(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

(51) Int. Cl. *C08F 136/06* (2006.01) **C08L 9/00** (2006.01)

2020.10.22 (21) Номер заявки

201990454

(22) Дата подачи заявки

2017.10.20

СПОСОБ ПОЛУЧЕНИЯ СИНДИОТАКТИЧЕСКОГО 1,2-ПОЛИБУТАДИЕНА В ПРИСУТСТВИИ КАТАЛИТИЧЕСКОЙ СИСТЕМЫ, СОДЕРЖАЩЕЙ ПИРИДИЛЬНЫЙ КОМПЛЕКС ЖЕЛЕЗА

102016000105530 (31)

(32)2016.10.20

(33)IT

(43)2019.08.30

(86)PCT/IB2017/056528

(87)WO 2018/073798 2018.04.26

(71)(73) Заявитель и патентовладелец: ВЕРСАЛИС С.П.А. (ІТ)

(72) Изобретатель:

Соммацци Анна, Пампалони Гвидо, Риччи Джованни, Маси Франческо, Леоне Джузеппе (IT)

(74) Представитель:

Поликарпов А.В., Соколова М.В., Путинцев А.И., Черкас Д.А., Игнатьев **A.B.** (**RU**)

(56) WO-A1-2016042014

US-A1-2015329654 US-A1-2016264706

US-A1-2003073790 US-A1-2001036899

US-A1-2002013435

Способ получения синдиотактического 1,2-полибутадиена, включающий полимеризацию 1,3-(57) бутадиена в присутствии каталитической системы, содержащей по меньшей мере один пиридильный комплекс железа общей формулы (I)

$$R_1$$
 R_2 (1)

в которой R_1 представляет атом водорода или метильную группу; R_2 представляет атом водорода или выбран из линейной или разветвленной C_1 - C_3 алкильной группы; X, одинаковые или отличные друг от друга, представляют атом галогена, выбранный из хлора, брома, йода; п составляет 2 или 3; и метилалюмоксан (МАО), при этом молярное отношение между алюминием, присутствующим в метилалюмоксане, и железом, присутствующим в пиридильном комплексе железа общей формулы (I), находится в диапазоне от 5 от 20.

Изобретение относится к способу получения синдиотактического 1,2-полибутадиена.

Более конкретно, изобретение относится к способу получения синдиотактического 1,2-полибутадиена, включающему полимеризацию 1,3-бутадиена в присутствии каталитической системы, содержащей по меньшей мере один пиридильный комплекс железа, по меньшей мере один алюмоксан.

Известно, что стереоспецифическая (со)полимеризация сопряженных диенов является очень важным способом в химической промышленности для получения продуктов, которые относятся к наиболее широко применяемым резинам.

Кроме того, известно, что из различных полимеров, которые можно получить путем стереоспецифической полимеризации 1,3-бутадиена (т.е. 1,4-цис, 1,4-транс, 1,2 синдиотактический, 1,2 изотактический, 1,2 атактический, со смешанной 1,4-цис/1,2 структурой с различным содержанием 1,2 звеньев), только 1,4-цис полибутадиен и 1,2 синдиотактический полибутадиен производятся в промышленном масштабе и имеют коммерческое значение. Более подробную информацию относительно указанных полимеров можно найти, например, в Takeuchi Y. et al., "New Industrial Polymers", "American Chemical Society Symposium Series" (1974), Vol. 4, pg. 15-25; Halasa A.F. et al., "Kirk-Othmer Encyclopedia of Chemical Technology" (1989), 4th Ed., Kroschwitz J. I. Ed., John Wiley and Sons, New York, Vol. 8, pg. 1031-1045; Tate D. et al., "Encyclopedia of Polymer Science and Engineering" (1989), 2nd Ed., Mark H.F. Ed., John Wiley and Sons, New York, Vol. 2, pg. 537-590; Kerns M. et al., "Butadiene Polymers" в "Encyclopedia of Polymer Science and Technology" (2003), Mark H.F. Ed., Wiley, Vol. 5, pg. 317-356.

Как правило, 1,4-цис полибутадиен получают с помощью способов полимеризации, в которых используют различные каталитические системы, содержащие катализаторы на основе титана (Ті), кобальта (Со), никеля (Ni), неодима (Nd). Каталитические системы, содержащие катализаторы на основе кобальта, демонстрируют высокую каталитическую активность и стереоспецифичность и могут считаться наиболее универсальными из указанных выше, поскольку при изменении их состава они способны обеспечить все возможные стереоизомеры полибутадиена, указанные выше, как описано, например, в Porri L. et al., "Comprehensive Polymer Science" (1989), Eastmond G.C. et al. Eds., Pergamon Press, Oxford, UK, Vol. 4, Part II, pg. 53-108; Thiele S.K.H. Et al., "Macromolecular Science. Part C: Polymer Reviews" (2003), C43, pg. 581-628; Osakada K. et al., "Advanced Polymer Science" (2004), Vol. 171, pg. 137-194; Friebe L. et al., "Advanced Polymer Science" (2006), Vol. 204, pg. 1-154.

Каталитические системы, содержащие катализаторы на основе кобальта и фосфорные соединения (например, арил- или алкилфосфины), способные приводить к образованию синдиотактического 1,2-полибутадиена, описаны, например, в патентах США US 3966697, US 3983183, US 4176219, US 4182813, US 4463146, US 5548045, US 5986026; японских патентных публикациях JP 2004/107617, JP 2005/008836.

Катализаторы на основе железа (Fe), применяемые в процессах (со)полимеризации сопряженных диенов, также были исследованы. Одно из первых исследований, упомянутое в литературе, относящейся к каталитическим системам, содержащим катализаторы на основе железа (Fe), касалось (со)полимеризации 1,3-бутадиена и изопрена с каталитическими системами, содержащими ацетилацетонат железа [Fe(acac)₃], триизобутилалюминий (TIBA) и 1,10-фенантролин (phen), как описано, например, в Zhang Z. Y. et al., "Journal of Molecular Catalysis" (1982), vol. 17, issue 1, pp. 65-76. Указанная каталитическая система способна приводить к образованию бинарного полибутадиена со смешанной 1,4-цис/1,2 структурой, имеющей равное содержание 1,4-цис и 1,2 звеньев.

В патенте США US 6160063 описана каталитическая система, полученная путем сочетания или реакции соединения, содержащего железо (например, карбоксилата железа, β-дикетоната железа, алкоксида железа, арилалкоксида железа), органического соединения магния и циклического гидрофосфита. Указанная выше каталитическая система особенно подходит для полимеризаци 1,3-бутадиена для обеспечения бинарного полибутадиена со смешанной 1,4-цис/1,2 структурой.

В патенте США US 6180734 описана каталитическая система, полученная путем сочетания или реакции соединения, содержащего железо (например, карбоксилата железа, β-дикетоната железа, алкоксида железа, арилалкоксида железа), циклического гидрофосфита и органического соединения алюминия. Указанная выше каталитическая система особенно подходит для полимеризаци 1,3-бутадиена для обеспечения синдиотактического 1,2-полибутадиена.

В патенте США US 6211313 описана каталитическая система, полученная путем сочетания или реакции соединения, содержащего железо (например, карбоксилата железа, β-дикетоната железа, алкоксида железа, арилалкоксида железа), циклического гидрофосфита и алюмоксана. Указанная выше каталитическая система особенно подходит для полимеризаци 1,3-бутадиена для обеспечения синдиотактического 1,2-полибутадиена.

В патенте США US 6277779 описана каталитическая система, полученная путем сочетания или реакции соединения, содержащего железо (например, карбоксилата железа, β-дикетоната железа, алкоксида железа, арилалкоксида железа), циклического гидрофосфита и органического соединения алюминия. Указанная выше каталитическая система особенно подходит для полимеризаци 1,3-бутадиена для обеспечения синдиотактического 1,2-полибутадиена с температурой плавления, которая может изменяться в диапазоне от 100 до 200°С в зависимости от компонентов и соотношений между разными компонентами,

присутствующими в указанной каталитической системе.

В патентах США US 6284702 и US 6388030 описана каталитическая система, полученная путем сочетания или реакции соединения, содержащего железо (например, карбоксилата железа, β-дикетоната железа, алкоксида железа, арилалкоксида железа), органического соединения магния и дигидрокарбилгидрофосфита. Указанная выше каталитическая система особенно подходит для полимеризаци 1,3-бутадиена для обеспечения синдиотактического 1,2-полибутадиена с температурой плавления, которая может изменяться в диапазоне от 100 до 190°С в зависимости от компонентов и соотношений между разными компонентами, присутствующими в указанной каталитической системе.

Каталитические системы, содержащие, например, диэтил-бис(2,2'-бипиридин)железа [FeEt₂(bipy)₂] и метилалюмоксан (MAO) или содержащие различные комплексы дихлорида железа (FeCl₂) с бидентатными ароматическими аминами (например, N,N,N',N'-тетраметилэтилендиамином (ТМЕDA), N,N'диметилэтилендиамином (DMEDA), 2,2'-бипиридином (bipy), 1,10-фенантролином (phen) и соединениями алюминия [например, алкильными соединениями алюминия (AlR₃, где R представляет собой этил или изобутил), метилалюмоксаном (МАО)], являются чрезвычайно активными в процессах (со)полимеризации сопряженных диенов, как описано, например, в международной патентной заявке WO 02/102861; или в Bazzini C. et al., "Macromolecular Rapid Communications" (2002), Vol. 23(15), pg. 922-927; Bazzini C. et al., "Polymer Communication" (2004), Vol. 45, pg. 2871-2875; Ricci G. et al., "Journal of Molecular Catalysis A: Chemicaf (2003), Vol. 204-205, pg. 287-293; Ricci G. et al., "Coordination Chemistry Reviews" (2010), Vol. 254, Issues 5-6, pg. 661-676. Такие каталитические системы способны обеспечить полибутадиены с превалирующей 1,2-структурой; в частности полибутадиены, полученные при низких температурах, имеют приблизительно 90% 1,2-структуры и содержание синдиотактических пентад 50%, при этом содержание 1,2-звеньев и синдиотактических пентад уменьшается при увеличении температуры полимеризации. Кроме того, полибутадиены, полученные с указанными выше каталитическими системами, имеют очень высокую среднемассовую молекулярную массу (M_w) и индекс полидисперсности (ИПД), соответствующий соотношению M_w/M_n (M_n = среднечисленная молекулярная масса), который скорее является низким, например находится в диапазоне от 1 до 2, что указывает на "псевдоживую" природу указанных каталитических систем, которые обозначают как системы "с одним реакционным центром". Наблюдали также значимый эффект природы аминного лиганда на каталитическую активность указанных каталитических систем: в частности, каталитическая активность снижалась по мере увеличения пространственного размера лиганда. Кроме того, тип соединения алюминия также может оказывать влияние на каталитическую активность: в действительности, было обнаружено, что применение метилалюмоксана (МАО) приводит к увеличению содержания 1,2 звеньев при тех же условиях полимеризации. Кроме того, было показано, что указанные выше каталитические системы являются чрезвычайно активными и селективными не только в процессе полимеризации 1,3-бутадиена, но также в процессе (со)полимеризации других сопряженных диенов, таких как изопрен, 2,3-диметил-1,3-бутадиен, 3-метил-1,3-пентадиен, обеспечивая (со)полимеры с различными структурами, такими как, например, синдиотактический 3,4полиизопрен, 1,4-цис-поли(2,3-диметил-1,3-бутадиен) или синдиотактический Е-1,2-поли(3-метил-1,3пентадиен).

Каталитические системы, содержащие терпиридиновые комплексы железа [например, FeCl₃(терпиридин)] в сочетании с подходящими алкилирующими агентами, используют в процессе стереоспецифической полимеризации сопряженных диенов: указанные каталитические системы демонстрируют не подчиняющуюся какой-то определенной зависимости каталитическую активность и способны обеспечить полибутадиены с 1,4-транс-структурой, как описано, например, в Nakayama Y. et al., "Macromolecules" (2003), Vol. 36(21), pg. 7953-7958.

Каталитические системы, полученные путем сочетания карбоксилатов железа (III) (например, 2-этилгексаноата железа (III) [Fe(2-EHA)₃]Fe(III)), с три-изобутилалюминием (AlⁱBu₃) в гексане, в присутствии фосфатов (например, триэтилфосфата) способны полимеризовать 1,3-бутадиен в полибутадиен с превалирующей 1,2-структурой и высокой степенью синдиотактичности, как описано, например, в Gong D. et al., "Polymer" (2009), Vol. 50, pg. 5980-5986.

Каталитические системы, содержащие комплексы, полученные из трихлорида железа (FeCl $_3$) или из тетрагидрата дихлорида железа (FeCl $_3$ ·4H $_2$ O) с 2,6-бис[1-(иминофенил)этил]пиридином или замещенными 2,6-бис(имино)пиридинами в присутствии метилалюмоксана (MAO), способны обеспечить полибутадиены с высоким содержанием (> 90%) 1,4-транс структур или смешанную 1,4-цис/1,4-транс структуру в зависимости от используемой каталитической системы, как описано, например, в Gong D. et al., "Polymer" (2009), Vol. 50, pg. 6259-6264; Gong D. et al., "Inorganic Chimica Acta" (2011), Vol. 373, Issue 1, pg. 47-53.

Каталитические системы, содержащие комплексы, полученные из трихлорида железа ($FeCl_3$) или из тетрагидрата дихлорида железа ($FeCl_3$ - $4H_2O$) с замещенным 2,6-бис[1-(2-бензимидазолил)]пиридином или замещенными 2,6-бис(пиразолил)пиридинами в присутствии модифицированного метилалюмоксана (MMAO) или хлорида диэтилалюминия ($AlEt_2Cl$), способны обеспечить полибутадиены с различными структурами, а именно 1,4-транс или 1,4-цис, в зависимости от используемой каталитической системы,

как описано, например, в Gong D. et al., "Journal of Organometallic Chemistry" (2012), Vol. 702, pg. 10-18. Клешнеобразные бис-иминные комплексы железа (II) [Fe(II)] в сочетании с алкилалюминием (например, триметилалюминием (AlMe₃)) способны обеспечить полибутадиен, по существу, с 1,4-цис структурой (≥70%), как описано, например, в Zhang J. et al., "Dalton Transactions" (2012), Vol. 41, pg. 9639-9645.

Каталитические системы, содержащие иминопиридильные комплексы железа (II), соединения алкилалюминия (например, AlR₃, в котором R представляет собой этил или изобутил) и соли бора, способны полимеризовать изопрен с получением полиизопрена с высоким содержанием 1,4-транс структуры, как описано, например, в Raynaud J. et al., "Angewandte Chemie International Edition" (2012), Vol. 51, pg. 11805-11808; или в международной патентной заявке WO 2012/109343.

Каталитические системы, содержащие комплексы железа (II) с замещенным 1,10-фенантролин-2-пиразолилом и соединения алкилалюминия (например, AlR₃, в котором R представляет собой этил, изобутил, октил), отличаются высокой каталитической активностью и селективностью и способны обеспечить полибутадиены с высоким содержанием 1,4-транс структуры, как описано, например, в Wang B. et al., "Polymer" (2013), Vol. 54, pg. 5174-5181.

Каталитические системы, содержащие комплексы железа (II) с 2-(N-арилкарбоксиимидоилхлорид)хинолином и соединения алкилалюминия [например, AlR₃, в котором R представляет собой этил, изобутил; или метилалюмоксан (MAO)], отличаются низкой каталитической активностью и способны обеспечить полибутадиены с высоким содержанием 1,4-цис структуры, как описано, например, в Liu H. etal., "Journal of Molecular Catalysis A: Chemical" (2014), Vol. 391, pg. 25-35.

Каталитические системы, содержащие комплексы железа (II) с 2,6-бис(диметил-2-оксазолин-2-ил)пиридином и соединения алкилалюминия [например, AlR₃, в котором R представляет собой этил, изобутил; или метилалюмоксан (MAO)], способны обеспечить полибутадиены со смешанной 1,4-цис/1,4-транс структурой, как описано, например, в Gong D. et al., "Journal of Molecular Catalysis A: Chemical" (2015), Vol. 406, pg. 78-84.

Наконец, полибутадиены с "мягкими/жесткими" стереоблоками со смешанной 1,4-цис/1,2 структурой были получены при использовании каталитической системы 2-этилгексанат железа/три-изобутилалюминий/диэтилфосфат [Fe(2-EHA) $_3$ /Al i Bu) $_3$ /DEP], соответствующим образом изменяя соотношение алюминий/железо (Al/Fe), как описано, например, в Zheng W. et al., "Journal of Polymer Science Part A: Polymer Chemistry" (2015), Vol. 53, Issue 10, pg. 1182-1188.

Поскольку синдиотактический 1,2-полибутадиен может предпочтительно применяться в различных отраслях промышленности, таких как, например, обувная промышленность, в частности при производстве подошв, еще сохраняется большой интерес к разработке новых способов, способных обеспечить указанный полибутадиен.

Заявитель обратился к проблеме разработки нового способа, способного приводить к образованию синдиотактического 1,2-полибутадиена.

Заявитель нашел способ получения синдиотактического 1,2-полибутадиена, включающий полимеризацию 1,3-бутадиена в присутствии каталитической системы, содержащей по меньшей мере один пиридильный комплекс железа общей формулы (I), показанный ниже; по меньшей мере один алюмоксан. Применение указанной каталитической системы позволяет получить синдиотактический 1,2-полибутадиен, имеющий содержание 1,2 звеньев, которое больше или равно 60%, и содержание синдиотактических триад (гг%), которое больше или равно 50%. Кроме того, указанная каталитическая система позволяет работать при низком молярном отношении алюминия, присутствующего в алюмоксане, к железу, присутствующему в пиридильном комплексе железа общей формулы (I), показанном ниже и, в частности, благодаря его высокой каталитической активности, использовать небольшие количества алюмоксана и железа, что предполагает ряд преимуществ с экономической точки зрения. Кроме того, указанную каталитическую систему можно использовать в присутствии инертного органического растворителя, выбранного из алифатических углеводородов, что предполагает ряд преимуществ как с экономической точки зрения, так и с точки зрения экологической безопасности.

Соответственно, в настоящем изобретении предложен способ получения синдиотактического 1,2-полибутадиена, включающий полимеризацию 1,3-бутадиена в присутствии каталитической системы, содержащей по меньшей мере один пиридильный комплекс железа общей формулы (I)

$$\begin{array}{c|c}
R_1 \\
R_2 \\
R_3
\end{array}$$

в которой R^1 представляет атом водорода или метильную группу;

 R^2 представляет атом водорода или выбран из линейных или разветвленных C_1 - C_3 , алкильных групп;

Х, одинаковые или отличные друг от друга, представляют атом галогена, выбранный из хлора, бро-

ма или йода; п составляет 2 или 3; и метилалюмоксан (МАО),

при этом молярное отношение между алюминием, присутствующим в метилалюмоксане, и железом, присутствующим в пиридильном комплексе железа общей формулы (I), находится в диапазоне от 5 до 20, предпочтительно в диапазоне от 8 до 12.

Для целей представленного описания и прилагаемой формулы изобретения определения численных диапазонов всегда включают крайние значения, если не указано иное.

Для целей представленного описания и прилагаемой формулы изобретения термин "содержащий/включающий" также включает термины "который, по существу, состоит из" или "который состоит из".

Для целей настоящего описания и прилагаемой формулы изобретения термин " C_1 - C_3 алкильные группы" предназначен для обозначения линейных или разветвенных алкильных групп, имеющих, соответственно, от 1 до 3 атомов углерода. Специфическими примерами C_1 - C_3 алкильных групп являются метил, этил, н-пропил, изопропил.

Согласно предпочтительному воплощению настоящего изобретения в указанном пиридильном комплексе железа общей формулы (I):

 R_1 представляет атом водорода или метильную группу;

 R_2 представляет атом водорода или метильную группу, этильную группу, н-пропильную группу, изопропильную группу, предпочтительно метильную группу или изопропильную группу;

Х, идентичные друг другу, представляют атом галогена, такого как, например, хлор, бром, йод; предпочтительно представляют атом хлора;

п составляет 2 или 3,

при этом молярное отношение между алюминием, присутствующим в метилалюмоксане, и железом, присутствующим в пиридильном комплексе железа общей формулы (I), находится в диапазоне от 8 до 12.

Пиридильный комплекс железа общей формулы (I) можно представлять согласно настоящему изобретению в любом физическом состоянии, таком как, например, выделенная и очищенная твердая форма, сольватированная в подходящем растворителе форма или форма на носителе из подходящих органических или неорганических твердых веществ, предпочтительно в гранулированной или порошкообразной физической форме.

Пиридильный комплекс железа общей формулы (I) получают, используя в качестве исходных лиганды, известные в уровне техники.

Специфическими примерами лигандов, используемых для целей настоящего изобретения, являются лиганды, имеющие следующие формулы (L1), (L2) и (L3):

Указанные лиганды, имеющие формулы (L1), (L2) и (L3), можно получить с помощью способов, известных в уровне техники. Например, указанные лиганды, имеющие формулы (L1), (L2) и (L3), можно получить с помощью способа, включающего: (1) реакции конденсации между подходящим анилином и 2-пиридинкарбальдегидом или 2-ацетилпиридином с образованием соответствующего имина, как описано, например, в: Wu J. et al., "Journal of American Chemical Society" (2009), Vol. 131(36), pg. 12915-12917; Laine V.T. et al., "European Journal of Inorganic Chemistry" (1999), Vol. 6, pg. 959-964; Bianchini C. et al., "New Journal of Chemistry" (2002), Vol. 26(4), pg. 387-397; Lai Yi-C. et al., "Tetrahedron" (2005), Vol. 61(40), pg. 9484-9489.

Пиридильный комплекс железа общей формулы (I) можно получить в соответствии со способами, известными в уровне техники. Например, указанный пиридильный комплекс железа можно получить по реакции между соединениями железа общей формулы $Fe(X)_2$ или $Fe(X)_3$, где X является атомом галогена, такого как, например, хлор, бром, йод, предпочтительно хлор, как таковой или в виде комплексов с простыми эфирами [например, диэтиловым эфиром, тетрагидрофураном ($T\Gamma\Phi$), диметоксиэтаном] или с водой, с подходящими пиридиновыми лигандами, такими как лиганды, имеющие формулы (L1), (L2) или (L3), приведенные выше, при молярном отношении лиганд (L)/железо (Fe) в диапазоне от 1 до 2, работая, предпочтительно, в присутствии по меньшей мере одного растворителя, который можно выбрать, на-

пример, из хлорированных растворителей (например, метиленхлорида), простых эфиров [например, тетрагидрофурана (ТГФ)], спиртовых растворителей (например, бутанола), углеводородных растворителей (например, толуола) или их смесей, при температуре в диапазоне от комнатной температуры до 110°С. Пиридильный комплекс железа общей формулы (I), полученный таким образом, затем можно выделить с помощью способов, известных в уровне техники, таких как, например, промывание полученного твердого продукта в подходящем растворителе (например, гептане) с последующей сушкой (например, под вакуумом). Более подробную информацию по способу получения указанного пиридильного комплекса железа общей формулы (I) можно найти в следующих примерах.

Для целей представленного описания и прилагаемой формулы изобретения выражение "комнатная температура" обозначает температуру в диапазоне от 20 до 25°C.

Как известно, алюмоксаны представляют собой соединения, содержащие Al-O-Al связи, с различным соотношением O/Al, получаемые согласно способам, известным в уровне техники, например, по реакции, в контролируемых условиях, алкилалюминия или галогенида алкилалюминия с водой или с другими соединениями, содержащими заранее заданные количества доступной воды, как, например, в случае реакции триметилалюминия с гексагидратом сульфата алюминия, пентагидратом сульфата меди, или пентагидратом сульфата железа.

Указанные алюмоксаны и, в частности, метилалюмоксан (MAO), представляют собой соединения, которые можно получить с помощью известных способов получения металлорганических соединений, как, например, путем добавления триметилалюминия в суспензию гидрата сульфата алюминия в гексане.

Согласно предпочтительному воплощению настоящего изобретения указанный алюмоксан общей формулы (II) можно выбрать, например, из метилалюмоксана (MAO), этилалюмоксана, н-бутилалюмоксана, тетра-изобутилалюмоксана (TIBAO), трет-бутилалюмоксана, тетра-(2,4,4-триметилпентил)алюмоксана (TIOAO), тетра-(2,3-диметилбутил)алюмоксана (TDMBAO), тетра-(2,3,3-триметилбутил)алюмоксана (TTMBAO) или их смесей. Метилалюмоксан (MAO) является особенно предпочтительным.

Более подробную информацию по алюмоксанам общей формулы (II) можно найти, например, в международной патентной заявке WO 2011/061151.

В целом, образование указанной выше каталитической системы предпочтительно проводят в инертной жидкой среде, более предпочтительно в углеводородном растворителе. Выбор пиридильного комплекса железа общей формулы (I) и алюмоксана общей формулы (II), а также конкретной используемой методики можно осуществлять в соответствии с молекулярной структурой и желаемым результатом в соответствии с аналогичными случаями, описанными в соответствующей литературе и доступными специалистам в данной области техники для других комплексов переходных металлов с лигандами различной природы, такими как описаны, например, в Ricci G. et al., "Advances in Organometallic Chemistry Research" (2007), Yamamoto K. Ed., Nova Science Publisher, Inc., USA, pg. 1-36; Ricci G. et al., "Coordination Chemistry Reviews" (2010), Vol. 254, pg. 661-676; Ricci G. et al., "Ferrocenes: Compounds, Properties and Applications" (2011), Elisabeth S. Phillips Ed., Nova Science Publisher, Inc., USA, pg. 273-313; Ricci G. et al., "Chromium: Environmental, Medical and Material Studies" (2011), Margaret P. Salden Ed., Nova Science Publisher, Inc., USA, pg. 121-1406; Ricci G. et al., "Cobalt: Characteristics, Compounds, and Applications" (2011), Lucas J. Vidmar Ed., Nova Science Publisher, Inc., USA, pg. 39-81; или Ricci G. et al., "Phosphorus: Properties, Health effects and Environment" (2012), Ming Yue Chen и Da-Xia Yang Eds., Nova Science Publisher, Inc., USA, pg. 53-94.

Для целей настоящего изобретения алюмоксан общей формулы (II) можно приводить в контакт с пиридильным комплексом железа общей формулы (I) в такой пропорции, что молярное отношение между алюминием, присутствующим в алюмоксане общей формулы (II), и железом, присутствующим в пиридильном комплексе железа общей формулы (I), находится в пределах указанных выше значений, т.е. молярное отношение между алюминием, присутствующим в алюмоксане общей формулы (II), и железом, присутствующим в пиридильном комплексе железа общей формулы (I), находится в диапазоне от 5 до 20, предпочтительно от 8 до 12. Последовательность, в которой пиридильный комплекс железа общей формулы (I) и алюмоксан общей формулы (II) приводят в контакт друг с другом, не является особенно критичной.

Для целей представленного описания и прилагаемой формулы изобретения термины "моль" и "молярное отношение" используют как со ссылкой на соединения, состоящие из молекул, так и со ссылкой на атомы и ионы, чтобы не использовать для последних термины грамм-атом или атомное отношение, несмотря на то что эти термины более корректны с научной точки зрения.

Для целей настоящего изобретения другие добавки или компоненты при необходимости можно добавлять в указанную выше каталитическую систему так, чтобы она удовлетворяла специфическим практическим требованиям. Следовательно, полученные таким образом каталитические системы можно считать включенными в объем притязаний настоящего изобретения. Добавки и/или компоненты, которые можно добавлять в процессе получения и/или смешивания каталитической системы по настоящему изобретению, представляют собой, например, инертные растворители, такие как, например, алифатические и/или ароматические углеводороды; алифатические и/или ароматические простые эфиры; слабо коорди-

нирующие добавки (например, основания Льюиса), выбранные, например, из неполимеризуемых олефинов; пространственно затрудненные или обедненные электронной плотностью простые эфиры; галогенирующие агенты, такие как, например, галогениды кремния, галогенированные, предпочтительно хлорированные, углеводороды; или их смеси.

Указанную каталитическую систему можно получить, как уже указано выше, согласно способам, известным в данной области техники.

Например, указанную каталитическую систему можно приготовить отдельно (предварительно получить) и после этого ввести в среду полимеризации. В этой связи указанную каталитическую систему можно получить путем взаимодействия по меньшей мере одного пиридильного комплекса железа общей формулы (I) по меньшей мере с одним алюмоксаном общей формулы (II), необязательно в присутствии других добавок или компонентов, выбранных из указанных выше, в присутствии растворителя, такого как, например, толуол, гептан, при температуре в диапазоне от 20 до 60°C, в течение периода времени от 10 с до 10 ч, предпочтительно от 30 с до 5 ч.

Альтернативно, указанную каталитическую систему можно получить in situ, т.е. непосредствено в среде полимеризации. В этом случае указанную каталитическую систему можно получить путем раздельного введения пиридильного комплекса железа общей формулы (I), алюмоксана общей формулы (II) и 1,3-бутадиена, работая в условиях, в которых проводят полимеризацию.

Более подробную информацию о получении указанной каталитической системы можно найти в примерах, представленных ниже.

Для целей настоящего изобретения указанные выше каталитические системы также могут быть нанесены на подложку из инертных твердых носителей, предпочтительно содержащих оксиды кремния и/или алюминия, таких как, например, диоксид кремния, оксид алюминия или алюмосиликаты. Указанную каталитическую систему можно наносить на подложку, используя известные методики нанесения на подложку, обычно включающие контакт, в подходящей инертной жидкой среде, между подложкой, возможно активированной до температур выше 200°С, и одним или обоими компонентами указанной каталитической системы. Нет необходимости для целей настоящего изобретения в том, чтобы наносить на подложку оба компонента, можно, чтобы только пиридильный комплекс железа общей формулы (I) или алюмоксан общей формулы (II) присутствовал на поверхности подложки. В последнем случае отсутствующий на поверхности компонент после этого приводят в контакт с нанесенным на подложку компонентом, когда в процессе полимеризации желательно получить активную в отношении полимеризации каталитическую систему.

Объем настоящего изобретения также включает пиридильный комплекс железа общей формулы (I) и каталитические системы на его основе, которые нанесены на подложку из твердого вещества путем функционализации последнего с образованием ковалентной связи между твердым веществом и пиридильным комплексом железа общей формулы (I).

Количество пиридильного комплекса железа общей формулы (I) и алюмоксана общей формулы (II), которые можно использовать в способе по настоящему изобретению, меняются в зависимости от желательного для проведения способа полимеризации. Указанное количество является, однако, таким, что молярное отношение между алюминием, присутствующим в алюмоксане общей формулы (II), и железом, присутствующим в пиридильном комплексе железа общей формулы (I), находится в пределах от 5 до 20, предпочтительно от 8 до 12.

Согласно предпочтительному воплощению настоящего изобретения указанный способ можно проводить в присутствии по меньшей мере одного инертного органического растворителя, выбраного, например, из насыщенных алифатических углеводородов, таких как, например, бутан, пентан, гексан, гептан или их смеси; насыщенных циклоалифатических углеводородов, таких как, например, циклопентан, циклогексан или их смеси; моноолефинов, таких как, например, 1-бутен, 2-бутен или их смеси; ароматических углеводородов, таких как, например, бензол, толуол, ксилол или их смеси; галогенированных углеводородов, таких как, например, метиленхлорид, хлороформ, тетрахлорид углерода, трихлорэтилен, перхлорэтилен, 1,2-дихлорэтан, хлорбензол, бромбензол, хлортолуол или их смеси. Гексан, гептан, толуол являются предпочтительными.

Согласно предпочтительному воплощению настоящего изобретения в указанном способе концентрация 1,3-бутадиена в указанном инертном органическом растворителе может меняться в диапазоне от 5 до 50 мас.%, предпочтительно от 10 до 20 мас.%, в расчете на общую массу смеси 1,3-бутадиен/инертный органический растворитель.

Согласно предпочтительному воплощению настоящего изобретения указанный способ можно проводить при температуре в диапазоне от -30 до +60°C, предпочтительно от -20 до +30°C.

Что касается давления, предпочтительно работать при давлении компонентов смеси, которую подвергают полимеризации.

Указанный способ можно проводить как в непрерывном режиме, так и "партиями", предпочтительно непрерывно.

Способ по настоящему изобретению позволяет получить синдиотактический 1,2-полибутадиен со

следующими характеристиками:

содержание 1,2 звеньев больше или равно 60%, предпочтительно находится в диапазоне от 70 до 90%:

содержание синдиотактических триад (rr%) больше или равно 50%, предпочтительно от 60 до 75%;

температура плавления больше или равна 65° C, предпочтительно находится в диапазоне от 67 до 120° C:

температура кристаллизации больше или равна 40° С, предпочтительно находится в диапазоне от 45 до 85° С;

среднечисленная молекулярная масса (M_w) находится в диапазоне от 300000 до 400000 г·моль⁻¹, предпочтительно от 310000 до 360000 г·моль⁻¹.

Синдиотактический 1,2-полибутадиен, полученный способом по настоящему изобретению, можно преимущественно использовать в различных отраслях, таких как, например, обувная промышленность, в частности, в производстве подошв для обуви.

Соответственно, в настоящем изобретении также предложено применение синдиотактического 1,2-полибутадиена, полученного описанным выше способом, в обувной промышленности, в частности в производстве подошв для обуви.

Для более хорошего понимания настоящего изобретения и его практической реализации ниже приведены некоторые иллюстративные и неограничивающие изобретение примеры.

Примеры

Реагенты и материалы.

Ниже приведен список реагентов и материалов, используемых в следующих примерах изобретения, виды их возможной предварительной обработки и их производитель:

порошок железа (Fe) (Aldrich): чистота 99%, использовали без дополнительной очистки;

трихлорид железа (FeCl₃) (Aldrich): чистота 99,9%, использовали без дополнительной очистки;

дихлорид железа (FeCl₃) (Aldrich): чистота 97%, использовали без дополнительной очистки;

комплекс дихлорид железа:тетрагидрофуран (1:1,9) [FeCl₂($T\Gamma\Phi$)_{1,9}]: получен из порошка железа (Fe) и трихлорида железа (FeCl₃), в тетрагидрофуране ($T\Gamma\Phi$) при нагревании, согласно способу, описанному Cotton F.A. et al., в "Inorganic Chimica Acta" (1991), vol. 179, pp. 11-15;

метилалюмоксан (MAO) (10 мас.%, раствор в толуоле) (Crompton): использовали без дополнительной очистки;

анилин (Aldrich): перегоняли при пониженном давлении и хранили в инертной атмосфере;

соляная кислота, 37%-ный водный раствор (Aldrich): использовали без дополнительной очистки;

о-толуидин (Aldrich): перегоняли при пониженном давлении и хранили в инертной атмосфере;

2-изопропиланилин (Aldrich): использовали без дополнительной очистки;

2-пиридинкарбальдегид (Aldrich): использовали без дополнительной очистки;

2-ацетилпиридин (Aldrich): использовали без дополнительной очистки;

этилацетат (Aldrich): использовали без дополнительной очистки;

р-толуолсульфоновой кислоты моногидрат (Aldrich): 98,5%, использовали без дополнительной очистки;

гептан (Aldrich): чистый, ≥ 99%, перегоняли над натрием (Na) в инертной атмосфере;

пентан (Aldrich): чистый, ≥ 99%, перегоняли над натрием (Na) в инертной атмосфере;

метанол (Carlo Erba, RPE): использовали без дополнительной очистки;

толуол (Aldrich): чистый, ≥ 99,5%, перегоняли над натрием (Na) в инертной атмосфере;

дихлорид кобальта (CoCl₂) (Strem Chemicals): использовали без дополнительной очистки;

дитрифенилфосфин (Strem Chemicals): использовали без дополнительной очистки;

этанол (Carlo Erba, RPE): использовали без дополнительной очистки;

1,3-бутадиен (Air Liquide): чистый, ≥99,5%, выпаривали из контейнера перед каждым получением, сушили путем пропускания через колонку, набитую молекулярными ситами, и конденсировали внутри реактора, предварительно охлажденного до -20°C;

муравьиная кислота (HCOOH) (Aldrich): чистота ≥95%, использовали без дополнительной очистки; плавиковая кислота (HF) (40%-ный водный раствор) (Aldrich): использовали без дополнительной очистки;

серная кислота (H_2SO_4) (96%-ный водный раствор) (Aldrich): использовали как есть или разбавляли дистиллированной водой (1:5);

азотная кислота (HNCh) (70%-ный водный раствор) (Aldrich): использовали без дополнительной очистки;

карбонат натрия (Na₂CO₃) (Aldrich): использовали без дополнительной очистки;

нитрат серебра (AgNO₃) (Aldrich): использовали без дополнительной очистки:

дейтерированный тетрахлорэтилен ($C_2D_2Cl_4$) (Acros): использовали без дополнительной очистки;

гексаметилдисилоксан (HMDS) (Acros): использовали без дополнительной очистки;

дейтерированный хлороформ (CDCl₃) (Acros): использовали без дополнительной очистки;

тетраметилсилан (TMS) (Acros): использовали без дополнительной очистки.

Использовали методики анализа и характеристики, приведенные ниже.

Элементный анализ.

а) Определение Fe.

Для определения массового содержания железа (Fe) в пиридильных комплексах железа, используемых для целей настоящего изобретения, точно взвешенную навеску примерно 30-50 мг образца, работая в сухом боксе под током азота, помещали в платиновый тигль объемом приблизительно 30 мл вместе со смесью из 1 мл 40%-ной плавиковой кислоты (HF), 0,25 мл 96%-ной серной кислоты (H₂SO₄) и 1 мл 70%ной азотной кислоты (HNO₃). Затем тигль нагревали на нагревательном столике, повышая температуру до появления белых сернистых паров (около 200°C). Полученную таким образом смесь охлаждали до комнатной температуры, добавляли 1 мл 70%-ной азотной кислоты (HNO₃) и снова оставляли до появления паров. После повторения указанной последовательности еще дважды получили прозрачный, практически бесцветный раствор. Затем на холоду добавляли 1 мл 70%-ной азотной кислоты (HNO₃) и потом около 15 мл волы, затем нагревали до 80°C в течение около 30 мин. Полученный таким образом образец разбавляли водой чистоты MilliQ до точно определенной массы 50 г, чтобы получить раствор, который подвергали аналитическому определению с помощью инструментального метода с использованием ИСП-ОЭС спектрометра (ионизационно связанная плазма с оптической эмиссией) Thermo Optek IRIS Advantage Duo путем сравнения с растворами известной концентрации. Для этой цели для каждого аналита получали калибовочную кривую в диапазоне концентраций 0-10 ppm (млн долей) путем измерения растворов с известным титром, полученных путем разбавления по массе сертифицированных растворов.

Потом перед проведением спектрофотометрических измерений раствор образца, полученный, как описано выше, снова разбавляли по массе для получения концентраций, близких к концентрациям стандартных образцов. Все образцы получали в двойном количестве. Результаты считали допустимыми, если относительные результаты отдельных испытаний отличались не более чем на 2% от их среднего значения.

b) Определение хлора.

Для осуществления указанной цели образцы пиридильных комплексов железа, используемых для целей настоящего изобретения, в количестве около 30-50 мг, были точно взвешены в стеклянные лабораторные стаканы объемом 100 мл в сухом боксе под током азота. Добавляли 2 г карбоната натрия (Na_2CO_3) и, вне сухого бокса, 50 мл воды MilliQ. Доводили до кипения на нагревательном столике при перемешивании магнитной мешалкой в течение примерно 30 мин. Оставляли охлаждаться, затем добавляли разбавленную 1:5 серную кислоту (H_2SO_4) до кислой среды и затем титровали 0,1н.-ным раствором нитрата серебра (AgNO_3) с помощью потенциометрического титратора.

с) Определение углерода, водорода, азота и фосфора.

Определение содержания углерода, водорода и азота в пиридильных комплексах железа, используемых для целей настоящего изобретения, а также в лигандах, используемых для целей настоящего изобретения, проводили с помощью автоматического анализатора Carlo Erba Mod. 1106.

Спектры ЯМР ¹³С и ЯМР ¹Н.

Спектры ЯМР 13 С и ЯМР 1 Н записывали на спектрометре ядерного магнитного резонанса Bruker Avance 400, используя дейтерированные тетрахлорэтилен ($C_2D_2Cl_4$) при 103° С и гексаметилдисилоксан (ГМДС) (Aldrich) в качестве внутреннего стандарта или используя дейтерированный хлороформ (CDCl₃) при 25°С и тетраметилсилан (ТМС) (Aldrich) в качестве внутреннего стандарта. Для этой цели полимерные растворы использовали с концентрацией, равной 10 мас.%, в расчете на общую массу полимерного раствора.

Микроструктуру полимеров (т.е. содержание 1,4-цис (%) и 1,2 (%) звеньев и содержание синдиотактических триад (rr%)) определяли путем анализа вышеуказанных спектров на основании литературных данных Mochel V.D., в "Journal of Polymer Science Part A-1: Polymer Chemistry" (1972), vol. 10, issue 4, pp. 1009-1018.

ИК спектры с Фурье преобразованием (твердотельный - UATR) ИК спектры с Фурье преобразованием (твердотельный - UATR) записывали на спектрометре Bruker IFS 48, снабженном горизонтальным ATR коннектором Thermo Spectra-Tech. Секция, в которой размещают анализируемые образцы, представляет собой Fresnel ATR accessory (Shelton, CT, USA), в которой используют кристаллы селенида циркония (ZnSe) с углом падения 45° в горизонтальном направлении.

ИК спектры с Фурье преобразованием (твердотельный - UATR) пиридильных комплексов железа, используемых для целей настоящего изобретения, получали путем введения образцов анализируемых пиридильных комплексов железа в указанную секцию.

ИК спектры.

ИК спектры (ИК спектры с Фурье преобразованием) записывали на спектрометрах Thermo Nicolet Nexus 670 и Bruker IFS 48.

ИК спектры (ИК спектры с Фурье преобразованием) полимеров получали для полимерных пленок, нанесенных на таблетки бромида калия (КВг), причем указанные пленки получали путем нанесения раствора анализируемого полимера в горячем 1,2-дихлорбензоле. Концентрация анализруемых полимерных

растворов была равна 10 мас. % в расчете на общую массу полимерного раствора.

Определение молекулярной массы.

Определение молекулярной массы (MW) полученных полимеров осуществляли методом гельпроникающей хроматографии ГПХ при использовании системы Waters® Alliance® GPC/V 2000 производства Waters Corporation, в которой применяют две линии детектирования: показатель преломления (RI) и вискозиметр, работающие в следующих рабочих условиях:

две PLgel Mixed-В колонки;

растворитель/элюент: о-дихлорбензол (Aldrich);

скорость потока: 0,8 мл/мин;

температура: 145°С;

способ вычисления молекулярной массы: универсальный способ калибровки.

В результате получали среднемассовую молекулярную массу (M_w) и индекс полидисперсности (ИПД), соответствующий соотношению M_w/M_n $(M_n = \text{среднечисловая молекулярная масса}).$

Рентгенодифракционный анализ (XRD). Рентгенодифрактограмма.

Для этой цели образцы полученных порошкообразных полимеров (около 100 мг) анализировали методом рентгенодифракционного анализа (XRD) с помощью дифрактометра Bruker P4, снабженного детектором Hi Star 2D при использовании Cu KR монохроматического излучения (X) (1,54179 Å) графита при расстоянии между образцом и детектором 10 см.

Термический анализ (ДСК).

ДСК (дифференциальная сканирующая калориметрия) термический анализ для целей определения температуры плавления (T_{nn}) и температуры кристаллизации (T_{kp}) полученных полимеров проводили с помощью калориметра для дифференциальной сканирующей калориметрии Perkin Elmer Pyris. В нем анализировали пробу полимера размером 5 мг со скоростью сканирования в диапазоне от 1°С/мин до 20°С/мин в инертной атмосфере азота.

Пример 1.

Синтез лиганда, имеющего формулу (L1)

2-Пиридинкарбальдегид (30 г; 280 ммоль) и несколько капель муравьиной кислоты добавляли в реакционную колбу на 500 мл в раствор анилина (26,1 г; 280 ммоль) в метаноле (250 мл): полученную смесь выдерживали при перемешивании при комнатной температуре в течение 48 ч. Затем растворитель удаляли путем упаривания под вакуумом и полученный остаток очищали путем элюирования на хроматографической колонке с силикагелем [элюент: 99/1 (об./об.) смеси гептан/этилацетат], получали 38 г соломенножелтого твердого вещества (выход = 74,5%), соответствующего лиганду, имеющему формулу (L1).

Молекулярная масса (MW): 182,22.

Элементный анализ [получено (вычислено для $C_{12}H_{10}N_2$)]: C: 80,00% (79,10%); H: 5,83% (5,53%); N: 15,71% (15,37%). 1 H-ЯМР (CDCl₃, δ ppm) 8,70 (м, 1H, HPy), 8,41 (м, 1H, HPy), 8,80 (тд, 1H CH=N), 8,19 (д, 1H, HPy), 7,77 (дт, 1H, HPy), 7,23-7,42 (м, 1H, HPy; м, 5H, Ar).

Пример 2

Синтез лиганда, имеющего формулу (L2)

2-Ацетилпиридин (9,1 г; 75 ммоль) и несколько капель муравьиной кислоты добавляли в реакционную колбу на 250 мл в раствор о-толуидина (8 г; 75 ммоль) в метаноле (100 мл): полученную смесь выдерживали при перемешивании при комнатной температуре в течение 48 ч. Затем растворитель удаляли путем упаривания под вакуумом и полученный остаток очищали путем элюирования на хроматографической колонке с силикагелем [элюент: смесь 99/1 (об./об.) гептан/этилацетат], получали 6,5 г желтого масла (выход = 40%), соответствующего лиганду, имеющему формулу (L2).

Молекулярная масса (MW): 210,28.

Элементный анализ [получено (вычислено для $C_{14}H_{14}N_2$)]: C: 80,00% (79,97%); H: 6,77% (6,71%); N: 13,41% (13,32%).

¹H-ЯМР (CDCl₃, δ ppm): 8,70 (м, 1H, HPy), 8,41 (м, 1H, HPy), 8,80 (тд, 1H, HPy), 7,39 (дт, 1H, HPy), 7,27-7,18 (м, 2H, Ph), 7,02 (м, 1H, Ph), 6,69 (д, 1H, Ph), 2,30 (с, 3H, N=C-CH₃), 2,10 (с, 3H,Ph-CH₃).

Пример 3.

Синтез лиганда, имеющего формулу (L3)

2-Ацетилпиридин (3,78 г; 31,1 ммоль) и моногидрат р-толуолсульфоновой кислоты (0,15 г; 0,81 ммоль) добавляли в реакционную колбу на 500 мл в раствор 2-изопропиланилина (4,20 г; 31,1 ммоль) в толуоле (20 мл): полученную смесь выдерживали при кипении с обратным холодильником в течение 2 ч. Затем растворитель удаляли путем упаривания под вакуумом и полученный остаток очищали путем перегонки под вакуумом, получали 5,89 г оранжевого масла (выход = 79%), соответствующего лиганду, имеющему формулу (L3).

ИК-спектры с Фурье преобразованием (нуйол):) (см⁻¹): 1637 ($\nu_{C=N}$).

Молекулярная масса (MW): 238.

Элементный анализ [получено (вычислено для $C_{16}H_{18}N_2$)]: C: 80,17% (80,63%); H: 7,80% (7,61%); N: 11,91% (11,75%).

FТ-ИК (твердотельный, UATR) (см⁻¹): 1637 ($\nu_{C=N}$).

¹H-ЯМР (CDCl₃, δ ppm) 8,71 (д, 1H), 8,37 (д, 1H), 7,81 (т, 1H), 7,38 (м, 2H), 7,22 (т, 1H), 7,15 (т, 1H), 6,67 (д, 1H), 3,05 (септ, 1H), 2,39 (с, 3H), 1,23 (д, 6H).

Пример 4.

Синтез FeCl₂(L1) [образец MG82A1

Комплекс дихлорид железа:тетрагидрофуран (1:1,9) [FeCl₂($T\Gamma\Phi$)_{1,9}] (171 мг; 0,65 ммоль) добавляли в реакционную колбу на 100 мл в раствор лиганда, имеющего формулу (L1) (118 мг; 0,65 ммоль; молярное отношение L1/Fe = 1), полученного, как описано в примере 1, в толуоле (20 мл): полученную смесь выдерживали при перемешивании при 100°C в течение 3 ч. Надосадочную жидкость удаляли путем выпаривания при пониженном давлении и полученный осадок промывали гептаном (2×15 мл) и сушили под вакуумом, при комнатной температуре, получали 156 мг синего продукта в виде твердого вещества, соответствующего комплексу FeCl₂(L1), причем это количество соответствует степени превращения 78% в пересчете на введенный комплекс дихлорид железа:тетрагидрофуран (1:1,9) [FeCl₂(TrO)_{1,9}].

Молекулярная масса (MW): 308,97.

Элементный анализ [получено (вычислено для $C_{12}H_{10}Cl_2FeN_2$)]: C: 46,01% (46,65%), H: 3,02% (3,26%), N: 9,58% (9,07%), C1: 22,03% (22,95%), Fe: 16,05% (16,89%).

На фиг. 1 показан ИК-спектр с Фурье преобразованием (твердотельный, UATR) полученного комплекса $FeCl_2CL1$).

Пример 5.

Синтез FeCl₂(L2) [образец MG215]

Дихлорид железа (FeCl₃) (319 мг; 2,51 ммоль) добавляли в реакционную колбу на 100 мл в раствор лиганда, имеющего формулу (L2) (527 мг; 2,51 ммоль; молярное отношение L2/Fe = 1), полученного, как описано в примере 2, в толуоле (20 мл): полученную смесь выдерживали при перемешивании при 100°C в течение 3 ч. Надосадочную жидкость удаляли путем выпаривания при пониженном давлении и полу-

ченный осадок промывали гептаном (2×15 мл) и сушили под вакуумом при комнатной температуре, получали 521 мг светло-синего продукта в виде твердого вещества, соответствующего комплексу $FeCl_2(L2)$, причем это количество соответствует степени превращения 62% в пересчете на введенный дихлорид железа ($FeCl_2$).

Молекулярная масса (MW): 337,03.

Элементный анализ [получено (вычислено для $C_{14}H_{14}Cl_2FeN_2$)]: C: 49,10% (49,89%), H: 4,38% (4,19%), N: 8,21% (8,31%), Cl: 21,42% (21,04%), Fe: 16,82% (16,57%).

ИК-спектры с Фурье преобразованием (Нуйол) (см $^{-1}$): 1628 ($\nu_{C=N}$).

На фиг. 2 показан ИК-спектр с Фурье преобразованием (твердотельный, UATR) полученного комплекса $FeCl_2(L2)$.

Пример 6.

Синтез FeCl₂(L3) [образец MG212]

Трихлорид железа (FeCl₂) (288 мг; 2,27 ммоль) добавляли в реакционную колбу на 100 мл в раствор лиганда, имеющего формулу (L3) (540 мг; 2,27 ммоль; молярное отношение L3/Fe = 1), полученного, как описано в примере 3, в толуоле (20 мл): полученную смесь выдерживали при перемешивании при 100° С в течение 3 ч. Надосадочную жидкость удаляли путем выпаривания при пониженном давлении и полученный осадок промывали гептаном (2×15 мл) и сушили под вакуумом при комнатной температуре, получали 665 мг светло-синего продукта в виде твердого вещества, соответствующего комплексу $FeCl_2(L_3)$, причем это количество соответствует степени превращения 80% в пересчете на введенный трихлорид железа ($FeCl_2$).

Молекулярная масса (MW): 3665,08.

Элементный анализ [получено (вычислено для $C_{16}H_{18}Cl_2FeN_2$)]: C: 52,12% (52,64%), H: 4,65% (4,96%), N: 7,26% (7,67%), C1: 19,02% (19,42%), Fe: 15,04% (15,30%).

На фиг. 3 показан ИК-спектр с Фурье преобразованием (твердотельный, UATR) полученного комплекса $FeCl_2(L1)$.

Пример 7.

Синтез FeCl₂(L1) [образец MG87]

Трихлорид железа (FeCl₂) (225 мг; 1,39 ммоль) добавляли в реакционную колбу на 100 мл в раствор лиганда, имеющего формулу (L1) (253 мг; 1,39 ммоль; молярное отношение L1/Fe = 1), полученного, как описано в примере 1, в толуоле (20 мл): полученную смесь выдерживали при перемешивании при комнатной температуре в течение 3 ч. Надосадочную жидкость удаляли путем выпаривания при пониженном давлении и полученный осадок промывали гептаном (2×15 мл) и сушили под вакуумом при комнатной температуре, получали 203 мг коричневого продукта в виде твердого вещества, соответствующего комплексу FeCl₃(L1), причем это количество соответствует степени превращения 42% в пересчете на введенный трихлорид железа (FeCl₃).

Молекулярная масса (MW): 344,43.

Элементный анализ [получено (вычислено для $C_{12}H_{10}Cl_3FeN_2$)]: C: 41,20% (41,84%), H: 2,35% (2,92%), N: 7,88% (8,13%), C1: 31,25% (30,88%), Fe: 15,84% (16,21%).

На фиг. 4 показан ИК-спектр с Фурье преобразованием (твердотельный, UATR) полученного комплекса $FeCl_3(L1)$.

Пример 8.

Синтез FeCl₃(L2) [образец MG213]

Трихлорид железа (FeCl₃) (225 мг; 1,39 ммоль) добавляли в реакционную колбу на 100 мл в раствор лиганда, имеющего формулу (L2) (293 мг; 1,39 ммоль; молярное отношение L2/Fe = 1), полученного, как описано в примере 2, в толуоле (20 мл): полученную смесь выдерживали при перемешивании при комнатной температуре в течение 3 ч. Надосадочную жидкость удаляли путем выпаривания при пониженном давлении и полученный осадок промывали гептаном (2×15 мл) и сушили под вакуумом при комнатной температуре, получали 396 мг коричневого продукта в виде твердого вещества, соответствующего комплексу FeCl₃(L2), причем это количество соответствует степени превращения 76% в пересчете на введенный трихлорид железа (FeCl₃).

Молекулярная масса (MW): 372,48.

Элементный анализ [получено (вычислено для $C_{14}H_{14}Cl_3FeN_2$)]: C: 45,00% (45,14%), H: 3,69% (3,79%), N: 7,69% (7,52%), Cl: 28,96% (28,55%), Fe: 15,09% (14,99%).

На фиг. 5 показан ИК-спектр с Фурье преобразованием (твердотельный, UATR) полученного комплекса FeCl₃(L2).

Пример 9.

Синтез FeCl₃(L3) [образец MG208]

Трихлорид железа (FeCl₂) (350 мг; 2,16 ммоль) добавляли в реакционную колбу на 100 мл в раствор лиганда, имеющего формулу (L3) (514 мг; 2,16 ммоль; молярное отношение L3/Fe = 1), полученного, как описано в примере 3, в толуоле (20 мл): полученную смесь выдерживали при перемешивании при комнатной температуре в течение 3 ч. Надосадочную жидкость удаляли путем выпаривания при пониженном давлении и полученный осадок промывали гептаном (2×15 мл) и сушили под вакуумом при комнатной температуре, получали 821 мг красного продукта в виде твердого вещества, соответствующего комплексу $FeCl_3(L3)$, причем это количество соответствует степени превращения 95% в пересчете на введенный трихлорид железа ($FeCl_3$).

Молекулярная масса (MW): 400,35.

Элементный анализ [получено (вычислено для $C_{16}H_{18}Cl_3FeN_2$)]: C: 48,09% (47,97%), H: 4,71% (4,53%), N: 6,65% (6,99%), Cl: 25,96% (26,55%), Fe: 14,08% (13,94%).

На фиг. 6 показан ИК-спектр с Фурье преобразованием (твердотельный, UATR) полученного комплекса FeCl₃(L3).

Пример 10 (G1525).

 $2\,$ мл 1,3-бутадиена, что примерно равно $1,4\,$ г, конденсировали при низкой температуре (- 20° C) в пробирке объемом $25\,$ мл. Затем добавляли $14,4\,$ мл толуола и температуру полученного таким образом раствора доводили до $+20^{\circ}$ C. Затем добавляли метилалюмоксан (MAO) в растворе в толуоле ($0,063\,$ мл; $1\times10^{-4}\,$ моль, что примерно равно $5,8\,$ г), а после этого комплекс $FeCl_2(L1)$ [образец MG82A] ($1,54\,$ мл суспензии в толуоле с концентрацией $2\,$ мг/мл; $1\times10^{-5}\,$ моль, что примерно равно $3,08\,$ мг) полученный, как описано в примере $3.\,$ Все вместе выдерживали при перемешивании магнитной мешалкой при $+20^{\circ}$ C в течение $45\,$ мин. Затем процесс полимеризации бысто прекращали путем добавления $2\,$ мл метанола, содержащего несколько капель соляной кислоты. Затем полученный полимер подвергали коагуляции путем добавления $40\,$ мл метанольного раствора, содержащего антиокислитель $4\%\,$ Irganox $\$ 1076\,$ (Ciba), получали $1,4\,$ г синдиотактического 1,2-полибутадиена: дополнительные характеристики способа и полученного синдиотактического 1,2-полибутадиена приведены в таблице.

На фиг. 7 показан ИК-спектр с Фурье преобразованием полученного синдиотактического 1,2полибутадиена;

на фиг. 8 - спектры ¹Н-ЯМР (вверху) и ¹³С-ЯМР (внизу) полученного синдиотактического 1,2-полибуталиена:

на фиг. 9 - кривая ДСК полученного синдиотактического 1,2-полибутадиена;

на фиг. 10 - рентгенограмма полученного синдиотактического 1,2-полибутадиена. Пример 11 (G1524).

 $2\,$ мл 1,3-бутадиена, что примерно равно $1,4\,$ г, конденсировали при низкой температуре (- 20° C) в пробирке объемом $25\,$ мл. Затем добавляли $14,25\,$ мл толуола и температуру полученного таким образом раствора доводили до $+20^{\circ}$ C. Затем добавляли метилалюмоксан (MAO) в растворе в толуоле ($0,063\,$ мл; $1\times10^{-4}\,$ моль, что примерно равно $5,8\,$ г), а после этого комплекс $FeCl_2(L2)$ [образец MG215] ($1,69\,$ мл суспензии в толуоле с концентрацией $2\,$ мг/мл; $1\times10^{-5}\,$ моль, что примерно равно $3,38\,$ мг) полученный, как описано в примере $4.\,$ Все вместе выдерживали при перемешивании магнитной мешалкой при $+20^{\circ}$ C в течение $45\,$ мин. Затем процесс полимеризации бысто прекращали путем добавления $2\,$ мл метанола, содержащего несколько капель соляной кислоты. Затем полученный полимер подвергали коагуляции путем добавления $40\,$ мл метанольного раствора, содержащего антиокислитель $4\%\,$ Irganox $\otimes 1076\,$ (Ciba), получали $1,4\,$ г синдиотактического 1,2-полибутадиена: дополнительные характеристики способа и полученного синдиотактического 1,2-полибутадиена приведены в таблице.

На фиг. 11 показан ИК-спектр с Фурье преобразованием полученного синдиотактического 1,2полибутадиена;

на фиг. 12 - кривая ДСК полученного синдиотактического 1,2-полибутадиена;

на фиг. 13 - рентгенограмма полученного синдиотактического 1,2-полибутадиена.

Пример 12 (ІР200/1).

 $2\,$ мл 1,3-бутадиена, что примерно равно $1,4\,$ г, конденсировали при низкой температуре (- 20° C) в пробирке объемом $25\,$ мл. Затем добавляли $13,5\,$ мл толуола и температуру полученного таким образом раствора доводили до $+20^{\circ}$ C. Затем добавляли метилалюмоксан (MAO) в растворе в толуоле ($0,063\,$ мл; $1\times10^{-4}\,$ моль, что примерно равно $5,8\,$ г), а после этого комплекс $FeCl_2(L3)$ [образец MG212) ($1,83\,$ мл суспензии в толуоле с концентрацией $2\,$ мг/мл; $1\times10^{-5}\,$ моль, что примерно равно $3,65\,$ мг) полученный, как описано в примере $6.\,$ Все вместе выдерживали при перемешивании магнитной мешалкой при $+20^{\circ}$ C в течение $45\,$ мин. Затем процесс полимеризации бысто прекращали путем добавления $2\,$ мл метанола, содержащего несколько капель соляной кислоты. Затем полученный полимер подвергали коагуляции путем добавления $40\,$ мл метанольного раствора, содержащего антиокислитель $4\%\,$ Irganox $\$ 1076\,$ (Ciba), получали $1,4\,$ г синдиотактического 1,2-полибутадиена: дополнительные характеристики способа и полученного синдиотактического 1,2-полибутадиена приведены в таблице.

На фиг. 14 показан ИК-спектр с Фурье преобразованием полученного синдиотактического 1,2-полибутадиена.

Пример 13 (G1526).

 $2\,$ мл 1,3-бутадиена, что примерно равно $1,4\,$ г, конденсировали при низкой температуре (- 20° C) в пробирке объемом $25\,$ мл. Затем добавляли $14,24\,$ мл толуола и температуру полученного таким образом раствора доводили до $+20^{\circ}$ C. Затем добавляли метилалюмоксан (MAO) в растворе в толуоле ($0,063\,$ мл; $1\times10^{-4}\,$ моль, что примерно равно $5,8\,$ г), а после этого комплекс FeCl $_3$ (L1) [образец MG87] ($1,7\,$ мл суспензии в толуоле с концентрацией $2\,$ мг/мл; $1\times10^{-5}\,$ моль, что примерно равно $3,4\,$ мг) полученный, как описано в примере $5.\,$ Все вместе выдерживали при перемешивании магнитной мешалкой при $+20^{\circ}$ С в течение $45\,$ мин. Затем процесс полимеризации бысто прекращали путем добавления $2\,$ мл метанола, содержащего несколько капель соляной кислоты. Затем полученный полимер подвергали коагуляции путем добавления $40\,$ мл метанольного раствора, содержащего антиокислитель $4\%\,$ Irganox \oplus $1076\,$ (Ciba), получали $1,4\,$ г синдиотактического 1,2-полибутадиена: дополнительные характеристики способа и полученного синдиотактического 1,2-полибутадиена приведены в таблице.

На фиг. 15 показан ИК-спектр с Фурье преобразованием полученного синдиотактического 1,2полибутадиена;

на фиг. 16 - спектры 1 H-ЯМР (вверху) и 13 С-ЯМР (внизу) полученного синдиотактического 1,2-полибутадиена;

на фиг. 17 - кривая ДСК полученного синдиотактического 1,2-полибутадиена. Пример 14 (G1526/1).

 $2\,$ мл 1,3-бутадиена, что примерно равно $1,4\,$ г, конденсировали при низкой температуре (- 20° C) в пробирке объемом $25\,$ мл. Затем добавляли $14,24\,$ мл гептана и температуру полученного раствора доводили до $+20^{\circ}$ C. Затем добавляли метилалюмоксан (MAO) в растворе в толуоле ($0,063\,$ мл; $1\times10^{-4}\,$ моль, что примерно равно $5,8\,$ г), а после этого комплекс $FeCl_3(L1)$ [образец MG87] ($1,7\,$ мл суспензии в толуоле с концентрацией $2\,$ мг/мл; $1\times10^{-5}\,$ моль, что примерно равно $3,4\,$ мг), полученный, как описано в примере $5.\,$ Все вместе выдерживали при перемешивании магнитной мешалкой при $+20^{\circ}$ C в течение $35\,$ мин. Затем процесс полимеризации бысто прекращали путем добавления $2\,$ мл метанола, содержащего несколько капель соляной кислоты. Затем полученный полимер подвергали коагуляции путем добавления $40\,$ мл метанольного раствора, содержащего антиокислитель $4\%\,$ Irganox $\$ 1076\,$ (Ciba), получали $1,4\,$ г синдиотактического 1,2-полибутадиена: дополнительные характеристики способа и полученного синдиотактического 1,2-полибутадиена приведены в таблице.

На фиг. 18 показан ИК-спектр с Фурье преобразованием полученного синдиотактического 1,2полибутадиена;

на фиг. 19 - спектры 1 Н-ЯМР (вверху) и 13 С-ЯМР (внизу) полученного синдиотактического 1,2-полибутадиена;

на фиг. 20 - рентгенограмма полученного синдиотактического 1,2-полибутадиена. Пример 15 (G1523).

 $2\,$ мл 1,3-бутадиена, что примерно равно 1,4 г, конденсировали при низкой температуре (-20°C) в пробирке объемом 25 мл. Затем добавляли 14,08 мл толуола и температуру полученного таким образом раствора доводили до $+20^{\circ}$ С. Затем добавляли метилалюмоксан (MAO) в растворе в толуоле (0,063 мл; 1×10^{-4} моль, что примерно равно 5,8 г), а после этого комплекс FeCl₃(L2) [образец MG213] (1,86 мл суспензии в толуоле с концентрацией $2\,$ мг/мл; $1\times10^{-5}\,$ моль, что примерно равно 3,72 мг), полученный, как описано в примере 6. Все вместе выдерживали при перемешивании магнитной мешалкой при $+20^{\circ}$ С в течение 45 мин. Затем процесс полимеризации бысто прекращали путем добавления $2\,$ мл метанола, содержащего несколько капель соляной кислоты. Затем полученный полимер подвергали коагуляции путем добавления $40\,$ мл метанольного раствора, содержащего антиокислитель 400 Irganox® $1076\,$ (Ciba), $1,4\,$ г синдиотактического 1,2-полибутадиена получали: дополнительные характеристики способа и полученного синдиотактического 1,2-полибутадиена приведены в таблице.

На фиг. 21 показан ИК-спектр с Фурье преобразованием полученного синдиотактического 1,2полибутадиена;

на фиг. 22 - кривая ДСК полученного синдиотактического 1,2-полибутадиена. Пример 16 (G1523/1).

 $2\,$ мл 1,3-бутадиена, что примерно равно $1,4\,$ г, конденсировали при низкой температуре (- 20° C) в пробирке объемом $25\,$ мл. Затем добавляли $14,08\,$ мл гептана и температуру полученного раствора доводили до $+20^{\circ}$ C. Затем добавляли метилалюмоксан (MAO) в растворе в толуоле ($0,063\,$ мл; $1\times10^{-4}\,$ моль, что примерно равно $5,8\,$ г), а после этого комплекс $FeCl_3(L2)$ [образец MG213] ($1,86\,$ мл суспензии в толуоле с концентрацией $2\,$ мг/мл; $1\times10^{-5}\,$ моль, что примерно равно $3,72\,$ мг), полученный, как описано в примере $6.\,$ Все вместе выдерживали при перемешивании магнитной мешалкой при $+20^{\circ}$ C в течение $35\,$ мин. Затем процесс полимеризации бысто прекращали путем добавления $2\,$ мл метанола, содержащего несколько капель соляной кислоты. Затем полученный полимер подвергали коагуляции путем добавления $40\,$ мл метанольного раствора, содержащего антиокислитель $4\%\,$ Irganox® $1076\,$ (Ciba), $1,4\,$ г синдиотактического 1,2-полибутадиена получали: дополнительные характеристики способа и полученного синдиотактического 1,2-полибутадиена приведены в таблице.

На фиг. 23 показаны спектры 1 Н-ЯМР (вверху) и 13 С-ЯМР (внизу) полученного синдиотактического 1,2-полибутадиена.

Пример 17 (ІР204/1).

 $2\,$ мл 1,3-бутадиена, что примерно равно $1,4\,$ г, конденсировали при низкой температуре (- 20° C) в пробирке объемом $25\,$ мл. Затем добавляли $13,4\,$ мл гептана и температуру полученного раствора доводили до $+20^{\circ}$ C. Затем добавляли метилалюмоксан (MAO) в растворе в толуоле ($0,063\,$ мл; $1\times10^{-4}\,$ моль, что примерно равно $5,8\,$ г), а после этого комплекс $FeCl_3(L3)$ [образец MG208] ($2\,$ мл суспензии в толуоле с концентрацией $2\,$ мг/мл; $1\times10^{-5}\,$ моль, что примерно равно $4\,$ мг), полученный, как описано в примере $9.\,$ Все вместе выдерживали при перемешивании магнитной мешалкой при $+20^{\circ}$ C в течение $30\,$ мин. Затем процесс полимеризации бысто прекращали путем добавления $2\,$ мл метанола, содержащего несколько капель соляной кислоты. Затем полученный полимер подвергали коагуляции путем добавления $40\,$ мл метанольного раствора, содержащего антиокислитель $4\%\,$ Irganox $\otimes\,$ $1076\,$ (Ciba), $1,4\,$ г синдиотактического 1,2-полибутадиена получали: дополнительные характеристики способа и полученного синдиотактического 1,2-полибутадиена приведены в таблице.

На фиг. 24 показан ИК-спектр с Фурье преобразованием полученного синдиотактического 1,2полибутадиена.

Пример 18.

Синтез CoCl₂(PPh₃)₂.

Раствор дитрифенилфосфина $(6,08\ \Gamma,2,32\times10^{-2}\ \text{моль})$ в этаноле $(70\ \text{мл})$ добавляли по каплям при перемешивании в реакционную колбу на 200 мл в раствор безводного дихлорида кобальта (CoCl_2) $(1,30\ \Gamma,1\times10^{-2}\ \text{моль})$ в этаноле $(70\ \text{мл})$, получали образование светло-синей суспензии. Полученную суспензию выдерживали при перемешивании при комнатной температуре в течение 24 ч и после этого сушили под вакуумом при комнатной температуре. Полученный остаток помещали на фильтр нагретого экстрактора для твердых веществ и непрерывно экстрагировали пентаном так, чтобы удалить любой избыток фосфина; затем экстракцию продолжали в толуоле в течение дополнительных 24 ч, получали синие кристаллы. Полученные синие кристаллы отделяли путем отсасывания раствора надосадочной жидкости и получали другие кристалы путем охлаждения раствора, полученного отсасыванием. Указанные кристаллы затем сушили под вакуумом при комнатной температуре, получали 4,58 г голубого твердого вещества, соот-

ветствующего фосфиновому комплексу $CoCl_2(PPh_3)_2$, причем это количество соответствует степени превращения 70%, в пересчете на безводный дихлорид кобальта ($CoCl_2$).

Элементный анализ [получено (вычислено)]: Co: 9,10% (9,01%); Cl: 10,80% (10,84%); P: 9,40% (9,47%); C: 66,20% (66,07%); H: 4,70% (4,62%).

Пример 19 (G1528) (сравнительный)

 $2\,$ мл 1,3-бутадиена, что примерно равно $1,4\,$ г, конденсировали при низкой температуре (- 20° C) в пробирке объемом $25\,$ мл. Затем добавляли $12,4\,$ мл толуола и температуру полученного таким образом раствора доводили до $+25^{\circ}$ C. Затем добавляли метилалюмоксан (MAO) в растворе в толуоле ($0,63\,$ мл; $1\times10^{-3}\,$ моль, что примерно равно $58\,$ г), а после этого комплекс $CoCl_2(PPh_3)_2$ ($2,96\,$ мл суспензии в толуоле с концентрацией $2\,$ мг/мл; $1\times10^{-5}\,$ моль, что примерно равно $5,92\,$ мг), полученный, как описано в примере $11.\,$ Все вместе выдерживали при перемешивании магнитной мешалкой при $+25^{\circ}$ C в течение $40\,$ мин. Затем процесс полимеризации бысто прекращали путем добавления $2\,$ мл метанола, содержащего несколько капель соляной кислоты. Затем полученный полимер подвергали коагуляции путем добавления $40\,$ мл метанольного раствора, содержащего антиокислитель $4\%\,$ Irganox \oplus $1076\,$ (Ciba), получали $1,4\,$ г синдиотактического 1,2-полибутадиена: дополнительные характеристики способа и полученного синдиотактического 1,2-полибутадиена приведены в таблице.

На фиг. 25 показан ИК-спектр с Фурье преобразованием полученного синдиотактического 1,2полибутадиена;

на фиг. 26 - спектры ¹H-ЯМР (вверху) и ¹³С-ЯМР (внизу) полученного синдиотактического 1,2полибутадиена;

на фиг. 27 - кривая ДСК полученного синдиотактического 1,2-полибутадиена;

на фиг. 28 - рентгенограмма полученного синдиотактического 1,2-полибутадиена.

Из данных, приведенных в таблицы, ясно следует, что синдиотактический 1,2-полибутадиен, полученный согласно способу, предложенному в настоящем изобретении (примеры 10-17), проявляет характеристики, аналогичные характеристикам синдиотактического 1,2-полибутадиена, полученного способом, известным в уровне техники, при использовании каталитической системы на основе кобальта (пример 19).

Полимеризация 1,3-бутадиена с помощью каталитических систем, содержащих пиридильные комплексы железа

ПРИМЕР	Al/Fe	Время	Степень	1,4-цис	1,2	(rr%)	$M_{ m w}$	M_w/M_n	Тпл	Ткр
	(молярное	(мин)	превращения	(%)	(%)		$(г \times моль^{-1})$		(°C)	(°C)
	отношение)		(%)							
10	10	45	100	16	84	69,7	355000	1,9	102,3	78,0
11	10	45	100	24	76	60,4	350000	2,0	80,9	59,1
12	10	30	100	22	78	66,8	377000	1,9	87,0	68,5
13	10	45	100	20	80	68,4	349000	2,3	88,8	68,7
14	10	35	100	15	85	70,4	337500	2,1	110,2	82,7
15	10	45	100	29	71	54,9	344000	1,9	68,1	46,0
16	10	35	100	22	78	58,1	333000	1,8	78,3	55,7
17	10	30	100	20	82	71,5	369000	1,8	106,6	79,9
19(*)	100	40	100	28	72	55,1	317000	1,9	72,0	36,0

^(*) сравнительный.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения синдиотактического 1,2-полибутадиена, включающий полимеризацию 1,3-бутадиена в присутствии каталитической системы, содержащей

по меньшей мере один пиридильный комплекс железа общей формулы (I)

$$\begin{array}{c|c}
R_1 \\
R_2 \\
K
\end{array}$$

в которой R_1 представляет атом водорода или метильную группу;

 R_2 представляет атом водорода или выбран из линейной или разветвленной C_1 . C_3 алкильной группы;

Х, идентичные друг другу, представляют атом галогена, выбранный из хлора, брома, йода;

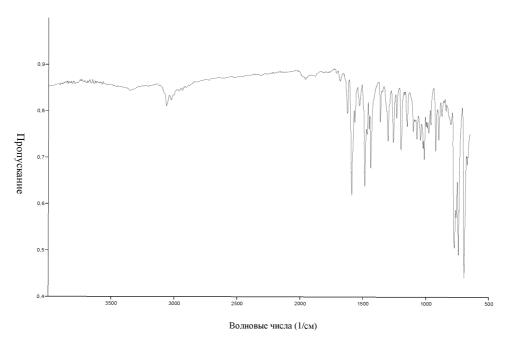
п составляет 2 или 3; и

метилалюмоксан (МАО),

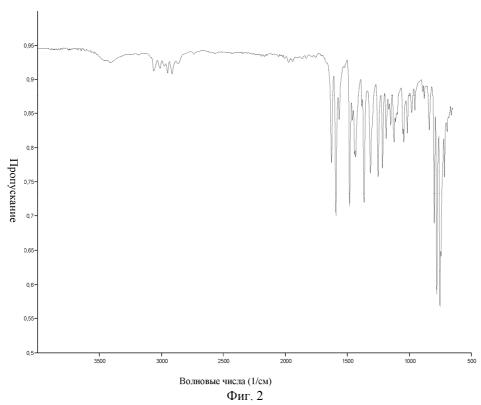
при этом молярное отношение между алюминием, присутствующим в метилалюмоксане, и железом, присутствующим в пиридильном комплексе железа общей формулы (I), находится в диапазоне от 5 до 20.

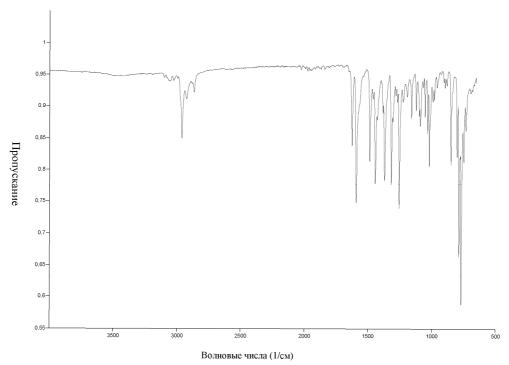
2. Способ получения синдиотактического 1,2-полибутадиена по п.1, в котором в указанном пиридильном комплексе железа общей формулы (I):

R₁ представляет атом водорода или метильную группу;

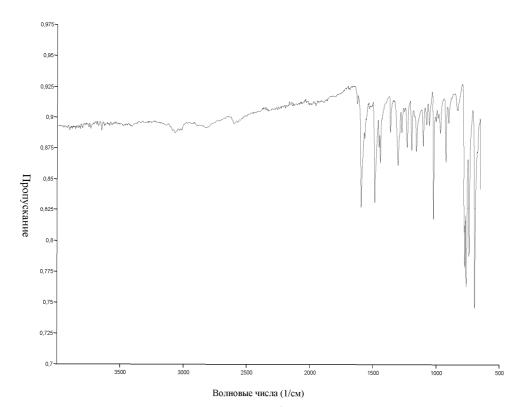

 R_2 представляет атом водорода или метильную группу, этильную группу, н-пропильную группу, изопропильную группу, предпочтительно метильную группу или изопропильную группу;

Х, идентичные друг другу, представляют атом галогена, такого как хлор, бром, йод; предпочтительно представляют атом хлора;

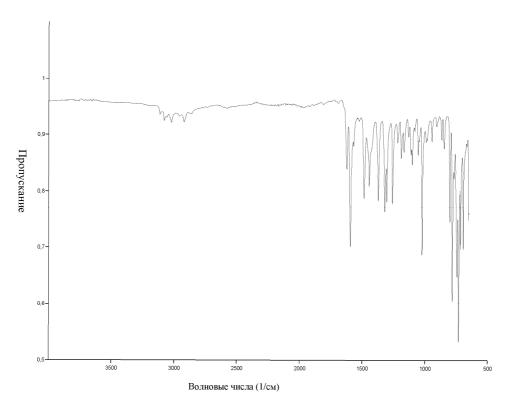

п составляет 2 или 3,

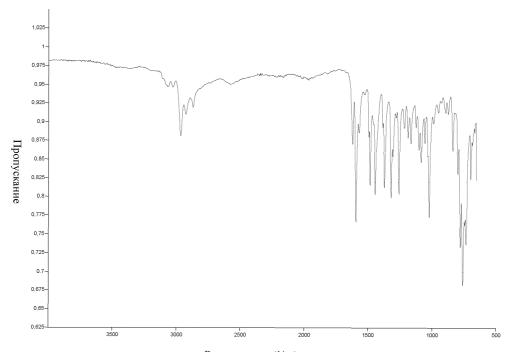

при этом молярное отношение между алюминием, присутствующим в метилалюмоксане, и железом, присутствующим в пиридильном комплексе железа общей формулы (I), находится в диапазоне от 8 до 12.

- 3. Способ получения синдиотактического 1,2-полибутадиена по любому из предшествующих пунктов, в котором указанный способ проводят в присутствии по меньшей мере одного инертного органического растворителя, выбранного из насыщенных алифатических углеводородов, таких как бутан, пентан, гексан, гептан или их смеси; насыщенных циклоалифатических углеводородов, таких как циклопентан, циклогексан или их смеси; моноолефинов, таких как 1-бутен, 2-бутен или их смеси; ароматических углеводородов, таких как бензол, толуол, ксилол или их смеси; галогенированных углеводородов, таких как метиленхлорид, хлороформ, тетрахлорид углерода, трихлорэтилен, перхлорэтилен, 1,2-дихлорэтан, хлорбензол, бромбензол, хлортолуол или их смеси; при этом гексан, гептан, толуол являются предпочтительными.
- 4. Способ получения синдиотактического 1,2-полибутадиена по любому из предшествующих пунктов, в котором концентрация 1,3-бутадиена в указанном инертном органическом растворителе находится в диапазоне от 5 до 50 мас.%, предпочтительно от 10 до 20 мас.%, в расчете на общую массу смеси 1,3-бутадиен/инертный органический растворитель.
- 5. Способ получения синдиотактического 1,2-полибутадиена по любому из предшествующих пунктов, в котором указанный способ проводят при температуре в диапазоне от -30 до $+60^{\circ}$ C, предпочтительно от -20 до $+30^{\circ}$ C.

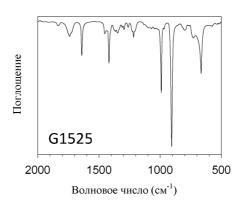


Фиг. 1

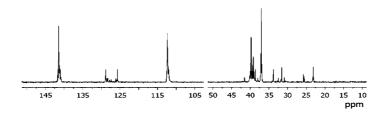


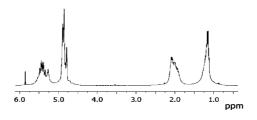

Фиг. 3

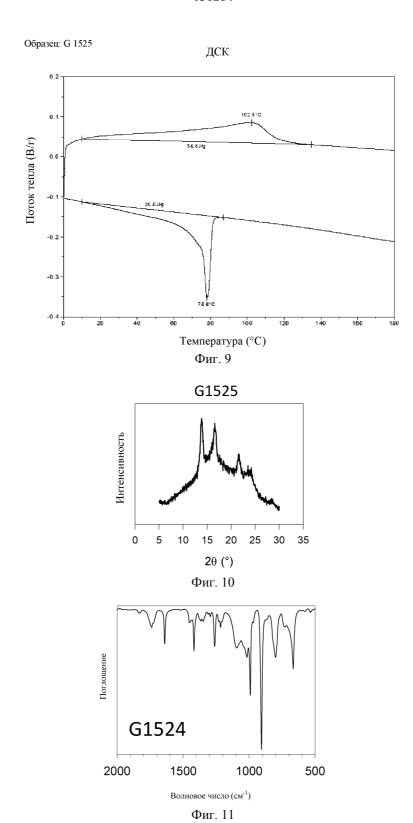
Фиг. 4

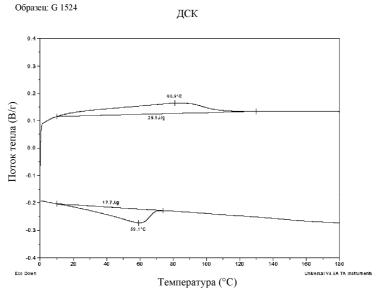


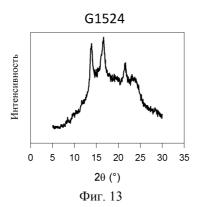
Фиг. 5

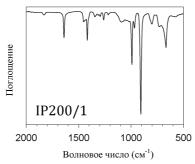

Волновые числа (1/см)

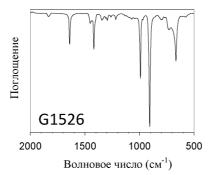

Фиг. 6


Фиг. 7

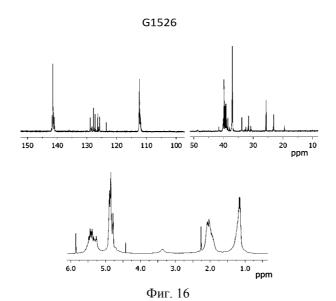

G1525

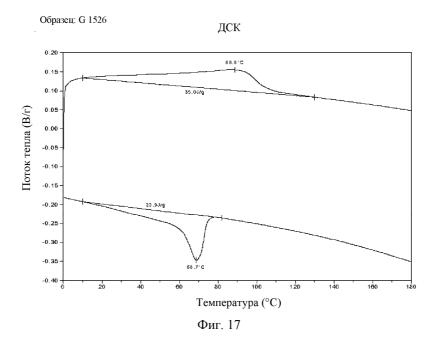


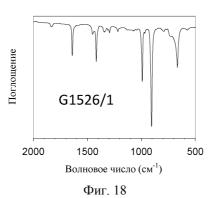

Фиг. 8

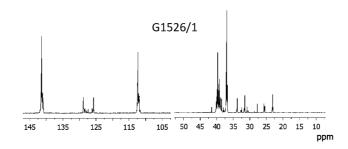


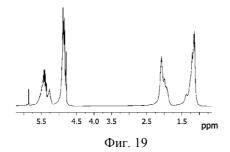
Фиг. 12

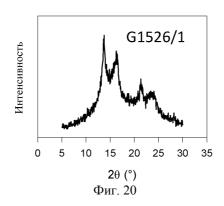


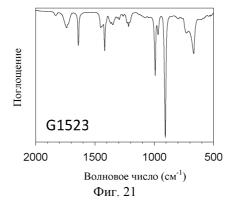


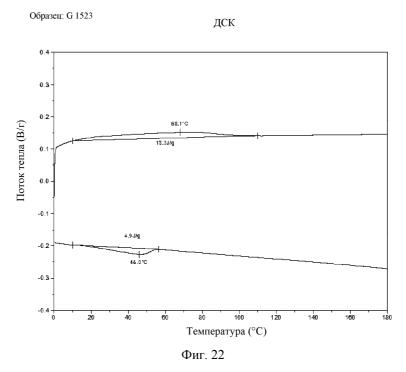

Фиг. 14

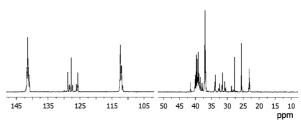


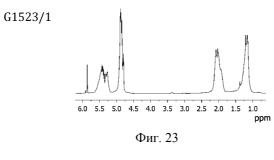

Фиг. 15

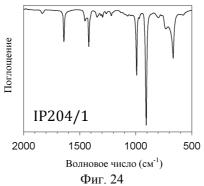


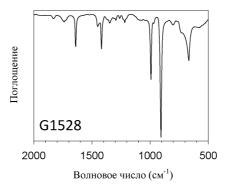


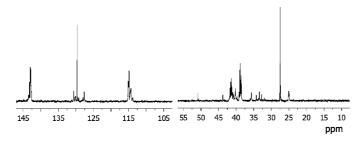


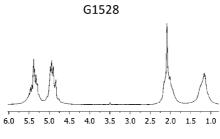


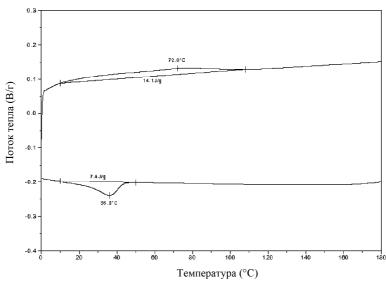


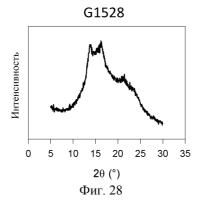









Фиг. 25



Фиг. 26

ДСК

Фиг. 27

