5,40 и 5,00 Å, и/или спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 6,14, 14,64, 16,41 и 17,74.

21. Цитратная соль по п.5, отличающаяся тем, что цитратная соль соединения 1 содержит кристаллическую форму цитрата типа S, где

кристаллическая форма цитрата типа S имеет спектр XRPD, содержащий один или несколько пиков при d-расстояниях 16,03, 12,12, 7,37 и 5,27 Å, и/или спектр XRPD, содержащий один или несколько пиков при значениях градусов 20 5,51, 7,30, 12,00 и 16,81.

22. Фармацевтическая композиция для лечения грибковой инфекции, содержащая фармацевтически приемлемую соль по п.1 и фармацевтически приемлемый носитель.

23. Способ получения фармацевтической композиции по п.22, включающий комбинирование фармацевтически приемлемой соли по п.1 и фармацевтически приемлемого носителя.

24. Фармацевтическая композиция для инъекции человеку для лечения грибковой инфекции, содержащая фармацевтически приемлемую соль по п.1 в фармацевтически приемлемом носителе.

25. Фармацевтическая композиция по п.24, где композиция предназначена для внутривенной инъекции человеку.

26. Способ получения фармацевтической композиции для инъекций по п.24, включающий растворение фармацевтически приемлемой соли по п.1 в фармацевтически приемлемом носителе.

27. Способ по п.26, в котором фармацевтически приемлемую соль растворяют в фармацевтически приемлемом носителе в течение 24 ч.

28. Способ лечения грибковой инфекции у нуждающегося в этом пациента, включающий введение пациенту фармацевтической композиции, содержащей эффективное количество фармацевтически приемлемой соли по п.1, отличающийся тем, что фармацевтическая композиция пригодна для инъекции человеку.

29. Способ по п.28, в котором фармацевтическая композиция пригодна для внутривенной инъекции человеку.

30. Фармацевтически приемлемая соль соединения 1

с кинетической растворимостью, соответствующей по меньшей мере одному из следующего:

по меньшей мере 2 мг/мл через 24 ч в декстрозном буфере при рН 5,5,

по меньшей мере 2 мг/мл через 4 ч в декстрозном буфере при рН 5,5,

по меньшей мере 2 мг/мл через 4 ч в фосфатном буфере при рН 6,0,

по меньшей мере 4,5 мг/мл через 24 ч в фосфатном буфере при рН 6,0,

по меньшей мере 16 мг/мл через 1 ч в среде SGF или

по меньшей мере 17 мг/мл в течение 24 ч в среде FaSSIF.

31. Фармацевтически приемлемая соль по п.30, имеющая кинетическую растворимость, соответствующую по меньшей мере одному из следующего:

по меньшей мере 4 мг/мл, по меньшей мере 8 мг/мл, от 2 до 9 мг/мл, от 4 до 9 мг/мл или от 8 до 9 мг/мл через 24 ч в декстрозном буфере при pH 5,5,

по меньшей мере 4 мг/мл, от 2 до 5 мг/мл или от 4 до 5 мг/мл через 4 ч в декстрозном буфере при pH 5,5,

по меньшей мере 4 мг/мл, от 2 до 5 мг/мл или от 4 до 5 мг/мл через 4 ч в фосфатном буфере при рН 6,0,

по меньшей мере 7 мг/мл, от 4,5 до 8 мг/мл или от 7 до 8 мг/мл через 24 ч в фосфатном буфере при pH 6,0,

по меньшей мере 17 мг/мл, по меньшей мере 18 мг/мл или по меньшей мере 20 мг/мл, от 17 до 21 мг/мл, от 18 до 21 мг/мл, от 20 до 21 мг/мл через 1 ч в среде SGF или

по меньшей мере 22 мг/мл, от 17 до 22 мг/мл или от 21 до 22 мг/мл в течение 24 ч в среде FaSSIF.

32. Фармацевтически приемлемая соль по п.30, характеризующаяся сорбцией воды не выше 7%, от 2 до 7%, от 3 до 7% или от 6 до 7% при 25°С и относительной влажности 80%, согласно определению методом DVS.

Фиг. 1

Фиг. 13

- 53 -

100

Температура (°C) Цикл DSC гиппурата SCY-078 типа В Фиг. 16

173.8°C

200

250

150

-1.0+0

Экзо вверх

Фиг. 28

XRPD гиппурата SCY-078 типа В, полученного в увеличенном масштабе, после DVS

Фиг. 30

Фиг. 31

DVS фумарата SCY-078 типа B, полученного в увеличенном масштабе $\Phi {\rm Mrr.}~33$

Фиг. 34

DSC/TGA фосфата SCY-078 типа А, полученного в увеличенном масштабе

Фиг. 39

Фиг. 43

036874

Фиг. 58

- 69 -

Фиг. 71

Наложение спектров XRPD типа Q в тип А

Фиг. 74

Наложение спектров XRPD суспензии типа M в ацетоне $\Phi \mu \Gamma. \ 76$

Наложение спектров XRPD суспензии типа М в ацетонитриле

Фиг. 77

Фиг. 78

Фиг. 79

Фиг. 80

Фиг. 81

2 Тета (град.)

Фиг. 84

Фиг. 85

Наложение XRPD трифторацетата типа А до и после хранения

Фиг. 88

Фиг. 92

Фиг. 95

Наложение XRPD гидрохлорида типа I до и после DVS

Фиг. 97

Кривые растворимости трифторацетата и гидрохлорида в SGF

Фиг. 101

Наложение XRPD трифторацетата типа А из примера 59

Наложение XRPD трифторацетата типа В из примера 59 Φ иг. 106

Фиг. 107

Фиг. 113

Наложение XRPD трифторацетата типа В из примера 61

Наложение XRPD гидрохлорида типа I из примера 61 Φ иг. 115

Фиг. 116

2 Тета (град.)

Наложение XRPD гидрохлорида типа I из примера 62

Фиг. 119

Фиг. 120

Наложение XRPD трифторацетата типа А в условиях 40 °C/75%RH

Фиг. 121

Наложение XRPD трифторацетата типа A в условиях 60 $^{\circ}\mathrm{C}$

Фиг. 122

Фиг. 125

Наложение XRPD гидрохлорида типа I в условиях 25 °C/60%RH

Фиг. 126

Наложение XRPD гидрохлорида типа I в условиях 40 °C/75%RH

Фиг. 127

Фиг. 128

Евразийская патентная организация, ЕАПВ Россия, 109012, Москва, Малый Черкасский пер., 2