(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

(51) Int. Cl. *A61P 31/18* (2006.01)

2020.04.17

(21) Номер заявки

201590741

(22) Дата подачи заявки

2013.10.18

(54) НЕЙТРАЛИЗУЮЩИЕ АНТИ-ВИЧ-АНТИТЕЛА ШИРОКОГО СПЕКТРА ДЕЙСТВИЯ

(31) 61/715,642

(32)2012.10.18

(33)US

(43) 2015.09.30

(86) PCT/US2013/065696

(87) WO 2014/063059 2014.04.24

(71)(73) Заявитель и патентовладелец:

РОКФЕЛЛЕР ЮНИВЕРСИТИ (ДЗЕ); КЭЛИФОРНИА ИНСТИТЬЮТ ОФ ТЕКНОЛОДЖИ (US)

(72) Изобретатель:

Муке Хьюго, Нуссенцвейг Мишель, Бьеркман Памела Дж., Шарф Луиз (US)

(74) Представитель:

Медведев В.Н. (RU)

(56) US-A1-20080050754

US-A1-20090226886 US-A1-20050032042

US-A1-20110262474

MOUQUET et al. "Polyreactivity increases apparent affinity of anti-HIV antibodies by heteroligation". Nature. 467(7315):591-595. 30 September 2010. entire document

Изобретение относится к анти-ВИЧ-антителам и их антигенсвязывающим фрагментам, указанное (57) антитело может быть антителом человека, гуманизированным антителом, химерным антителом. Кроме того, заявлена выделенная нуклеиновая кислота, кодирующая указанные антитела или их фрагменты. Также раскрыты вектор экспрессии, клетка-хозяин, фармацевтическая композиция, способ профилактики или лечения ВИЧ-инфекции или связанного с ВИЧ заболевания и набор для лечения или ингибирования инфекции ВИЧ.

Перекрестная ссылка на родственные заявки

По настоящей заявке испрашивается приоритет согласно 35 U.S.C. § 119(e) на основании предварительной заявки на выдачу патента США № 61715642, поданной 18 октября 2012 г., которая включена в настоящее описание в полном объеме.

Интересы правительства

Изобретение, раскрытое в настоящем описании, осуществлено, по меньшей мере частично, при поддержке правительства в рамках гранта № Р01 AI081677, присужденного Национальными институтами здравоохранения. Соответственно, правительство США обладает некоторыми правами на настоящее изобретение.

Область техники, к которой относится изобретение

Настоящее изобретение относится к эффективным антителам широкого спектра действия против вируса иммунодефицита человека (ВИЧ).

Уровень техники

ВИЧ вызывает синдром приобретенного иммунодефицита (СПИД), состояние у людей, характеризуемое рядом клинических признаков, включая синдромы истощения, дегенерацию центральной нервной системы и глубокую иммуносупрессию, которая приводит к угрожающим жизни оппортунистическим инфекциям и злокачественным новообразованиям. Со времени его открытия в 1981 г. ВИЧ типа 1 (ВИЧ-1) привел к гибели по меньшей мере 25 млн людей во всем мире. Прогнозируют, что 20-60 млн людей будут инфицированы в течение следующих двух десятилетий, несмотря на то, что имеет место ежегодное снижение ВИЧ-инфекций на 2,5%. Существует необходимость в терапевтических средствах и способах лечения или подавления ВИЧ-инфекции.

У некоторых ВИЧ-инфицированных людей в сыворотке обнаруживаются нейтрализующие IgGантитела широкого спектра действия. Тем не менее, мало известно о специфичности и активности таких антител, несмотря на их возможное важное значение для разработки эффективных вакцин. В животных моделях пассивный перенос нейтрализующих антител может вносить вклад в защиту от заражения вирусом. Ответы в виде нейтрализующих антител также могут развиваться у ВИЧ-инфицированных людей, но детальный состав серологического ответа еще полностью не раскрыт.

Сущность изобретения

Настоящее изобретение относится к новым категориям нейтрализующих анти-ВИЧ-антител широкого спектра действия. Консенсусные аминокислотные последовательности тяжелой и легкой цепей антител перечислены ниже и показаны на фиг. За и 3b:

QVQLQESGPGLVKPSETLSLTCSVSGX $_1$ SX $_2$ X $_3$ DX $_4$ YWSWIRQSPGKGLEWIGYVHDSGDTNYN PSLKSRVX $_5$ X $_6$ SLDTSKNQVSLKLX $_7$ X $_8$ VTAADSAX $_9$ YYCARAX $_1$ 0HGX $_{11}$ RIYGIVAFGEX $_{12}$ FTY FYMDVWGKGTTVTVSS (SEQ ID NO:1) SX_1 VRPQPPSLSVAPGETARIX $_2$ CGEX $_3$ SLGSRAVQWYQQRPGQAPSLIIYNNQDRPSGIPERF SGSPDX $_4$ X $_5$ FGTTATLTITX $_6$ VEAGDEADYYCHIWDSRX $_7$ PTX $_8$ WVFGGGTTLTVL (SEQ ID NO:2)

В последовательности SEQ ID NO: 1 или 2 каждый X может быть любым аминокислотным остатком или означать отсутствие аминокислоты. Предпочтительно каждый из X может представлять собой остаток в соответствующем положении клональных вариантов 10-259, 10-303, 10-410, 10-847, 10-996, 10-1074, 10-1121, 10-1130, 10-1146, 10-1341 и 10-1369, которые показаны на фиг. За и 3b, и искусственно модифицированного варианта антитела 10-1074, 10-1074GM.

Соответственно, один аспект настоящего изобретения характеризует выделенное анти-ВИЧантитело или его антигенсвязывающую часть, имеющую по меньшей мере одну определяющую комплементарность область (CDR), имеющую последовательность, выбранную из группы, состоящей из последовательностей SEQ ID NO: 33-38, при условии, что антитело не является антителом PGT-121, 122 или 123. Последовательности SEQ ID NO: 33-38 относятся к последовательностям CDR тяжелой цепи (CDRH) 1-3 и CDR легкой цепи (CDRL) 1-3 согласно системе Кабата, как показано на фиг. За и 3b. В одном из вариантов осуществления CDR может содержать последовательность, выбранную из группы, состоящей из последовательностей SEQ ID NO: 39-104, т.е. последовательностей CDR согласно системе Кабата, которые показаны в табл. 1 ниже. Альтернативно, CDR может содержать последовательность, выбранную из последовательностей CDR соответствующих антител согласно системе IMGT, которые показаны в табл. 1 ниже.

В одном из вариантов осуществления выделенное анти-ВИЧ-антитело или его антигенсвязывающая часть содержит вариабельную область тяжелой цепи, которая включает CDRH 1, CDRH 2 и CDRH 3, при этом CDRH 1, CDRH 2 и CDRH 3 содержат соответствующие последовательности SEQ ID NO: 33-35. CDRH 1, CDRH 2 и CDRH 3 также могут содержать соответствующие последовательности набора CDRH, выбранные из группы, состоящей из последовательностей SEQ ID NO: 39-41, SEQ ID NO: 45-47, SEQ ID NO: 51-53, SEQ ID NO: 57-59, SEQ ID NO: 63-65, SEQ ID NO: 69-71, SEQ ID NO: 75-77, SEQ ID

NO: 81-83, SEQ ID NO: 87-89, SEQ ID NO: 93-95, SEQ ID NO: 99-101 и SEQ ID NO: 131-133. Альтернативно, CDRH могут содержать соответствующие последовательности, выбранные из последовательностей, соответствующих последовательностям CDR антител согласно системе IMGT, которые показаны в табл. 1 ниже.

В другом варианте осуществления выделенное анти-ВИЧ-антитело или его антигенсвязывающая часть содержит вариабельную область легкой цепи, которая включает CDRL 1, CDRL 2 и CDRL 3, при этом CDRL 1, CDRL 2 и CDRL 3 содержат соответствующие последовательности SEQ ID NO: 36-38. Например, CDRL 1, CDRL 2 и CDRL 3 могут содержать соответствующие последовательности из набора CDRL, выбранные из группы, состоящей из последовательностей SEQ ID NO: 42-44, SEQ ID NO: 48-50, SEQ ID NO: 54-56, SEQ ID NO: 60-62, SEQ ID NO: 66-68, SEQ ID NO: 72-74, SEQ ID NO: 78-80, SEQ ID NO: 84-86, SEQ ID NO: 90-92, SEQ ID NO: 96-98, SEQ ID NO: 102-104 и SEQ ID NO: 134-136. Альтернативно, CDRL могут содержать соответствующие последовательности, выбранные из соответствующих последовательностей CDR антител согласно системе IMGT, которые показаны в табл. 1 ниже.

В следующем варианте осуществления указанное выше выделенное анти-ВИЧ-антитело или его антигенсвязывающая часть содержит: (i) вариабельную область тяжелой цепи, которая включает CDRH 1, CDRH 2 и CDRH 3, и (ii) вариабельную область легкой цепи, которая включает CDRL 1, CDRL 2 и CDRL 3. CDRH 1, CDRH 2, CDRH 3, CDRL 1, CDRL 2 и CDRL 3 могут содержать соответствующие последовательности из набора CDR, выбранные из группы, состоящей из последовательностей SEQ ID NO: 39-44, SEQ ID NO: 45-50, SEQ ID NO: 51-56, SEQ ID NO: 57-62, SEQ ID NO: 63-68, SEQ ID NO: 69-74, SEQ ID NO: 75-79, SEQ ID NO: 81-86, SEQ ID NO: 87-92, SEQ ID NO: 93-98, SEQ ID NO: 99-104 и SEQ ID NO: 131-136. Альтернативно CDRH и CDRL могут содержать соответствующие последовательности, выбранные из последовательностей, соответствующих последовательностям CDR антител согласно системе IMGT, которые показаны в табл. 1 ниже.

В следующем варианте осуществления выделенное анти-ВИЧ-антитело или его антигенсвязывающая часть содержит одну или обе цепи: (i) тяжелую цепь, имеющую консенсусную аминокислотную последовательность SEQ ID NO: 1, и (ii) легкую цепь, имеющую консенсусную аминокислотную последовательность SEQ ID NO: 2. Тяжелая цепь может содержать последовательность, выбранную из группы, состоящей из последовательностей SEQ ID NO: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, и 129, и легкая цепь может содержать последовательность, выбранную из группы, состоящей из последовательностей SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 и 130. Например, тяжелая цепь и легкая цепь может содержать соответствующие последовательности SEQ ID NO: 3-4, SEQ ID NO: 5-6, SEQ ID NO: 7-8, SEQ ID NO: 9-10, SEQ ID NO: 11-12, SEQ ID NO: 13-14, SEQ ID NO: 15-16, SEQ ID NO: 17-18, SEQ ID NO: 19-20, SEQ ID NO: 21-22, SEQ ID NO: 23-24 и 129-130.

В предпочтительном варианте осуществления выделенное анти-ВИЧ-антитело представляет собой антитело, выбранное из группы, состоящей из антител 10-259, 10-303, 10-410, 10-847, 10-996, 10-1074, 10-1074GM, 10-1121, 10-1130, 10-1146, 10-1341 и 10-1369. Их соответствующие вариабельные области тяжелой цепи, вариабельные области легкой цепи, CDRH 1-3 и CDRL 1-3 показаны на фиг. За и 3b. В более предпочтительном варианте осуществления выделенное анти-ВИЧ-антитело является 10-1074-подобным антителом, т.е. антителом, выбранным из группы, состоящей из 10-847, 10-996, 10-1074, 10-1074GM, 10-1146 и 10-1341. Антитело из такой группы является более эффективным в нейтрализации современных вирусов, чем PGT121. Обсуждаемое выше антитело может быть антителом человека, гуманизированным антителом или химерным антителом.

Во втором аспекте изобретение относится к выделенной нуклеиновой кислоте, имеющей последовательность, кодирующую CDR, вариабельную область тяжелой цепи или вариабельную область легкой цепи обсуждаемого выше анти-ВИЧ-антитела или его антигенсвязывающей части. Также отличительным признаком изобретения является вектор, содержащий нуклеиновую кислоту, и культивируемая клетка, содержащая вектор.

Нуклеиновую кислоту, вектор и культивируемую клетку можно использовать в способе получения анти-ВИЧ-антитела или его фрагмента. Способ включает, наряду с прочими, стадии получения указанной выше культивируемой клетки; культивирования клетки в среде в условиях, обеспечивающих возможность экспрессии полипептида, кодируемого вектором, сборки антитела или его фрагмента и очистки антитела или фрагмента из культивируемой клетки или среды для клетки.

В третьем аспекте отличительным признаком изобретения является фармацевтическая композиция, содержащая: (i) по меньшей мере одно анти-ВИЧ-антитело, указанное выше, или его антигенсвязывающую часть и (ii) фармацевтически приемлемый носитель.

В четвертом аспекте изобретение относится к способу профилактики или лечения ВИЧ-инфекции или связанного с ВИЧ заболевания. Способ включает, наряду с прочими, стадии идентификации пациента, нуждающегося в такой профилактике или лечении, и введения указанному пациенту первого терапевтического средства, содержащего терапевтически эффективное количество по меньшей мере одного анти-ВИЧ-антитела, указанного выше, или его антигенсвязывающей части. Способ может дополнительно включать введение второго терапевтического средства, такого как противовирусное средство.

В пятом аспекте изобретение относится к набору, содержащему фармацевтически приемлемую

стандартную дозированную форму, содержащую фармацевтически эффективное количество по меньшей мере одного выделенного анти-ВИЧ-антитела, указанного выше, или его антигенсвязывающей части и фармацевтически приемлемую стандартную дозированную форму, содержащую фармацевтически эффективное количество анти-ВИЧ-средства. Две фармацевтически приемлемые стандартные дозированные формы необязательно могут быть в форме одной фармацевтически приемлемой стандартной дозированной формы. Примером анти-ВИЧ-средства может быть средство, выбранное из группы, состоящей из ненуклеозидного ингибитора обратной транскриптазы, ингибитора протеазы, ингибитора проникновения или слияния и ингибитора интегразы.

В шестом аспекте изобретение относится к набору для диагностики, прогнозирования или контроля лечения ВИЧ-инфекции у индивида. Набор содержит один или несколько реагентов для выявления, которые специфично связываются с нейтрализующими анти-ВИЧ-антителами в биологическом образце, полученном от индивида. Набор может дополнительно содержать реагенты для осуществления ПЦР или масс-спектрометрии.

Подробное описание одного или нескольких вариантов осуществления изобретения приведено ниже. Другие признаки, цели и преимущества изобретения будут понятны из описания и формулы изобретения.

Краткое описание чертежей

На фиг. 1 показана нейтрализующая активность PGT121-подобных и 10-1074-подобных вариантов.

- (A) Двумерная цветовая карта, сравнивающая эффективности нейтрализации PGT121-подобных и 10-1074-подобных антител в анализе TZM-bl. Более темная окраска более эффективная нейтрализация; белая нет нейтрализации.
- (B) Корреляция между средним значением IC_{80} против 9 вирусов (ось у) и кажущимися значениями K_D для связывания с gp120 и gp140 (ось x).
- (C) График, на котором приведено сравнение широты и эффективности нейтрализации антител PGT121, 10-996 и 10-1074 в анализе на TZM-bl против расширенной панели из 119 вирусов. На оси у показана кумулятивная частота значений IC_{50} вплоть до концентрации, показанной на оси х. "Паутинный" график (в верхнем левом углу) показывает распределение частоты нейтрализованных вирусов в соответствии с кладами ВИЧ-1.
- (D) Точечная диаграмма, показывающая молярные соотношения нейтрализации (MNR; отношение концентраций IC_{50} Fab и IgG). Горизонтальные столбики представляют средние IC_{50} для всех вирусов.
- (E) Столбчатая диаграмма, сравнивающая эффективности нейтрализации PGT121 (темно-серый) и 10-1074 (светло-серый) против вирусов, выделенных из исторических (исторические) и современных (современные) сероконверторов. ns не значимы; ** p<0,005. Указано кратное различие между медианными значениями IC₅₀ для нейтрализации современных вирусов под действием PGT121 и 10-1074.

На фиг. 2 показаны активности мутантных антител $PGT12_{GM}$ и $10-1074_{GM}$ в связывании и нейтрализации.

- (A) Столбчатые диаграммы, сравнивающие кажущиеся значения K_D для связывания антител 10-1074, PGT121, PGT121 $_{\rm GM}$ и 10-1074 $_{\rm GM}$ с gp120 и gp140. Планки погрешностей показывают SEM K_D -значений, полученных из трех независимых экспериментов. Показаны кратные различия между K_D -значениями антител "дикого типа" и "гликомутантов".
- (В) Столбчатые диаграммы, сравнивающие связывание гликанов (фиг. 7A) антителами PGT121 и 10-1074 и связывание гликанов мутантными антителами (PGT121 $_{\text{GM}}$ и $10\text{-}1074_{\text{GM}}$). Числовую оценку связывания давали в виде интенсивности флуоресценции (средние для пятен в двух повторах) для зондов, распределенных по 5 фмоль на пятно.
- (C) График охвата, сравнивающий широту и эффективности нейтрализации антител PGT121, $PGT121_{GM}$, 10-1074 и $10-1074_{GM}$ в анализе на TZM-bl против панели из 40 вирусов.

На фиг. 3 изображены выравнивания последовательностей клональных вариантов PGT121 и 10-1074

- (A) Выравнивание аминокислот тяжелых цепей (IgH) PGT121-подобных и 10-1074-подобных антител и вероятной VH зародышевой линии (GL) для всех клональных вариантов. Указана нумерация аминокислот, основанная на кристаллических структурах, каркасные (FWR) и определяющие комплементарность области (CDR) согласно системе Кабата (J. Exp. Med. 132(2):211-250) и IMGT (Nucleic Acids Res. 37 (Database issue):D1006-1012). Цветовая штриховка показывает кислые (красные), основные (синие) аминокислоты и тирозин (зеленый).
 - (B) То же, что и в A, но для легких цепей (IgL).

Фиг. 4 показывает аффинность связывания клональных вариантов PGT121 и 10-1074.

(A) Аффинность связывания в случае взаимодействия вариантов IgG-антитела PGT121 с лигандами gp140 и gp120 YU-2, которую измеряли, используя резонанс поверхностного плазмона (SPR). М, моль/л; с, секунды; RU, единиц ответа; /, связывание не выявлено. Значение $xu^2(\chi^2)$ <10 указывает, что модель связывания 1:1, используемая для подгонки кривых, адекватно описывала экспериментальные данные.

Равновесные и кинетические константы считали "кажущимися" константам, учитывая эффекты авидности в результате бивалентного связывания IgG.

- (B) Точечные графики, показывающие константы скорости ассоциации (k_a) и диссоциации (k_d) для PGT121-подобных (синее закрашивание) и 10-1074-подобных (зеленое окрашивание) антител.
- (C) Графики линейной регрессии, сравнивающие значения k_a и k_d IgG-антител для их связывания с gp120 и gp140 (ось x) против их эффективностей нейтрализации (средние значения IC_{80}) 9 вирусов, показанных в табл. 4 (ось у).
- На фиг. 5 изображено связывание вариантов PGT121 с "коровыми" белками gp120, мутантом gp120 $^{\mathrm{GD}324\text{-}5\mathrm{AA}}$ и линейными пептидами gp120 $^{\mathrm{v3}}$.
- (A) Основанные на ELISA анализы связывания PGT121-подобных и 10-1074-подобных антител с gp120^{core} HXB2 и коровыми белками 2CC по сравнению с интактным gp120 YU-2. На оси х показана концентрация антител (M), необходимая для получения значений ELISA (OD_{405 нм}), показанных на оси у. Анти-CD4bs-антитело VRC01 (Science 329(5993):856-861), антитело против петли V3 10-188 (PLoS One 6(9):e24078) и нереактивное по отношению к ВИЧ антитело mGO53 (Science 301(5638):1374-1377) использовали в качестве контролей.
 - (B) То же, что и в случае (A), но для связывания с мутантным белком ${\rm g120}^{{\rm GD324-5AA}}$.
- (C) Столбчатая диаграмма, сравнивающая реактивности в ELISA PGT121- и 10-1074-подобных антител и контрольных антител (позитивный контроль, 10-188, 1-79, 2-59 и 2-1261 (Nature 458(7238):636-640)), и негативный контроль, mGO53) против перекрывающихся пептидов gp120 $^{\text{v3-c3}}$. На оси у показаны значения ELISA (OD_{405 нм}), полученные при тестировании IgG-антител в концентрации 2 мкг/мл. Аминокислотные последовательности отдельных пептидов показаны внизу справа. Все эксперименты осуществляли по меньшей мере в двух повторах. Показаны типичные данные.

На фиг. 6 изображено связывание PGT121 с мутантами по гликозилированию gp120 и дегликозилированным gp120.

- (A) Основанные на ELISA анализы связывания вариантов антител PGT121 и 10-1074 с gp120, gp120 $^{\text{NNT301}}$ - $^{303\text{AAA}}$, gp120 $^{\text{N332A}}$ и gp120 $^{\text{N332A/NNT301-303AAA}}$. На оси х показана концентрация антител (M), необходимая для получения значений ELISA (OD_{405 нм}), указанных на оси у. Черные пунктирные и сплошные линии показывают усредненную реактивность против четырех антигенов позитивных (10-188) и негативных (mGO53) контрольных антител.
- (В) Окрашенный серебром SDS-ПААГ-гель, на котором сравнивали необработанный gp120 (WT, дикого типа), расщепленный PNG-азой F и EndoH gp120s. L, лэддер белков.
- (C) То же, что и в случае (A), но сравнение между необработанным и обработанным PNG-азой F gp120.
 - (D) То же, что и в случае (A), но сравнение между необработанным и обработанным EndoH gp120. Все эксперименты осуществляли по меньшей мере в двух повторах.
 - На фиг. 7 изображено связывание клональных вариантов PGT121 и 10-1074 с гликанами.
- (А) Последовательности моносахаридов набора N-гликановых зондов, используемых в анализе на микроматрицах гликанов, чтобы исследовать PGT121-подобные и 10-1074-подобные антитела в отношении прямого связывания с N-гликанами. DH означает липидную метку 1,2-дигексадецил-sn-глицеро-3-фосфоэтаноламин (DHPE), с которым N-гликаны были конъюгированы посредством восстановительного аминирования. Ключевыми признаками, которые следует отметить, являются (і) антитела PGT121-группы связывали одноантенный N-гликановый зонд 10 (N2), при этом заканчивающаяся галактозой антенна связывалась 1-3-связью с маннозой кора, но не связывали изомерный N-гликановый зонд 11 (обозначенный N4) с антенной, связанной 1-6-связыю с маннозой кора; (іі) присутствие такой заканчивающейся галактозой 1-6-связанной антенны, как в двухантенном зонде 13 (NA2), позволяло связывание, как при присутствии а2-6-связанной (но не а2-3-связанной) сиаловой кислоты; (ііі) двухантенный зонд 12 (NGA2), не имеющий галактозы и заканчивающийся N-ацетилглюкозамином, не связывался.
- (В) Столбчатые диаграммы, сравнивающие связывание гликанов PGT121-подобными, 10-1074-подобными и антителами и антителами варианта зародышевой линии (GL). 10-188, антитело против петли V3, использовали в качестве негативного контроля. Числовую оценку связывания получали в виде интенсивности флуоресценции (средние для пятен в двух повторах) для зондов, распределенных по 2 фмоль (белые) и 5 фмоль на пятно (серые).

На фиг. 8 изображена активность антител в связывании и нейтрализации против gp120 только с высоким содержанием маннозы и вирусов.

- (A) На окрашенном серебром SDS-ПААГ-геле сравнивают gp120 YU-2, продуцированный в клет-ках, обработанных кифунензином (gp120 $_{\rm kif}$) и gp120, продуцированным в необработанных клетках (WT, дикого типа). L, белковый лэддер.
- (B) Сравнение в ELISA связывания PGT121-подобных (синие метки) и 10-1074-подобных (зеленые метки) антител к gp120 YU-2 (gp120 WT) и gp120 $_{\rm kif}$. На оси х показана концентрация антител (M), необходимая для получения в ELISA значений (OD $_{405~{\rm hm}}$), показанных на оси у.
- (C) Кривые нейтрализации для PGT121, оцениваемые против выбранных PGT121-чувствительных/10-1074-резистентных псевдовирусов, полученных в присутствии (вирус $_{\rm kif}$) или в отсутствие (вирус $_{\rm WT}$) кифунензина. Пунктирная горизонтальная линия показывает 50% нейтрализацию, на основании которой может быть получено значение ${\rm IC}_{50}$, исходя из концентрации антитела на оси х. Экс-

перименты осуществляли в трех повторах. Планки погрешностей показывают SD для измерений в трех повторах.

(D) Столбчатые графики, сравнивающие активность в нейтрализации выбранных антител против псевдовирусов YU-2 и PVO.4, полученных в клетках HEK293S GnTI $^{-/-}$ (вирус $_{GnT}^{-/-}$) или в клетках дикого типа (вирус $_{WT}$). На оси у показаны средние значения IC_{50} (мкг/мл) для нейтрализации вирусов, показанных на оси х. Планки погрешностей показывают SEM значений IC_{50} , полученных в двух независимых экспериментах.

На фиг. 9 показана активность в нейтрализации PGT121, 10-996 и 10-1074.

- (A) График, сравнивающий эффективности нейтрализации PGT121, 10-996 и 10-74 против вирусов указанных клад ВИЧ-1 (определенные с использованием анализа TZM-bl и панели из 119 псевдовирусов). На оси х показана концентрация антител (мкг/мл), необходимая для достижения 50% нейтрализации (IC $_{50}$). На оси у показана кумулятивная частота значений IC $_{50}$ вплоть до концентрации, показанной на оси х
- (В) График, сравнивающий широту и эффективности нейтрализации для антител PGT121, 10-996 и 10-1074 против расширенной панели из 119 вирусов, которые определяли в анализе нейтрализации TZM-bl. На оси у показана кумулятивная частота значений IC_{80} вплоть до концентрации, показанной на оси х.
- (C) На графиках показаны кривые нейтрализации выбранных вирусов под действием PGT121 и 10-1074. Пунктирная горизонтальная линия показывает 50% нейтрализацию, на основании которой может быть получено значение IC_{50} , исходя из концентрации антител, указанной на оси х. Эксперименты осуществляли в трех повторах. Планки погрешностей показывают SD для измерений в трех повторах.

На фиг. 10 изображена активность нейтрализации против исторических вирусов по сравнению с современными вирусами клады В. Точечные графики сравнивают эффективности нейтрализации против вирусов клады В, выделенных из исторических (исторические) и современных (современные) сероконверторов в случае выбранных bN-Aт. Горизонтальные столбики представляют медианные IC_{50} для всех вирусов у пациента. Различия между группами оценивали, используя критерий Манна-Уитни, ns - не значимы.

На фиг. 11 изображена нейтрализация двух тропических SHIV R5 с использованием панели из 11 анти-ВИЧ-1-мАт широкого спектра действия. Вычисленные значения IC_{50} для нейтрализации SHIVAD8EO (A) и SHIVDH12-V3AD8 (B).

На фиг. 12 изображена взаимосвязь концентраций в плазме пассивно вводимых нейтрализующих мАт с вирусным заражением после провокационного заражения макак двумя разными SHIV R5. Заштрихованные кружки показывают защищенных (без заражения) обезьян; незаштрихованные кружки означают инфицированных животных.

На фиг. 13 изображена концентрация в плазме bN-Aт. Концентрацию мAт определяли путем измерения нейтрализующей активности в образцах плазмы.

- (A) Значения ID_{50} , измеренные в анализе нейтрализации TZM.bl 10-1074 и 3BNC117 против штаммов ВИЧ-1, которые чувствительны к одному, но не чувствительны к другому bN-Aт (т.е. штамм ВИЧ-1 X2088 9 (чувствительный к 10-1074); штамм ВИЧ-1 Q769 d22 (чувствительный к 3BNC117).
- (В) Нейтрализующие активности плазмы, полученной до введения антител (prepP), но с импульсным введением 0,01, 0,1, 1, 10 и 100 мкг/мл антител 10-1074 (синий) или 3BNC117 (зеленый). Нейтрализующую активность указывали в виде титров ID_{50} в плазме (левые колонки) и преобразовывали в концентрации антител (правые колонки) на основании измеренных значений ID_{50} , указанных в случае (А).
- (C) Титры ID_{50} (левые колонки) и концентрации bN-Aт (правые колонки), измеренные в указанных образцах плазмы макак до (до иммунизации) и после (день) введения bN-Aт.

Подробное описание изобретения

Настоящее изобретение основано, по меньшей мере частично, на неожиданном открытии новой категории нейтрализующих антител широкого спектра действия (bN-AT) против ВИЧ, которые могут распознавать зависимые от углеводов эпитопы, включая N-гликан комплексного типа, на gp120.

Антитела имеют важное значение для успешного действия большинства вакцин, и антитела против ВИЧ, по-видимому, являются только коррелятом профилактики в недавнем испытании вакцины против ВИЧ RV144. У некоторых инфицированных ВИЧ-1 пациентов развивалась нейтрализующая серологическая активность широкого спектра действия против вирусного шипа gp160 через 2-4 года после инфекции, но такие антитела обычно не защищали инфицированных людей, поскольку аутологичные вирусы ускользали вследствие мутации. Тем не менее, широкая нейтрализующая активность создает давление отбора на вирус, и пассивный перенос широко нейтрализующих антител (bN-AT) макакам защищает от инфекции SHIV. Поэтому было высказано предположение, что вакцины, которые вызывают такие антитела, могут защищать людей от ВИЧ-инфекции.

Разработка способов клонирования антител в отдельных клетках показала, что мишенью bN-Ат являются разные эпитопы на шипе gp160 BИЧ-1. Наиболее эффективные bN-Ат против ВИЧ-1 распознают сайт связывания CD4 (CD4bs) (Science 333(6049):1633-1637; Nature 477(7365):466-470; Science 334(6060):1289-1293) и зависимые от углеводов эпитопы, связанные с вариабельными петлями (Nature 477(7365):466-470; Science 326(5950):285-289; Science 334(6059):1097-1103; Nature 480(7377):336-343),

включая петли V1/V2 (PG9/PG16) (Science 326(5950):285-289) и V3 (PGT) (Nature 477(7365):466-470). О зависимых от углеводов эпитопах известно меньше, поскольку антитела, исследованные до настоящего времени, являются либо уникальными примерами, либо представителями небольших клональных семейств.

Чтобы лучше понять ответ в виде нейтрализующих антител на ВИЧ-1 и эпитоп, являющийся мишенью РGТ-антител, авторы выделили представителей большого клонального семейства, преобладающего при вторичном иммунном ответе в виде gp160-специфичного IgG, из организма пациента, инфицированного вирусами клады A, который продуцировал PGT121. Как описано в настоящей публикации, антитела PGT121 делятся на две группы, группу PGT121-подобных и 10-1074-подобных антител, в соответствии с последовательностью, аффинностью связывания, нейтрализующей активностью и распознаванием углеводов и петли V3. 10-1074 и родственные представители семейства вызывают необычную эффективную нейтрализацию, включая широкую реактивность против вновь передаваемых вирусов. В отличие от ранее охарактеризованных зависимых от углеводов bN-AT, PGT121 связывается с N-гликанами комплексного типа, а не с N-гликанами с высоким содержанием маннозы в экспериментах с использованием микроматриц гликанов. Кристаллические структуры PGT121 и 10-1074, сравниваемые со структурами их предшественника зародышевой линии и структурой PGT121, связанного с N-гликаном комплексного типа, объясняют их различные свойства.

В одном примере осуществляли анализы для выделения В-клеточных клонов, кодирующих антитело PGT121, которое является уникальным среди гликанзависимых bN-Aт в отношении распознавания N-гликанов комплексного типа, а не N-гликанов с высоким содержанием маннозы. Клоны PGT121 разделяются на PGT121- и 10-1074-подобные группы, отличающиеся по последовательности, аффинности связывания, распознаванию углеводов и нейтрализующей активности. Группа 10-1074 обладает заметной эффективностью и широким спектром действия, несмотря на отсутствие регистрируемого связывания с гликанами, свободными от белков. Кристаллические структуры не связанного с лигандом PGT121, 10-1074 и его предшественника зародышевой линии показывают, что такое различное распознавание углеводов картируется в углублении между CDRH2 и CDRH3, которое было занято N-гликаном комплексного типа в отдельной структуре PGT121. Обмен остатками, контактирующими с гликанами, между PGT121 и 10-1074 подтвердил важность таких остатков для нейтрализующей активности. Оболочки ВИЧ имеют разные соотношения N-гликанов с высоким содержанием маннозы и N-гликанов комплексного типа, таким образом, полученные результаты, включая первую структурную характеристику распознавания N-гликанов комплексного типа bN-антителом против ВИЧ, имеют важнейшее значение для понимания того, как антитела и, в конечном итоге, вакцины могут достигать широкой нейтрализующей активности.

Термин "антитело" (Ат) в используемом в настоящем описании смысле включает моноклональные антитела, поликлональные антитела, полиспецифичные антитела (например, биспецифичные антитела и полиреактивные антитела) и фрагменты антител. Таким образом, подразумевают, что термин "антитело", который использован в любом контексте в настоящем описании, включает без ограничения любой специфично связывающийся представитель класса и/или изотипа иммуноглобулинов (например, IgG1, IgG2, IgG3, IgG4, IgM, IgA, IgD, IgE и IgM); и его биологически подходящий фрагмент или его специфично связывающийся представитель, включая без ограничения Fab, F(ab')2, Fv и scFv (одноцепочечный или связанная единица). В данной области известно, что антитело представляет собой гликопротеид, имеющий по меньшей мере две тяжелых (Н) цепи и две легких (L) цепи, взаимосвязанных дисульфидными связями, или их антигенсвязывающую часть. Тяжелая цепь состоит из вариабельной области тяжелой цепи (V_H) и константной области тяжелой цепи (CH1, CH2 и CH3). Легкая цепь состоит из вариабельной области легкой цепи (VL) и константной области легкой цепи (CL). Вариабельные области тяжелой и легкой цепей содержат каркасные области (FWR) и определяющие комплементарность области (CDR). Четыре области FWR являются относительно консервативными, тогда как области CDR (CDR1, CDR2 и CDR3) представляют собой гипервариабельные области и распределены от NH₂-конца к COOH-концу следующим образом: FWR1, CDR1, FWR2, CDR2, FWR3, CDR3 и FWR4. Вариабельные области тяжелой и легкой цепей содержат связывающий домен, который взаимодействует с антигеном, тогда как в зависимости от изотипа константная область(ти) может опосредовать связывание иммуноглобулина с тканями или факторами хозяина.

Также в определение "антитело", как используется в настоящем описании смысле, включены химерные антитела, гуманизированные антитела и рекомбинантные антитела, человеческие антитела, образованные в трансгенном животном, отличном от человека, а также антитела, выбранные из библиотек с использованием методики обогащения, доступной специалисту в данной области.

Термин "вариабельные" относится к тому факту, что некоторые участки вариабельных (V) доменов сильно отличаются по последовательности среди антител. V-домен опосредует связывание антигена и определяет специфичность конкретного антитела по отношению к его конкретному антигену. Однако вариабельность неравномерно распределена на протяжении участка длиной 110 аминокислот вариабельных областей. На самом деле V-области состоят из относительно инвариантных участков, называемых каркасными областями (FR) длиной 15-30 аминокислот, разделенных более короткими областями чрез-

вычайной вариабельности, называемыми "гипервариабельными областями", каждая из которых имеет длину 9-12 аминокислот. Каждая из вариабельных областей нативных тяжелых и легких цепей содержит четыре FR, в основном принимающих конформацию β-слоя, связанных тремя гипервариабельными областями, которые образуют петли, связывающие и в некоторых случаях образующие часть структуры β-слоя. Гипервариабельные области в каждой цепи удерживаются вместе в тесной близости посредством FR и с гипервариабельными областями из другой цепи вносят вклад в образование антигенсвязывающего участка антител (см., например, публикацию Rabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)).

Термин "гипервариабельная область" в используемом в настоящем описании смысле относится к аминокислотным остаткам антитела, которые ответственны за связывание антигена. Гипервариабельная область обычно содержит аминокислотные остатки из "определяющей комплементарность области" (CDR).

Термин "моноклональное антитело" в используемом в настоящем описании смысле относится к антителу, полученному из популяции, по существу, гомогенных антител, т.е. отдельные антитела, составляющие популяцию, являются идентичными, за исключением возможных встречающихся в природе мутаций, которые могут присутствовать в минорных количествах. Термин "поликлональное антитело" относится к препаратам, которые включают разные антитела, направленные против разных детерминант ("эпитопов").

Моноклональные антитела согласно настоящему изобретению включают "химерные" антитела, в которых часть тяжелой и/или легкой цепи идентична или гомологична соответствующим последовательностям в антителах, полученных от конкретного вида, или относящихся к конкретному классу или подклассу антител, при этом остальная часть цепи(цепей) идентична или гомологична соответствующим последовательностям в антителах, полученных от другого вида или относящихся к другому классу или подклассу антител, а также фрагменты таких антител, при условии, что они проявляют требуемую биологическую активность (см., например, патент США № 4816567 и публикации Morrison et al., Proc. Natl. Acad. Sci. USA 81: 6851-6855 (1984)). В описанном изобретении предлагаются антигенсвязывающие последовательности вариабельной области, полученные из антител человека. Соответственно, химерные антитела, представляющие основной интерес, согласно настоящему изобретению включают антитела, имеющие одну или несколько антигенсвязывающих последовательностей человека (например, CDR) и содержащие одну или несколько последовательностей, полученных из антитела животного, отличного от человека, например последовательность FR или С-области. Кроме того, химерные антитела, включенные в настоящее изобретение, представляют собой антитела, содержащие антигенсвязывающую последовательность вариабельной области человека одного класса или подкласса антител другой последовательности, например последовательность FR или C-область, полученную из другого класса или подкласса антител.

Обычно считают, что "гуманизированным антителом" является антитело человека, которое имеет один или несколько аминокислотных остатков, введенных в него из источника, которое является животным, отличным от человека. Такие аминокислотные остатки животного, отличного от человека, часто называют "импортируемыми" остатками, которые обычно взяты из "импортируемой" вариабельной области. Гуманизацию можно осуществить, следуя описанию Winter и соавторов (см., например, Jones et al., Nature, 321:522-525 (1986); Reichmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239: 1534-1536 (1988)), заменяя импортируемыми последовательностями гипервариабельной области соответствующие последовательности антитела человека. Соответственно, такие "гуманизированные" антитела являются химерными антителами (см., например, патент США № 4816567), в которых значительно меньшую часть, чем интактная вариабельная область человека, заменяют соответствующей последовательностью вида, отличного от человека.

"Фрагмент антитела" содержит часть интактного антитела, такую как антигенсвязывающая или вариабельная область интактного антитела. Примеры фрагментов антител включают без ограничения фрагменты Fab, Fab', F(ab')₂ и Fv; диантитела; линейные антитела (см., например, патент США № 5641870; Zapata et al., Protein Eng. 8(10):1057-1062 [1995]); одноцепочечные молекулы антител и полиспецифичные антитела, образованные из фрагментов антител.

"Fv" означает минимальный фрагмент антитела, который содержит полный участок распознавания антигена и связывания антигена. Такой фрагмент содержит димер из одной вариабельной области тяжелой цепи и одной вариабельной области легкой цепи в тесной нековалентной ассоциации. В результате фолдинга указанных двух доменов возникают шесть гипервариабельных петель (по три петли из каждой Н- и L-цепи), которые обеспечивают аминокислотные остатки для связывания антигена и придают антителу специфичность в связывании антигена. Однако даже одна вариабельная область (или половина Fv, содержащая только три CDR, специфичные по отношению к антигену) обладает способностью распознавать и связывать антиген, хотя и с более низкой аффинностью, чем полный участок связывания.

"Одноцепочечный Fv" ("sFv" или "scFv") означает фрагменты антител, которые содержат домены антитела V_H и V_L , связанные в одной полипептидной цепи. Полипептид sFv может дополнительно содержать полипептидный линкер между доменами V_H и V_L , который обеспечивает способность sFv обра-

зовывать требуемую структуру для связывания антигена. Обзор, касающийся sFv, см., например, в публикациях Pluckthun, в The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994); Borrebaeck 1995, ниже.

Термин "диатела" относится к небольшим фрагментам антител, полученным в результате конструирования фрагментов sFv с короткими линкерами (примерно 5-10 остатков) между доменами V_H и V_L , так что достигается межцепочечное, но не внутрицепочечное спаривание V-доменов, что приводит к получению бивалентного фрагмента, т.е. фрагмента, имеющего два антигенсвязывающего участка. Биспецифичные диатела являются гетеродимерами, состоящими из двух "кроссоверных" sFv-фрагментов, в которых домены V_H и V_L двух антител присутствуют на разных полипептидных цепях. Диантитела описаны более полно, например, в EP 404097; WO 93/11161 и в публикации Hollinger et al., Proc. Natl. Acad. Sci. USA, 90: 6444-6448 (1993).

Доменные антитела (dAb), которые могут быть получены в полностью человеческой форме, являются наименьшими известными антигенсвязывающими фрагментами антител в диапазоне примерно от 11 до примерно 15 кДа. dAb являются устойчивыми вариабельными областями тяжелой и легкой цепей иммуноглобулинов (V_H и V_L соответственно). Они в высокой степени экспрессируются в культуре клеток микроорганизмов, проявляют подходящие биофизические свойства, включая, например, без ограничения, растворимость и стабильность к температуре и хорошо подходят для селекции и созревания аффинности in vitro, например, в фаговом дисплее. dAb являются биологически активными в качестве мономеров, и вследствие их небольшого размера и присущей им стабильности могут быть представлены в форме более крупных молекул, чтобы создать лекарственные средства с более длительным временем полужизни в сыворотке или другими фармакологическими активностями. Примеры такой методики были описаны, например, в WO 9425591 для антител, полученных из тяжелой цепи Ig верблюдовых, а также в US 20030130496, где описано выделение однодоменных полностью человеческих антител из фаговых библиотек.

Fv и sFv являются единственными видами с интактными антигенсвязывающими участками, которые лишены константных областей. Таким образом, они подходят для пониженного неспецифичного связывания во время применения in vivo. Могут быть сконструированы слитые белки sFv для получения слияния с эффекторным белком либо на амино-, либо на карбоксильном конце sFv. См., например, Antibody Engineering, ed. Borrebaeck, выше. Фрагмент антитела также может представлять собой "линейное антитело", которое описано, например, в патенте США № 5641870. Такие линейные фрагменты антител могут быть моноспецифичными или биспецифичными.

В некоторых вариантах антитела согласно описанному изобретению являются биспецифичными или полиспецифичными. Биспецифичные антитела представляют собой антитела, которые обладают специфичностями связывания по меньшей мере для двух разных эпитопов. Примеры биспецифичных антител могут связываться с двумя разными эпитопами одного антигена. В других антителах могут быть объединены первый антигенсвязывающий участок с участком связывания для второго антигена. Альтернативно, анти-ВИЧ-плечо можно объединять с плечом, которое связывается с инициирующей молекулой на лейкоците, такой как молекула Т-клеточного рецептора (например, CD3) или Fc-рецепторы в случае IgG (Fc-үR), такие как Fc-үRI (CD64), Fc-үRII (CD32) и Fc-үRIII (CD 16), для того, чтобы сфокусировать и локализовать механизмы клеточной защиты на инфицированной клетке. Биспецифичные антитела также можно использовать для локализации цитотоксических средств в инфицированных клетках. Биспецифичные антитела могут быть получены в виде полноразмерных антител или фрагментов антител (например, биспецифичных F(ab')₂-антител). Например, в WO 96/16673 описано биспецифичное анти-ЕrbB2/анти-Fc γRIII-антитело, и в патенте США № 5837234 раскрыто биспецифичное анти-ErbB2/анти-Fc γRI-антитело. Например, биспецифичное анти-ErbB2/Fc-α-антитело описано в WO 98/02463; в патенте США № 5821337 описано биспецифичное анти-ErbB2/анти-CD3-антитело. См. также, например, публикации Mouquet et al., Polyreactivity Increases The Apparent Affinity Of Anti-HIV Antibodies By Heteroligation. Nature. 467, 591-5 (2010), and Mouquet et al., Enhanced HIV-1 neutralization by antibody heteroligation" Proc. Natl. Acad. Sci. USA. 2012 Jan 17; 109 (3):875-80.

Способы получения биспецифичных антител известны в данной области. Традиционное получение полноразмерных биспецифичных антител основано на коэкспрессии двух пар тяжелая цепь-легкая цепь иммуноглобулина, при этом две цепи имеют разные специфичности (см., например, Millstein et al., Nature, 305: 537-539 (1983)). Сходные способы описаны, например, в WO 93/08829, Traunecker et al., EMBO J., 10: 3655-3659 (1991), а также см. Mouquet et al., Enhanced HIV-1 neutralization by antibody heteroligation" Proc. Natl. Acad. Sci. USA. 2012 Jan 17; 109(3):875-80.

Альтернативно, вариабельные области антител с требуемыми специфичностями связывания (участки связывания антитело-антиген) сливают с последовательностями константных доменов иммуноглобулина. Слияние осуществляют с константным доменом тяжелой цепи Ig, содержащим по меньшей мере часть шарнирной области, областей CH2 и CH3. Согласно некоторым вариантам осуществления первая константная область тяжелой цепи (CH1), содержащая сайт, необходимый для связывания легкой цепи, присутствует по меньшей мере в одном из слияний. ДНК, кодирующие слияния тяжелой цепи иммуног-

лобулина и в случае необходимости легкой цепи иммуноглобулина, встраивают в отдельные векторы экспрессии и котрансфицируют в подходящую клетку-хозяин. Это дает большую гибкость при корректировке взаимных соотношений трех полипептидных фрагментов в таких вариантах, когда неравные соотношения трех полипептидных цепей, используемых в конструкции, дают оптимальный выход требуемого биспецифичного антитела. Однако можно встраивать кодирующие последовательности для двух или всех трех полипептидных цепей в один вектор экспрессии в том случае, когда экспрессия, по меньшей мере, двух полипептидных цепей в равных соотношениях дает высокие выходы или когда соотношения не оказывают значимого влияния на выход требуемого сочетания цепей.

Способы создания биспецифичных антител из фрагментов антител также описаны в литературе. Например, биспецифичные антитела могут быть получены с использованием химического связывания. Например, Brennan et al. (Science, 229:81 (1985)) описывают способ, при котором интактные антитела протеолитически расщепляют, чтобы создать F(ab')₂-фрагменты. Полученные фрагменты восстанавливают в присутствии срелства, образующего комплексы дитиола, арсенита натрия, чтобы стабилизировать соседние дитиолы и предотвратить образование межмолекулярного дисульфида. Затем созданные Fab'-фрагменты превращают в производные тионитробензоата (TNB). Один из Fab'-TNB-производных затем снова превращают в Fab'-тиол восстановлением с использованием меркаптоэтиламина и смешивают с эквимолярным количеством другого Fab'-TNB-производного с образованием биспецифичного антитела. Полученные биспецифичные антитела можно использовать в качестве агентов для избирательной иммобилизации ферментов.

В настоящем изобретении предполагаются другие модификации антител. Например, антитело может быть связано с одним из множества небелковых полимеров, например полиэтиленгликолем, полипропиленгликолем, полиоксиалкиленами или сополимерами полиэтиленгликоля и полипропиленгликоля. Антитело также может быть заключено в микрокапсулы, полученные, например, способами коацервации или полимеризацией на границе фаз (например, микрокапсулы из гидроксиметилцеллюлозы или желатиновые микрокапсулы и микрокапсулы из поли(метилметакрилата) соответственно), в коллоидные системы доставки лекарственных средств (например, липосомы, альбуминовые микросферы, микроэмульсии, наночастицы и нанокапсулы) или в макроэмульсии. Такие способы описаны, например, в Remington's Pharmaceutical Sciences, 16th edition, Oslo, A., Ed., (1980).

Обычно антитела согласно описанному изобретению получают рекомбинантно, используя векторы и способы, доступные в данной области. Антитела человека также могут быть созданы активированными in vitro В-клетками (см., например, патенты США №№ 5567610 и 5229275). Общие способы молекулярной генетики и генной инженерии, применимые в настоящем изобретении, описаны в современных изданиях Molecular Cloning: A Laboratory Manual (Sambrook, et al., 1989, Cold Spring Harbor Laboratory Press), Gene Expression Technology (Methods in Enzymology, Vol. 185, edited by D. Goeddel, 1991. Academic Press, San Diego, CA), "Guide to Protein Purification" in Methods in Enzymology (M.P. Deutshcer, ed., (1990) Academic Press, Inc.); PCR Protocols: A Guide to Methods and Applications (Innis, et al. 1990. Academic Press, San Diego, CA), Culture of Animal Cells: A Manual of Basic Technique, 2nd Ed. (R.I. Freshney. 1987. Liss, Inc. New York, NY), and Gene Transfer and Expression Protocols, pp. 109-128, ed. E.J. Murray, The Humana Press Inc., Clifton, N.J.). Peareнты, векторы для клонирования и наборы для генетической обработки доступны от коммерческих поставщиков, таких как BioRad, Stratagene, Invitrogen, ClonTech и Sigma Aldrich Co.

Антитела человека также могут быть получены в трансгенных животных (например, мышах), которые способы продуцировать полный репертуар антител человека в отсутствие продукции эндогенных иммуноглобулинов. Например, было описано, что гомозиготная делеция гена соединяющей области тяжелой цепи (J_H) антитела у химерных и мутантных по зародышевой линии мышей приводит к полному ингибированию продукции эндогенных антител. Перенос ряда генов иммуноглобулина зародышевой линии человека в таких мутантных по зародышевой линии мышей будет приводить к продукции антител человека при антигенной стимуляции. См., например, Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggemann et al., Year in Immuno., 7:33 (1993); патенты США №№ 5545806, 5569825, 5591669 (все GenPharm), патент США № 5545807 и WO 97/17852. Такие животные могут быть генетически сконструированы для получения антител человека, содержащих полипептид согласно описанному изобретению.

Были разработаны различные способы получения фрагментов антител. Традиционно такие фрагменты получали в результате протеолитического расщепления интактных антител (см., например, Morimoto et al., Journal of Biochemical and Biophysical Methods 24:107-117 (1992); and Brennan et al., Science, 229:81 (1985)). Однако в настоящее время такие фрагменты могут непосредственно продуцироваться рекомбинантными клетками-хозяевами. Фрагменты антител Fab, Fv и ScFv могут быть экспрессированы и секретированы из E. coli, таким образом, обеспечивая возможность простого получения больших количеств таких фрагментов. Fab'-SH-фрагменты могут быть непосредственно извлечены из клеток E. coli и химически связаны с образованием F(ab')₂-фрагментов (см., например, Carter et al., Bio/Technology 10:163-167 (1992)). Согласно другому способу F(ab')₂-фрагменты могут быть выделены непосредственно из культуры рекомбинантных клеток-хозяев. Fab и F(ab')₂-фрагменты с увеличенным временем полужиз-

ни in vivo, содержащие остатки эпитопа, связывающего рецептор спасения, описаны в патенте США № 5869046. Другие способы получения фрагментов антител будут известны специалистам в данной области.

Другие способы, которые известны в данной области для селекции фрагментов антител из библиотек с использованием методики обогащения, включая, но ими не ограничиваясь, фаговый дисплей, рибосомный дисплей (Hanes and Pluckthun, 1997, Proc. Nat. Acad. Sci. 94: 4937-4942), бактериальный дисплей (Georgiou, et al., 1997, Nature Biotechnology 15:29-34) и/или дрожжевой дисплей (Kieke, et al., 1997, Protein Engineering 10: 1303-1310), можно использовать в качестве альтернативы ранее описанным способам селекции одноцепочечных антител.

Одноцепочечные антитела отбирают из библиотеки одноцепочечных антител, полученных непосредственно с использованием методики на основе нитчатого фага. Методика фагового дисплея известна в данной области (см. методику Cambridge Antibody Technology (CAT)), которая описана в патентах США №№ 5565332, 5733743, 5871907, 5872215, 5885793, 5962255, 6140471, 6225447, 6291650, 6492160, 6521404, 6544731, 6555313, 6582915, 6593081, а также других патентах США или заявках, которые основаны на приоритете подачи заявки GB 9206318, поданной 24 мая 1992; см. также Vaughn, et al., 1996, Nature Biotechnology 14:309-314). Одноцепочечные антитела также могут быть спроектированы и сконструированы с использованием доступной методики рекомбинации ДНК, такой как способ амплификации ДНК (например, ПЦР), или возможно с использованием соответствующей кДНК гибридомы в качестве матрицы.

Варианты антител также включены в объем изобретения. Таким образом, варианты последовательностей, перечисленные в заявке, также включены в объем изобретения. Дополнительные варианты последовательностей антител, имеющие улучшенную аффинность, могут быть получены с использованием способов, известных в данной области, и включены в объем изобретения. Например, могут быть использованы аминокислотные замены для получения антител с дополнительно улучшенной аффинностью. Альтернативно можно использовать оптимизацию кодонов нуклеотидной последовательности, чтобы повысить эффективность трансляции в системах экспрессии для продуцирования антитела.

Последовательности таких вариантов антитела будут иметь 70% или большую (т.е. 80, 85, 90, 95, 97, 98, 99% или больше) идентичность последовательности с последовательностями, указанными в заявке. Такую идентичность последовательностей вычисляют по отношению к полной длине эталонной последовательности (т.е. последовательности, указанной в заявке). Идентичность в процентах, которая указана в настоящем описании, определяют, применяя BLAST, версию 2.1.3, используя параметры по умолчанию, определенные NCBI (the National Center for Biotechnology Information; www.ncbi.nlm.nih.gov/) [матрица Blosum 62; штраф за открытие пробела = 11 и штраф за удлинение пробела = 1]. Например, в настоящем изобретении предлагаются пептидные последовательности, которые содержат по меньшей мере примерно 5, 10, 15, 20, 30, 40, 50, 75, 100, 150 или больше непрерывно следующих друг за другом пептидов одной или нескольких последовательностей, раскрытых в настоящем описании, а также все промежуточные длины между ними. В используемом в настоящем описании смысле термин "промежуточные длины" предназначен для описания любой длины между указанными значениями, такие как 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 и т.д.; 21, 22, 23, и т.д.; 30, 31, 32 и т.д.; 50, 51, 52, 53 и т.д.; 100, 101, 102, 103 и т.д.; 150, 151, 152, 153 и т.д..

Настоящее изобретение относится к антителам либо отдельно, либо в сочетании с другими антителами, такими как, но ими не ограничиваясь, антитела VRC01, против петли V3, CD4bs и CD4i, а также PG9/PG16-подобные антитела, которые обладают широкой нейтрализующей активностью в сыворотке.

Согласно другому варианту осуществления настоящее изобретение относится к способам получения и введения композиции ВИЧ-антитела, которая подходит для введения больному человеку или примату, отличному от человека, имеющему ВИЧ-инфекцию или подвергаемому риску ВИЧ-инфекции, в количестве и в соответствии со схемой, достаточными для индукции защитного иммунного ответа против ВИЧ или уменьшения количества вируса ВИЧ у человека.

Согласно другому варианту настоящее изобретение относится к вакцине, содержащей по меньшей мере одно антитело согласно изобретению и фармацевтически приемлемый носитель. Согласно одному варианту осуществления вакцина представляет собой вакцину, содержащую по меньшей мере одно антитело, описанное в настоящей публикации, и фармацевтически приемлемый носитель. Вакцина может содержать множество антител, имеющих описанные в настоящей публикации характеристики, в любом сочетании и может дополнительно содержать антитела, нейтрализующие ВИЧ, которые известны в данной области.

Следует понимать, что композиции могут иметь одно или сочетание антител, описанных в настоящей публикации, которые могут быть одинаковыми или разными, чтобы профилактически или терапевтически лечить прогрессирование различных подтипов ВИЧ-инфекции после вакцинации. Такие сочетания могут быть выбраны в соответствии с требуемым иммунитетом. Когда антитело вводят животному или человеку, его можно сочетать с одним или несколькими фармацевтически приемлемыми носителями, эксципиентами или адъювантами, которые известны специалисту в данной области. Сочетание может дополнительно включать нейтрализующие антитела широкого спектра действия, известные в данной

области, включая, но ими не ограничиваясь, антитела VRC01, b12, против петли V3, CD4bs и CD4i, а также PG9/PG16-подобные антитела.

Кроме того, что касается определения эффективного уровня у пациента для лечения ВИЧ, то в частности, доступны подходящие животные модели, и они были широко использованы для оценки эффективности іп vivo, направленной против ВИЧ, в различных протоколах генной терапии (Sarver et al. (1993b), выше). Такие модели включают мышей, обезьян и кошек. Даже несмотря на то, что такие животные в природе не чувствительны к ВИЧ-заболеванию, химерные мышиные модели (например, SCID, bg/nu/xid, NOD/SCID, SCID-hu, иммунокомпетентные SCID-hu, BALB/c с разрушенным костным мозгом), реконструированные с использованием мононуклеарных клеток периферической крови (PBMC) человека, лимфатических узлов, фетальной печени/тимуса или других тканей, могут быть инфицированы лентивирусным вектором или ВИЧ и использованы в качестве моделей патогенеза ВИЧ. Подобным образом, можно использовать модель вирус иммунодефицита обезьян (SIV)/обезьяны, так же как модель вирус иммунодефицита кошек (FIV)/кошки. Фармацевтическая композиция может содержать другие фармацевтические средства вместе с вектором согласно изобретению в случае применения для терапевтического лечения СПИДа. Такие другие фармацевтические средства можно использовать традиционным для них образом (т.е. в качестве средств для лечения ВИЧ-инфекции).

Согласно другому варианту осуществления настоящее изобретение относится к фармацевтической композиции на основе антител, содержащей эффективное количество выделенного ВИЧ-антитела или варианта с созревшей аффинностью, которое обеспечивает выбор профилактического или терапевтического лечения для снижения инфекции вирусом ВИЧ. Основанная на антителах фармацевтическая композиция согласно настоящему изобретению может быть получена несколькими способами, известными в данной области (например, см. McGoff and Scher, 2000, Solution Formulation of Proteins/Peptides: In McNally, E.J., ed. Protein Formulation and Delivery. New York, NY: Marcel Dekker; pp. 139-158; Akers and Defilippis, 2000, Peptides and Proteins as Parenteral Solutions. In: Pharmaceutical Formulation Development of Peptides and Proteins. Philadelphia, PA: Talyor and Francis; pp. 145-177; Akers, et al., 2002, Pharm. Biotechnol. 14:47-127).

Фармацевтически приемлемая композиция, подходящая для введения пациенту, будет содержать эффективное количество антитела в препарате, который будет сохранять биологическую активность и при этом также обеспечивать максимальную стабильность во время хранения в приемлемом диапазоне температур. Фармацевтические композиции также могу содержать, в зависимости от требуемого препарата, фармацевтически приемлемые разбавители, фармацевтически приемлемые носители и/или фармацевтически приемлемые эксципиенты или любой такой наполнитель, обычно используемый для приготовления фармацевтических композиций для введения животным или человеку. Разбавитель выбирают так, чтобы он не влиял на биологическую активность сочетания. Примерами таких разбавителей являются дистиллированная вода, физиологический фосфатно-солевой буфер, растворы Рингера, раствор декстрозы и раствор Хэнкса. Количество эксципиента, которое применимо в фармацевтической композиции или препарате согласно настоящему изобретению, представляет собой количество, которое служит для равномерного распределения антитела в композиции, так, чтобы оно было равномерно распределено в том случае, когда его доставляют в организм индивида. Он может служить для разбавления антитела до концентрации, которая обеспечивает получение требуемых полезных паллиативных или целебных результатов, в то же время минимизирует любые неблагоприятные побочные эффекты, которые могут возникать вследствие слишком высокой концентрации. Он может также оказывать действие как консервант. Таким образом, в случае антитела, обладающего высокой физиологической активностью, можно использовать большее количество эксципиента. С другой стороны, в случае любого активного ингредиента(ов), который проявляет более низкую физиологическую активность, будет использовано меньшее количество эксципиента.

Описанные выше антитела и композиции антител или вакцинные композиции, содержащие по меньшей мере одно или сочетание антител, описанных в настоящей публикации, могут быть введены для профилактического и терапевтического лечения инфекции вирусом ВИЧ.

Настоящее изобретение также относится к выделенным полипептидам, содержащим новые аминокислотные последовательности легких цепей и тяжелых цепей, а также консенсусные последовательности тяжелых и легких цепей SEQ ID NO: 1 и 2, которые указаны на фиг. 3.

В других родственных вариантах осуществления изобретение относится к вариантам полипептидов, которые кодируют аминокислотные последовательности ВИЧ-антител, перечисленные на фиг. 3; консенсусные последовательности тяжелой и легкой цепей SEQ ID NO: 1 и 2. Такие варианты полипептидов имеют по меньшей мере 70, 75, 80, 85, 90, 95, 96, 97, 98 или 99% или более высокую идентичность последовательности в сравнении с полипептидной последовательностью согласно настоящему изобретению, которую определяют с применением способов, описанных в настоящей публикации (например, в BLAST-анализе с использованием стандартных параметров). Специалисту в данной области будет понятно, что такие значения могут быть соответствующим образом скорректированы для определения соответствующей идентичности кодируемых белков, учитывая сходство аминокислот и тому подобное.

Термин "полипептид" используют в его обычном значении, т.е. как последовательность аминокис-

лот. Полипептиды не ограничены конкретной длиной продукта. Пептиды, олигопептиды и белки включены в определение полипептид, и такие термины могут быть использованы взаимозаменяемо в настоящем описании, если специально не указано иное. Такой термин также включает модификации полипептида после экспрессии, например, гликозилирование, ацетилирование, фосфорилирование и т.п., а также другие модификации, известные в данной области, как встречающиеся в природе, так и не встречающиеся в природе. Полипептид может представлять собой полный белок или его подпоследовательность. Представляющими особый интерес полипептидами в контексте настоящего изобретения являются аминокислотные подпоследовательности, содержащие CDR, $V_{\rm H}$ и $V_{\rm L}$, способные связывать антиген или ВИЧ-инфицированную клетку.

"Вариантом" полипептида в используемом в настоящем описании смысле данного термина является полипептид, который обычно отличается от полипептида, конкретно раскрытого в настоящем описании, одной или несколькими заменами, делениями, добавлениями и/или инсерциями. Такие варианты могут встречаться в природе или могут быть созданы синтетически, например, в результате модификации одной или нескольких описанных выше полипептидных последовательностей согласно изобретению и оценки одной или нескольких биологических активностей полипептида, как описано в настоящей публикации и/или с использованием ряда способов, хорошо известных в данной области.

Например, некоторые аминокислоты могут быть заменены другими аминокислотами в структуре белка без значительной потери его способности связывать другие полипептиды (например, антигены) или клетки. Так как способность к связыванию и природа белка определяют биологическую функциональную активность белка, могут быть осуществлены некоторые замены аминокислотной последовательности в последовательности белка, и соответственно в кодирующей последовательности ДНК, лежащей в ее основе, с получением при этом белка с подобными свойствами. Таким образом предполагается, что различные изменения могут быть осуществлены в пептидных последовательностях заявленных композиций или соответствующих последовательностях ДНК, которые кодируют указанные пептиды без существенной потери их биологической пользы или активности.

Во многих случаях вариант полипептида будет содержать одну или несколько консервативных замен. "Консервативная замена" представляет собой замену, при которой аминокислоту заменяют другой аминокислотой, которая обладает сходными свойствами, так что специалист в области химии пептидов может ожидать, что вторичная структура и гидропатическая природа полипептида существенно не изменится.

Аминокислотные замены обычно основаны на относительном сходстве заместителей боковых цепей аминокислот, например их гидрофобности, гидрофильности, заряда, размера и т.п. Примеры замен, при которых учитывают указанные выше характеристики, хорошо известны специалистам в данной области и включают аргинин и лизин; глутамат и аспартат; серин и треонин; глутамин и аспарагин; и валин, лейцин и изолейцин.

"Гомология" или "идентичность последовательностей" относится к процентному содержанию остатков в варианте полинуклеотидной или полипептидной последовательности, которые идентичны инвариантной последовательности после выравнивания последовательностей и введения пробелов, если это необходимо для достижения максимальной гомологии в процентах. В конкретных вариантах осуществления изобретения полинуклеотидные и полипептидные варианты имеют по меньшей мере примерно 70%, по меньшей мере примерно 90%, по меньшей мере примерно 95%, по меньшей мере примерно 98% или по меньшей мере примерно 99% гомологию полинуклеотидов или полипептидов с полинуклеотидом или полипептидом, описанным в настоящей публикации.

Такие варианты полипептидной последовательности будут иметь 70% или более высокую (т.е. 80, 85, 90, 95, 97, 98, 99% или более высокую) идентичность последовательности с последовательностями, указанными в заявке. В дополнительных вариантах описанное изобретение относится к фрагментам полипептидов, имеющим различные длины непрерывных участков аминокислотных последовательностей, раскрытых в настоящем описании. Например, в настоящем изобретении предлагаются пептидные последовательности, которые содержат по меньшей мере примерно 5, 10, 15, 20, 30, 40, 50, 75, 100, 150 или больше непрерывно следующих друг за другом пептидов одной или нескольких последовательностей, раскрытых в настоящем описании, а также все промежуточные длины между ними.

Изобретение также относится к последовательностям нуклеиновых кислот, кодирующим часть или все легкие и тяжелые цепи описанных антител согласно изобретению и их фрагментов. Вследствие вырожденности генетического кода будут существовать варианты таких последовательностей, которые кодируют такие же аминокислотные последовательности.

Настоящее изобретение также относится к выделенным последовательностям нуклеиновых кислот, кодирующим полипептиды тяжелой и легкой цепей ВИЧ-антител, указанные на фиг. 3, и консенсусные последовательности тяжелой и легкой цепей SEQ ID NO: 1 и 2.

В других родственных вариантах описанное изобретение относится к вариантам полинуклеотидов, которые кодируют пептидные последовательности тяжелой и легкой цепей ВИЧ-антител, указанные на фиг. 3; консенсусные последовательности тяжелой и легкой цепей SEQ ID NO: 1 и 2. Такие варианты

полинуклеотидов имеют по меньшей мере 70%, по меньшей мере 75%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98% или по меньшей мере 99% или более высокую идентичность последовательности в сравнении с полинуклеотидной последовательностью согласно настоящему изобретению, которую определяют, применяя способы, описанные в настоящей публикации (например, BLAST-анализ с использованием стандартных параметров). Специалисту в данной области будет понятно, что такие значения могут быть соответствующим образом скорректированы для определения соответствующей идентичности белков, кодируемых двумя нуклеотидными последовательностями, с учетом вырожденности кодонов, сходства аминокислот, расположения рамки считывания и т.п.

Термины "нуклеиновая кислота" и "полинуклеотид" используют в настоящем описании взаимозаменяемо по отношению к однонитевой или двунитевой РНК, ДНК или смешанным полимерам. Полинуклеотиды могут содержать геномные последовательности, внегеномные и плазмидные последовательности и более мелкие сконструированные участки генов, которые экспрессируют или могут быть адаптированы для экспрессии полипептидов.

"Выделенная нуклеиновая кислота" представляет собой нуклеиновую кислоту, которая, по существу, отделена от других геномных последовательностей ДНК, а также белков или комплексов, таких как рибосомы и полимеразы, которые в природе сопровождают нативную последовательность. Термин охватывает последовательность нуклеиновой кислоты, которая была извлечена из ее природного окружения, и включает рекомбинантные или клонированные изоляты ДНК и химически синтезированные аналоги или аналоги, синтезированные биологически в гетерологичных системах. По существу, чистая нуклеиновая кислота включает выделенные формы нуклеиновой кислоты. Соответственно, это относится к нуклеиновой кислоте, которая исходно выделена и не исключает гены или последовательности, добавленные позднее к выделенной нуклеиновой кислоте искусственно.

Термин "вариант" полинуклеотида в используемом в настоящем описании смысле, представляет собой полинуклеотид, который обычно отличается от полинуклеотида, в частности, раскрытого в настоящем описании, одной или несколькими заменами, делениями, добавлениями и/или инсерциями. Такие варианты могут встречаться в природе или могут быть созданы в результате синтеза, например, за счет модификации одной или нескольких полинуклеотидных последовательностей согласно изобретению и оценки одной или нескольких биологических активностей кодируемого полипептида, как описано в настоящей публикации, и/или с использованием любого из ряда способов, хорошо известных в данной области.

В структуре полинуклеотидов согласно описанному изобретению можно осуществить модификации и при этом все еще получить функциональную молекулу, которая кодирует вариант или производное полипептида с требуемыми характеристиками. В том случае, когда требуется изменить аминокислотную последовательность полипептида для создания эквивалента или даже улучшенного варианта или части полипептида согласно изобретению, специалист в данной области обычно может изменить один или несколько кодонов кодирующей последовательности ДНК.

Обычно варианты полинуклеотидов содержат одну или несколько замен, добавлений, делеций и/или инсерций, так, чтобы иммуногенные связывающие свойства полипептида, кодируемого вариантом полинуклеотида, существенно не снижались по сравнению с полипептидом, кодируемым полинуклеотидной последовательностью, конкретно указанной в настоящем описании.

В дополнительных вариантах осуществления описанное изобретение относится к фрагментам полинуклеотидов, содержащим имеющие разные длины непрерывные участки последовательности, идентичной или комплементарной одной или нескольким последовательностям, описанным в настоящей публикации. Например, в настоящем изобретении предлагаются полинуклеотиды, которые содержат поменьшей мере примерно 10, 15, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500 или 1000 или больше непрерывно следующих друг за другом нуклеотидов одной или нескольких последовательностей, описанных в настоящей публикации, при этом также включены все промежуточные длины и любая длина между указанными значениями, например 16, 17, 18, 19 и т.д.; 21, 22, 23 и т.д.; 30, 31, 32 и т.д.; 50, 51, 52, 53 и т.д.; 100, 101, 102, 103 и т.д.; 150, 151, 152, 153 и т.д.; и включая все целые числа в диапазонах 200-500; 500-1000.

В другом варианте осуществления изобретения предлагаются полинуклеотидные композиции, которые способны гибридизоваться в условиях от умеренной до высокой жесткости с полинуклеотидной последовательностью, предлагаемой в настоящем изобретении, или ее фрагментом или комплементарной ей последовательностью. Способы гибридизации хорошо известны в области молекулярной биологии. В целях иллюстрации подходящие условия умеренной жесткости для проверки гибридизации полинуклеотида согласно настоящему изобретению с другими полинуклеотидами включают предварительную промывку в растворе $5 \times SSC$, 0.5% SDS, 1.0 мM EDTA (pH 8,0); гибридизацию при $50\text{-}60^{\circ}\text{C}$, $5 \times SSC$, в течение ночи; последующую промывку два раза при 65°C по $20 \text{ мин } 2 \times$, $0.5 \times$ и $0.2 \times SSC$, содержащим 0.1% SDS. Специалисту в данной области будет понятно, что жесткостью гибридизации можно легко манипулировать, например, изменяя содержание соли в растворе для гибридизации и/или температуру, при ко-

торой осуществляют гибридизацию. Например, в другом варианте подходящие условия гибридизации высокой жесткости включают условия, описанные выше, за исключением того, что температура гибридизации повышена, например, до 60-65°С или 65-70°С.

В некоторых вариантах осуществления полипептид, кодируемый вариантом полинуклеотида или фрагментом, имеет такую же специфичность связывания (т.е. специфично или предпочтительно связывается с таким же эпитопом или штаммом ВИЧ), что и полипептид, кодируемый нативным полинуклеотидом. В некоторых вариантах описанные полинуклеотиды, варианты полинуклеотидов, фрагменты и гибридизующиеся последовательности кодируют полипептиды, которые имеют уровень активности связывания, составляющий по меньшей мере примерно 50%, по меньшей мере примерно 70% и по меньшей мере примерно 90% от уровня для полипептидной последовательности, конкретно указанной в настояшем описании.

Полинуклеотиды согласно описанному изобретению или их фрагменты независимо от длины самой кодирующей последовательности могут быть объединены с другими последовательностями ДНК, такими как промоторы, сигналы полиаденилирования, дополнительные участки для ферментов рестрикции, сайты множественного клонирования, другие кодирующие участки и т.п., так, что их общая длина может сильно варьировать. Можно использовать фрагмент нуклеиновой кислоты почти любой длины. Например, иллюстративные участки полинуклеотидов с общей длиной примерно 10000, примерно 5000, примерно 3000, примерно 2000, примерно 1000, примерно 500, примерно 200, примерно 500 пар оснований и т.п. (включая все промежуточные длины) включены во множество вариантов осуществления настоящего изобретения.

Кроме того, в объем изобретения включены векторы, такие как векторы экспрессии, содержащие последовательность нуклеиновой кислоты согласно изобретению. Клетки, трансформированные такими векторами, также включены в объем изобретения.

Настоящее изобретение также относится к векторам и клеткам-хозяевам, содержащим нуклеиновую кислоту согласно изобретению, а также рекомбинантным способам получения полипептида изобретения. Векторы согласно изобретению включают векторы, способные реплицироваться в любом типе клетки или организма, включая, например, плазмиды, фаг, космиды и минихромосомы. В некоторых вариантах осуществления векторы, содержащие полинуклеотид согласно описанному изобретению, представляют собой векторы, подходящие для размножения или репликации полинуклеотида, или векторы, подходящие для экспрессии полипептида согласно описанному изобретению. Такие векторы известны в данной области и коммерчески доступны.

"Вектор" включает челночные векторы и векторы экспрессии. Обычно конструкция плазмиды также будет включать начало репликации (например, начало репликации ColE1) и селектируемый маркер (например, резистентность к ампициллину или тетрациклину) для репликации и селекции, соответственно, плазмид в бактериях. "Вектор экспрессии" относится к вектору, который содержит необходимые регуляторные последовательности или регуляторные элементы для экспрессии антител, включая фрагмент антитела согласно изобретению, в бактериальных или эукариотических клетках.

Как используется в настоящем описании, термин "клетка" может означать любую клетку, включая, но этим не ограничиваясь, клетку эукариотического многоклеточного вида (например, в противоположность одноклеточным дрожжам), такую как без ограничения клетка млекопитающего или клетка человека. Клетка может представлять собой один объект или может быть частью более крупной группы клеток. Такая "более крупная группа клеток" может включать, например, культуру клеток (либо смешанную, либо чистую), ткань (например, эндотелиальную, эпителиальную, слизистую или другую ткань), орган (например, пегкое, печень, мышцы и другие органы), систему органов (например, кровеносную систему, дыхательную систему, пищеварительную систему, мочевую систему, нервную систему, покровы или другую систему органов) или организм (например, птицу, млекопитающее или т.п.).

Полинуклеотиды согласно изобретению могут быть синтезированы как целое или в виде частей, которые затем объединяют, и встроены в вектор с использованием обычных способов молекулярной и клеточной биологии, включая, например, субклонирование полинуклеотида в линеаризованном векторе с использованием подходящих сайтов рестрикции и ферментов рестрикции. Полинуклеотиды согласно описанному изобретению амплифицируют в полимеразной цепной реакции, используя олигонуклеотидные праймеры, комплементарные каждой из нитей полинуклеотида. Такие праймеры также включают сайты расщепления ферментами рестрикции для облегчения субклонирования в векторе. Компоненты реплицируемого вектора обычно включают без ограничения один или несколько из следующих компонентов: сигнальную последовательность, начало репликации и один или несколько маркерных или селектируемых генов.

Чтобы экспрессировать полипептид согласно изобретению, нуклеотидные последовательности, кодирующие полипептид или функциональные эквиваленты, могут быть встроены в подходящий вектор экспрессии, т.е. вектор, который содержит необходимые элементы для транскрипции и трансляции встроенной кодирующей последовательности. Способы, хорошо известные специалистам в данной области, можно использовать для конструирования векторов экспрессии, содержащих последовательности, кодирующие представляющий интерес полипептид, и подходящие элементы регуляции транскрипции и трансляции. Такие способы включают способы рекомбинации ДНК in vitro, способы синтеза и генетическую рекомбинацию in vivo. Такие способы описаны, например, в Sambrook, J., et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., and Ausubel, F.M. et al. (1989) Current Protocols in Molecular Biology, John Wiley & Sons, New York. N.Y.

Настоящее изобретение также относится к наборам, используемым для осуществления диагностических и прогностических анализов с использованием антител, полипептидов и нуклеиновых кислот согласно настоящему изобретению. Наборы согласно настоящему изобретению включают подходящую емкость, содержащую ВИЧ-антитело, полипептид или нуклеиновую кислоту согласно изобретению либо в меченой, либо в немеченой форме. Кроме того, когда антитело, полипептид или нуклеиновую кислоту поставляют в меченой форме, подходящей для непрямого анализа связывания, набор дополнительно содержит реагенты для осуществления соответствующего непрямого анализа. Например, набор может включать одну или несколько подходящих емкостей, содержащих субстраты ферментов или дериватизирующие средства в зависимости от природы метки. Также могут быть включены контрольные образцы и/или инструкции. Настоящее изобретение также относится к наборам для выявления присутствия ВИЧ-антител или нуклеотидной последовательности для ВИЧ-антитела согласно настоящему изобретению в биологическом образце с использованием ПЦР или масс-спектрометрии.

"Метка" в используемом в настоящем описании смысле относится к регистрируемому соединению или композиции, которую конъюгируют прямо или опосредованно с антителом так, чтобы создать "меченое" антитело. Метка также может быть конъюгирована с полипептидной последовательностью и/или последовательностью нуклеиновой кислоты, раскрытой в настоящем описании. Метка может быть выявлена как таковая (например, радиоизотопные метки или флуоресцирующие метки) или, в случае ферментативной метки, может катализировать химическое изменение соединения или композиции субстрата, которое можно регистрировать. Антитела и полипептиды согласно описанному изобретению также могут быть модифицированы так, чтобы они включали эпитопную метку, например, для применения при очистке или диагностике. Подходящие средства выявления включают использование меток, таких как, но ими не ограничиваясь, радионуклиды, ферменты, коферменты, флуоресцирующие вещества, хемилюминесцентные вещества, хромогены, субстраты ферментов или кофакторы, ингибиторы ферментов, комплексы простетических групп, свободные радикалы, частицы, красители и т.п.

Согласно другому варианту осуществления настоящее изобретение относится к диагностическим способам.

Диагностические способы обычно включают приведение биологического образца, полученного от пациента, такого как, например, кровь, сыворотка, слюна, моча, мокрота, мазок клеток или биопсия ткани, в контакт с ВИЧ-антителом и определение того, связывается ли антитело предпочтительно с образцом, который сравнивают с контрольным образцом или предварительно определяемым значением отсечения, таким образом определяя наличие ВИЧ-вируса.

Согласно другому варианту осуществления настоящее изобретение относится к способам выявления присутствия ВИЧ-антител согласно настоящему изобретению в биологическом образце, полученном от пациента. Способы выявления обычно включают получение биологического образца от пациента, такого как, например, кровь, сыворотка, слюна, моча, мокрота, мазок клеток или биопсия ткани, и выделение ВИЧ-антител или их фрагментов или нуклеиновых кислот, которые кодируют ВИЧ-антитело, и анализ присутствия ВИЧ-антитела в биологическом образце. Также настоящее изобретение относится к способам выявления нуклеотидной последовательности ВИЧ-антитела в клетке. Нуклеотидная последовательность ВИЧ-антитела также может быть выявлена с использованием праймеров, описанных в настоящей публикации. Присутствие ВИЧ-антитела в биологическом образце от пациента можно определить, используя известные способы рекомбинации и/или с применением масс-спектрометра.

В другом варианте осуществления настоящее изобретение относится к способу выявления в биологическом образце ВИЧ-антитела, содержащего тяжелую цепь, которая содержит высококонсервативную консенсусную последовательность, и легкую цепь, содержащую высококонсервативную консенсусную последовательность, включающему получение содержащего иммуноглобулины биологического образца от индивида млекопитающего, выделение ВИЧ-антитела из указанного образца и идентификацию высококонсервативных консенсусных последовательностей тяжелой цепи и легкой цепи. Биологическим образцом может быть кровь, сыворотка, слюна, моча, мокрота, мазок клеток или биопсия ткани. Аминокислотные последовательности могут быть определены способами, известными в данной области, включая, например, ПЦР и масс-спектрометрию.

Термин "оценка" включает любую форму измерения и включает определение того, присутствует ли элемент или отсутствует. Термины "определение", "измерение", "оценивание", "оценка" и "анализ" используют взаимозаменяемо, и они включают количественные и качественные определения. Оценивание может быть относительной или абсолютной. Оценка присутствия включает определение количества того, что присутствует, и/или определение того, присутствует ли это или отсутствует. В используемом в настоящем описании смысле термины "определение", "измерение" и "оценка" и "анализ" используют взаимозаменяемо, и термины включают как количественные, так и качественные определения.

Способ снижения репликации вируса.

Кроме того, предлагаются способы уменьшения повышения титра вируса ВИЧ, репликации вируса, пролиферации вируса или количества белка вируса ВИЧ у индивида. Согласно другому аспекту способ включает введение индивиду количества ВИЧ-антитела, эффективного в отношении уменьшения повышения титра ВИЧ, репликации вируса или количеств белка ВИЧ одного или нескольких штаммов или изолятов ВИЧ у индивида.

Согласно другому варианту осуществления настоящее изобретение относится к способу снижения репликации вируса или распространения ВИЧ-инфекции в дополнительные клетки-хозяева или ткани, включающему осуществление контакта клетки млекопитающего с антителом или его частью, которая связывает антигенный эпитоп на gp120.

Способ лечения.

Согласно другому варианту настоящее изобретение относится к способу лечения млекопитающего, инфицированного вирусом, таким как, например, ВИЧ, включающему введение указанному млекопитающему фармацевтической композиции, содержащей ВИЧ-антитела, раскрытые в настоящей публикации. Согласно одному из вариантов осуществления способ лечения млекопитающего, инфицированного ВИЧ, включает введение указанному млекопитающему фармацевтической композиции, которая содержит антитело согласно настоящему изобретению или его фрагмент. Композиции согласно изобретению могут содержать более одного антитела, имеющего описанные характеристики (например, множество или пул антител). Композиция также может содержать другие антитела, нейтрализующие ВИЧ, которые известны в данной области, например, но ими не ограничиваясь, VRC01, PG9 и b12.

Пассивная иммунизация оказалась эффективной и безопасной методикой профилактики и лечения вирусных заболеваний (см., например, Keller et al., Clin. Microbiol. Rev. 13:602-14 (2000); Casadevall, Nat. Biotechnol. 20:114 (2002); Shibata et al., Nat. Med. 5:204-10 (1999); and Igarashi et al., Nat. Med. 5:211-16 (1999)). Пассивная иммунизация с использованием моноклональных антител человека обеспечивает методику немедленного лечения для экстренной профилактики и лечения ВИЧ.

Индивиды, подвергаемые риску развития связанных с ВИЧ заболеваний или расстройств, включают пациентов, которые контактировали с инфицированным человеком или которые подверглись воздействию ВИЧ каким-либо другим путем. Введение профилактического средства может быть осуществлено до проявления симптомов, характерных для связанного с ВИЧ заболевания или расстройства, с тем, чтобы предотвратить заболевание или расстройство или, альтернативно, замедлить его прогрессирование.

В случае лечения in vivo больных людей или больных животных, отличных от человека, пациенту вводят или дают фармацевтический препарат, содержащий ВИЧ-антитело согласно изобретению. При использовании для терапии in vivo антитела согласно изобретению вводят пациенту в терапевтически эффективных количествах (т.е. в количествах, которые элиминируют или снижают вирусную нагрузку у пациента). Антитела вводят больному человеку известными способами, такими как внутривенное введение, например, в виде болюса или посредством непрерывной инфузии в течение определенного периода времени, внутримышечным, внутрибрюшинным, интрацереброспинальным, подкожным, внутрисуставным, интрасиновиальным, интратекальным, глазным, местным или ингаляционным путями. Антитела могут быть введены парентерально, когда это возможно, в участок клеток-мишеней или внутривенно. В некоторых вариантах осуществления антитело вводят путем внутривенного или подкожного введения. Терапевтические композиции согласно изобретению могут быть введены пациенту или индивиду системно, парентерально или местно. Указанные выше параметры оценки успешного лечения и улучшения состояния при заболевании, легко можно измерить обычными способами, известными лечащему врачу.

В случае парентерального введения антитела могут быть получены в стандартной лекарственной инъекционной форме (раствор, суспензия, эмульсия) в ассоциации с фармацевтически приемлемым парентеральным наполнителем. Примеры таких наполнителей включают, но ими не ограничиваются, воду, физиологический раствор, раствор Рингера, раствор декстрозы и 5% сывороточный альбумин человека. Неводные наполнители включают без ограничения нелетучие масла и этилолеат. В качестве носителей можно использовать липосомы. Наполнитель может содержать минорные количества добавок, таких как вещества, которые повышают изотоничность и химическую стабильность, такие как, например, буферы и консерванты. Антитела могут быть приготовлены в таких наполнителя в концентрациях примерно от 1 до 10 мг/мл.

Доза и схема дозирования зависит от множества факторов, легко определяемых лечащим врачом, таких как, например, природа инфекции, его терапевтического индекса, пациента и истории болезни пациента. В общем, пациенту вводят терапевтически эффективное количество антитела. В некоторых вариантах количество вводимого антитела находится в диапазоне примерно от 0,1 до примерно 50 мг/кг массы тела пациента. В зависимости от типа и тяжести инфекции начальная выбираемая доза антитела для введения пациенту составляет примерно от 0,1 до примерно 50 мг/кг массы тела (например, примерно 0,1-15 мг/кг/дозу), вводимая с использованием либо одного, либо нескольких отдельных введений или посредством непрерывной инфузии. Успех такой терапии легко контролировать обычными способами и анализами и на основании критериев, известных лечащему врачу или другому специалисту в данной области. Указанные выше параметры оценки успешного лечения и улучшения состояния при заболевании

легко можно измерить обычными способами, известными лечащему врачу.

Другие терапевтические схемы можно комбинировать с введением ВИЧ-антитела согласно настоящему изобретению.

Комбинированное введение включает совместное введение с использованием отдельных препаратов или одного фармацевтического препарата и последовательное введение в любом порядке, при этом предпочтительно имеется период времени, когда оба (или все) активные средства одновременно проявляют свои биологические активности. Такая комбинированная терапия может приводить к синергетическому терапевтическому эффекту. Указанные выше параметры оценки успешного лечения и улучшения состояния при заболевании легко можно измерить обычными способами, известными лечащему врачу.

Термины "процесс лечения" или "лечение" или "облегчение" относятся как к терапевтическому лечению, так и к профилактическим или превентивным мерам; при этом цель заключается в предотвращении или замедлении (уменьшении) целевого патологического состояния или расстройства. Нуждающимися в лечении являются те пациенты, которые уже имеют расстройство, а также те, которые предрасположены к возникновению расстройства, или те, у которых расстройство необходимо предотвратить. Индивида или млекопитающего успешно "лечат" по поводу инфекции, если после получения терапевтического количества антитела согласно способам, предлагаемым в настоящем изобретении, у пациента имеется наблюдаемое и/или измеряемое снижение или отсутствие одного или нескольких из следующих показателей: уменьшение количества инфицированных клеток или отсутствие инфицированных клеток; снижение общего процента клеток, которые инфицированы; и/или облегчение, в некоторой степени, одного или нескольких симптомов, ассоциированных с конкретной инфекцией; снижение заболеваемости и смертности и улучшение качества жизни. Указанные выше параметры оценки успешного лечения и улучшения состояния при заболевании легко можно измерить обычными способами, известными лечащему врачу.

Термин "терапевтически эффективное количество" относится к количеству антитела или лекарственного средства, которое эффективно при лечении заболевания или расстройства у индивида или млекопитающего.

Введение "в сочетании с" одним или несколькими дополнительными терапевтическими средствами включает одновременное (совпадающее по времени) и последовательное введение в любом порядке.

"Носители", как используется в настоящем описании, включают фармацевтически приемлемые носители, эксципиенты или стабилизаторы, которые являются нетоксичными для клетки или млекопитающего, подвергаемого его воздействию, в применяемых дозах и концентрациях. Часто физиологически приемлемым носителем является водный раствор, забуференный по рН. Примеры физиологически приемлемых носителей включают, но ими не ограничиваются, такие буферы, как фосфат, цитрат и другие органические кислоты; антиоксиданты, включая аскорбиновую кислоту; низкомолекулярный (менее чем примерно 10 остатков) полипептид; белки, такие как, но ими не ограничиваясь, сывороточный альбумин, желатин или иммуноглобулины; гидрофильные полимеры, такие как, без ограничения, поливинилпирролидон; аминокислоты, такие как без ограничения глицин, глутамин, аспарагин, аргинин или лизин; моносахариды, дисахариды и другие углеводы, включая, без ограничения, глюкозу, маннозу или декстрины; хелатирующие агенты, такие как, без ограничения, EDTA; сахарные спирты, такие как, без ограничения, маннит или сорбит; солеобразующие противоионы, такие как, без ограничения, натрий; и/или неионогенные поверхностно-активные вещества, такие как, без ограничения, Твин, полиэтиленгликоль (ПЭГ) и плюроники.

В том случае, когда указано значение диапазонов, следует понимать, что каждое промежуточное значение до нижнего предела десятых долей единицы, если контекст ясно не диктует иное, между верхним и нижним пределом диапазона и любое другое указанное или промежуточное значение в данном указанном диапазоне входят в объем изобретения. Верхние и нижние пределы таких меньших диапазонов, которые могут быть независимо включены в меньшие диапазоны, также входят в объем изобретения, при этом допускается любой специально исключенный предел в указанном диапазоне. В том случае, когда указанный диапазон включает один или оба предела, диапазоны, исключающие любой один или оба таких включенных пределов, также охватываются изобретением.

Пример 1.

В настоящем примере описаны материалы и способы, используемые в примерах 2-5, описанных ниже.

ВИЧ-антитела клонировали и получали после улавливания gp140-специфичных отдельных В-клеток, как описано ранее (Mouquet, H. et al. PLoS One 6, e24078 (2011); Tiller, T. et al., J. Immunol. Methods 329, 112-24 (2008); and Scheid, J.F. et al., Nature 458, 636-40 (2009)). "Гликомутантные" антитела PGT121 $_{\rm GM}$ и 10-1074 $_{\rm GM}$ создавали, заменяя остатки 10-1074 в положениях HC 32, 53, 54, 58, 97, 1001 остатками PGT121 и наоборот. Связывающие свойства анти-gp140-антител по отношению к белкам оболочки Env ВИЧ анализировали в ELISA, SPR и анализах с использованием микроматриц гликанов, как описано (Scheid, J.F. et al., Science 333, 1633-7 (2011); Walker, L.M. et al., Nature 477, 466-70 (2011); and Mouquet, H. et al., PLoS One 6, e24078 (2011)). Нейтрализацию оценивали, используя (i) основанный на люциферазе анализ в клетках TZM.bl и (ii) основанный на PBMC анализ с использованием инфекции

основными вариантами ВИЧ-1, как описано ранее (Li, M. et al., J. Virol. 79, 10108-25 (2005); Euler, Z. et al., Journal of virology 85, 7236-45 (2011); and Bunnik, E.M. et al., Nature medicine 16, 995-7 (2010)). Структуры Fab-фрагментов PGT121 ("не связанного с лигандом" и "связанного с лигандом"), 10-1074 и GL были получены способом молекулярного замещения с разрешением до 2,8, 2,3, 1,8 и 2,4 Å соответственно.

ОТ-ПЦР на отдельных В-клетках и анализы генов Ig.

Сортировку отдельных клеток в случае В-клеток gp140 $^{+}$ CD19 $^{+}$ IgG $^{+}$ из PBMC пациента 10 (pt10; названного пациентом 17 в публикации Nature 477(7365):466-470), синтез кДНК и гнездовую ПЦР-амплификацию генов Ig осуществляли в предыдущем исследовании (PLoS One 6 (9):e24078). Гены Ig λ , экспрессированные клональными вариантами PGT121, амплифицировали в ПЦР, используя прямой праймер (L-V λ 3-21 * 02: $^{5'}$ CTGGACCGTTCTCCTCGTCG $^{3'}$) выше области лидера, чтобы избежать потенциально мутированной области (31). Все продукты ПЦР секвенировали и анализировали в отношении используемого гена Ig, анализа CDR3 и количества соматических гипермутаций V_H/V_K (IgBLAST; http://www.ncbi.nlm.nih.gov/igblast и IMGT®; http://www.imgt.org). Множественные выравнивания последовательностей осуществляли, используя программу MacVector (v.12.5.0) с функцией анализа ClustalW (параметры по умолчанию), и использовали для создания дендрограмм способом объединения соседних пар (с использованием режима выбора наилучшего дерева и использования внешних групп для укоренения). Альтернативно, дендрограммы создавали, используя способ UPGMA (с использованием режима выбора наилучшего дерева).

Участки гена-предшественника зародышевой линии (GL) PGT121-подобных и 10-1074-подобных антител идентифицировали, используя IgBLAST (http://www.ncbi.nlm.nih.gov/igblast) и IMGT®/V-QUEST (http://www.imgt.org/IMGT_vquest/share/textes/) как V_H4 -59*01, J_H6 *03, V_L3 -21*02 и J_L3 *02. (Такие участки генов относятся к наиболее часто используемым в репертуаре антител человека (PLoS One 6(8):e22365; Immunogenetics 64(5):337-350). Чтобы построить репрезентативную последовательность предшественника GL, авторы выравнивали последовательности IgH и IgL 10-996 (антитела, содержащего меньше всего соматических гипермутаций) с последовательностями GL, используя IgBLAST (http://www.nebi.nlm.nih.gov/igblast). Последовательность IgH GL конструировали, заменяя участки зрелых генов V_H и J_H их GL-аналогами и используя последовательность 10-996 для области CDRH3, включающей нуклеотиды N-области и участок гена D_H . Последовательность IgL GL собирали из последовательностей участков генов V_L3 -21*02 и J_L3 *02.

Клонирование и получение антител.

Очищенные расщепленные продукты ПЦР клонировали в векторах, экспрессирующих $Ig\gamma_1$ или $Iq\lambda$ человека (J. Immunol. Methods 329(1-2): 112-124). Затем векторы, содержащие гены IgH и $Iq\lambda$, секвенировали и сравнивали с исходными последовательностями продуктов ПЦР. PGT121 и 10-303 имели один и тот же ген $Iq\lambda$ и имели одно аминокислотное отличие в положении 2 гена IgH (фиг. 4); поэтому чтобы получить IgG PGT121, авторы использовали IgG ген IgH 10-303 и ген IgH PGT121, образованный введением одной замены (V2M) в ген IgH 10-303 посредством сайт-специфичного мутагенеза (набор для сайт-специфичного мутагенеза QuikChange; Stratagene). Чтобы создать IgG ніз-меченые IgG гень IgG гень IgG субклонировали в векторе экспрессии IgG образованном в результате модификации стандартного вектора $Ig\gamma_1$ авторов настоящего изобретения (Science IgG) за которым следует метка IgG0 (Science IgG1) и IgG1, кодирующие мутантные антитела IgG1 (S32Y, K53D, S54R, N58T, H97R, T1001Y) и IgG1 и IgG3 (S32Y, K53D, S54R, N58T, H97R, T1001Y) и IgG1 и IgG3 (S32Y, R54S, T58N, R97H, Y1001T), получали в виде синтетического минигена (IDT) и IgG1 и IgG1 и IgG1 образовали в IgG1 и IgG1 и IgG1 и IgG2 и IgG3 и IgG4 и IgG4 и IgG4 и IgG5 и IgG6 и

Ниже указана последовательность тяжелой цепи $10\text{-}1074_{\text{GM}}$, в которой подчеркнуты мутации. Последовательность легкой цепи $10\text{-}1074_{\text{GM}}$ такая же, как в случае 10-1074.

 ${\tt QVQLQESGPGLVKPSETLSVTCSVSGDSMNN\underline{S}YWTWIRQSPGKGLEWIGYIS\underline{KS}ESA\underline{N}YNPSL}$

 ${\tt NSRVVISRDSKNQLSLKLNSVPADTAVYYCATAR} \underline{{\tt H}} \underline{{\tt GQRIYGVVSFGEFF}}\underline{{\tt T}} \underline{{\tt YSMDVWGKGTTV}}$

TVSS

Антитела и Fab-фрагменты получали с использованием временной трансфекции плазмидами, экспрессирующими IgH и IgL, экспоненциально растущих клеток HEK293T (ATCC, CRL-11268), используя способ преципитации полиэтиленимином (PEI) (PLoS One 6(9):e24078). IgG-антитела аффинно очищали, используя шарики из сефарозы с белком G (GE Healthcare), согласно инструкциям производителя. Fab-фрагменты аффинно очищали, используя содержащую кобальт смолу HisPurTM (Thermo scientific), как описано ниже.

Белки Env ВИЧ-1.

Вводили аланиновые мутации в вектор pYU-2 gp120 (подарок J. Sodroski, Harvard Medical School) в положения 301-303 (Asn-Asn-Thr), 324-325 (Gly-Asp) и 332 (Asn) (нумерация аминокислот HXBc2), используя набор для сайт-специфичного мутагенеза QuikChange (Stratagene) согласно инструкциям производителя. Такой же способ использовали для создания "двойных гликановых" мутантов введением одиночных аланиновых мутаций в вектор gp120^{N332A} pYU-2 в каждый PNGS, локализованный между

 ${\rm Asn262_{gp120}}$ и ${\rm Asn406_{gp120}}$. Сайт-специфичные мутации подтверждали секвенированием ДНК.

Векторы экспрессии, кодирующие белки gp140 YU-2 (Journal of virology 74(12):5716-5725), gp120 YU-2, HXB2c gp120^{core} (Nature 393(6686):648-659), HXB2c 2CCcore (PLoS Pathog. 5(5): e1000445) и мутантные белки gp120 YU-2 использовали для трансфекции клеток HEK293T. Чтобы получить белок gp120 YU-2 только с высоким содержанием маннозы (gp120_{kif}), во время трансфекции добавляли 25 мкМ кифунензина (Enzo Life Sciences). Собирали надосадки культур и концентрировали, используя основанные на центрифугировании фильтрующие устройства (Vivacell 100, Sartorius Stedim Biotech Gmbh), которые обеспечивали замену буфера в образцах на буфер, содержащий 10 мМ имидазол, 50 мМ фосфат натрия, 300 мМ хлорид натрия; рН 7,4. Белки очищали аффинной хроматографией, используя смолу, содержащую кобальт, HisPur^{тм} (Thermo scientific) согласно инструкциям производителя.

Для реакций дегликозилирования 50 мкг gp120 YU-2, продуцированного клетками HEK293T, в PBS расщепляли в течение ночи при 37°C, используя 200 единиц PNG-азы F (New England Biolabs) или 10000 единиц Endo- H_f (New England Biolabs) в соответствующих буферах для реакций без денатурирующих средств. После замены буфера на PBS с использованием центрифугирующих фильтровальных устройств (Amicon® Ultra, Millipore) исследовали обработанные гликозидазой gp120 (200 нг) в SDS-ПААГ, используя 4-12% гель NuPAGE (Invitrogen), с последующим окрашиванием серебром (Pierce Silver Stain Kit, Thermo Scientific).

ELISA.

96-Луночные планшеты для ELISA с высокой способностью к связыванию (Costar) покрывали в течение ночи 100 нг/лунку очищенного gp120 в PBS. После промывки планшеты блокировали в течение 2 ч, используя 2% БСА, 1 мкМ EDTA, 0,05% Твин-PBS (блокирующий буфер) и затем инкубировали в течение 2 ч с IgG в концентрации 26,7 нМ (или 427,2 нМ в случае ELISA с использованием двойных гликановых мутантов gp120 YU-2) и 7 последовательных разведениях 1:4 в PBS. После промывки планшеты проявляли, инкубируя с антителами козы против IgG человека, конъюгированными с HRP (Jackson ImmunoReseach) (в концентрации 0,8 мкг/мл в блокирующем буфере), в течение 1 ч и добавляя хромогенный субстрат HRP (раствор ABTS, Invitrogen) (PLoS One 6(9):e24078). Связывание антител с выбранными перекрывающимися пептидами gp120^{v3} тестировали, используя ранее описанный способ ELISA пептидов.

Для конкурентного ELISA планшеты, покрытые gp120, блокировали в течение 2 ч блокирующим буфером и затем инкубировали в течение 2 ч с биотинилированными антителами (в концентрации 26,6 нМ в случае PGT121, 0,21 нМ в случае 10-1074, 0,43 нМ в случае 10-996 и 1,67 нМ в случае 10-1369) в растворах конкурентов антител, серийно разбавленных 1:2 в PBS (диапазон концентраций IgG составляет от 5,2 до 667 нМ). Планшеты проявляли, как описано выше, используя конъюгированный с HRP стрептавидин (Jackson ImmunoReseach) (в концентрации 0,8 мкг/мл в блокирующем буфере). Все эксперименты осуществляли по меньшей мере в двух повторах.

Анализ на микроматрице гликанов.

Микроматрицы создавали, используя роботизированную печать гликановых зондов, связанных с липидом (неогликолипиды), на покрытых нитроцеллюлозой предметных стеклах (Methods Mol. Biol. 808:117-136) на двух уровнях (2 и 5 фмоль/пятно) в двух повторах. Анализы связывания осуществляли с использованием микроматриц, содержащих 15 неогликолипидом, полученных из N-гликанов типа с высоким содержанием маннозы и комплексного типа. Последовательности зондов показаны на фиг. 7А. Вкратце, антитела тестировали в концентрации 50 мкг/мл и связывание выявляли, используя биотилированные антитела против IgG человека (Vector) и затем меченый AlexaFluor 647 стрептавидин (Molecular Probes).

Резонанс поверхностного плазмона.

Эксперименты осуществляли, используя Віасоге Т100 (Віасоге, Іпс) (Nature 467(7315): 591-595). Кратко, белки gp140 и gp120 YU-2 связывали первичными аминами на чипах CM5 (Віасоге, Іпс.) при плотности связывания 300 единиц ответа. Анти-gp120-IgG и предшественник зародышевой линии (GL) инъецировали на проточные ячейки по 1 и 10 мкМ соответственно, со скоростью потока 35 мкл/мин и 3 минутной фазой ассоциации и 5-минутной фазой диссоциации. Сенсорную поверхность регенерировали, используя 30-секундную инъекцию 10 мМ глицина-HCl, pH 2,5, со скоростью потока 50 мкл/мин. Константы диссоциации (k_a (e^{-1})), ассоциации (e^{-1}) и связывания (e^{-1}) и связывания (e^{-1}) и связывания 1:1 без коррекции коэффициента отражения (RI) массы (компьютерная программа для оценки Віасоге Т100). Константы связывания для бивалентных IgG, вычисленные с использованием модели связывания 1:1, названы в тексте "кажущимися" аффинностями, чтобы подчеркнуть, что значения e^{-1} 0 включают потенциальные эффекты авидности.

Анализы нейтрализации.

Нейтрализацию вирусов оценивали, используя основанный на люциферазе анализ в клетках TZM.b1 (J. Virol. 79(16): 10108-10125). Тестированные псевдовирусы ВИЧ-1 содержали главным образом вирусы tier-2 и tier-3 (Journal of virology 84(3): 1439-1452) (табл. 4 и 5). Псевдовирусы только с высоким

содержанием маннозы были продуцированы в клетках дикого типа, обработанных 25 мкМ кифунензина (Епzo Life Sciences) (фиг. 8C), или в клетках НЕК293S GnTI $^{-}$ (фиг. 8D). Нелинейный регрессионный анализ использовали для вычисления концентраций, при которых наблюдалось полумаксимальное ингибирование (значения IC₅₀). Нейтрализующие активности также оценивали в ранее охарактеризованном основанном на PBMC анализе, используя инфекцию основными вариантами ВИЧ-1 (n=95), выделенными из организмов доноров, инфицированных кладой В с известными датами сероконверсии либо с 1985 по 1989 гг. ("исторические сероконверторы", n=14), либо с 2003 по 2006 гг. ("современные сероконверторы", n=21) (Journal of virology 85(14):7236-7245; Nat. Med. 16(9):995-997). Нейтрализующую активность каждого антитела вычисляли, используя компьютерную программу GraphPad (v5.0b), в виде площади под кривой наилучшей подгонки, которая соответствует доле вирусов, нейтрализованных выше значений IC₅₀ в диапазоне от 0,001 до 50 мкг/мл. Значения относительной площади под кривой (RAUC) получали в результате нормализации всех значений AUC относительно наибольшего значения (полученного с использованием 10-1074).

Статистические анализы.

Статистические анализы осуществляли с использованием компьютерной программы GraphPad Prism (v5.0b). Эффективности нейтрализации в анализе TZM-bl против выбранной панели из 9 штаммов вирусов по сравнению с кажущимися аффиностями связывания антитела в случае gp120 и gp140 анализировали, используя коэффициент корреляции Спирмена. Критерий Манна-Уитни использовали для сравнения: (i) аффинностей по отношению gp120/gp140 антител, относящихся в группе PGT121 или 10-1074, и (ii) активности нейтрализации против вирусов, выделенных из организма исторических и современных сероконверторов.

Кристаллизация и определение структуры.

Экспрессировали 6х-Ніз-меченые Fab PGT121, 10-1074 и 10-996GL для кристаллизации. Fab очищали из надосадков временно трансфицированных клеток HEK293-6E последовательно $\mathrm{Ni^{2^+}}\text{-NTA-}$ аффинной хроматографией (Qiagen) и эксклюзионной хроматографией по размеру на Superdex200 10/300 (GE Healthcare). Кристаллы не связанного с лигандом PGT121 Fab, PGT121 IgG выделяли из надосадков временно трансфицированных клеток HEK293-6E аффинной хроматографией на белке A (Pierce), и Fabфрагменты получали расщеплением папаином IgG и последующей очисткой с использованием эксклюзионной хроматографии по размеру на Superdex200 10/300 (GE Healthcare).

Очищенные Fab концентрировали до 8-20 мг/мл ("не связанный с лигандом" PGT121, 8 мг/мл; 10-1074 и GL, 20 мг/мл) в PBS-буфере. Кристаллы "связанного с лигандом" PGT121 Fab получали из образца белка (конечная концентрация: 15 мг/мл), который смешивали с 3-кратным молярным избытком гликана NA2 и инкубировали при 20°C в течение 2 ч. Скрининг условий кристаллизации осуществляли при 20°C, используя роботизированное устройство для кристаллизации Mosquito® (TTP labs) в каплях размером 400 нл, используя соотношение белка к резервуарному раствору 1:1. Кристаллы "не связанного с лигандом" PGT121 Fab (P2 $_1$ 2 $_1$ 2, а=56,8, b=74,7, c=114,9 Å) получали в 24% ПЭГ 4000, 0,1 М трис-HCl, рН 8,5, 10 мМ СиСl $_2$, и кристаллы "связанного с лигандами" PGT121 Fab (P2 $_1$ 2 $_1$ 2; а=67,8, b=67,8, c=94,1 Å) выращивали в 17% ПЭГ 10000, 0,1 М бис-трис, рН 5,5, 0,1 М СН $_3$ СООНNН $_4$. Кристаллы 10-1074 Fab (P2 $_1$, а=61,4, b=40,3, c=84,5 Å; $_1$ 9=95,39°) получали в 25% ПЭГ 3350, 0,1М бис-трис, рН 5,5, 0,2М NaCl, и кристаллы GL Fab (P2 $_1$; а=54,9, b=344,7, c=55,2 Å; $_1$ 9=91,95°) выращивали в 20% ПЭГ 3350, 0,24М малонате натрия, рН 7,0, 10 мМ MnCl $_2$. Кристаллы подвергали криопротекции, замачивая в маточном растворе, содержащем 20% глицерина ("не связанный с лигандом" и "связанный с лигандом" РGT121 Fab) или 20% этиленгликоля (10-1074 Fab и GL Fab) и затем мгновенно охлаждали в жидком азоте.

Данные дифракции получали с использованием пучка синхротронного излучения 12-2 (длина волны=1,029 Å) стэндфордского синхротронного источника света (SSRL) на 6-мегапиксельном детекторе Pilatus 6M (Dectris). Данные индексировали, интегрировали и масштабировали, используя XDS. Используя данные, полученные для "не связанных с лигандом" кристаллов Fab PGT121, авторы использовали Phenix, чтобы найти решение для молекулярного замещения в случае одного Fab на ассиметричную ячейку (цепи H и L для тяжелой и легкой цепи соответственно), используя две модели поиска, домены C_H - C_L Fab PGT128 (PDB код 3PV3) и домены V_H - V_L 2F5 (PDB код 3IDJ) после исключения остатков в петлях CDRH3 и CDRL3. Затем авторы использовали "не связанную с лигандом" структуру PGT121 в качестве поисковой модели, чтобы найти решения для молекулярного замещения в случае "связанного с лигандом" Fab PGT121 (один Fab на ассиметричную ячейку), Fab 10-1074 (один Fab на ассиметричную ячейку) и GL (четыре Fab на ассиметричную ячейку).

Итерационное уточнение (включая ограничения некристаллографической симметрии для GL) осуществляли, используя Phenix и вручную подгоняя модели, с получением карты электронной плотности с использованием программы Coot. Атомные модели уточняли с разрешением до 3,0 Å в случае Fab PGT121 (R_{work} =21,6%; R_{free} =26,4%), с разрешением 1,9 Å в случае Fab 10-1074 (R_{work} =18,7%; R_{free} =22,3%), с разрешением 2,4 Å в случае четырех молекул Fab GL (R_{work} =19,4%; R_{free} =23,7%) и с разрешением 2,4 Å в случае "связанного с лигандом" Fab PGT121 (R_{work} =20,1%; R_{free} =24,9%). Атомная модель Fab PGT121 содержит 95,2%, 4,9% и 0,0% остатков в предпочтительных, разрешенных и запрещенных областях кар-

ты Рамачандрана соответственно (Fab 10-1074: 98,8%, 0,9%, 0,2%; Fab GL: 96,0%, 3,8%, 0,23%; "связанный с лигандом" Fab PGT121: 96,7%, 3,1%, 0,2%). РуМОL использовали для молекулярной визуализации и для создания фигур, изображающих структуры Fab. Вычисления площади скрытой поверхности осуществляли, используя Areaimol (пакет программ ССР4) и зонд 1,4 Å.

Структуры Fab выравнивали, используя Super script в PyMOL. Попарные выравнивания $C\alpha$ осуществляли, используя PDBeFold.

Пример 2. Преобладание и разнообразие клонотипа PGT121.

В-клетки памяти для gp140-специфичного IgG выделяли из организма донора африканца, инфицированного вирусом клады A, используя триммеры gp140 YU-2 в качестве "приманки". Идентифицировали восемьдесят семь совпадающих генов тяжелой (IgH) и легкой (IgL) цепей иммуноглобулина, соответствующих 23 уникальным семействам клонов. В репертуаре IgH против gp140 преобладало одно клональное семейство, составляющее ~28% всех размноженных клонов В-клеток. Такое семейство В-клеток соответствовало тому же клону, что и PGT121-123 (Nature 477(7365):466-470) и содержало 38 представителей, 29 из которых были уникальными вариантами на нуклеотидном уровне (табл. 3). На основании нуклеотидной последовательности IgH семейство PGT121 делится на две группы: PGT121-подобную группу, содержащую РGT121-123 и 9 близкородственных вариантов, и вторую группу, 10-1074подобную, содержащую 20 представителей. Хотя традиционные праймеры, созданные авторами изобретения (J. Immunol. Methods 329(1-2):112-124; Science 301 (5638):1374-1377), не амплифицировали гены IgL, экспрессируемые клонами В-клеток PGT121, вследствие делеций нуклеотидов в области, кодирующей каркасную область 1, 24 из 38 генов Ідλ получали, используя новые Ідλ-специфичные праймеры, созданные для амплификации сильно соматически мутированных генов (табл. 3). В соответствии с высокими уровнями гипермутирования в генах ІдН (в среднем 18,2% генов VH) амплифицированные гены Ідλ имели высокий уровень мутаций (в среднем 18,2% гена Vλ) и несли делеции нуклеотидов в каркасной области 1 (FWR1) (12-21 нуклеотид) и инсерцию длиной 9 нуклеотидов в каркасной области 3 (FWR3) (фиг. 3В и табл. 3).

Выравнивания последовательностей трех PGT-антител (PGT-121, -122 и -123), одиннадцати клональных вариантов PGT121 и 10-1074 (10-259, 10-303, 10-410, 10-847, 10-996, 10-1074, 10-1121, 10-1130, 10-1146, 10-1341, 10-1369 и 10-1074GM), вероятных последовательностей зародышевой линии (GL) и консенсусных последовательностей показаны на фиг. 3(а) и 3(b). Последовательности соответствующих вариабельных областей тяжелой цепи, вариабельных областей легкой цепи, CDR тяжелой цепи и CDR легкой цепи согласно системам IMGT и KABT указаны в табл. 1 ниже. Присвоенные идентификационные номера последовательностей в случае последовательностей согласно системам КАВТ указаны в табл. 2 ниже:

Таблица 1

			Последо	эвательно	ости IgH		
IMGT	FWR1	CDR1	FWR2	CDR2	FWR3	CDR3	FWR4
10-1369	QVQLQESGPGLVKPLETLSLTCN VS	GAFIADHY	WSWIRLPLGKG PEWIGY	VEDSGDI	NYNPSLKNRVHLSLDKSTNQVSLKLM AVTAGDSALYYC	ATTKHGRRIYGVVAFGE WFTYFYMDV	WGRGTTVTVSS
10-259	QVHLQESGPGLVKPSETLSLTCN VS	GTLVRDNY	WSWMRQPLGKQ PEWIGY	VEDSGDT	NYNPSLKSRVHLSLOKSNNLVSLRLT AVTAAOSATYYC	ATTKHGRRIYGIVAFNE WFTYFYMDV	WGKGTTVTVSS
10-303	QVQLQESGPGLVKPSETLSLTCS VS	GASISDSY	WSWIRRSPGKG LEWIGY	VEKSGDT	NYSPSLKSRVNLSLDTSKNQVSLSLV AATAADSGKYYC	ARTLHGRRIYGIVAFNE WFTYFYMDV	WGNGTQVTVSS
10-410	QVQLQESGPGLVKPPETLSLTCS VS	GASVNDAY	WSWIRQSPGKR PEWVGY	VIIISGDT	NYNPSLKRRVTFSLOTAKNEVSLKLV ALTAAOSAVYFC	ARALIIGKRIYGIVALGE LFTYFYMDV	WGKGTTVTVSS
10-1130	QVQLQESGPGLVKPPETLSLTCS VS	GASINDAY	WSWIRQSPGKR PEWVGY	VHESGDT	NYNPSLKRRVTFSLOTAKNEVSLKLV DLTAAOSAVYFC	ARALHGKRIYGIVALGE LFTYFYMDV	WGKGTTVTVSS
10-1121	QVQLQESGPGLVKPPETLSLTCS VS	GASINDAY	WSWIRQSPGKR PEWVGY	VHESGDT	NYNPSLKRRVSFSLOTAKNEVSLKLV DLTAAOSAIYFC	ARALHGKRIYGIVALGE LFTYFYMDV	WGKGTTVTVSS
10-1146	QVQLVESGPGLVTPSETLSLTCT VS	NGSVSGRF	WSWIRQSPGRG LEWIGY	FSDTDRS	EYSPSLRSRLTLSLDASRNQLSLKLK SVTAADSATYYC	ARAQQGKRIYGIVSFGE FFYYYYMDA	WGKGTAVTVSS
10-996	QVQLQESGPGLVKPSETLSLTCS VS	NGSVSGRF	WSWIRQSPGRG LEWIGY	FSDTEKS	NYNPSLRSRLTLSVDASKNQLSLKLN SVTAADSATYYC	ARTQQGKRIYGVVSFGE FFHYYYMDA	WGKGTAVTVSS
GL	QVQLQESGPGLVKPSETLSLTCT VS	GGSISSYY	WSWIRQPPGKG LEWIGY	TYYSGST	NYNPSLKSRVTISVOTSKNQFSLKLS SVTAAOTAVYYC	ARTQQGKR_YGVVSFGD YYYYYMDV	WGKGTTVTVSS
10-1341	QVQLQESGPGLVKPSETLSVTCS VS	GDSMNNYY	WTWIRQSPGKG LEWIGY	ISDRESA	TYNPSLNSRVVISROTSTNQLSLKLN SVTPAOTAVYYC	ATARRGQRIYGVVSFGE FFYYYSMDV	WGRGTTVTVSS
10-847	QVQLQESGPGLVKPSETLSVTCS VS	GDSMNNYY	WTWIRQSPGKG LEWIGY	ISDRASA	TYNPSLNSRVVISROTSKNQLSLKLN SVTPAOTAVYYC	ATARRGQRIYGVVSFGE FFYYYSMDV	WGKGTTVTVSS
10-1074	QVQLQESGPGLVKPSETLSVTCS VS	GDSMNNYY	WTWIRQSPGKG LEWIGY	ISDRESA	TYNPSLNSRVVISROTSKNQLSLKLN SVTPAOTAVYYC	ATARRGQRIYGVVSFGE FFYYYSMDV	WGKGTTVTVSS
10- 1074GM	QVQLQESGPGLVKPSETLSVTCS VS	GDSMNNSY	WTWIRQSPGKG LEWIGY	ISKSESA	NYNPSLNSRVVISROTSKNQLSLKLN SVTPAOTAVYYC	ATARHGQRIYGVVSFGE FFTYYSMDV	WGKGTTVTVSS
KABAT	FWR1	CDR1	FWR2	CDR2	FWR3	CDR3	FWR4
10-1369	QVQLQESGPGLVKPLETLSLTCN VSGAF_A	DHYWS	WIRLPLGKGPE WIG	YVEDSGDINY NPSLKN	RVHLSLOKSTNQVSLKLMAVTAGOSA LYYCAT	TKHGRRIYGVVAFGEWF TYFYMDV	WGRGTTVTVSS
10-259	QVHLQESGPGLVKPSEULSLUCN VSGTLVR	DNYWS	WMRQPLGKQPE WIG	YVEDSGDTNY NPSLKS	RVHLSLJKSNNLVSLRLTAVTAAJSA TYYCAT	TKHGRR_YG_VAFNEWF TYFYMDV	WGKGTTVTVSS
10-303	QVQLQESGPGLVKPSETLSLTCS VSGASIS	DSYWS	WIRRSPGKGLE WIG	YVEKSGDTNY SPSLKS	RVNLSLOTSKNQVSLSLVAATAAOSG KYYCAR	TLHGRRIYGIVAFNEWF TYFYMDV	WGNGTQVTVSS
10-410	QVQLQESGPGLVKPPETLSLTCS VSGASVN	DAYWS	WIRQSPGKRPE WVG	YVEESGDTNY NPSLKR	RVTFSLDTAKNEVSLKLVALTAADSA VYFCAR	ALHGKRIYGIVALGELF TYFYMDV	WGKGTTVTVSS
10-1130	QVQLQESGPGLVKPPETLSLTCS VSGASIN	DAYWS	WIRQSPGKRPE WVG	YVEESGDTNY NPSLKR	RVTFSLDTAKNEVSLKLVDLTAADSA VYFCAR	ALHGKRIYGIVALGELF TYFYMDV	WGKGTTVTVSS
10-1121	QVQLQESGPGLVKPPETLSLTCS VSGASIN	DAYWS	WIRQSPGKRPE WVG	YVEESGDTNY NPSLKR	RVSFSLOTAKNEVSLKLVOLTAADSA IYFCAR	ALHGKRIYGIVALGELF TYFYMDV	WGKGTTVTVSS
10-1146	QVQLVESGPGLVTPSETLSLTCT VSNGSVS	GRFWS	WIRQSPGRGLE WIG	YFSDTDRSEY SPSLRS	RLTLSLDASRNQLSLKLKSVTAADSA TYYCAR	AQQGKRIYGIVSFGEFF YYYYMDA	WGKGTAVTVSS
10-996	QVQLQESGPGLVKPSETLSLTCS VSNGSVS	GRFWS	WIRQSPGRGLE WIG	YFSDTEKSNY NPSLRS	RLTLSVDASKNQLSLKLNSVTAADSA TYYCAR	TQQGKRIYGVVSFGEFF HYYYMDA	WGKGTAVTVSS

Последовательности IgL

IMGT	FWR1	CDR1	FWR2	CDR2	FWR3	CDR3	FWR4	
GL	SYVLTQPPSVSVAPGQTARITCG GN	NIGSKS	VHWYQQKPGQA PVLVVY	DDS	DRPSGIPERFSGSNSGNTATLTISRV EAGDEADYYC	QVWDSSSDHPWV	FGGGTKLTVL	
10-1369	SSMSVSPGETAKITCGEK	SIGSRA	VQWYQKKPGQP PSLIIY	NNQ	DRPSGVPERFSASPDIEFGTTATLTI TNVEAGDEADYYC	HIYDARRFTNWV	FDRGTTLTVL	
10-259	SSMSVSPGETAKISCGKE SIGSRA VQWYQQKSGQP NI PSLIIY		NNQ	DRPSGVPERFSATPDFGAGTTATLTI TNVEADDEADYYC	HIYDARGGTNWV	FDRGATLTVL		
10-303	SDISVAPGETARISCGEK SLGSRA VQWYQHRAGQA NNQ PSLIIY		NNQ	DRPSGIPERFSGSPDSFFGTTATLTI TSVEACDEADYYC	HIWDSRVPTKWV	FGGGTTLTVL		
10-1121	SFVSVAPGQTARITCGEE	SLGSRS	VIWYQCRPGCA PSLIMY	NNII	DRPSGIPERFSGSPGSTFGTTATLTI TSVEAGDEADYYC	HIWDSRRPTNWV	FGEGTTLTVL	
10-410	O SFVSVAPGQTARITCGEE SLGSRS		VIWYQQRPGQA PSLIIY	NNN	DRPSGIPERFSGSPGSTFGTTATLTI TSVEAGDEADYYC	HIWDSRRPTNWV	FGEGTTLTVL	
10-1130	SFVSVAPGQTARITCGEE	SLGSRS	VIWYQQRPGQA PSLIIY	NNN	DRPSGIPERFSGSPGSTFGTTATLTI TSVEAGDEADYYC	HIWDSRRPTNWV	FGEGTTLTVL	
10-847	SYVRPLSVALGETASISCGRQ	ALGSRA	VQWYQHRPGQA PILLIY	NNQ	DRPSGIPERFSGTPDINFGTRATLTI SGVEAGDEADYYC	HMWDSRSGFSWS	FGGATRLTVL	
10-1074	SYVRPLSVALGETARISCGRQ	ALGSRA	VQWYQHRPGQA PILLIY	NNQ	DRPSGIPERFSGTPDINFGTRATLTI SGVEAGDEADYYC	HMWDSRSGFSWS	FGGATRLTVL	
10-1341	SYVRPLSVALGETARISCGRQ	ALGSRA	VQWYQHRPGQA PTI.IY	NNQ	DRPSGIPERFSGTPDINFGTRATLTI SGVEAGDEADYYC	HMWDSRSGFSWS	FGGATRLTVL	
10-996	SSLPLSVAPGATAKIACGEK	SFASRA	VQWYQCKPGQA PVLIIY	NNQ	DRPAGVSERFSGTPDVGFGSTATLTI SRVEAGDEADYYC	HKWDSRSPLSWV	FGGGTQLTVL	
10-1146	SSLPLSLAPGATAKIPCGEK	SRGSRA	VQWYQCKPGQA PTT.T-Y	NNQ	DRPAGVSERYSGNPOVAIGVTATLTI SRVRAGDRAEYYC	HYWDSRSPISWV	FGGWTQLTVL	
KABAT	FWR1	CDR1	FWR2	CDR2	FWR3	CDR3	FWR4	
GL	SYVLTQPPSVSVAPGQTARITC	GGNNIGSKSVH	WYQQKPGQAPV LVVY	DDSDRPS	GIPERFSGSNSGNTATITISRVEAGD EADYYC	QVWDSSSDHPWV	FGGGTKLTVL	
10-1369	SSMSVSPGETAKITC	GEKSIGSRAVQ	WYQKKPGQPPS LIIY	NNQDRPS	GVPERFSASPDIEFGTTATLTITNVE AGDEADYYC	HIYDARRPTNWV	FDRGTTLTVL	
10-259	SSMSVSPGETAKISC	GKESIGSRAVQ	WYQQKSGQPPS LIIY	NNQDRPS	GVPERFSATPDFGAGTTATLTITNVE ADDEADYYC	HIYDARGGTNWV	FDRGATLTVL	
10-303	SDISVAPGETARISC	GEKSLGSRAVQ	WYQHRAGQAFS LIIY	NNQDRPS	GIPERFSGSPDSPFGTTATLTITSVE AGDEADYYC	HIWDSRVPTKWV	FGGGTTLTVL	
10-1121	SFVSVAPGQTARITC	GEESLGSRSVI	WYQQRPGQAPS LIMY	NNHDRPS	GIPERFSGSPGSTFGTTATLTITSVE AGDEADYYC	HIWDSRRPTNWV	FGEGTTLTVL	
	SFVSVAPGQTARITC	GEESLGSRSVI	WYQQRPGQAPS	NNNDRPS	GIPERFSGSPGSTFGTTATLTITSVE	HIWDSRRPTNWV	FGEGTTLTVL	
10-410	SEVSVAEGQIARTIC	GLEDIGDIZO VI			L AU-DEADY YU			
10-410	SFVSVAPGQTARITC	GEESLGSRSVI	LIIY WYQQRPGQAPS	NNNDRPS	AGDEADYYC GIPERFSGSPGSTFGTTATLTITSVE AGDEADYYC	HIWDSRRPTNWV	FGEGTTLTVL	
	-		LIIY WYQQRPGQAPS LIIY WYQIRPGQAPI	NNNDRPS NNQDRPS	GIPERFSGSPGSTFGTTATLTITSVE AGDEADYYC GIPERFSGTPDINFGTRATLTISGVE	HIWDSRRPTNWV IMWDSRSGFSWS	FGEGTTLTVL FGGATRLTVL	
10-1130	SFVSVAPGQTARITC	GEESLGSRSVI	LIIY WYQQRPGQAPS LIIY		GIPERFSGSPGSTFGTTATLTITSVE AGDEADYYC GIPERFSGTPDINFGTRATLTISGVE AGDEADYYC GIPERFSGTPDINFGTRATLTISGVE			
10-1130	SFVSVAPGQTARITC SYVRPLSVALGETASISC	GEESLGSRSVI GRQALGSRAVQ	LITY WYQQRPGQAPS LITY WYQHRPGQAPI LLTY WYQHRPGQAPI ILITY WYQHRPGQAPI	NNQDRPS	GIPERFSGSPGSTFGTTATLTITSVE AGDEADYYC GIPERFSGTPDINFGTRATLTISGVE AGDEADYYC GIPERFSGTPEINFGTRATLTISGVE AGDEADYYC GIPERFSGTPDINFGTRATLTISGVE	IIMWDSRSGFSWS	FGGATRLTVL	
10-1130 10-847 10-1074	SFVSVAPGQTARITC SYVRPLSVALGETASISC SYVRPLSVALGETARISC	GEESLGSRSVI GRQALGSRAVQ GRQALGSRAVQ	LIIY WYQQRPGQAPS LIIY WYQIIRPGQAPI LLIY WYQHRPGQAPI LLITY	NNQDRPS NNQDRPS	GIPERFSGSPGSTFGTTATLTITSVE AGDEADYYC GIPERFSGTPDINFGTRATLTISGVE AGDEADYYC GIPERFSGTPDINFGTRATLTISGVE AGDEADYYC	IIMWDSRSGFSWS HMWDSRSGFSWS	FGGATRLTVL FGGATRLTVL	

Таблица 2

Название	SEQ ID NO										
Пазвание	Вариабельная	область	CDR 1-3								
	Тяжелая цепь (Н)	Легкая цепь (L)	Н	L							
консенсусная	SEQ ID NO: 1	SEQ ID NO: 2	SEQ ID NO: 33-35	SEQ ID NO: 36-38							
10-259	SEQ ID NO: 3	SEQ ID NO: 4	SEQ ID NO: : 39-41	SEQ ID NO: 42-44							
10-303	SEQ ID NO: 5	SEQ ID NO: 6	SEQ ID NO: 45-47	SEQ ID NO: 48-50							
10-410	SEQ ID NO: 7	SEQ ID NO: 8	SEQ ID NO: 51-53	SEQ ID NO: 54-56							
10-847	SEQ ID NO: 9	SEQ ID NO: 10	SEQ ID NO: 57-59	SEQ ID NO: 60-62							
10-996	SEQ ID NO: 11	SEQ ID NO: 12	SEQ ID NO: 63-65	SEQ ID NO: 66-68							
10-1074	SEQ ID NO: 13	SEQ ID NO: 14	SEQ ID NO: 69-71	SEQ ID NOs: 72-74							
10-1121	SEQ ID NO: 15	SEQ ID NO: 16	SEQ ID NO: 75-77	SEQ ID NO: 78-80							
10-1130	SEQ ID NO: 17	SEQ ID NO: 18	SEQ ID NO: 81-83	SEQ ID NO: 84-86							
10-1146	SEQ ID NO: 19	SEQ ID NO: 20	SEQ ID NO: 87-89	SEQ ID NO: 90-92							
10-1341	SEQ ID NO: 21	SEQ ID NO: 22	SEQ ID NO: 93-95	SEQ ID NO: 96-98							
10-1369	SEQ ID NO: 23	SEQ ID NO: 24	SEQ ID NO: 99-101	SEQ ID NO: 102-104							
PGT-121	SEQ ID NO: 25	SEQ ID NO: 26	SEQ ID NO: 105-107	SEQ ID NO: 108-110							
PGT-122	SEQ ID NO: 27	SEQ ID NO: 28	SEQ ID NO: 111-113	SEQ ID NO: 114-116							
PGT-123	SEQ ID NO: 29	SEQ ID NO: 30	SEQ ID NO: 117-119	SEQ ID NO: 120-122							
GL	SEQ ID NO: 31	SEQ ID NO: 32	SEQ ID NO: 123-125	SEQ ID NO: 126-128							
10-1074GM	SEQ ID NO: 129	SEQ ID NO: 130	SEQ ID NO: 131-133	SEQ ID NO: 134-136							

Экспрессировали одиннадцать новых уникальных вариантов (табл. 3) и показали связывание с gp120 и gp140 YU-2 с использованием ELISA и резонанса поверхностного плазмона (SPR). Если не указано иное, белки gp120 и gp140 для таких и других экспериментов экспрессировали в клетках млекопитающих, которые могут связывать N-гликан либо комплексного типа, либо типа с высоким содержанием маннозы с PNGS. Уровни реактивности по отношению к gp120 отличаются в случае антител, относящихся к группам PGT121 и 10-1074, последняя группа имеет более высокие кажущиеся аффинности (фиг. 3A), главным образом, вследствие более медленной диссоциации из комплекса с gp120/gp140 в случае 10-1074-родственных антител (фиг. 4B).

Пример 3. Эпитопы PGT121 и 10-1074.

Сообщалось, что $Asn332_{gp120}$ вблизи ствола петли V3 важен для связывания и нейтрализации вирусов под действием PGT121 (Nature 477(7365):466-470), поэтому авторы исследовали роль V3 в распозна-

вании антигена PGT121-подобными и 10-1074-подобными антителами. ELISA осуществляли, используя белки "кора" gp120 HXB2, в которых отсутствуют петли V1-V3 (gp120^{core}) или сохраняется часть V3 (2CC-core), и используя мутантный белок gp120 YU-2, несущий двойную аланиновую замену в стволе V3 (gp120^{GD324-5AA}). Тестированные антитела проявляли пониженную реактивность против вариантов, в которых отсутствовала петля V3, и gp120^{GD324-5AA} по сравнению с интактным gp120 YU-2, при этом наибольшему влиянию подвергалось связывание антител группы 10-1074 (фиг. 5A и В). Полученные результаты свидетельствуют, что в распознавание обеими группами антител вовлечены детерминанты белка вблизи петли V3. Ни одно из антител не связывалось с перекрывающимися пептидами, охватывающими V3, что свидетельствует о том, что целевые эпитопы являются прерывистыми и/или требуют особой конформации, которая не достигается в случае выделенных пептидов (фиг. 5C).

Аsn332 $_{\rm gp120}$ (Asn337 $_{\rm gp120}$ в более ранней нумерации (J. Proteome Res 7(4):1660-1674)) является N-концевым остатком потенциального сайта N-гликозилирования (PNGS), определяемого как последовательность Asn-X-Ser/Thr. Чтобы определить, требуется ли Asn332 $_{\rm gp120}$ и/или N-связанный с ним гликан для реактивности по отношению к gp120 новых антител PGT121- и 10-1074-групп, авторы тестировали их связывание с gp120 $_{\rm N332A}^{\rm N332A}$ YU-2 в ELISA. Замена N332A снижала связывание PGT121 и всех новых вариантов антител, тогда как их реактивность, направленная против мутантного gp120, в котором отсутствует соседний сайт гликозилирования (мутант gp120 $_{\rm NNT301-3AAA}^{\rm NNT301-3AAA}$), не изменялась. Чтобы определить, влияет ли PNGS в дополнение к Asn332 $_{\rm gp120}$ PNGS на распознавание новыми антителами, авторы конструировали серию из 11 двойных гликановых мутантов, в которых мутацию N332A в gp120 YU-2 объединяли с мутацией PNGS, расположенных между Asn2 62 $_{\rm gp120}$ и Asn406 $_{\rm gp120}$. Все PGT121-подобные и 10-1074-подобные антитела связывались с каждым из двойных гликановых мутантов со сравнимой аффинностью, как в случае gp120 $_{\rm N332A}^{\rm N332A}$.

Чтобы сравнить общее распознавание гликанов PGT121- и 10-1074-подобными антителами, авторы исследовали их связывание с gp120 YU-2, обработанным с PNG-азой F, которая расщепляет N-гликаны как комплексного типа, так и N-гликаны с высоким содержанием маннозы. Поскольку gp120 не может быть полностью ферментативно дегликозилирован, если только он не денатурирован, то обработка PNG-азой F приводила к частичному дегликозилированию gp120 с нативной укладкой (фиг. 6). Тем не менее, реактивности двух групп антител отличались тем, что частичное дегликозилирование gp120 под действием PNG-азы F снижало активность связывания всех PGT121-подобных антител, но не снижало активность ни одного из 10-1074-подобных антител (фиг. 6C). Сходные эксперименты, проведенные с использованием gp120 YU-2, обработанного Endo H, которая расщепляет N-гликаны с высоким содержанием маннозы, но не расщепляет N-гликаны комплексного типа, выявили большее влияние на связывание 10-1074-подобных антител, чем PGT121-подобных антител (фиг. 6D).

Микроматрица N-гликанов показала, что шесть из семи тестированных PGT121-подобных антител демонстрировали регистрируемое связывание с одно- или двухантенными N-гликанами комплексного типа, заканчивающимися галактозой или α-2-6-связанной сиаловой кислотой, но не проявляли регистрируемого связывания с гликанами типа с высоким содержанием маннозы, подтверждая и расширяя предыдущие сообщения об отсутствии связывания РGТ121-123 с N-гликанами с высоким содержанием маннозы и отсутствии конкуренции с Мап₄- и Мап₀-дендронами за связывание с др120 (фиг. 7). Напротив, не существует регистрируемого связывания 10-1074-подобных антител с гликанами, свободными от белков (фиг. 7). Хотя PGT121-подобные антитела связывались со свободными от белков N-гликанами комплексного типа, но не связывались с N-гликанами с высоким содержанием маннозы, PGT121-подобные антитела сохраняли способность связываться с gp120 YU-2, продуцируемым в клетках, обработанных кифунензином (gp120_{kif}), ингибитором маннозидазы, который приводит к исключительному связыванию гликанов с высоким содержанием маннозы с PNGS (фиг. 8B). В случае большинства PGT121-подобных антител наблюдали небольшое, но воспроизводимое снижение связывания с gp120kif. Напротив, 10-1074подобные антитела полностью сохраняли связывание с $gp120_{kif}$ (фиг. 8B). Полученные результаты согласуются с гипотезой о том, что N-гликаны с высоким содержанием маннозы, а также N-гликаны комплексного типа могут быть вовлечены в образование эпитопа для PGT121-подобных антител.

Эксперименты по картированию эпитопов осуществляли, используя два типичных представителя каждой группы (PGT121 и 10-1369 для PGT121-подобной группы; 10-1074 и 10-996 для 10-1074-подобной группы), в конкурентном ELISA. Все четыре антитела проявляли перекрестную конкуренцию, но PGT121 слабее ингибировало связывание 10-996 и 10-1074 с gp120, чем наоборот. Чтобы дополнительно картировать целевые эпитопы, авторы использовали анти-gp120-антитела, которые распознают "корону" петли V3 (фиг. 5), CD4bs, сайт связывания корецептора (CD4-индуцируемый; CD4i), совокупность N-гликанов с высоким содержанием маннозы (2G12) (Journal of virology 76(14):7293-7305; Proc. Natl. Acad. Sci. USA 102(38):13372-13377)) или V3-петлю и N-связанные гликаны в положениях 301 и 332 (PGT128). Антитела против короны V3 ингибировали связывание PGT121 и 10-1369, но не мешали связыванию 10-996 и 10-1074. Антитела PGT128 и в меньшей степени 2G12, но не антитела CD4bs и CD4i, снижали связывание всех четырех антител с gp120.

Вместе взятые полученные данные свидетельствуют, что представители клона PGT121 распознают участок, в который вовлечена белковая детерминанта вблизи петли V3 и ассоциированный с $Asn332_{gp120}$

гликан. Однако клон делится на два семейства, PGT121-подобные и 10-1074-подобные группы, которые отличаются своими аффинностями по отношению к gp120 и ролью гликанов в образовании эпитопов.

Пример 4. Широкая и эффективная нейтрализация ВИЧ.

Чтобы оценить нейтрализующую активность новых вариантов PGT121, авторы измеряли их способность ингибировать ВИЧ-инфекцию клеток TZM-b11, используя 10 вирусных штаммов, включая R1166.cl, в котором отсутствует PNGS в положении 332 gp120. Все варианты PGT121, включая 10-1074-подобные антитела, нейтрализовали 9 псевдовирусов и ни одно не нейтрализовало контроль R1166.cl (фиг. 1А и табл. 4). Нейтрализующая активность коррелировала с аффинностью для шипа ВИЧ, при этом в случае группы 10-1074 наблюдали немного более высокие эффективности, чем в случае группы PGT121 (фиг. 1В и 4С). Типичный вариант зародышевой линии (GL) клонотипа антитела PGT121/10-1074 не мог связывать gp120/gp140 или нейтрализовать любые вирусы, входящие в панель, что означает, что соматическая мутация необходима для связывания и нейтрализации. Спаривание легких цепей GL с тяжелыми цепями мутантной 10-1074- или 10-996-группы не могло спасти связывание или нейтрализацию, что свидетельствует о том, что обе мутантные цепи вносят вклад в правильную сборку паратопа антитела.

Следующие анализы осуществляли для того, чтобы сравнить нейтрализующие активности PGT121 и двух 10-1074-подобных антител (10-996 и 10-1074) против расширенной панели из 119 трудно нейтрализуемых псевдовирусов (классифицируемых как tier-2 и tier-3) (табл. 4 и 5). 10-996 и 10-1074 имели эффективности и широту нейтрализации, сходные с PGT121 (фиг. 1С, 9 и табл. 5 и 6). Как и предполагали, большинство вирусов, несущих аминокислотные изменения в gp120 в положениях 332 и/или 334 (охватывающих PNGS Asn332-X-Ser334/Thr334), были резистентными к нейтрализации (83,8% были резистентными к PGT121, 100% были резистентными к 10-1074 и 10-996). Мутация в таком PNGS была причиной резистентности большинства вирусов к нейтрализации (68,5% в случае 10-996, 72,5% в случае 10-1074 и 60,8% в случае PGT121) (табл. 7). Сравнимые активности нейтрализации наблюдали для IgG- и Fab-форм PGT121 и 10-1074, что свидетельствует о том, что бивалентность не является критичной для их активности (фиг. 1D).

Чтобы оценить возможную роль N-гликанов комплексного типа на оболочке ВИЧ в нейтрализации антителами PGT121 и 10-1074, авторы получали вирионы только с высоким содержанием маннозы двумя разными путями: сборкой псевдовирусов в клетках, обработанных кифунензином, который приводит к образованию N-связанных гликанов $Man_9GlcNAc_2$, или сборкой в клетках HEK293S $GnTI^{-/-}$, которая приводит к образованию N-связанных гликанов $Man_9GlcNAc_2$. Авторы обнаружили, что PGT121 нейтрализовало 2 из 3 полученных с кифунензином PGT121-чувствительных/10-1074-резистентных штаммов, эквивалентно их аналогам, полученным в клетках дикого типа (фиг. 8C). Два PGT121-чувствительных/10-1074-чувствительных вирусных штамма, полученных в клетках $GnTI^{-/-}$, были в равной мере чувствительны к PGT121 и 10-1074, как и их аналоги, полученные в клетках дикого типа. В соответствии с ранее сообщенными данными о том, что N-гликаны комплексного типа частично защищают участок связывания CD4 от связывания антителом, вирусы, полученные в клетках $GnTI^{-/-}$, были более чувствительными к антителам к участку связывания CD4 (NIH45-46 G54W и 3BNC60) (фиг. 8D).

Пример 5. Вновь передаваемый ВИЧ-1.

Затем авторы исследовали активность PGT121 и 10-1074 против передаваемых вирусовосновоположников, оценивая нейтрализацию в анализе на основе мононуклеарных клеток периферической крови (PBMC) с использованием 95 вирусов клады В, выделенных из когорты людей, у которых происходила сероконверсия с 1985 по 1989 гг. (исторические сероконверторы, n=14) или с 2003 по 2006 гг. (современные сероконверторы, n=25) (51, 52). Авторы сравнивали PGT121 и 10-1074 с анти-CD4bs-bN-Ат и другими bN-Ат, включая VRC01, PG9/PG16, b12, 2G12, 4E10 и 2F5. Кластерный анализ нейтрализующей активности показал сегрегацию на две группы; PGT121/10-1074-группа содержала наиболее активные нейтрализаторы ВИЧ, включая анти-CD4bs и PG9-антитела (табл. 8). Примечательно, что в случае 10-1074 наблюдали исключительную эффективность нейтрализации на такой панели вирусов клады В, при этом наибольшую широту наблюдали при 0,1 мкг/мл (67% из 95 вирусов клады В) всех тестированных bN-Ат (табл. 8). Хотя 10-1074 проявляло наибольшую эффективность по отношению к современным вирусам клады В, чем PGT121 (~20-кратное различие), оба антитела были более эффективными против исторических, чем современных вирусов (фиг. 1Е и 10).

Пример 6. Кристаллические структуры PGT121, 10-1074 и GL.

Чтобы исследовать структурные детерминанты различий между PGT121-подобными и 1074-подобными антителами, авторы определяли кристаллические структуры Fab-фрагментов PGT121, 10-1074 и типичного предшественника зародышевой линии (GL) с разрешением 3,0 Å, 1,9 Å и 2,4 Å соответственно (табл. 9). Наложение вариабельных доменов тяжелой и легкой цепи (V_H и V_L) для трех Fab показало консервативность структуры остова, при этом различия ограничены небольшими перестановками петель CDRH3 и CDRL3 в Fab с созревшей аффинностью по сравнению с GL (табл. 10).

Необычным признаком антител является их длинная (25 остатков) петля CDRH3, которая образует двунитевый антипараллельный β -слой, охватывающий F- и G-нити домена V_H . В каждом Fab верхушка продленной петли CDRH3, главным образом, содержит неполярные остатки. Сходный структурный при-

знак наблюдали в случае CDRH3 PGT145, чувствительного к углеводам антитела, эпитоп которого включает петлю V1V2 gp120. Однако удлиненный двунитевой β -слой CDRH3 PGT145 в основном содержит отрицательно заряженные остатки, включая два сульфатированных тирозина на верхушке. Выравнивание V_H - V_L PGT121 и PGT145 (табл. 10) показывает, что CDRH3 $_{PGT145}$ простирается за пределы CDRH3 $_{PGT121}$, и что его верхушка и домены V_H выравниваются, тогда как CDRH3 PGT121, 10-1074 и GL наклоняется к V_L . Наклон CDRH3 $_{PGT121}$ CDRH3 $_{10-1074}$ /CDRH3 $_{GL}$ к V_L открывает щель между CDRH2 и CDRH3, признак, которого нет у родственных антител.

РGT121 и 10-1074 являются высокодивергентными по отношению к GL и друг другу (из 132 остатков PGT121 $_{\rm VH}$ отличаются от 10-1074 $_{\rm VH}$ и GL $_{\rm VH}$ 36 и 45 остатков, соответственно, и 10-1074 $_{\rm VH}$ и GL $_{\rm VH}$ отличаются по 29 остаткам). Большинство различий PGT121/10-1074 локализованы в петлях CDR $_{\rm VH}$ и CDRL3. Интересно, что шесть замен в CDRH3 (остатки 100d, 100f, 100h, 100j, 100l, 100n) чередуются так, что заменен каждый второй остаток, что вызывает изменение поверхности с образованием щели между CDRH2 и CDRH3, которая возникает в результате наклона CDRH3 по направлению к $V_{\rm L}$. Такая область вероятно вносит в клад в различные тонкие специфичности PGT121 и 10-1074. Пять других подвергаемых воздействию растворителя замен в каркасной области 3 тяжелой цепи (FWR3 $_{\rm HC}$) (остатки 64, 78, 80-82; нити D и E) являются возможными участками контакта с антигеном, учитывая, что каркасные области в ВИЧ-антителах могут контактировать с gp120. Другие различия, которые могут вносить вклад в тонкие различия в специфичности, включают отрицательный участок на PGT121 вблизи Asp56 $_{\rm HC}$, который отсутствует в 10-1074 или GL (Ser56 $_{\rm HC}$ в 10-1074 и GL) и положительные участки на поверхности CDRL1 и CDRL3, не найденные на аналогичной поверхности GL.

Соматические мутации, общие для PGT121 и 10-1074, могут быть вовлечены в общие признаки их эпитопов. Тяжелые цепи PGT121 и 10-1074 имеют только три общих мутации (из 36 различий в PGT121-GL и 29 различий в 10-1074-GL). Напротив, PGT121 и 10-1074 имеют 18 общих мутаций легких цепей (из 37 различий PGT121-GL и 36 различий 10-1074-GL), включая инсерцию в FWR3 легкой цепи, которая вызывает образование петли, соединяющей нити D и E, и замену $Asp50_{LC}$ - $Asp51_{LC}$ в $CDRL2_{GL}$ на $Asn50_{LC}$ - $Asn51_{LC}$ в обоих антителах PGT121 и 10-1074, что приводит к менее отрицательно заряженной поверхности. Большое количество общих замен, введенных в LC_{PGT121} и $LC_{10-1074}$ (примерно 50% замен LC), указывает, что CDRL1, CDRL2 и $FWR2_{LC}$ являются потенциальными областями контакта для эпитопов, общих для PGT121 и 10-1074.

Затем осуществляли сравнения со структурой PGT128, которая распознает Asn332 $_{\rm gp120}$ - и Asn301 $_{\rm gp120}$ -связанные гликаны и V3 и была определена в виде комплекса с gp120 с наружным доменом/минипетлей V3, экспрессированным в клетках, которые не могут продуцировать белки, модифицированные N-гликанами комплексного типа. В отличие от петель CDRH3 PGT121 и 10-1074, PGT128 $_{\rm CDRH3}$ не наклоняется в сторону PGT128 $_{\rm VL}$, и CDRH3 $_{\rm PGT128}$ не имеет двунитевого β -слоя. Кроме того, CDRH3 $_{\rm PGT128}$ (18 остатков) короче, чем CDRH3 PGT121 и 10-1074 (24 остатка), тогда как CDRH2 $_{\rm PGT128}$ содержит инсерцию шести остатков, не встречающуюся в PGT121 или 10-1074. Вследствие таких различий CDRH2 является наиболее выраженным признаком PGT128, тогда как CDRH3 является наиболее выраженным в PGT121 и 10-1074. CDRH2 $_{\rm PGT128}$ и CDRL3 $_{\rm PGT128}$ вместе распознают Мап $_{\rm 8/9}$, связанный с Asn332 $_{\rm gp120}$, и CDRH3 $_{\rm PGT128}$ контактирует с основанием петли V3. Такой способ распознавания gp120 не возможен в случае PGT121 и 10-1074, так как структурные характеристики их петель CDRH2 и CDRH3 значительно отличаются от характеристик PGT128, что согласуется со способностью PGT128, но не PGT121 и 10-1074 (фиг. 7) распознавать свободные от белков гликаны с высоким содержанием маннозы.

Пример 7. Кристаллическая структура комплекса PGT121-гликан.

Получали структуру с разрешением 2,4 Å антитела PGT121, ассоциированного с сиалилированным двухантенным гликаном комплексного типа (табл. 9), используя кристаллы, полученные в условиях, включающих присутствие NA2, несиалилированного двухантенного гликана комплексного типа (фиг. 7). Неожиданно гликан, связанный с PGT121 в полученной авторами кристаллической структуре, не был NA2, а представлял собой N-гликан комплексного типа из соседнего Fab PGT121 в кристаллической решетке; в частности N-гликан, связанный с Asn105_{нС}. Идентификация гликана была очевидной, поскольку наблюдали электронную плотность для гликозидной связи с Asn105_{HC} и для концевой сиаловой кислоты на антенне Мапα1-3Мап (остатки галактозы и сиаловой кислоты антенны Мапα1-6Мап не были решены в структуре). Состав связанного гликана соответствует части α -2-6-сиалилированного A2(2-6)-гликана, который связывался антителом PGT121 в экспериментах на микроматрицах (фиг. 7), и ожидаемой сиалильной связи в N-гликанах комплексного типа, связанных с PNGS на белках, экспрессированных в клетках НЕК293Т. Хотя домены V_{H} - V_{L} такой структуры ("связанного с лигандом" PGT121) накладываются без значимых различий на домены V_H - V_L структуры PGT121 без связанного N-гликана ("не связанный с лигандом" PGT121) (табл. 10), угол коленчатого изгиба (угол между псевдопарами V_H - V_L и C_H1 -С₁) в структурах различен. Такое различие, вероятно, отражает гибкость, которая позволяет Fab принимать переменные углы коленчатого изгиба в зависимости от напряжений кристаллической решетки.

Учитывая, что авторы наблюдали связывание N-гликана комплексного типа в одной кристаллической структуре (структуре "связанного с лигандом" PGT121), но не наблюдали в другой структуре

(структуре "не связанного с лигандом" PGT121), авторы оценили, что аффинность PGT121 для N-гликана комплексного типа, не связанного с gp120, находится в диапазоне концентраций PGT121 в кристаллах (\sim 10 мМ). Если предположить, что K_D для связывания выделенного гликана находится в диапазоне 1-10 мМ, сравнимом с K_D 1,6 мМ, полученным для связывания PG9 с $Man_5GlcNAc_2-Asn$, то $Mathbb{K}_D$ для связывания антителом PGT121 выделенного гликана дает только небольшой вклад в аффинность PGT121 по отношению к gp120, которая находится в наномолярном диапазоне (фиг. 4A).

Гликан в структуре "связанного с лигандом" PGT121 взаимодействует исключительно с доменом $V_{\rm H}$ и осуществляет широкие контакты с остатками во всех трех CDR (площадь скрытой поверхности на PGT121 $_{\rm HC}$ =600 Ų). Контакты включают 10 прямых и 18 опосредованных водой водородных связей (табл. 11) с 9 аминокислотами, заякоривающими гликан между остатком N-ацетилглюкозамина, связанного с маннозой точки ветвления, и концевой сиаловой кислотой на 1-3-антенне. Несколько контактов с PGT121 осуществляются за счет такой сиаловой кислоты, включая три прямых водородных связи с остатками PGT121 Asp31 $_{\rm HC}$ и His97 $_{\rm HC}$ в дополнение к опосредованным водой водородных связей внутри гликана. Прямые контакты с сиаловой кислотой могут объяснять более сильное связывание PGT121 с сиалилированным A2(2-6)-гликаном, чем с несиалилированным гликаном NA2 в проведенном авторами изобретения анализе на микроматрице гликанов (фиг. 7). Обширные опосредованные водой контакты с белками, создаваемые остатками N-ацетилглюкозамина и галактозы 1-3-антенны, могут объяснять связывание, наблюдаемое в случае несиалилированных одно- и двухантенных гликанов с PGT121 (фиг. 7).

Шесть остатков, способствующие прямым или вероятно осуществляемым через боковые цепи аминокислот контактам с гликанами (Ser $32_{HC\text{-}CDRH1}$, Lys $53_{HC\text{-}CDRH2}$, Ser $54_{HC\text{-}CDRH2}$, Asn $58_{HC\text{-}CDRH2}$, His $97_{HC\text{-}CDRH3}$, $Thr1001_{HC\text{-}CDRH3}$), отличаются от таковых в 10-1074 ($Tyr32_{HC\text{-}CDRH1}$, $Asp53_{HC\text{-}CDRH2}$, $Arg54_{HC\text{-}CDRH2}$, $Thr58_{HC\text{-}CDRH2}$, $Arg97_{HC\text{-}CDRH3}$, $Tyr1001_{HC\text{-}CDRH3}$) и являются высококонсервативными среди PGT121подобных, но не среди 10-1074-подобных антител. Остатки 10-1074 не имеют соответствующих функциональных групп для осуществления наблюдаемых контактов с гликанами или имеют объемные боковые цепи, которые могут вызывать стерические конфликты. Четыре из таких остатков также отличаются от остатков в GL (Туг $32_{HC-CDRH1}$, Туг $53_{HC-CDRH2}$, $Gln97_{HC-CDRH3}$, Туг $1001_{HC-CDRH3}$), свидетельствуя о том, что отсутствие связывания 10-1074-подобных антител и GL со свободными от белков гликанами комплексного типа на микроматрицах гликанов является результатом отсутствия водородных связей и/или стерических конфликтов (например, His97_{PGT121} по сравнению с Arg97₁₀₋₁₀₇₄; Thr1001_{PGT121} по сравнению с $Tyr1001_{10-1074}$). Так как большинство различий последовательностей между PGT121 и 10-1074 сгруппировано в петлях CDRH, в частности, к поверхности щели между CDRH2 и CDRH3, где авторы наблюдали связанный N-гликан комплексного типа, дифференциальное распознавание гликанов комплексного типа на gp120 может являться причиной некоторых или всех различий в их наблюдаемой тонкой специфичности

Пример 8. Замена контактирующих с гликанами остатков антитела влияет на нейтрализацию.

Чтобы оценить вклады остатков, контактирующих с N-гликанами комплексного типа, определенными на основании "связанной с лигандами" структуры PGT121, авторы создали два мутантных антитела с целью обмена остатками, контактирующими с гликанами комплексного типа, между PGT121 и 10-1074: IgG 10-1074 с остатками PGT121 (шесть замен в IgH Y32S, D53K, R54S, T58N, R97H, Y1001T) и IgG PGT121 с реципрокными заменами. "Гликомутантные" антитела (10-1074_{GM} и PGT121_{GM}) имели кажущуюся аффинность по отношению к gp120/gp140 YU-2 почти дикого типа, судя по измерениям с использованием SPR (фиг. 2A), что свидетельствует о том, что замены не нарушали связывание с шипом оболочки, полученным из штамма вируса, нейтрализуемого как PGT121, так и 10-1074 (фиг. 1A). Тот факт, что остатки PGT121, контактирующие с N-гликанами комплексного типа, могут размещаться в остове 10-1074 без нарушения связывания с gp120/gp140, связываемым обоими антителами дикого типа, позволяет предполагать общее сходство в связывании антигена, несмотря на тонкие различия в специфичности.

В отличие от PGT121 дикого типа PGT121 $_{\rm GM}$ не связывало гликаны в экспериментах с использованием микроматрицы, подтверждая, что остатки 10-1074 в положениях замен не совместимы со связыванием гликанов, свободных от белков (фиг. 2В), и подтверждая, что остатки, контактирующие с гликаном в "связанной с лигандом" структуре PGT121 вовлечены в распознавание гликанов комплексного типа на микроматрицах. $10\text{-}1074_{\rm GM}$ также не связывалось со свободными от белков гликанами (фиг. 2В), свидетельствуя о вовлечении некоторых остатков в дополнение к замененным остаткам в создании участка связывания свободного от белков N-гликана комплексного типа.

Затем использовали основанный на TZM-bl анализ, чтобы сравнить нейтрализацию антителами дикого типа и "гликомутантными" антителами. Авторы тестировали 40 вирусных штаммов, включая штаммы, по-разному резистентные к действию PGT121 или 10-1074, и штаммы, чувствительные к обоим антителам дикого типа (фиг. 2C и табл. 12). В соответствии со связыванием PGT121 $_{\rm GM}$ и 10-1074 $_{\rm GM}$ с очищенными белками оболочки YU-2 оба мутанта нейтрализовали вирус YU-2; однако 64% PGT121-чувствительных штаммов были резистентными к PGT121 $_{\rm GM}$ (фиг. 2C и табл. 12), что свидетельствует о том, что контактирующие с гликанами остатки, идентифицированные в "связанной с лигандом" структу-

ре PGT121, имеют отношение к нейтрализующей активности PGT121. Наоборот, $10-1074_{\rm GM}$ проявляло более высокую среднюю эффективность, чем 10-1074 дикого типа против 10-1074-чувствительных штаммов (фиг. 2С и табл. 12), включая более чем 3-кратное повышение эффективности против четырех 10-1074-чувствительных штаммов (WITO4160.33, ZM214M.PL15, Ce1172 H1 и 3817.v2.c59). В общем, PGT121-замены в 10-1074 не придавали чувствительности к 10-1074 $_{GM}$ PGT121-чувствительным/10-1074резистентным штаммам, однако два таких штамма (CNE19 и 62357_14_D3_4589) становились чувствительными к $10-1074_{GM}$ (IC₅₀ = 0,19 мкг/мл и 40,8 мкг/мл соответственно). Интересно, что были только PGT121-чувствительные/10-1074-резистентные штаммы, которые содержали интатный PNGS, связанный с $Asn332_{gp120}$. Другие PGT121-чувствительные/10-1074-резистентные штаммы не имеют $Asn332_{gp120}$ связанного гликана и резистентны к PGT121_{GM} и 10-1074_{GM}, что свидетельствует о том, что в их чувствительность к PGT121 дикого типа вовлечен соседний N-гликан и/или компенсация белковыми частями эпитопа. Хотя существенное приобретение функции наблюдали только в случае 10-1074_{GM} против одного штамма (CNE19), полученный результат вместе с общим улучшением, наблюдаемым в случае 10-1074_{GM} против 10-1074-чувствительных штаммов (фиг. 2С), согласуется с таким объяснением, что кристаллографически идентифицированные контактирующие с гликанами остатки могут переносить свойства распознавания РGT121-подобного антитела на 10-1074 в некоторых контекстах и/или влиять на его эффективность по иному. Кроме того, потеря нейтрализующей активности в случае PGT121_{GM} против PGT121-чувствительных штаммов свидетельствует, что в нейтрализующую активность PGT121 вовлечены остатки, идентифицированные как контактирующие с N-гликаном комплексного типа в "связанной с лигандом" структуре PGT121.

Результаты.

PGT121 является зависимым от гликанов bN-Aт, которое вначале было идентифицировано в сыворотке донора, инфицированного вирусом клады A, в функциональном скрининге дающее только два клонально родственных представителя. Тримеры gp140 использовали в качестве "приманки" для сортировки одиночных клеток, выделив при этом 29 новых клональных вариантов. Семейство клонов PGT121 включает отличающиеся группы близкородственных антител: PGT121- и 10-1074-группы. Результаты свидетельствуют, что в эпитопы обеих групп вовлечен PNGS в положении Asn332 $_{\rm gp120}$ и основание петли V3. Группы PGT121-подобных и 10-1074-подобных антител отличаются по аминокислотным последовательностям, аффинностям связывания gp120/gp140 и нейтрализующим активностям, при этом 10-1074-подобные антитела в отношении нейтрализации полностью зависят от интактного PNGS в положении Asn332 $_{\rm gp120}$, тогда как PGT121-подобные антитела способны нейтрализовать некоторые вирусные штаммы, в которых отсутствует PNGS в Asn332 $_{\rm gp120}$.

Значительное различие между двумя группами антител заключается в том, что PGT121-подобные антитела связывают N-гликаны комплексного типа на матрице углеводов, тогда как в случае 10-1074-подобных антител не наблюдают регистрируемого связывания с какими-либо тестированными свободными от белков N-гликанами (фиг. 7). Связывание свободных от белков гликанов анти-ВИЧ-антителами не всегда можно выявить; например, несмотря на то, что PG9 распознает gp120-ассоциированный гликан с высоким содержанием маннозы, на микроматрицах не выявляется связывания со свободными от белков гликанами. Таким образом, хотя позитивный результат, полученный на микроматрице гликанов, подразумевает вовлечение конкретного гликана в эпитоп антитела, отрицательный результат не исключает распознавания гликанов. Например, хотя гликаны с высоким содержанием маннозы не выявляются в экспериментах с использованием микроматрицы гликанов, они могут быть вовлечены в эпитоп PGT121, в соответствии с данными о связывании и нейтрализации форм только с высоким содержанием маннозы белка gp120 и вирионов (фиг. 8).

Молекулярная основа различий между PGT121, 10-1074 и их предшественником GL была выявлена, отчасти, с использованием их кристаллических структур. Данные о том, что большинство соматических мутаций легких цепей являются общими для PGT121 и 10-1074, тогда как мутации в тяжелых цепях отличаются, свидетельствуют, что легкие цепь контактируют с общими частями эпитопа gp120, а тяжелые цепи распознают отличающиеся признаки. Все три антитела имеют удлиненную CDRH3 с неполярной верхушкой, которая может обеспечить доступ к скрытым эпитопам. Различия в антигенсвязывающем участке двух зрелых Fab, главным образом, локализованы в щели между CDRH2 и удлиненной CDRH3. Интересно, что предполагаемая антигенсвязывающая щель между CDRH2 и CDRH3 также найдена в типичном предшественнике зародышевой линии для PGT121 и 10-1074.

Структурную информацию, касающуюся распознавания гликанов PGT121-подобными антителами, получали на основании кристаллической структуры, в которой сиалилированный N-гликан комплексного типа, связанный с остатком домена V_H , взаимодействовал с участком связывания соседнего Fab PGT121. Несколько признаков "связанной с лигандом" структуры PGT121 свидетельствуют, что она подходит для понимания распознавания N-гликанов комплексного типа на gp120 PGT121-подобными антителами. Вопервых, гликан в структуре соответствует α -2-6-сиалилированному гликану A2(2-6), который антитело PGT121 связывает на микроматрицах (фиг. 7). Во-вторых, гликан взаимодействует с PGT121 с использованием щели между CDRH3 и CDRH2, которая, как было подтверждено структурными анализами, вовлечена в распознавание эпитопа, что возможно объясняет необычный наклон CDRH3 в сторону V_L в

структурах PGT121 и 10-1074. В-третьих, большинство остатков V_H, идентифицированных как остатки, взаимодействующие с гликаном, отличаются в РGT121 и 10-1074, что объясняет разные профили связывания на микроматрицах гликанов и возможно объясняет разные тонкие специфичности, выявляемые в экспериментах по связыванию белков. В-четвертых, обмен кристаллографически идентифицированными остатками контакта с гликанами между PGT121 и 10-1074, отчасти, приводит к переносу их свойств: PGT121_{GM} подобно 10-1074 не связывалось со свободными от белков гликанами, но оба антитела PGT121_{GM} и 10-1074_{GM} сохраняли связывание почти дикого типа с очищенными gp120/gp140 YU-2. Хотя PGT121_{GM} сохраняло способность нейтрализовать некоторые вирусные штаммы, которые подвергались нейтрализации PGT121 и 10-1074 дикого типа, оно не способно было нейтрализовать штаммы, которые являются PGT121-чувствительными/10-1074-резистентными, что свидетельствует о том, что мотив связывания гликана важен для нейтрализующей активности PGT121, направленной против 10-1074резистентных штаммов. В случае реципрокного обмена эффективность нейтрализации антителом 10-1074_{GM} возрастала или не подвергалась влиянию по сравнению с 10-1074, и в одном случае 10-1074_{GM} потенциально нейтрализовало РGT121-чувствительный/10-1074-резистентный штамм, что согласуется с переносом кристаллографически идентифицированного мотива гликана и гипотезой о том, что эпитопы PGT121- и 10-1074-подобных антител являются родственными. В анализах последовательностей gp120 из штаммов, для которых имеются другие данные о нейтрализации PGT121, отличные от корреляции с PNGS в Asn $332_{\rm gp120}$ в случае вирусов, чувствительных к PGT121-подобным и 10-1074-подобным антителам, не возникает ясной картины использования PNGS для разных категорий вирусных штаммов PGT121-чувствительные/10-1074-резистентные, (PGT121-чувствительные/10-1074-чувствительные, PGT121-резистентные/10-1074-чувствительные), за исключением 10-1074-резистентных штаммов, в которых обычно отсутствует Asn $332_{\rm gp120}$ -ассоциированный PNGS.

Пример 9. Пассивный перенос нейтрализующих анти-ВИЧ-1-мАт in-vivo.

Пять выделенных эффективных и обладающих широким спектром действия моноклональных нейтрализующих анти-ВИЧ-антител вводили макакам-резус и через 24 ч заражали их интраректально любым из двух разных SHIV. Объединяя результаты, полученные для 60 зараженных животных, выяснили, что титр для защитной нейтрализации в плазме, предотвращающий появление вирусов у макак, подвергаемых воздействию, на 50%, составляет примерно 1:100.

Эксперименты на животных.

Макаки, используемые в данном исследовании, были негативными по аллелю Mamu-A*01 MHC класса I.

Конструирование R5-тропного SHIVDH12-V3AD8.

Вирусы.

Исходные штаммы вирусов готовили, сначала трансфицируя клетки 293Т молекулярными клонами SHIVAD8EO или SHIVDH12-V3AD8 с использованием липофектамина 2000 (Invitrogen, Carlsbad, CA). Надосадки культур собирали через 48 ч и аликвоты хранили при -80°С вплоть до использования. Стимулированные конканавалином А PBMC макак-резус (2×10⁶ клеток в 500 мкл) инфицировали надосадками трансфицированных клеток посредством инокуляции при центрифугировании (J. of Virology 74, 10074-10080 (2000)) в течение 1 ч, смешивали с таким же количеством/объемом активированных PBMC и культуры поддерживали по меньшей мере в течение 12 дней с ежедневной заменой культуральной среды. Образцы надосадочной среды объединяли вблизи временных точек пика продукции, чтобы получить отдельные исходные вирусные штаммы.

Антитепа

Выделили и получили одиннадцать моноклональных антител (VRC01, NIH45-46, 45-46G54W, 45-46m2, 3BNC117, 12A12, 1NC9 и 8ANC195, 10-1074, PGT121 и PGT126). DEN3, моноклональное IgG1-антитело человека, специфичное к вирусу денге NS1 (PNAS 109, 18921-18925 (2012)) или контрольный IgG человека (NIH Nonhuman Primate Reagent Resource http://www.nhpreagents.org) использовали в качестве негативных контрольных антител в данном исследовании. Моноклональные антитела, выбранные для пассивного переноса до экспозиции, вводили внутривенно за 24 ч до провокационного заражения вирусом.

Количественная оценка уровней вирусной РНК в плазме.

Уровни вирусной РНК в плазме определяли, используя обратную транскрипцию-ПЦР в реальном

времени (система детекции последовательностей ABI Prism 7900HT; Applied Biosystems).

Концентрации антител в плазме.

Концентрации вводимых моноклональных антител в плазме макак определяли в твердофазном иммуноферментном анализе (ELISA), используя рекомбинантный gp120 BИЧ-1JRFL (Progenies Pharmaceuticals) или ВИЧ IIIB (Advanced Biotechnology inc.) (J. of Virology 75, 8340-8347 (2001)). Кратко, планшеты для микротитрования покрывали gp120 ВИЧ-1 (2 мкг/мл) и инкубировали в течение ночи при 4°С. Планшеты промывали PBS/0,05% Твин-20 и блокировали, используя 1% (об./об.) БСА. После блокирования в планшет добавляли серийные разведения антител или образцов плазмы и инкубировали в течение 1 ч при комнатной температуре. Связывание выявляли с использованием F(ab)₂-фрагментов козы против IgG человека, связанных с щелочной фосфатазой (Pierce), и визуализировали, используя SIG-МАFAST OPD (Sigma-Aldrich). Время полураспада нейтрализующих моноклональных антител вычисляли, используя формулу экспоненциального распада, основанную на концентрациях в плазме, начиная на 5 или 7 день после введения антитела (J. of Virology 84, 1302-1313 (2010)).

Анализ нейтрализации.

Эффективность іп vitro каждого мАт и нейтрализующую активность, присутствующую в образцах плазмы, собранных у макак-резус, оценивали в анализах нейтрализации двух типов: 1) в анализе проникновения в ТZМ-bl с использованием псевдотипированного вируса для заражения (AIDS Res. Hum. Retroviruses 26, 89-98 (2010)) или 2) 14-дневный анализ репликации в PBMC с использованием компетентного по репликации вируса (J. of virology 76, 2123-2130 (2002)). В случае анализа на ТZМ-b1 серийно разведенные мАт или образцы плазмы инкубировали с псведотипированными вирусами, экспрессирующими ген епу, полученный из SHIVAD8EO или SHIVDH12.V3AD8, и получали в результате котрансфекции клеток 293Т векторами рNLenvl и рСМV, экспрессирующими соответствующие белки оболочки (J. of Virology 84, 4769-4781 (2010)). Титр для ингибирующей дозы, дающей 50% нейтрализацию (IC₅₀), вычисляли в виде разведения, вызывающего 50% снижение относительных единиц люминесценции (RLU) по сравнению с уровнями в контрольных лунках с вирусом после вычитания RLU клеточного контроля (J. of Virology 84, 1439-1452 (2010)). Фенотип нейтрализации (уровни tier) молекулярного клона SHIVDH12 V3AD8 определяли в анализе на клетках TZM-b1, используя образцы плазмы из когортного исследования, которые проявляли широкий диапазон нейтрализующей активности против изолятов DBX-1 подтипа В (J. of General Virology 91, 2794-2803 (2010)).

Определения защитных титров у животных и статистические анализы.

Вычисление титра нейтрализации в плазме против каждого SHIV R5, приводящего к предотвращению заражения вирусом на 50 или 80% у животных, провокационно заражаемых вирусом, осуществляли, используя способ Reed и Muench (Am. J. Hyg. 27, 493-497 (1938)). Одно животное со значительно выпадающими значениями (DEW7) исключали из вычисления. Пробит-регрессию использовали для моделирования взаимосвязи между титрами в плазме, необходимыми для придания стерилизующего иммунитета in vivo, с использованием всех 60 пассивно иммунизированных обезьян (Cambridge University Press, Cambridge, England, ed. 3rd, 2007), при этом р-значения в такой модели основаны на критерии отношения правдоподобия. Титры в плазме, необходимые для разных уровней защиты in vivo (33, 50, 80, 90 и 95%) определяли на основании оценок пробит-модели и способа бутстреппинга для создания 90% доверительных интервалов. Результаты: SHIVDH12-V3AD8, подобный SHIVAD8EO, обладает свойствами чувствительности к нейтрализации антителами против ВИЧ-1 tier 2 (табл. 13). У макак-резус, которым внутривенно или интраректально инокулировали SHIVDH12-V3AD8, наблюдали пиковую вирусемию в диапазоне от 10⁵ до 10⁷ копий вирусной РНК/мл плазмы на 2-3 неделе после инфекции (PI). У большинства SHIVDH12-V3AD8-инфицированных животных вирусная нагрузка в плазме снижалась до фоновых уровней с 8 по 20 неделю после инфекции.

Чувствительность SHIVAD8EO к нейтрализации 11 недавно описанными анти-ВИЧ-1-мАт с широкой реактивностью сначала определяли в системе анализа TZM-bl (фиг. 11A и В). Мишенью восьми из указанных антител, VRC01, NIH45-46 (23), 45-46G54W, 45-46m2, 3BNC117, 12A12, 1NC9 и 8ANC195, был CD4bs gp120 (Science 333, 1633-1637 (2011)) и три антитела, 10-1074, PGT121 и PGT126 (Nature 477, 466-470 (2011)), зависели от присутствия N332-гликана gp120 ВИЧ-1. При тестировании против SHIVAD8EO все три зависимых от гликанов мАт проявляли большую эффективность, чем CD4bs-MAT (фиг. 11A). Значения IC_{50} для трех мАт, мишенью которых является N332-гликан gp120, были в диапазоне от 0,09 до 0,15 мкг/мл. CD4bs-MAT проявляли намного более широкий диапазон (от 0,14 до 6,34 мкг/мл) нейтрализующей активности IC_{50} , при этом наиболее эффективности мАт также наблюдали с использованием SHIVDH12-V3AD8, но нейтрализующая активность распределялась в намного более широком диапазоне (>100-кратном) по сравнению со значениями IC_{50} , наблюдаемыми для SHIVAD8EO (фиг. 11B). SHIVDH12-V3AD8 были немного более чувствительными к мАт, нацеленным на гликаны, и более резистентными к мАт, нейтрализующим CD4bs, чем SHIVAD8EO.

На основании результатов, показанных на фиг. 11, пять нейтрализующих мАт были выбраны для исследования пассивного переноса перед экспозицией: VRC01, поскольку оно было первым охарактеризованным CD4bs-N-Aт из вновь выделенных N-Aт широкого диапазона действия; CD4bs-MAT 45-46m2 и

3BNC117, которые оба проявляли сильную нейтрализующую активность против SHIVAD8EO и SHIVDH12-V3AD8; и зависимые от N332-гликана gp120 мAт, PGT121 и 10-1074.

Протокол экспериментов по пассивному переносу заключался во внутривенном введении уменьшающихся количеств нейтрализующих мАт и интраректальном заражении животных через 24 ч. Целью было блокирование появления вируса в организме, в связи с данными о том, что многократные введения гуманизированных анти-ВИЧ-мАт отдельным макакам могут снижать их эффективность и/или возможно индуцировать анафилактические ответы, выбирали дозу заражения SHIV достаточного размера для того, чтобы обеспечить инфекцию in vivo после одной инокуляции. Для этого авторы ранее провели интраректальное титрование SHIVAD8 у макак-резус и сообщили, что инокуляция 1×10³ TCID50, определяемой по конечному разведению PBMC макак-резус, была эквивалентна введению примерно 3 доз, инфицирующих животных на 50% (AID50) (J. of virology 86, 8516-8526 (2012)). Действительно, отдельные интраректальные инокуляции 3 AID50 приводили к успешному развитию инфекции у 10 из 10 макак-резус вирусами SHIVAD8EO или SHIVDH12-V3AD8.

В качестве контроля в первом эксперименте по пассивному переносу животным внутривенно вводили IgG1-мАт против вируса денге NS1 и заражали, используя SHIVAD8EO спустя 24 ч. Обе обезьяны (ML1 и MAA) быстро становились инфицированными с образованием пиковых уровней вирусемии в плазме на 2 неделе после инфекции. VRC01 было первым нейтрализующим анти-ВИЧ-1-мАт, тестированным в отношении защиты против появления вируса в организме, и его вводили двум макакам в дозе 50 мг/кг. Одна (DEGF) из двух макак, которым была проведена инокуляция, была полностью защищена от заражения SHIVAD8EO без свидетельства вирусемии в плазме или ассоциированной с клетками вирусной ДНК на протяжении 45-дневного периода наблюдения. Другой реципиент, которому инокулировали 50 мг/кг VRC01 (DEH3) становился инфицированным, но пиковая вирусемия в плазме наступала с задержкой вплоть до 5 недели после инфекции. Две другие макаки, которым вводили меньшие количества (20 мг/кг) VRC01 не были защищены от заражения SHIVAD8EO. Полученные результаты суммированы в табл. 13.

Затем исследовали защитные свойства PGT121, направленные против заражения SHIVAD8EO. PGT121 было одним из наиболее эффективных нацеленных на гликаны нейтрализующих мАт, судя по измерениям в анализе TZM-bl (фиг. 11). На основании результатов, полученных с использованием VRC01 для начала титрования in vivo мАт PGT121 была выбрана доза 20 мг/кг. Две зараженных обезьяны (KNX и MK4) были резистентными к заражению SHIVAD8EO. Когда животным вводили более низкие количества (т.е. 5, 1 или 0,2 мг/кг) PGT121, 1 из 2, 2 из 2 и 0 из 2 животных, соответственно, были защищены (табл. 13).

Способность мАт VRC01 и PGT121 блокировать появление в организме SHIVDH12-V3AD8 оценивали сходным образом (табл. 13). Результаты, полученные с использованием VRC01, были сравнимы с результатами, наблюдаемыми в случае заражения SHIVAD8EO: 1 из 2 реципиентов, получавший 30 мг/кг, был защищен от развития инфекции SHIVDH12-V3AD8. мАт PGT121 были значительно более эффективными, чем VRC01 в предотвращении заражения SHIVDH12-V3AD8: 2 из 2 реципиентов, получавших 0,2 мг/кг PGT121, были резистентными к инфекции. PGT121 также оказалось несколько более эффективным в предотвращении инфекции in vivo HIVDH12-V3AD8 по сравнению с SHTVAD8EO (табл. 13). Полученный результат согласуется с 8-кратным различием в значениях IC50 в случае PGT121 в отношении нейтрализации двух SHIV в анализах in vitro (фиг. 11).

Результаты пассивного переноса нейтрализующих мАт 10-1074, 3BNC117 или 45-46m2 макакам-резус с последующим заражением либо SHIVAD8EO, либо SHIVDH12-V3AD8 суммированы в табл. 13. мАт 10-1074 эффективно блокировало заражение in vivo обоими SHIV. мА CD4bs 3BNC117 и 45-46m2 были выбраны для пассивного переноса макакам на основании их значений IC_{50} против обоих SHIV в экспериментах по нейтрализации in vitro, показанных на фиг. 11. 3BNC117 успешно блокировало инфекцию SHIVAD8EO у 2 из 2 обезьян в дозе 5 мг/кг, но не у 2 других животных, которые получали дозу 1 мг/кг (табл. 13). Полученные данные были сходны с результатами, наблюдаемыми в том случае, когда одинаковые количества 3BNC117 вводили макакам, зараженным SHIVDH12-V3AD8: 1 из 2 становилась инфицированной в случае дозы 5 мг/кг.

Образцы плазмы, собранные в различных временных точках от макак, которым проводили пассивный перенос, анализировали в ELISA gp120 ВИЧ-1, чтобы определить концентрации нейтрализующих мАт. В общем, концентрации в плазме каждого мАт во время заражения (через 24 ч после введения антитела) коррелировали с дозой вводимого антитела (табл. 13).

Взаимосвязи концентраций мАт в плазме с защитой in vivo показаны на фиг. 12. Из 5 оцениваемых нейтрализующих мАт PGT121 было явно наиболее эффективным против обоих вирусов, при этом SHIVDH12-V3AD8 проявлял немного более высокую чувствительность к такому мАт (2 из 2 обезьян были защищены при концентрации в плазме 0,2 мкг/мл). Напротив, требовалась концентрация в плазме VRC01 почти 400 мкг/мл, чтобы защитить 1 из 2 животных от такого же используемого для заражения вируса SHIVDH12-V3AD8 (табл. 13). Наиболее эффективное CD4bs-мАт, вводимое макакам в данном исследовании, 3BNC117, было примерно в 6-10 раз более эффективным, чем VRC01 в предотвращении заражения любым SHIV (фиг. 12, табл. 13).

Вычисленные времена полужизни мАт PGT121, 10-1074, 3BNC117 и VRC01 были очень сходны: 3,5 суток, 3,5 суток, 3,3 суток и 3,1 суток соответственно. Напротив, время полужизни 45-46m2 было чрезвычайно коротким и его нельзя было определить. Исходя из того, что концентрации мАт в плазме у нескольких макак через 24 ч после введения 20 мг/кг гуманизированных нейтрализующих мАт (т.е. примерно 250 мкг/мл [табл. 13]), а две обезьяны, получающие 20 мг/кг 45-46m2 имели концентрации мАт в плазме только 15,0 и 17,6 мкг/мл, распад составлял более 95% относительно других нейтрализующих мАт во временной точке 24 ч.

Титры нейтрализации измеряли в образцах плазмы, собранных через 24 ч после введения мАт, когда макак заражали вирусами SHIVAD8EO или SHIVDH12-V3AD8. Как показано в табл. 13, наблюдали хорошую корреляцию между титрами противовирусных нейтрализующих антител в плазме и защитой от инфекции SHIV. Введение двух зависимых от гликанов мАт (PGT121 и 10-1074) явно приводило к наиболее высоким титрам нейтрализующей анти-ВИЧ-1-активности во время заражения вирусом. Титры, измеренные у реципиентов мАт 45-46m2, были на уровне пределов регистрации или не регистрировались вследствие чрезвычайно короткого времени полужизни in vivo.

Способ, описанный Reed и Muench (Am. J. Hyg. 27, 493-497 (1938)), использовали для вычисления титров нейтрализации, измеренных в плазме, необходимых для профилактики приобретения вирусов у 50% заражаемых обезьян. Такие защитные титры для 28 обезьян, заражаемых SHIVAD8EO, или 32 обезьян, заражаемых SHIVDH12-V3AD8, рассчитывали отдельно (табл. 15 и 16). Титры нейтрализации в плазме, необходимые для защиты 50% животных, заражаемых SHIVAD8EO или SHIVDH12-V3AD8, вычисляли как 1:115 и 1:96 соответственно. Поскольку такие сходные титры были получены после 1) заражения SHIV и идентичными путями и с использованием идентичного размера инокулята и 2) введения такого же набора нейтрализующих мАт, данные по нейтрализации для всех 60 животных объединяли и подвергали пробит-регрессионному анализу, чтобы исследовать взаимосвязь между титрами нейтрализации в плазме и защитой in vivo. В случае следующей проверки, когда в качестве члена включали вирус SHIV в регрессионную пробит-модель для всех 60 макак, не получали доказательств различия между двумя вирусами SHIV (p=0,16). В случае применения по отношению ко всей группе из 60 макак пробитрегрессия позволила оценить, что титры нейтрализации в плазме 1:104 могут предотвращать приобретение вируса у 50% животных. По оценкам, полученным в пробит-анализе, титры 50% нейтрализации в плазме 1:57 или 1:329 могут защищать 33% или 80%, соответственно, подвергнутых воздействию животных.

Пример 10. Введение нейтрализующих мАт в моделях in vivo, хронически инфицированных ВИЧ. Краткое описание способов.

Активности в нейтрализации нейтрализующих мАт 3BNC11724 и 10-107423 широкого действия против SHIVAD8EO сначала определяли в системе клеток TZM-bl против SHIVAD8EO. Их способности блокировать приобретение вируса или контролировать вирусемию в плазме у хронически инфицируемых животных, заражаемых R5-тропным SHIVAD8EO, оценивали, наблюдая вирусную нагрузку в плазме и ассоциированные с клетками вирусные нуклеиновые кислоты; уровни подгрупп Т-клеток CD4⁺ измеряли проточной цитометрией.

Осуществляли SGA-анализы циркулирующих вариантов вирусов и определение уровней антител в плазме. Концентрацию в плазме N-Aт определяли, измеряя нейтрализующую активность против препаратов псевдовирусов ВИЧ-1, чувствительных либо только к 10-1074, либо только к 3BNC117.

Результаты.

Оценивали две группы хронически инфицированных макак. Первая группа состояла из двух не имеющих клинических симптомов животных (DBZ3 и DC99A), которых инфицировали в течение 159 недель и которые имели сходные и значимые снижения количества циркулирующих Т-клеток CD4 $^+$ (табл. 17). Схема лечения текущей инфекции SHIV заключалась в совместном введении 101074 и 3BNC117 в дозе 10 мг/кг. Во время введения мАт вирусные нагрузки в плазме у макак DBZ3 и DC99A составляли $1{,}08\times10^4$ и $7{,}6\times10^3$ копий PHK/мл соответственно. Обе макаки отвечали на комбинированное лечение анти-ВИЧ-1-мАт немедленным и быстрым снижением вирусемии в плазме до нерегистрируемых уровней в течение 7-10 дней. Подавление измеряемого SHIVAD8EO в плазме макак DBZ3 и DC99A после одного введения двух мАт продолжалось 27 и 41 день соответственно. В каждом случае вирусемия в плазме возвращалась к уровням до лечения.

Вторую группу из трех животных (DBX3, DCF1 и DCM8), каждое из которых также было инфицировано SHIVAD8EO в течение более чем 3 лет, и у которых имелись клинические симптомы с перемежающейся диареей и/или анорексией, лечили двумя нейтрализующими антителами (табл. 17). Во время введения мАт уровень циркулирующих Т-клеток ${\rm CD4}^+$ у макаки DCM8 составлял только 43 клетки/мкл, и он был немного выше у животных DCF1 (105 клеток/мкл) и DBXE (158 клеток/мкл). Вирусные нагрузки в плазме превышали ${\rm 10}^5$ копий PHK/мл у животных DBXE и DCF1 и были значимо ниже ${\rm (1,59\times10^3}$ копий PHK/мл) у обезьяны DCM8. Введение двух мАт обезьяне DBXE приводило к двухфазному снижению вирусемии с ${\rm 2,0\times10^5}$ копий PHK в 0 день до нерегистрируемых уровней в плазме на 20 день. Вслед за этим в течение нескольких дней происходило возвращение высоких уровней циркулирующего вируса

у DBXE. У макаки DCM8 с более низкой вирусной нагрузкой в плазме и очень небольшим количеством циркулирующих Т-клеток CD4⁺ наблюдали быстрое снижение вирусемии до нерегистрируемых уровней с 6 по 20 день после начала лечения мАт. Наконец, у животного DCF1, у которого, как сообщалось ранее, образовывались N-Ат против ВИЧ-1 широкого спектра действия, наблюдали временное и сравнительно небольшое 27-кратное снижение вирусемии в плазме к 6 дню в ответ на комбинированную терапию мАт, затем вирусная нагрузка возвращалась к высоким уровням, которые были до лечения.

Также определяли уровни связанной с PBMC PHK и ДНК до и после введения антитела (табл. 18). В случае каждого животного обработка мАт приводила к пониженным уровням ассоциированной с клетками вирусной РНК, что хорошо коррелирует с измерениями вирусной нагрузки в плазме. Не наблюдали закономерности в отношении связанных с клетками уровней вирусной ДНК в результате лечения антителами. Введение нейтрализующих мАт хронически инфицированным SHIVAD8EO обезьянам также оказывало полезное влияние на уровни циркулирующих Т-клеток CD4⁺, в частности, у животных с очень высокой вирусной нагрузкой. Количество Т-клеток CD4⁺ у макак DBXE и DCF1 повышалось в 2-3 раза в течение периода опосредованного моноклональными антителами подавления вирусов, но постепенно снижалось до уровней, наблюдаемых до лечения, по мере того как вирусемию снова можно было регистрировать.

Концентрации в плазме каждого мАт определяли, измеряя нейтрализующую активность в плазме против выбранных штаммов псевдовирусов ВИЧ-1, чувствительных к одному или другому, но не к обо-им антителам (фиг. 13A). У каждого подвергнутого лечению животного подавление вирусемии SHIVAD8EO сохранялось вплоть до тех пор, пока не достигалась пороговая концентрация мАт в плазме примерно от 1 до 3 мкг/мл (фиг. 13В и С). Даже имел место случай у макаки DCF1, когда наблюдали небольшое и временное снижение уровней вирусной РНК в плазме. Интересно, что мАт, вводимые макакам DCM8 и DCF1 с клиническими симптомами, имели укороченное время полужизни или их невозможно было обнаружить. Как указано ранее, макака DCM8 имела чрезвычайно низкие уровни Т-клеток CD4⁺ (43 клетки/мкл плазмы) и макака DCF1 была подвергнута эвтаназии на 56 день после начала лечения из-за ее ухудшающегося клинического состояния. Некропсия DCF1 выявила тяжелую энтеропатию, характеризуемую диссеминированным криптоспоридиозом желудочно-кишечного тракта, панкреатитом и холангитом.

SGA-анализ использовали для определения того, появились ли аминокислотные замены в областях gp120, которые, как показано ранее, влияют на чувствительность к мАт 10-1074 или 3BNC117. В каждом случае рецидивирующий вирус, присутствующий в плазме после иммунотерапии, не был изменен. Чтобы дополнительно проверить чувствительность вновь появляющихся вирусов, комбинированную терапию 10-1074 плюс 3BNC117 (10 мг/кг каждого) вводили повторно двум обезьянам без клинических симптомов (DBZ3 и DC99A). Вирусная нагрузка у каждого животного снова быстро падала, становясь нерегистрируемой на 7 день второго цикла иммунотерапии. Вирусемия была подавлена в течение 7 дней у макаки DBZ3 и более 21 дня у обезьяны DC99A. Вместе взятые, полученные результаты свидетельствуют о том, что повторное появление вируса после первого цикла лечения у таких двух животных отражает недостаточные уровни мАт in vivo, а не резистентность вируса в результате селекции в присутствии антител.

Таблица 3

Репертуар тональных вариантов PGT121 и 10-1074

pt10 mAb#	VH	DH	JH	CDR3'	VHmut	Длина'	(-)	(+)	Υ	Lc	V۸	Jλ	CDR31	Vλmut	FRW1_del	FRW3_ins	Длина	(-)	(+)	¥
10-160	4-59	3-3/16	6	ARRGQRIYGVVSFGEFFYYYSMDV	49	24	2	3	4	1	- 1	1	1	1			1	j	1	7
10-186	4-59	3-3/16	6	ARRGQRIYGVVSFGEFFYYYSMDV	52	24	2	3	4	λ	3-21	3	HMWDSRSGFSWS	47	12	3	12	1	2	0
10-248	4-59	3-3/16	6	ARRGORIYGVVSSGEFFYYYSMDV	46	24	2	3	4	1	1	1	i	1			1	j	7	1
10-259*	4-59	1	6	TKHGRRIYGIVAFNEWFTYFYMDV	63	24	2	4	3	λ	3-21	3	HIYDARGGTNWV	58	21	3	12	1	2	1
10-266	4-59	3-3/16	6	ARRGORIYGVVSFGEFFYYYSMDV	49	24	2	3	4	λ	3-21	3	HMWDSRSGFSWS	46	12	3	12	1	2	0
10-267	4-59	1	6	AQQGKRIYGIVSFGELFYYYYMDA	58	24	2	2	5	1	1	1	1	1			1	j	1	1
10-303*	4.59	3-3/9	6	TLHGRRIYGIVAFNEWFTYFYMDV	54	24	2	3	3	λ	3-21	3	HIWDSRVPTKWV	50	21	3	12	1	3	0
10-354	4-59	3-3/16	6	ARRGQRIYGVVSFGEFFYYYSMDV	48	24	2	3	4	1	1	1	1	1			1	1	1	1
10-410*	4-59	3-10/3	6	ALHGKRIYGIVALGELFTYFYMDV	63	24	2	3	3	λ	3-21	3	HIWDSRRPTNWV	44	21	3	12	1	3	0
10-416	4-59	3-3/16	6	ARRGORIYGVVSFGEFFYYYSMDV	47	24	2	3	4	λ	3-21	3	HMWDSRSGFSWS	45	12	3	12	1	2	0
10-468	4-59	3-3/16	6	ARRGGRIYGVVSFGEFFYYYSMDV	47	24	2	3	4	λ	3-21	3	HMWDSRSGFSWS	46	12	3	12	1	2	0
10-543	4-59	3-10/3	6	ALHGKRIYGIVALGELFTYFYMDV	60	24	2	3	3	1	1	1	1	1			1	1	1	1
10-570	4-59	3-3/16	6	ARRGQRIYGVVSFGEFFYYYSMDV	42	24	2	3	4	1	1	1	1	1			1	1	1	1
10-621	4-59	3-3/9	6	TLHGRRIYGIVAFNEWFTYFYMDV	54	24	2	3	3	f	1	+	1	1			1	1	1	1
10-664	4-59	3-3/16	6	ARRGQRIYGVVSFGEFFYYYSMDV	47	24	2	3	4	1	1	1	1	1			1	j	I	1
10-720	4-59	3-3/16	6	ARRGQRIYGVVSFGEFFYYYSMDV	49	24	2	3	4	f	1	1	1	1			1	f	7	1
10-730	4-59	3-3/16	6	ARRGQRIYGVVSFGEFFYYYSMDV	48	24	2	3	4	1	1	1	1	1			1	1	1	1
10-814	4-59	3-10	6	TQQGKRIYGIVSFGEFFHYYYMDA	43	24	2	3	4	λ	3-21	3	HKWDSRSPLSWV	52	15	3	12	1	3	0
10-847*	4-59	3-3/16	6	ARRGORIYGVVSFGEFFYYYSMDV	47	24	2	3	4	λ	3-21	3	HMWDSRSGFSWS	46	12	3	12	1	2	0
10-948	4-59	3-3/9	6	TLHGRRIYGIVAFNEWFTYFYMDV	55	24	2	3	3	λ	3-21	3	HIWDSRVPTKWV	46	21	3	12	1	3	0
10-996	4-59	3-3/10	6	TQQGKRIYGVVSFGEFFHYYYMDA	41	24	2	3	4	λ	3-21	3	HKWDSRSPLSWV	50	15	3	12	1	3	0
10-1022	4-59	3-3	6	ARRGQRIYGVVSFGEFFYYYSMDV	51	24	2	3	4	1	1	1	1	1			1	j	1	1
10-1059	4-59	3-3/16	6	TKHGRRIYGVVAFGEWFTYFYMDV	59	24	2	4	3	λ	3-21	3	HIYDARRPTNWV	46	21	3	12	1	3	1
10-1074*	4-59	3-3/16	6	ARRGQRIYGVVSFGEFFYYYSMDV	49	24	2	3	4	λ	3-21	3	HMWDSRSGFSWS	45	12	3	12	1	2	٥
10-1121*	4-59	3-10/3-3	6	ALHGKRIYGIVALGELFTYFYMDV	63	24	2	3	3	λ	3-21	3	HIWDSRRPTNWV	44	21	3	12	1	3	0
10-1130*	4-59	3-10/3-3	6	ALHGKRIYGIVALGELFTYFYMDV	60	24	2	3	3	λ	3-21	3	HIWDSRRPTNWV	42	21	3	12	1	3	0
10-1141*	4-59	3-10/3-3	6	ALHGKRIYGIVALGELFTYFYMDV	63	24	2	3	3	λ	3-21	3	HIWDSRRPTNWV	45	21	3	12	1	3	0
10-1146*	4-59	3-10	6	AQQGKRIYGIVSFGEFFYYYYMDA	58	24	2	2	5	λ	3-21	3	HYWDSRSPISWV	61	15	3	12	1	2	1
10-1151	4-59	3-3	6	ARRGORIYGVVSFGEFFYYYSMDV	48	24	2	3	4	λ	3-21	3	HMWDSRSGFSWS	46	12	3	12	1	2	0
10-1167	4- 5 9	3-3/16	6	ARRGORIYGVVSFGEFFYYYSMDV	49	24	2	3	4	1	1	3	1	1			1	1	1	1
10-1223	4-59	3-3/16	6	ARRGQRIYGVVSFGEFFYYYSMDV	47	24	2	3	4	1	1	1	1	1			1	1	1	1
10-1232	4.59	3-10/3-3	6	ALHGKRIYGIVALGELFTYFYMDV	58	24	2	3	3	1	3-21	1	1	1			1	j	I	1
10-1263	4-59	3-3/16	6	ARRGQRIYGVVSFGEFFYYYSMDV	49	24	2	3	4	λ	3-21	3	HMWDSRSGFSWS	46	12	3	12	1	2	0
10-1294	4-59	3-3/16	6	ARRGQRIYGVVSFGEFFYYYSMDV	49	24	2	3	4	λ	3-21	3	HMWDSRSGFSWS	45	12	3	12	1	2	0
10-1341*	4-59	3-3/16	6	ARRGQRIYGVVSFGEFFYYYSMDV	49	24	2	3	4	λ	3-21	3	HMWDSRSGFSWS	45	12	3	12	1	2	0
10-1342	4-59	3-3/16	6	ARRGORIYGVVSFGEFFYYYSMDV	48	24	2	3	4	λ	3-21	3	HMWDSRSGFSWS	46	12	3	12	1	2	0
10-1369*	4-59	3-3/16	6	TKHGRRIYGVVAFGEWFTYFYMDV	57	24	2	4	3	λ	3-21	3	HIYDARRPTNWV	43	21	3	12	1	3	1
10-1476	4-59	3-3/16	6	ARRGORIYGVVSFGEFFYYYSMDV	47	24	2	3	4	λ	3-21	3	HMWDSRSGFSWS	45	12	3	12	1	2	0

 VH_{mut} и $V\lambda_{mut}$ означают общее количество мутаций в генах V_H и V_L Ig.

⁽⁻⁾ и (+) означают количества отрицательно и положительно заряженных аминокислот в определяющей комплементарность области (CDR3) Ig соответственно.

У указывает количество остатков тирозина в CDR5 IgH/L (зеленые).

¹ На основе номенклатуры Kabat (IgBLAST, http://www.ncbl.nim.nih.gov/Igblast). Кислые и основные аминокислоты указаны красным и синим соответственно).

FRW1 del, количество делегированных нуклеогидов в каркасной области 1 (FRW1) IgL.

FRW3_ins, количество встроенных нуклеотидов в каркасной области 3 (FRW3) IgL.

Цветовой окраской обозначены клональные представители с идентичными последовательностями IgH, и среди них идентичность последовательностей IgL, которая определяет клоны, указана жирным шрифтом.

^{*} указаны типичные варианты антител, которые были получены и проанализированы. IgL 10-266 не клонировали, а IgG 10-1141 не получали.

Таблица 4 Анализ нейтрализации in vitro с использованием TZM-bl на основной панели

IC50	10-1369	10-259	PGT121	10-303	10-410	10-1130	10-1121	10-1146	10-996	10-1341	10-847	10-1074
BaL.26	0.069			0.045			0.046	0.064	0.045	0,032	0.022	0.036
SS1196.1	0.068						0.028	0.027				
6535.3	0.500%							131 31 Z				
QH0692.42	0.503	0.155	1.085	3.122	2.630	4.871	4.187	0.590	0.395	0.335	0.259	0.259
TRJO4551.58	0.569	0.189	3.896	14.401	18.511	36.880	15.360	0.548	0.516	0.333	0.210	0.170
SC422661.8	0.195	0.096	0.263	0.333	0.132	0.070	0.173	0.195	0.255	0.189	0.137	0.145
PVO.4	0.225	0.175	0.147	0.670	0.494	0.385	0.570	0.310	0.211	0.236	0.172	0.178
CAAN5342.A2	0.070	6.000		00000000			0.083	0.032				
YU-2	0.210	0.135	0.098	0.190	0.089	0.078	0.152	0.275	0.256	0.234	0.161	0.143
R1166.c1	> 40	> 40	> 40	> 40	> 40	> 40	> 40	> 40	> 40	> 40	> 40	> 40
MuLV	> 40	> 40	> 40	> 40	> 40	> 40	> 40	> 40	> 40	> 40	> 40	> 40
IC80												
BaL.26	0.268	0.101	0.031	0.156	0 015(5)	0.0%	0.154	0.203	0.228	0.159	0.112	0.124
SS1196.1				mm's.5			0.098	0.07\$		1.		
6535.3	0.70(5)0			01/013/3				0.073	0.035		2.54	4.5
QH0692.42	1.714	0.551	14.976	18.122	12.071	>40	21.943	1.993	1.404	1.100	0.908	0.861
TRJO4551.58	3.818	0.965	26.930	>40	>40	>40	>23	2.604	4.265	1.226	0.768	0.693
SC422661.8	0.940	0.333	0.714	1.156	0.449	0.264	0.741	0.663	0.845	0.501	0.386	0.392
PVO.4	0.787	0.716	1.097	2.199	1.572	1.783	2.465	1.319	1.715	0.754	0.774	0.766
CAAN5342.A2	0.186	0.063	4141395	0.092	1015/05	1 7/8	0.095	0.088	0)[0/6/0)	212724		
YU-2	0.738	0.382	0.356	0.502	0.243	0.313	0.340	0.750	0.891	0.766	0.537	0.398
R1166.c1	> 40	> 40	> 40	> 40	> 40	> 40	>23	> 40	> 40	> 40	> 40	> 40
MuLV	> 40	> 40	> 40	> 40	> 40	> 40	>23	> 40	> 40	> 40	> 40	> 40

Цифрами указаны концентрации IgG-антител в мкг/мл для достижения IC_{50} (вверху) и IC_{80} (внизу) в анализе нейтрализации TZM-b1.

Значения $IC_{50/80}$ кодированы цветом, и возрастающая чувствительность к нейтрализации указана от темно-зеленого до темно-красного цвета.

> показывает, что IC₅₀ для данного вируса не была достигнута при тестированной концентрации. Вирус лейкозы мышей (MuLV) и R1166.c1 (клада AE) являются негативными контролями.

Таблица 5 Анализ нейтрализации in vitro с использованием TZM-bl на расширенной панели - значения IC_{50}

Вирус ID	Клада		10-1074		Bupyc ID	Клада		10-1074	
6535.3	В	0.048	10-1074	TOTIZI	CNE58	BC	2.220	0.968	>50
QH0692.42	В	1.854	0.929	8.545	MS208.A1	A	>50	>50	>50
SC422661.8	В	0.627	0.418	0.460	Q23.17	Ä	Kand	- 00	22 Y V:
PVO.4	В	0.952	0.360	0.945	Q461.e2	A	>50	>50	>50
TRO.11	В	0.081	0.057	0.00(3)	Q769.d22	Ä	>50	>50	>50
AC10.0.29	В	0.250	0.110	0.169	Q259.d2.17	Â	>50	>50	>50
RHPA4259.7	В	0.163	0.118	0.034	Q842.d12	A	>50	>50	0.074
THRO4156.18	В	>50	>50	>50	3415.v1.c1	Â	>50	>50	>50
REJO4541.67	В	>50	>50	>50	3365.v2.c2	A	1.380	0.450	7.353
TRJO4551.58	В	7.269	0.634	35.291	0260.v5.c36	Ā	0.436	0.160	0.152
WITO4160.33	В	6.484	2.112	6.007	191955_A11	A (T/F)	>50	>50	>50
CAAN5342.A2	В	0.079	2.112	0.007	191084 B7-19	A (T/F)	0.144	0.128	0.128
YU-2	В	0.891	0.398	0.356	9004SS_A3_4	A (T/F)	0.030	0.000	0.120
WEAU d15 410 787		0.422	0.375	0.295	T257-31	CRF02_AG	>50	>50	>50
1006_11_C3_1601	B (T/F)	0. 122	0.070	0.200	928-28	CRF02_AG	7.151	4.696	>50
1054_07_TC4_1499	B (T/F)	0.901	0.563	0.696	263-8	CRF02_AG	>50	6.527	24.576
1056_10_TA11_1826	B (T/F)	0.563	0.272	0.303	T250-4	CRF02_AG	- 30	0.521	24.57
1012_11_TC21_3257	B (T/F)	0.111	0.059	0.505	T251-18	CRF02_AG	7.399	7.395	>50
6240_08_TA5_4622	B (T/F)	0.348	0.306	0.584	T278-50	CRF02_AG	>50	18.276	>50
6244_13_B5_4576	B (T/F)	1.296	0.922	1.878	T255-34	CRF02_AG	>50	>50	>50
62357_14_D3_4589	B (T/F)	>50	>50	45.559	211-9	CRF02_AG	3.848	0.425	8.840
SC05 8C11 2344		0.174	0.123	0.275	235-47	CRF02_AG	0.381	0.423	1.676
Du156.12	B (T/F) C		0.123		620345.c01	CRF02_AG CRF01 AE	>50	>50	>50
Du156.12 Du172.17	c	0.101 0.607	0.430	0.890	620345.601 CNE8	CRF01_AE	>50	>50	>50
	C	0.007			C1080.c03	_	>50	>50	>50
Du422.1	C	>50	0.166 >50	0.13 1 >50	R2184.c04	CRF01_AE CRF01_AE	>50	>50	
ZM197M.PB7	C				R2184.004 R1166.c01	CRF01_AE			>50 >50
ZM214M.PL15	0	3.251	2.367	3.150		_	>50	>50	
ZM233M.PB6		4.524	0.349	8.977	C2101.c01	CRF01_AE	>50	>50	>50
ZM249M.PL1	C	>50	>50	>50	C3347.c11	CRF01_AE	>50	>50	>50
ZM53M.PB12	C	>50	>50	. 50	C4118.c09	CRF01_AE	>50	>50	>50
ZM109F.PB4		>50	>50	>50	CNE5	CRF01_AE	>50	>50	>50
ZM135M.PL10a	C	0.553	0.367	5.885	BJOX009000.02.4	CRF01_AE	>50	>50	37.28
CAP45.2.00.G3		>50	>50	6.544	BJOX015000.11.5	_ , ,	>50	>50	>50
CAP210.2.00.E8	C	>50	>50	>50	BJOX010000.06.2		>50	>50	>50
HIV-001428-2.42	С	0.204	0.261	0.156	BJOX025000.01.1	_ , ,	>50	>50	>50
HIV-0013095-2.11	C	>50	>50	>50	BJOX028000.10.3		>50	>50	>50
HIV-16055-2.3		>50	>50	4.290	X1193_c1	G	0.482	0.475	0.202
HIV-16845-2.22	C	9.933	5.835	>50	P0402_c2_11	G	0.065	0.039	0.033
Ce1086_B2	C (T/F)	>50	>50	. 50	X1254_c3	G	0.420	0.297	0.199
Ce0393_C3	C (T/F)	>50	>50	>50	X2088_c9	G			0.029
Ce1176_A3	C (T/F)	0.151	0.070	0,058	X2131_C1_B5	G	0.085	0.064	0.058
Ce2010_F5	C (T/F)	>50	>50	>50	P1981_C5_3	G	50	. 50	- 50
Ce0682_E4	C (T/F)	>50	>50	>50	X1632_S2_B10	G	>50	>50	>50
Ce1172_H1	C (T/F)		0.166	0.088	3016.v5.c45	D	>50	>50	>50
Ce2060_G9	C (T/F)	>50	>50	>50	A07412M1.vrc12	D	0.070	0.048	0.406
Ce703010054_2A2	C (T/F)	>50	>50	>50	231965.c01	D	>50	>50	>50
3F1266.431a	C (T/F)	>50	>50	>50	231966.c02	D	>50	>50	>50
246F C1G	C (T/F)		0.111	0.287	191821_E6_1	D (T/F)	>50	>50	>50
249M B10	C (T/F)	>50	>50	>50	3817.v2.c59	CD	34.619	14.880	>50
ZM247v1(Rev-)	C (T/F)		0.186	0.126	6480.v4.c25	CD	0.049	0.041	0.079
7030102001E5(Rev-)	C (T/F)			C 1025	6952.v1.c20	CD	0.188	0.138	0.605
1394C9G1(Rev-)	C (T/F)		0.191	3.372	6811.v7.c18	CD			
Ce704809221_1B3	C (T/F)		0.696	0.492	89-F1_2_25	CD	>50	>50	>50
CNE19	BC	>50	>50	0.189	3301.v1.c24	AC	0.054	0.042	0.043
CNE20	BC				6041.v3.c23	AC	>50	>50	>50
CNE21	BC	0.255	0.181	0.0%	6540.v4.c1	AC	>50	>50	>50
CNE17	BC	24.701	13.297	>50	6545.v4.c1	AC	>50	>50	>50
CNE30	BC	1.989	1.200	0.559	0815.v3.c3	ACD	0.251	0.138	0.105
CNE52	BC	43.834	13.147	32.935	3103.v3.c10	ACD	0.150	0.101	0.110
CNE53	BC	0.233	0.141	0.200					

Значения IC_{50} кодированы цветом, и возрастающая чувствительность к нейтрализации указана от темно-зеленого до темно-красного цвета.

> показывает, что IC $_{50}$ для данного вируса не была достигнута при тестировании концентрации.

Таблица 6 Анализ нейтрализации in vitro с использованием TZM-bl на расширенной панели - значения IC_{80}

ID Вируса	Клада	10-996	10-1074	PGT121	ID Вируса	Клада	10-996	10-1074	PGT121
6535.3	В	(0.07)3088			CNE58	BC	2.220	0.968	>50
QH0692.42	В	1.854	0.929	8.545	MS208.A1	Α	>50	>50	>50
\$C422661.8	В	0.627	0.418	0.460	Q23.17	Α	1 .3.1.1		2533
PVO.4	В	0.952	0.360	0.945	Q461.e2	A	>50	>50	>50
TRO.11	В	0.081	Qu0157	(0),(0/5)()	Q769.d22	Α	>50	>50	>50
AC10.0.29	В	0.250	0.110	0.169	Q259.d2.17	Α	>50	>50	>50
RHPA4259.7	В	0.163	0.118	0.064	Q842.d12	Α	>50	>50	0.074
THRO4156.18	В	>50	>50	>50	3415.v1.c1	A	>50	>50	>50
REJO4541.67	В	>50	>50	>50	3365.v2.c2	A	1.380	0.450	7.353
TRJ04551.58	В	7.269	0.634	35.291	0260.v5.c36	A	0.436	0.160	0.152
WITO4160.33	В	6.484	2.112	6.007	191955 A11	A (T/F)	>50	>50	>50
CAAN5342.A2	В	0.079	2.112	0.080	191084 B7-19	A (T/F)	0.144	0.128	0.128
YU-2	В	0.891	0.398	0.356	9004SS_A3_4	A (T/F)	0.020	3.126	0.120
WEAU_d15_410_787	B (T/F)		0.375	0.295	T257-31	CRF02 AG	>50	>50	>50
	B (T/F)		0.313	0.253	928-28	_	7.151	4.696	>50
1006_11_C3_1601			0.502	0.606		CRF02_AG			
1054_07_TC4_1499	B (T/F)		0.563	0.696	263-8	CRF02_AG	>50	6.527	24.576
1056_10_TA11_1826	B (T/F)	1	0.272	0.303	T250-4	CRF02_AG	7.000	7.005	- 50
1012_11_TC21_3257	B (T/F)		0.059	1.000	T251-18	CRF02_AG	7.399	7.395	>50
6240_08_TA5_4622	B (T/F)		0.306	0.584	T278-50	CRF02_AG	>50	18.276	>50
6244_13_B5_4576	B (T/F)		0.922	1.878	T255-34	CRF02_AG	>50	>50	>50
62357_14_D3_4589	B (T/F)	>50	>50	45.559	211-9	CRF02_AG	3.848	0.425	8.840
SC05_8C11_2344	B (T/F)		0.123	0.275	235-47	CRF02_AG	0.381	0.163	1.676
Du156.12	С	0.101	0.076	1.50	620345.c01	CRF01_AE	>50	>50	>50
Du172.17	С	0.607	0.430	0.890	CNE8	CRF01_AE	>50	>50	>50
Du422.1	С	0.215	0.166	0.131	C1080.c03	CRF01_AE	>50	>50	>50
ZM197M.PB7	С	>50	>50	>50	R2184.c04	CRF01_AE	>50	>50	>50
ZM214M.PL15	С	3.251	2.367	3.150	R1166.c01	CRF01_AE	>50	>50	>50
ZM233M.PB6	C	4.524	0.349	8.977	C2101.c01	CRF01_AE	>50	>50	>50
ZM249M.PL1	С	>50	>50	>50	C3347.c11	CRF01_AE	>50	>50	>50
ZM53M.PB12	С	>50	>50		C4118.c09	CRF01_AE	>50	>50	>50
ZM109F.PB4	С	>50	>50	>50	CNE5	CRF01_AE	>50	>50	>50
ZM135M.PL10a	С	0.553	0.367	5.885	BJOX009000.02.4	CRF01_AE	>50	>50	37,289
CAP45.2.00.G3	С	>50	>50	6.544	BJOX015000.11.5	CRF01_AE (T/F)	>50	>50	>50
CAP210.2.00.E8	С	>50	>50	>50	BJOX010000.06.2	CRF01_AE (T/F)	>50	>50	>50
HIV-001428-2.42	С	0.204	0.261	0.156	BJOX025000.01.1	CRF01 AE (T/F)	>50	>50	>50
HIV-0013095-2.11	С	>50	>50	>50	BJOX028000.10.3		>50	>50	>50
HIV-16055-2.3	С	>50	>50	4.290	X1193 c1	G	0.482	0.475	0.202
HIV-16845-2.22	Ċ	9.933	5.835	>50	P0402_c2_11	Ġ	0.065	(B)((1)(S)(S)	0.056
Ce1086 B2	C (T/F)		>50		X1254 c3	G	0.420	0.297	0.199
Ce0393 C3	C (T/F)	>50	>50	>50	X2088_c9	G			0.029
Ce1176 A3	G (T/F)		0.070	0.053	X2131 C1 B5	G	0.085	0.064	0.058
Ce2010_F5	C (T/F)	>50	>50	>50	P1981_C5_3	G	0.000	0.001	0.000
Ce0682 E4	C (T/F)	>50	>50	>50	X1632_S2_B10	G	>50	>50	>50
Ce1172 H1	C (T/F)		0.166	0.088	3016.v5.c45	D	>50	>50	>50
Ce1172_111 Ce2060_G9	C (T/F)	>50	>50	>50	A07412M1.vrc12	D	0.070	0.048	0.406
Ce2000_G9 Ce703010054 2A2	, ,								
_	C (T/F)	>50	>50	>50	231965.c01	D	>50	>50	>50
BF1266.431a	C (T/F)		>50	>50	231966.c02	D	>50	>50	>50
246F C1G	C (T/F)		0.111	0.287	191821_E6_1	D (T/F)	>50	>50	>50
249M B10	C (T/F)		>50	>50	3817.v2.c59	CD	34.619		>50
ZM247v1(Rev-)	C (T/F)		0.186	0.126	6480.v4.c25	CD	0.049	0.041	0.079
7030102001E5(Rev-)	C (T/F)	_		0.545	6952.v1.c20	CD	0.188	0.138	0.605
1394C9G1(Rev-)	C (T/F)		0.191	3.372	6811.v7.c18	CD		التيس	
Ce704809221_1B3	C (T/F)		0.696	0.492	89-F1_2_25	CD	>50	>50	>50
CNE19	BC	>50	>50	0.189	3301.v1.c24	AC	0.054	0.042	0.043
CNE20	BC				6041.v3.c23	AC	>50	>50	>50
CNE21	BC	0.255	0.181	0.031	6540.v4.c1	AC	>50	>50	>50
CNE17	BC	24.701	13.297	>50	6545.v4.c1	AC	>50	>50	>50
CNE30	BC	1.989	1.200	0. 559	0815.v3.c3	ACD	0.251	0.138	0.105
CNE52	BC	43.834	13.147	32.935	3103.v3.c10	ACD	0.150	0.101	0.110
GIVEDE									

Цифрами указаны концентрации IgG-антител в мкг/мл для достижения IC_{80} в анализе нейтрализации TZM-bl.

Значения IC_{80} кодированы цветом, и возрастающая чувствительность к нейтрализации указана от темно-зеленого до темно-красного цвета.

> показывает, что IC_{80} для данного вируса не была достигнута при тестированной концентрации.

Чувствительность к нейтрализации в соответствии с N332-PNGS

D Вируса	Клада	4127-	ac	10-996	10-1074	PGT121	ID Rupusa	Клада			10-996	10-1074	DGT121
		N332	S334	프	7		ID Вируса		N332	S334	_=	7	<u> </u>
6535.3	В	•	•				CNE58	BC	٠	(T)	_		┞
QH0692.42	В	•	•	_	<u> </u>	Ш	MS208.A1	A	•	· ·			_
SC422661.8	В	•	•	<u> </u>	├	Н	Q23.17	A		(T)			
PVO.4	В	-	-				Q461.e2	A	V	N	_		⊢
TRO.11	В	•	•				Q769.d22	A		N			⊢
AC10.0.29	В	•	•	\vdash	_		Q259.d2.17	A	T	N			⊢
RHPA4259.7	В	÷					Q842.d12	A	•	N			⊢
THRO4156.18	В	T	N	<u> </u>		Н	3415.v1.c1	A	•	•			⊬
REJ04541.67	В	Т	N	<u> </u>		Н	3365.v2.c2	A	•	•	\vdash		⊢
TRJO4551.58	В	•	•	<u> </u>	 	Н	0260.v5.c36	A (T/5)		Ni	\vdash		┞
WITO4160.33	В	•	•	<u> </u>			191955_A11	A (T/F)	К	N	\vdash		⊬
CAAN5342.A2	В	•	•	\vdash			191084 B7-19	A (T/F)	•	•	Н		_
YU-2	В	•	•	<u> </u>	_	Н	9004SS_A3_4	A (T/F)			Ш		₽
WEAU_d15_410_787		•	•				T257-31	CRF02_AG	К	N			⊬
1006_11_C3_1601	B (T/F)	•	•				928-28	CRF02_AG	•	•			⊢
1054_07_TC4_1499	B (T/F)	•	•	<u> </u>	<u> </u>	Ш	263-8	CRF02_AG	•	•			
1056_10_TA11_1826	B (T/F)	•	•	<u> </u>			T250-4	CRF02_AG	•	•			F
1012_11_TC21_3257	B (T/F)	•	•	$ldsymbol{ldsymbol{ldsymbol{eta}}}$			T251-18	CRF02_AG	•	•	Щ		L
3240_08_TA5_4622	B (T/F)	•		<u> </u>	_	Щ	T278-50	CRF02_AG	•		Щ		L
6244_13_B5_4576	B (T/F)	•	•			Ш	T255-34	CRF02_AG			lacksquare		L
62357_14_D3_4589	B (T/F)			<u> </u>		ш	211-9	CRF02_AG			$ldsymbol{ldsymbol{ldsymbol{eta}}}$		L
SC05_8C11_2344	B (T/F)	•			_	Ш	235-47	CRF02_AG					L
Du156.12	С	•	•				620345.c01	CRF01_AE	Ε	N			L
Du172.17	С	•	•			Ш	CNE8	CRF01_AE	E	N			L
Du422.1	С					Ш	C1080.c03	CRF01_AE	Ε	N	$ldsymbol{ld}}}}}}$		L
ZM197M.PB7	С	D				Ш	R2184.c04	CRF01_AE	٧	N			L
ZM214M.PL15	С					Ш	R1166.c01	CRF01_AE	Ε	N			
ZM233M.PB6	С						C2101.c01	CRF01_AE	Ε	N			
ZM249M.PL1	С	•					C3347.c11	CRF01_AE	Ε	N			
ZM53M.PB12	С	- 1	N				C4118.c09	CRF01_AE	Ε	D			
ZM109F.PB4	С	K	N				CNE5	CRF01_AE	Ε	N			Г
ZM135M.PL10a	С						BJOX009000.02.4	CRF01_AE	Ε	N			
CAP45.2.00.G3	С		N				BJOX015000.11.5	CRF01_AE (T/F)	Ε	N			
CAP210.2.00.E8	С					П	BJOX010000.06.2	CRF01_AE (T/F)	K	N			Г
HIV-001428-2.42	С	•				П	BJOX025000.01.1	CRF01_AE (T/F)	Ε	N			Г
HIV-0013095-2.11	С						BJOX028000.10.3	CRF01_AE (T/F)					Г
HIV-16055-2.3	С		K			П	X1193_c1	G					Г
HIV-16845-2.22	С						P0402_c2_11	G					Г
Ce1086 B2	C (T/F)		N				X1254_c3	G					Г
Ce0393_C3	C (T/F)		D			П	X2088_c9	G		(T)			
Ce1176 A3	C (T/F)						X2131 C1 B5	G		• • •			Г
Ce2010_F5	C (T/F)		N				P1981_C5_3	G					
Ce0682_E4	C (T/F)					П	X1632_S2_B10	G		N			Г
 Ce1172_H1	C (T/F)					П	3016.v5.c45	D	T	D			T
Ce2060 G9	C (T/F)		(T)			П	A07412M1.vrc12	D					Г
Ce703010054_2A2	C (T/F)	_	N			Н	231965.c01	D					H
3F1266.431a	C (T/F)		N			Н	231966.c02	D					T
46F C1G	C (T/F)			\vdash		Н	191821_E6_1	D (T/F)			П		Г
49M B10	C (T/F)					М	3817.v2.c59	CD			П		T
M247v1(Rev-)	C (T/F)		(T)	\vdash	\vdash	М	6480.v4.c25	CD			П		t
030102001E5(Rev-)							6952.v1.c20	CD			H		H
394C9G1(Rev-)	C (T/F)		•				6811.v7.c18	CD	•				
Ce704809221 1B3	C (T/F)		•	\vdash	\vdash	Н	89-F1 2 25	CD	T.				f
CNE19	BC	•	•	<u> </u>	\vdash	Н	3301.v1.c24	AC		(T)	\vdash		\vdash
CNE20	BC	•	•				6041.v3.c23	AC	D	(i) N	H	_	۲
	BC	•	•						T	N	\vdash		\vdash
CNE21		•	•		\vdash		6540.v4.c1	AC	Ť		\vdash		\vdash
CNE17	BC	•	•	H	<u> </u>	$\vdash\vdash$	6545.v4.c1	AC.		N	\vdash		\vdash
CNE30	BC	•	•	\vdash	\vdash	Н	0815.v3.c3	ACD	•	•	\vdash		\vdash
CNE52	BC BC	•	•	⊢	⊢	Н	3103.v3.c10	ACD	•	•			ட

Точками указано присутствие остатка аспарагина и остатка серина в положениях 332 и 334 соответственно.

Мутации в положениях 332 и 334 (нумерации последовательности HXB2N) указаны заменой аминокислоты.

Значения IC_{50} кодированы цветом, и возрастающая чувствительность к нейтрализации в анализе TZM-bl.

Таблица 8

Основанный на PBMC анализ нейтрализации in vitro

	ID вируса	3BNC55	3BNC60	3BNC117		1NC9	45-48	BANC195	12A12	4E10	b12	2G12	2F5	PG9	PG16	VRC01	45-46 54W	PGT121	10-1074
	P035.6.E4	1.918				0.451		>50	0.110	1.043	11.865	<0.39	3.480	>1	>1	50,075		15.471	1.7541.3
	P035.6.H11	0.550			0.239			>50	0.130	2.941	10.756	<0.39	2.115	>1	>1	0.160		0.667	0.143
	P035.6.D10 P151.37.C7	>50 @@8#	>50		>50 0.126	0.248		>50 0.133	0.402	0.792 2.941	>12.5 1.882	<0.39 >25	1,900 3,350	>1	>1	0.390 -0.373	0.000	0.174 >50	0:100 >50
	P151.37.F1	1.297	0.125	0.161	1.633	1.288	0.203	0.136	18.043	0.860	>12.5	>25	1.372			0.250	0.472	>50	>50
	P151.37.F10	3.770	0.311	0.249	4.661	>50	0.375	>50	18.863	9.314	0.452	>25	<0.39			1.160	0.172	>50	>50
	P153.10.2.A9	15.804	0.763	0.861	17.208	46.735	(0.,0055)	0.201	>50	12.269	7.988	0.825	0.918	>1 >1	0.431	>5	34.912	42.623	1.466
	P153.10.2.D8 P153.10.2.E10	20.568 11.228	1.020 0.546	0.208	23.124 2.105	>50 >50	0.903	>50 >50	2.478 10.688	0.861	>12.5 9.212	3.562 <0.39	24.193	>1 >1	0.853	0.890 >5	0.325 >50	1.603 >50	0.620 >50
	P186.12.1.D10	(0.30)48	0.01	0.103	>50	D(1)/45.	0.165	(0.000)	7.288	>25	9.333	>25	2.492	>1	>1	>5	22.865		0.212
	P186.12.2.F4	>50	>50	>50	>50	>50	>50	>50	>50	4.903	11.075	>25	15.277	>1	>1	3.320	15.929		0.082
	P186.12.2.G2	1.890	0.400		>50	0.000		>50	1 1998	15.711	10.763	21.986	3.181	>1	>1	>5	18.385		0.003
	P195.31.A6 P195.31.A10	0.252	0.138		0.171 >50	0.228		0.033	0.206 >50	2.934 1.248	9.896	>25 >25	3.884 <0.39	>1 >1	>1 >1	0.890 4.800	>50 >50	>50 >50	>50 >50
	P195.31.F11	0.569	0:000	0.137	>50	>50	0.050	>50	33.131	2.301	>12.5	>25	2.306	>1	>1	1.930	>50	>50	>50
	P019.1.D2	0.949	0.164	. :	>50	>50	(A (\$05.11	>50	14.612	>25	0.432	<0.39	<0.39			0.220	2.027	>50	0.191
	P019.1.D6	3.122	0.738 3.636	0.635 4.570	>50	>50 >50	5.767 6.962	>50 >50	>50	1.073	>12.5 >12.5	9.371	<0.39			49.575 49.575		-50	0.528
	P019.1.G7 P175.10.D7	6.034 2.539	0.936	3.588	>50 >50	42,695	17.723	>50 >50	20.092 36.805	1.487	1,369	6.764 <0.39	<0.39 >25	>1	0.110	1.100		>50 (8)333	0.318 0.097
	P175.10.D12	0.708	0.410	(1),5(3),1	>50	0.317	0.175	1.233	10.648	0.953	>12.5	<0.39	>25	>1	0.150	0.170		(F) (F) (F)	0.241
	P175.10.G10	2.506	0.563	0.621	>50	33.008	8.364	22.413	18.554	1.147	>12.5	2.183	1.300	0.720		1.660		(c (e(a)a)	0.220
	P013.18.A9 P154.44.C8	0.125 ≥50	0.583	1.042	>50 >50	0.196 >50	16,440	0.428 0.925	0.205 >50	0.796 >25	>12.5 >12.5	>25 >25	2.763 >25	>1	>1 0.600	>5 >5	@@gg >50	5.844 >50	>50 >50
	P154.44.G8	>50	1.220	2.172	>50	>50	25.616	1.969	>50	4.450	>12.5	>25	>25		>1	0.790	0.536	1.996	0.521
	P183.50.2.H3	2.197	0.116	0.121	12.049	4.079	0.161	>50	0.476	3.890	5.923	6.686	1.527	>1	>1	1.031	0.195	2.106	0.185
	P183.3.2.89	0.000			1,0,53	0.326	0.142	>50	0.472	1.722	1.230	2.132	1.073	>1	>1	0.340	3 335 2	5.073	0.266
	P001.35.F5 P001.35.H4	0.418 2.180	0.333	1.919	8.133 >50	0.329 >50	0.133 6.118	>50 >50	0.197 >50	<0.39 0.830	>12.5	>25 >25	>25 >25			>5 4.300	0.946	1.873	1,010
	p002:39.C8	15.018	0.117	0.172	2.192	12.154	0.546	>50	>50	1.955	>12.5	2.216	>25			4.300 (0.575)	0.450	1.129	. ,5.82.
	p002.39.F8	>50	28.891	>50	13.090	>50	0.404	>50	>50	0.864	>12.5	<0.39	17.778			1.610	0.825	22.125	1.534
율	P002.39.H10	1.472	0.785	0.726	14.160	0.147	0.00	>50	>50	1.530	>12.5	<0.39	1.500	Table Co.	0.00	3.030	0.917	1.985	5.0
JEH J	P034.6.D6 P034.6.G10	37.003 48.877	0.161	0.176 0.237	11.339 22.481	1.137 1.428	0.235	>50 >50	0.802 0.186	1.184 0.820	11.122 8.598	0.844 <0.39	0.873 1.257	(0)(0)(1) >1	0.122 >1	≪%3//5 >5	0.859 >50	>50	
Ž	P034.6.H5	>50	0.417	0.267	20.730	0.820	0.245	>50	0.866	0.391	>12.5	>25	1.163			0.310	0.127	- 00	
18	P101.20.1.F1	>50	>50	>50	>50	>50	0.565	>50	0.634	3.999	>12.5	>25	2.721	>1	>1	2.420	0.576		
ŏ	P101.20.1.H8 P127.46.A6	>50 >60	>50 >50	>50 >60	>50 >60	>50 >50	0.386	>50 >50	0.474	0.902	>12.5 6.780	>25 2.345	1.719 1.671	>1 (1,079)	>1	1.470	0.861 0.143	>60	>50
	P127.46.D1	1.242	-35	-50	5.403	2.558	0.169	>50	0.227	1.092	>12.5	<0.39	0.921	0.000	0.150	0.230	0.203	>50	>50
	P127.45.D2	1.125	0.173	0.221	>50	2.231	0.279	>50	0.494	1.613	<0.195	>25	1.126	0.378		90375		>50	>50
	P174.28.E11	2.399 0.980	0.483 0.191	0.716 0.189	>50 >50	13.061 1.826	0.894	>50 >50	2.104	2.113	8.149	0.974 >25	1.674 5.851			3.910	1.863	9.039	,286
	P177.25.1.G9 P177.25.2.B4	1.179	9.191	0.189	23.609	0.384	0.251	>50	0.130	1.885	>12.5	>25	1,241	>1 >1	>1 >1	0.450	0.530	0.128	
	P177.25.2.D1	>50	1.949	1.359	>50	46.825	11.454	>50	7.681	1.140	7.770	>25	1.232	>1	>1	3.830	(0.000545		
	P180.14.A6	1.389	O.EEB	\$ 100.5		>50		>50		1.162	>12.5	17.668	>25			1.000	2.094	0.139	
	P180.14.G6 P180.14.G7	45.246 23.444	0.116	0.122	2.449	13.361 1.450	0.169	0.220 0.703	0.058	4.009 15.759	>12.5 >12.5	2.988	>25 >25			2.380 1.240	0.306 1.012	0.174	
	P197.25.1.D2	>50	0.285	0.194	1.480	1.137		0.703	0.729 B(\$172	1.492	>12.5	>125	1.224			0.330	1.012	14.287	0.023
	P197.25.1.D7	>50	0.782		1,532	7.056			2.601	0.948	>12.5	1.232	1.291			@075		20.337	1,337
	P197.25.1.H1	>50							0.754	2.515	>12.5	1.079	2.088			-9075	0.0F.2	23.417	0.032
	P405.18.D3 P405.18.F10	0.935	20.00	0.023	0,093 5.646	0.432	0.083	0.126	0.469	0.924 1.350	0.718	<0.39	1.137 0.804	>1 ND	>1 ND	>5 >5	0.254 >50	5.680	>50
	p405.18.H5	4.725	0.219	0.782	1.100	19.220	(24)000	0.450	43.684	1.328	0.497	0.986	0.815	0.141		>5	>50	4.760	0.187
	P405.19.A8	0.291			0.116	0.278		0.110		2.012	1.116	0.814	0.878	>1	7: :	0.470		0.917	
	P405.19.B12	0.889	5.5	0.023	0.264	1.103 2.131		0.233 >50	0.1 57 5.279	0.807 0.818	0.655	0.968 <0.39	1.029	0.190		>5 >5	ND	ND	ND
	p405.19.F11 1140.6F5	0.689		0.109	2.892 5.219	5.915	0.284	>50	13.917	21.480	0.413 >12.5	>25	3.630 3.790	0.190		<0,075	NL	ND	ND
	1140.6G9	0.748	0,116	0,114	4.222	0.036	0.147	>50	0.220	6.710	3.270	>25	1.520			<0.075		0.[12	
	P116.2	5.406	0.493	0.422	40.937	5.647	1,00	>50	17.250	16.580	17.370	>25	4.170			40,075			
	P116.3.F6 P116.3.G9	22.297 1.054	0.235	0.255	0.495 0.435	0.728 3.157	0.158 1.385	>50 0.540	15.152 24.689	9.520 5.750	13.540	>25 >25	3.080			-90,975 -490,975			
	P116.4.II	2.594	0.149	0.353	17.822	6.646	0.703	0.329	26.982	13.790	3.120	>25	7.860			<0.575			
	1234.3A9	2.623	0.226		15.504	3.944	0.815	4.0000	40.940	24.600	>12.5	>25	>25			(0.27)			
1	1234.3D9 658.8A6	0.563 4.860	0:355	0.386	4.784 >50	0.539 2.057	0.379	0.178 0.196	48.779 31.416	15.780 >25	>12.5	>25 >25	8.550 >25	0.142		<0.07% <0.07%		0.151	
1	658.8D2	2.832	0.355 0.264	0.386	250 40.617	1.651	0.379	0.196	31.416	>25	2.000	>25 >25	17.210	0.142		<0.070 <0.075		0.151	
	658.8F6					0.994	0.142	>50		>25	>12.5	>25	>25			G9,37/2			
	526.17-2C11	0.100	0.444			6.000	0.123	>50	0.000	ND	ND	ND	ND			0.199	and the second		
1	526.17-2G1 526.17-2G3	0.429 2.825	0.141 0.170	0.120	4.692	5.002 0.687	0.962 D.11D	>50 >50	0.353	ND ND	ND ND	ND ND	ND	[6,[6:4]6:		0.840 0.354		©.037	
1	424.9F4	6.335	0.091	J., 20	0.589	2.534	0.508	>50	2.757	ND	ND	ND	ND			0.310			
	424.9H1	17.101	1.386	1,114	19.990	4.508	0.590	>50	4.982	ND	ND	ND	ND			>5	0.369	3.731	1.087
	139.19.A6	>50	1.059	1.091	3.132	>50	0.033	>50	0.520	ND	ND	ND	ND			0.557	0.127	6.333	
	139.19.C10 139.19.F2	>50 >50	0.118	0.039 0.228	5.745 0.755	>50 11.125		>50 >50	0.525	ND ND	NO NO	ND ND	ND			1.549 >5	0.688 0.669	0.118 ©.103	
	208.9.C6	17.496	0.375	0.587	25.217	1.510	0.587	0.123	>50	ND	NO	ND	ND	01 (01291)	0.248	0.303	0.00	0.126	0.137
l	208.9.F12	5.263	0.265	0.314	11.871	4.460	0.414	0.234	>50	ND	NO	ND	ND	>1	>1	0.714	0.128	0.000	0.151
Ž	208.9.G10	6.842	0.151	0.351	2.896	2.099	0.832	0.033	>50	ND 17.720	ND	ND	ND	0.882	>1	0.289	@@3 3		
Исторические	1031.12.6C4 1031.12.7D5	0.701 0.140		0.039	0.321	9.717 19.210	0.231	>50 >50	>50 >50	17.730 13.770	1.180 0.960	>25 >25	6.280 8.500	>1 >1	>1 >1	0.160 0.120	0.072		
۱ğ	1031.12.909					10(5%)	100	>50	>50	18.220	3.540	>25	10.770	>1	>1	0.200	0.102		
<u> </u> 5	1.7.1A7	0.260	0.116	0.189	>50	6.800	0.176	.7 (8:5)	0.743	>25	>12.5	>25	>25			0.640	NID	ND	ND
=	1.7.1D2 1.7.1G10	10.695 >50	0.939 0.199	0.998 0.185	>50 0.871	>50 1.506	0.669 0.745	0.266	10.213 0.307	>25 >25	11.920 >12.5	>25 >25	>25 >25			0.700	0.300	2115	3737
	232.7.162	>50 >50	0.199	0.185	0.871 >50	1.506	0.745	u.200	0.307	15.000	>12.5	925 0.140	5.030			0.160	U.202		
1	232.7.1C3	>50	0.973	1.771	>50	>50	>50	11	0.132	10.700	8.030	0.330	5.900	0.526	>1	<0.5/%			
1	232.7.1C11	>50	0.241	0.226	0.755	11.125		>50	0.525	13.370	18.480	0.870	5.460	>1	0.370	(0)(2)(2)(0)			
1	458.5.12B1 458.5.12E1	17.496 5.263	0.375 0.265	0.587 0.314	25.217 11.871	1.510 4.460	0.587 0.414	0.123 0.234	>50 >50	0.880 2.110	9.990 1.850	>25 22.620	3.820 1.660		0.311	1.370 <0.3%	0.07.2	0.201	
1	458.5.12G9	6.842	0.151	0.351	2.896	2.099	0.832	0.234	>50	9.440	4.910	>25	2.350	>1	::.	0.000	0.223	0.201	
	172.7C6	0.701		0.039	0.321	9.717	3.35	>50	>50	ND	ND	ND	ND			0.431			
	172.7F11	0.140				19.210	0.231	>50	>50	ND	NO	ND	ND			0.424			
1	172.7G5 1161.9G11	0.260	0.116	0.189	>50	6.800	0.176	>50	>50 0.743	ND ND	ND ND	ND ND	ND ND	>1	>1	0.378			
1	1161.9C1	10.695	0.939	0.998	>50	>50	0.669	1 (0.02)	10.213	ND	NO	ND	ND	>1	>1	>5	0.818	ja japasa.	j.ct
	537.8.A11	>50	0.199	0.185	0.871	1.506	0.745	0.266	0.307	ND	NO	ND	ND	>1	>1	3.459	0.270	00/2005	
	537.8.E6 537.8.E10	>50 >50	0:900 0:973	0.212 1.771	>50 >50	>50	0.158 >50		0.132	ND ND	NO NO	ND ND	ND ND	>1 >1	>1 >1	0.331 2.071	0.174	(0)(0)(0)(0)	
	1001.01.010	- 50	0.010	1.4 ()	- 50	- 50	- 50		U.10E	110	110	···	140		• 1	2.011	U.174		

Цифрами указаны концентрации IgG-антител в мкг/мл для достижения IC_{50} в анализе нейтрализации на основе PBMC.

Значения IC_{50} кодированы цветом, и возрастающая чувствительность к нейтрализации указана от темно-зеленого до темно-красного цвета.

> показывает, что IC_{50} для данного вируса не была достигнута при тестированной концентрации. ND-не определяли.

Таблица 9

Сбор данных и статистика уточнения (молекулярное замещение)

	PGT121 Fab	10-1074 Fab	GL Fab	PGT121 Fab «связанный
«He CE	язанный с лигандом»			с лигандом»
Сбор данных				
Пространственная группа Размеры элементарной ячейки	P2 ₁ 2 ₁ 2 ₁	P2 ₁	P2 ₁	P2 ₁ 2 ₁ 2 ₁
a, b, c (Å)	56.75, 74.67, 114.917	61.38, 40.26, 84.46	54.93, 344.74, 55.23	67.79, 67.79, 94.11
α, β, γ (°)	90.00, 90.00, 90.00	90.00, 95.39, 90.00	90.00, 91.95, 90.00	90.00, 90.00, 90.00
Разрешение (Å)	2.78-35.5 (2.78-2.93)	1.80- 36.31 (1.80-1.91)	2.42-38.60 (2.42-2.55)	2.33-38.66 (2.33-2.47)
R _{merge}	0.099 (0.293)	0.075 (0.558)	0.072 (0.482)	0.161 (0.603)
Ι/σ,	8.8 (3.1)	8.7 (1.8)	11.0 (1.9)	8.7 (2.9)
Полнота (%)	96.7 (84.8)	93.49 (98.0)	95.5 (80.1)	92.2 (98.9)
Избыточность	3.2 (2.7)	2.7 (2.8)	3.1 (2.6)	5.3 (5.8)
Уточнение				
азрешение (Å)	3.0	1.9	2.42	2.4
оличество отражения	10,076	31,363	74,237	16,831
R _{work} / R _{free}	0.216/0.264	0.187/0.223	0.194/0.237	0.201/0.249
оличество атомов				
Белок	3,276	3,346	12,881	3,127
Лиганд/ион	0	0	0	129
Вода	0	300	527	203
В- фактор				
Белок	32.78	29.17	44.67	31.48
Лиганд/ион	-	-	-	45.1
Вода	-	37.37	40.27	36.78
едние квадратичные	отклонения			
Длины связей (Å)	0.005	0.007	0.005	0.006
Углы связей (°)	0.971	1.234	0.951	0.949

^{*} Данные для каждой структуры получали на основании одного кристалла.

Таблица 10

Значения RMSD для Сос-выравниваний Fab

эначения кульы для см-выравнивании г ао										
Fab1/Fab2	RMSD _{VH} (Å)	количество остатков	RMSD _{VL} (Å)	количество остатков	RMSD _{VH+VL} (Å)	количество остатков				
PGT121/PGT128	1.159	116/130	1.63	95/100	1.462	207/235				
PGT121/PGT145	2.93	124/130	1.91	94/105	1.75	206/235				
PGT121/10-1074	0.74	128/130	1.2	102/105	1.26	226/235				
PGT121/GL	1.33	129/130	1.37	94/105	1.6	225/235				
10-1074/GL	1.38	130/130	1.35	92/105	1.39	220/235				
PGT121/PGT12	с пиганлом 0.79	125/128	0.5	100/100	0.78	225/228				

Таблица 11

Контакты между Fab PGT121 и связанным гликаном

атом гликана	Атом белка	Вода	Расстояние(Å)	атом гликана	Атом белка	Вода	Расстояние(А)
GlcNAc6-O3	Asn ⁵⁸ -Nō2		2.91	Sia ¹⁰ -O8	Asp ³¹ -O		2.72
GlcNAc6-07	Asn ⁵⁸ -Oδ1		2.94	Sia ¹⁰ -O10	His ⁹⁷ -N		3.18
GlcNAc6-06		H_2O^{471}	3.15	Sia ¹⁰ -O10	His ⁹⁷ -O		3.19
GlcNAc6-04		H_2O^{477}	3.05	Sia ¹⁰ -O9		H_2O^{480}	3.19
GlcNAc6-O3		H_2O^{481}	2.94	Sia ¹⁰ -O8	Ser ³² -Oγ		3.70*
Man ¹ -O4		H_2O^{410}	3.02	Man ³ -O3	Asn ⁵⁸ -Oδ1		2.58
Man¹-O4		H_2O^{420}	2.66	Man ³ -O6		H_2O^{477}	3.35
Man ¹ -O3		H_2O^{410}	3.35	GlcNAc4-O5	Thr ⁵⁷ -O		3.33
Man¹-O2		H_2O^{477}	3.14	GlcNAc⁴-N2		H_2O^{479}	3.2
Man¹-O5		H_2O^{477}	2.62	Fuc ⁹ -O2		H_2O^{471}	2.57
Man ² -O6	Thr ¹⁰⁰ -Oγ1		3.34		Asp ³¹ -O	H_2O^{435}	3.09
Man²-O2		H_2O^{410}	3.41		Asp ³¹ -Oδ1	H_2O^{480}	3.32
Man ² -O5		H_2O^{446}	2.95		Tyr ⁵⁰ -OH	H_2O^{481}	2.8
Man ² -O6		H_2O^{446}	3.26		His ⁵² -Nε2	H_2O^{435}	3.16
GlcNAc7-N2	Tyr ³³ -OH		2.72		Ser ⁵⁴ -Oy	H_2O^{410}	3.2
GlcNAc7-O5		H_2O^{410}	3.38		Ser ⁵⁴ -O	H_2O^{420}	3.16
GlcNAc7-07		H_2O^{411}	3.00		Gly ⁵⁵ -O	H_2O^{479}	2.85
GlcNAc7-O3	His ⁹⁷ -Nŏ2		3.60*		Asp ⁵⁶ -Οδ1	H_2O^{481}	3.49
GlcNAc7-07	His ⁹⁷ -Nε2		3.70*		Asp ⁵⁶ -Oδ2	H_2O^{446}	3.07
Gal ⁸ -O3	Lys ⁵³ -Nζ		2.97		Asn ⁵⁸ -Nδ2	H_2O^{481}	3.15
Gal8-O4		H_2O^{480}	3.47		Arg ⁹⁹ -Νε	H ₂ O ⁴¹¹	2.58
Gal8-O4		H_2O^{435}	2.76		Thr ^{100I} -Oγ1	H ₂ O ⁴¹¹	2.94
Gal ⁸ -O5		H_2O^{435}	3.17		•		

Критерии водородных связей: расстояние связи <3.5 Å, О-H-O/N-H-O угол >90°.

^{*} Значения в скобках приведены для оболочки с наибольшим разрешением.

^{*} Контакты близки к пределу отсечения расстояния для водородной связи и включены как возможные взаимодействия.

Таблица 12

Нейтрализующая активность $PGT121_{GM}$ и $10-1074_{GM}$ in vitro

Вирус ІД	Клада	PGT121	PGT121 _{GM}	10-1074	10-1074 _{GM}
Q842.d12	Α	1.174	>50	>50	>50
3365.v2.c2	Α	7.353	>50	0.450	0.467
0260.v5.c36	Α	0.152	>50	0.160	0.618
YU.2	В	0.356	1.355	0.398	0.262
TRO.11	В		0.258		
TRJO4551.58	В	35,291	>50	0.634	0.721
QH0692.42	В	8.545	>50	0.929	0.376
PVO.4	В	0.945	47.564	0.360	0.138
RHPA4259.7	В		20.801	0.11&	
WITO4160.33	В	6.007	>50	2.112	0.406
1054_07_TC4_1499	B (T/F)	0.696	>50	0.563	0.193
6244_13_B5_4576	B (T/F)	1.878	46.680	0.922	0.394
62357_14_D3_4589	B (T/F)	45.559	>50	>50	40.782
CNE19	BC	0.189	48.092	50	0.379
CNE17	BC	>50	>50	13.297	4.816
CNE58	вс	>50	>50	0.968	1.158
CNE30	вс	0.559	8.401	1.200	1.045
CNE52	вс	32.935	>50	13.147	6.664
ZM233M.PB6	С	8.977	>50	0.349	0.232
ZM53M.PB12	С		>50	>50	>50
CAP45.2.00.G3	С	6.544	>50	>50	>50
HIV-16055-2.3	С	4.290	>50	>50	>50
HIV-16845-2.22	С	>50	>50	5.835	2.678
ZM214M.PL15	С	3.150	>50	2.367	0.200
ZM135M.PL10a	С	5.885	>50	0.367	0.184
Ce1086_B2	C (T/F)		>50	>50	>50
Ce1172_H1	C (T/F)			0.166	
1394C9G1(Rev-)	C (⊤/F)	3.372	2.120	0.191	0.075
3817.v2.c59	CD	>50	>50	14.880	3.423
6952.v1.c20	CD	0,605	>50	0.138	0.134
BJOX009000.02.4	CRF01_AE	37.289	>50	>50	>50
211-9	CRF02_AG	8.840	>50	0.425	0.976
928-28	CRF02_AG	>50	>50	4.696	3.121
T251-18	CRF02_AG	>50	>50	7.395	3.459
T278-50	CRF02_AG	>50	>50	18.276	12.017
263-8	CRF02_AG	24.576	>50	6.527	7.779
235-47	CRF02_AG	1.676	>50	0.163	0.088
A07412M1.vrc12	D	0.4003	16.947	0.475	0.405
X1193_c1	G		11.859	0.475	0.195
X1254_c3	G			0.297	0.112

Цифрами указаны концентрации IgG-антител в мкг/мл для достижения IC $_{50}$ в анализе нейтрализации TZM-bl.

Значения IC_{50} кодированы цветом, и возрастающая чувствительность к нейтрализации указана от темно-зеленого до темно-красного цвета.

> показывает, что IC $_{50}$ для данного вируса не была достигнута при тестированной концентрации.

035012

Таблица 13

											1 aom
		SHI	VAD8E0	Концентрация	титр			SHTVD	H12-V3AD8	Концентрация	Титр
		5111	. *710000	Ат (мкг/мл)	(TZM-bl)			DILLAD	1112 131100	Ат (мкг/мл)	(TZM-bl)
Идентификаци			защищенные			Идентификаци					
онный номер	AT	Доза		в 0 день	в 0 день	онный номер	Ar	доза	защищенные	в 0 день	в 0 день
животного						животного					
		50						30			
RHDEGF	VRC01	мг/кг	Да	586,9	1:162	RHDEJ3	VRC01	мг/кг	Да	395,8	1:52
RHDEH3			Нет	711,0	1:176	RHKZ1		,	Нет	306,0	1:70
11122110		20	1101	12270	11170			20		000,0	2
RHDE1L		MF/KF	Нет	206,5	1:65	RHKZA	PGT121	MF/KF	Да	215,1	1:13120
		MI-7 KI-		100.1	1.60	D.110.000		MI-/ KI-	_	000 5	1 10005
RHJBN			Нет	188,1	1:68	RHDECT			Да	200,7	1:13805
RHKNX	PGT121	20	Да	267,9	1:2495	RHKTL			Да	282,7	1:12669
		Mr/kr								,	
RHMK4			Да	253,6	1:2773	RHPZ9			Да	133,1	1:12055
RHDE9J		5 мг/кг	Да	55,7	1:563	RHK2Z		1 мг/кг	Да	15,1	1:422
RHPNR			Нет	47,2	1:618	RHMT8			Нет	29,3	1:539
								0,2			
RHDCGI		1 MF/KF	Да	24,0	1:116	RHDEEB		мг/кг	Да	3,1	1:159
RHKNE			Да	19,7	1:55	RHDEP2			Да	1,6	1:101
		0,2		*				0,05		,	
RHK44		MF/KF	Нет	1,8	< 1:20	RHMFD		MF/KF	Her	1,0	<1:20
B111140		MI'/ KI'	**	1.0	1 17	D.1117.7		MI'/ KI'		1 2	-1.00
RHK49			Нет	1,8	1:17	RHKIA			Нет	1,3	<1:20
RHDEEM	10-1074	20	Да	289,8	1:2004	RHKIM	10-	20	Да	290,3	1:1972
		мг/кг					1074	мг/кг			
RHKIL			Да	257,7	1:2075	RHKWM			Да	173,3	1:2282
RHME1		5 мг/кг	Да	112,9	1:633	RHMJW		5 мг/кг	Да	96,6	1:420
RHPNV			Да	117,5	1:384	RHMJT			Да	95,3	1:376
RHPID		1 мг/кг	Нет	19,9	1:56	RHDENI		1 мг/кг		28,4	1:106
RHDCHX		/	Нет	24,8	1:53	RHJHZ		,	Нет	18,6	1:136
KHDCHA			ner	24,0	1.55	KHOHZ		0.0	ner	10,0	1.130
RHPZE	3BNC117	5 мг/кг	Да	105,4	1:272	RHHE8		0,2	Нет	19,4	1:39
								мг/кг			
RHPM5			Да	76,1	1:372	RHKCZ			Нет	19,7	1:35
RHKMH		1 мг/кг	Нет	39,6	1:55	RHMFBA	3BNC11	20	Да	294,9	1:143
runum		I MITTEL	1101] 33,0	1.55	I KIIIII DA	7	мг/кг		234,5	1.145
RHMJ5			Нет	15,1	1:75	RHMER			Да	272,7	1:142
		20						. ,			
RHPLD	45-46m2	мг/кг	Нет	15,0	1:27	RHKIV		5 мг/кг	Да	114,6	1:80
RHMA9			Нет	17,6	< 1:20	RHKPI			Нет	133,1	1:90
RHMC6		5 мг/кг	Нет	2,3	< 1:20	RHDE9D		1 мг/кг		23,3	1:20
RHDEOCA		, 101	Нет	2,2	< 1:20	RHDEW7			Да	29,6	1:18
. aibbook		20	1101	-,-	1.20	TOTAL		0.2	да	23,0	1.10
RHML1	DEN3	20	Нет	ND	< 1:20	RHMEV		0,2	Нет	3,9	< 1:20
		мг/кг						мг/кг			
RHMAA			Нет	ND	< 1:20	RHMF9			Нет	5,7	< 1:20
						RHKZMA	45-	5 мг/кг	Нет	2,1	ND
							46m2	,			
						RHKNP			Нет	4,0	ND
								100	L		
						RHJII	hu-IgG	мг/кг	Нет	ND	ND
						RHJK1			Нет	ND	ND
						1410111			1.01	1	

Таблица 14

IC₅₀ в клетках TZM-bl¹

TC 50 B RHCTRUX TENT OF										
Идентификационный	S321	C500	B520	G435	T520b	M263	M600c	HIVIG	фенотип	
номер образца	3321	C300	B320	G433	13200	P12.03	MOOOC	(мкг/мл)	Tier	
R5 SHIVDH12-V3AD8	321	289	77	172	168	429	134	132	2	
R5 SHIVADB-RO	48	36	39	31	41	44	48	1768	2	
X4 SHIVDH12-CL7	110	94	50	65	109	115	65	530	2	
HIV-1 _{CAAN5342.A2}	84	<20	27	<20	<20	77	185	638	2	
HIV-1 _{MN.3}	13944	9152	822	8432	3968	43722	1709	1,81	1	

¹ Значения представляют разведение в сыворотке, при котором относительные единицы флуоресценции (RLU) были снижены на 50% по сравнению с лунками с контрольным вирусом (без тестируемого образца).

Таблица 15

SHIVAD8EO

Конечная нейтрализация_	Количество животных		Накопленное зна	Защищенные		
титр в плазме	Защищенные	Инфицир	ованные Защищенны	ые ^а Инфицированные ^b	Отношение	%
2773	1	0	12	0	12/12	100%
2495	1	0	11	0	11/11	100%
2075	1	0	10	0	10/10	100%
2004	1	0	9	0	9/9	100%
633	1	0	8	0	8/8	100%
618	0	1	7	1	7/8	88%
563	1	0	7	1	7/8	88%
384	1	0	6	1	6/7	86%
372	1	0	5	1	5/6	83%
272	1	0	4	1	4/5	80%
176	0	1	3	2	3/5	60%
162	1	0	3	2	3/5	60%
115	1	0	2	2	2/4	50%c
75	0	1	1	3	1/4	25%
68	0	1	1	4	1/5	20%
65	0	1	1	5	1/6	17%
56	0	1	1	6	1/7	14%
55	1	0	1	6	1/7	14%
55	0	1	0	7	0/7	0%
53	0	1	0	8	0/8	0%
27	0	1	0	9	0/9	0%
20	0	1	0	10	0/10	0%
20	0	1	0	11	0/11	0%
20	0	1	0	12	0/12	0%
20	0	1	0	13	0/13	0%
17	0	1	0	14	0/14	0%

Таблица 16

нечная нейтрализация	Количество живот	ных На	копленное значени	е	Защищенные	Защищенные		
Титр в плазме	Защищенные	Инфицированные	Защищенные а	Инфицированныеы	Отношение	%		
13805	1	0	16	0	16/16	100		
13120	1	0	15	0	15/15	100		
12669	1	0	14	0	14/14	100		
12055	1	0	13	0	13/13	100		
2282	1	0	12	0	12/12	10		
1972	1	0	11	0	11/11	10		
539	0	1	10	1	10/11	91		
422	1	0	10	1	10/11	91		
420	1	0	9	1	9/10	90		
376	1	0	8	1	8/9	89		
159	1	0	7	1	7/8	88		
143	1	0	6	1	6/7	86		
142	1	0	5	1	5/6	83		
136	0	1	4	2	4/6	67		
106	1	0	4	2	4/6	67		
101	1	0	3	2	3/5	60		
90	0	1	2	3	2/5	40		
80	1	0	2	3	2/5	40		
70	0	1	1	4	1/5	20		
52	1	0	1	4	1/5	20		
39	0	1	0	5	0/5	0%		
35	0	1	0	6	0/6	0%		
20	0	1	0	7	0/7	0%		
20	0	1	0	8	0/8	0%		
20	0	1	0	9	0/9	0%		
20	0	1	0	10	0/10	0%		
20	0	1	0	11	0/11	0%		
20	0	1	0	12	0/12	09		
20	0	1	0	13	0/13	09		

SHIVDH12-V3AD8

а сумма снизу.
b сумма сверху.
c вычисленный конечный титр защиты (50% защитный титр) составлял 1:115.

 $^{^{}a}$ сумма снизу. b сумма сверху. c вычисленный конечный титр защиты (50% защитный титр) составлял 1:95,5.

Таблина 17

Перед				
инфекцией	Перед	лечением	мАт	

-	Недели	Т-клетки	Т-клетки	вирусная	клинический
Животное	после	CD4+	CD4+	нагрузка	
	инфекции	клеток/мкл	клеток/мкл	копий РНК/мл	статус
DBZ3	159	650	118	1,08E+04	без симптомов
DC99A	159	623	165	7,60E+03	без симптомов
DBXE	163	1585	158	1,96E+05	Периодическая диарея
DCF1	157	1203	105	1,44E+05	- Периодическая диарея
DCM8	163	608	43	1,59E+03	Периодическая диарея

Таблица 18

Животное	Время	Количество копий РНЬ	К Количество копий
	обработки	Gag SIV на 10^8	ДНК Gag SIV на 10 ⁸
	(дни)	клеток	клеток
DBZ3	0	9000	6700
DBZ3	10	360	7500
DBZ3	20	2400	14000
DC99A	0	31000	1400
DC99A	14	18000	5600
DC99A	20	8100	2700
DBXE	0	470000	71000
DBXE	14	17000	33000
DBXE	17	11000	22000
DCM8	0	110000	8600
DCM8	14	1700	1600
DCM8	20	22000	6600
DCF1	0	240000	15000
DCF1	14	190000	11000
DCF1	20	1100000	14000

Приведенные выше примеры и описание предпочтительных вариантов следует воспринимать как иллюстративные, а не ограничивающие настоящее изобретение, которое определено формулой изобретения. Как может быть легко понятно, могут быть использованы многочисленные изменения и сочетания признаков, указанных выше, не выходя за рамки объема настоящего изобретения, который указан в формуле изобретения. Такие изменения не следует рассматривать как выход за рамки объема изобретения, и все такие изменения должны быть включены в объем следующей далее формулы изобретения. Все публикации, цитированные в настоящем описании, включены в описание в полном объеме.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Выделенное анти-ВИЧ-антитело или его антигенсвязывающий фрагмент, содержащее CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3,

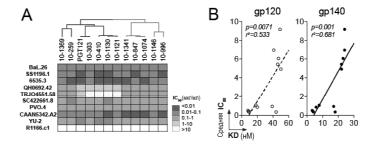
где CDRH1, CDRH2 и CDRH3 содержат соответствующие последовательности набора CDRH, выбранные из группы, состоящей из SEQ ID NO: 69-71, SEQ ID NO: 39-41, SEQ ID NO: 51-53, SEQ ID NO: 57-59, SEQ ID NO: 63-65, SEQ ID NO: 75-77, SEQ ID NO: 81-83, SEQ ID NO: 87-89, SEQ ID NO: 93-95, SEO ID NO: 99-101 и SEO ID NO: 131-133, или

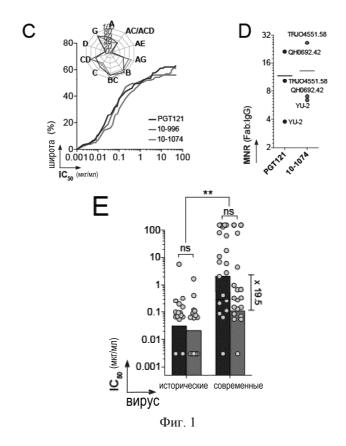
где CDRL1, CDRL2 и CDRL3 содержат соответствующие последовательности набора CDRL, выбранные из группы, состоящей из последовательностей SEQ ID NO: 72-74, SEQ ID NO: 42-44, SEQ ID NO: 54-56, SEQ ID NO: 60-62, SEQ ID NO: 66-68, SEQ ID NO: 78-80, SEQ ID NO: 84-86, SEQ ID NO: 90-92, SEQ ID NO: 96-98, SEQ ID NO: 102-104 и SEQ ID NO: 134-136.

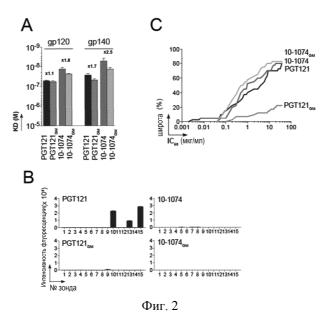
2. Выделенное анти-ВИЧ-антитело по п.1 или его антигенсвязывающий фрагмент, где CDRH1, CDRH2, CDRH3, CDRL1, CDRL2 и CDRL3 содержат соответствующие последовательности набора CDR,

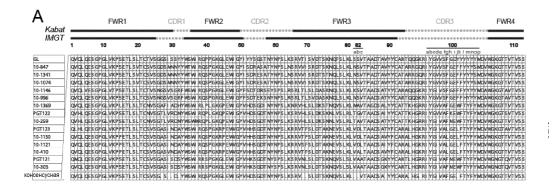
выбранные из группы, состоящей из последовательностей SEQ ID NO: 69-74, SEQ ID NO: 39-44, SEQ ID NO: 51-56, SEQ ID NO: 57-62, SEQ ID NO: 63-68, SEQ ID NO: 69-74, SEQ ID NO: 75-80, SEQ ID NO: 81-86, SEQ ID NO: 87-92, SEQ ID NO: 93-98, SEQ ID NO: 99-104 и SEQ ID NO: 131-136.

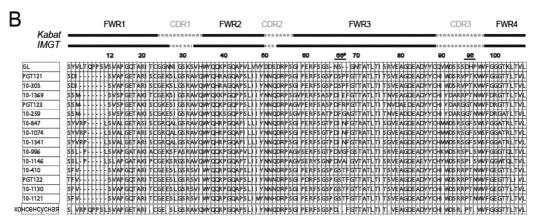
3. Выделенное анти-ВИЧ-антитело по п.1 или его антигенсвязывающий фрагмент,

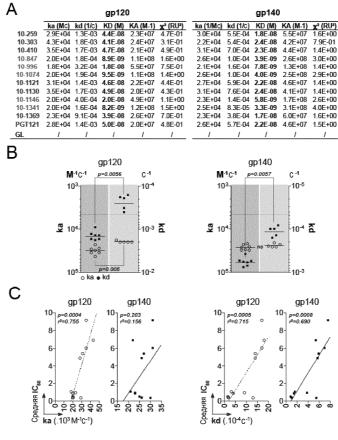

где тяжелая цепь содержит последовательность, выбранную из SEQ ID NO: 3, 7, 9, 11, 13, 15, 17, 19, 21, 23 и 129, и

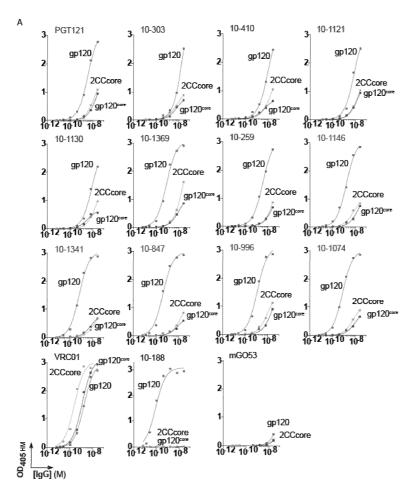

где легкая цепь содержит последовательность, выбранную из SEQ ID NO: 4, 8, 10, 12, 14, 16, 18, 20, 22, 24 и 130.

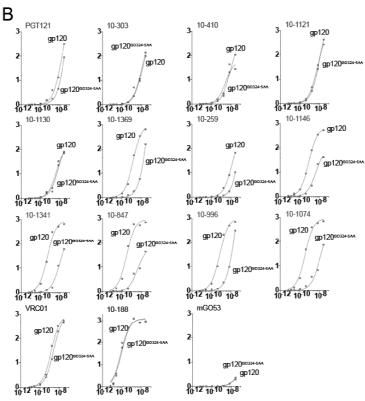

4. Выделенное анти-ВИЧ-антитело по п.1 или его антигенсвязывающий фрагмент,

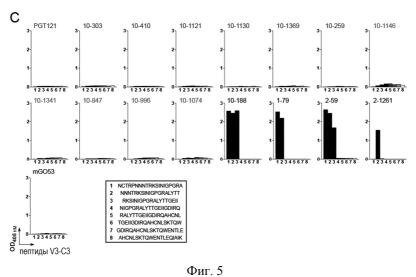

где тяжелая цепь и легкая цепь содержат соответствующие последовательности SEQ ID NO: 3-4, SEQ ID NO: 7-8, SEQ ID NO: 9-10, SEQ ID NO: 11-12, SEQ ID NO: 13-14, SEQ ID NO: 15-16, SEQ ID NO: 17-18, SEQ ID NO: 19-20, SEQ ID NO: 21-22, SEQ ID NO: 23-24 и SEQ ID NO: 129-130.

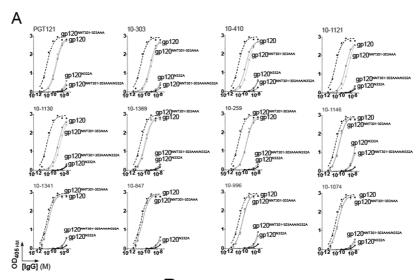

- 5. Выделенное анти-ВИЧ-антитело по любому из пп.1-4 или его антигенсвязывающий фрагмент, где антитело представляет собой антитело человека или гуманизированное антитело.
- 6. Выделенное анти-ВИЧ-антитело по любому из пп.1-4 или его антигенсвязывающий фрагмент, где антитело является химерным антителом.
- 7. Выделенная нуклеиновая кислота, содержащая последовательность, кодирующую анти-ВИЧантитело по п.1 или его антигенсвязывающий фрагмент.
- 8. Выделенная нуклеиновая кислота, содержащая последовательность, кодирующую вариабельную область тяжелой цепи или вариабельную область легкой цепи анти-ВИЧ-антитела по п.1 или его антигенсвязывающий фрагмент.
 - 9. Вектор экспрессии, содержащий нуклеиновую кислоту по п.7 или 8.
- 10. Клетка для получения анти-ВИЧ-антитела или его антигенсвязывающего фрагмента по любому из пп.1-6, содержащая вектор по п.9.
 - 11. Фармацевтическая композиция, содержащая:
 - (i) анти-ВИЧ-антитело по любому из пп.1-6 или его антигенсвязывающий фрагмент и
 - (ii) фармацевтически приемлемый носитель.
- 12. Способ профилактики или лечения ВИЧ-инфекции или связанного с ВИЧ заболевания, включающий введение указанному пациенту лекарственного средства, содержащего терапевтически эффективное количество анти-ВИЧ-антитела по любому из пп.1-6 или его антигенсвязывающего фрагмента.
 - 13. Способ по п.12, дополнительно включающий введение другого анти-ВИЧ-средства.
- 14. Способ получения анти-ВИЧ-антитела или его фрагмента по любому из пп.1-6, включающий получение клетки по п.10, культивирование клетки в условиях, обеспечивающих экспрессию и сборку антитела или его фрагмента, и выделение антитела или фрагмента из культивируемой клетки или среды клетки.
- 15. Набор для лечения или ингибирования инфекции ВИЧ, содержащий фармацевтически приемлемую стандартную лекарственную форму с терапевтически эффективным количеством анти-ВИЧ-антитела по любому из пп.1-6 и фармацевтически приемлемую стандартную лекарственную форму с фармацевтически эффективным количеством другого анти-ВИЧ-средства.
- 16. Набор по п.15, в котором анти-ВИЧ-средство выбрано из ненуклеозидного ингибитора обратной транскриптазы, ингибитора протеазы, ингибитора проникновения или слияния и ингибитора интегразы.

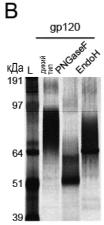


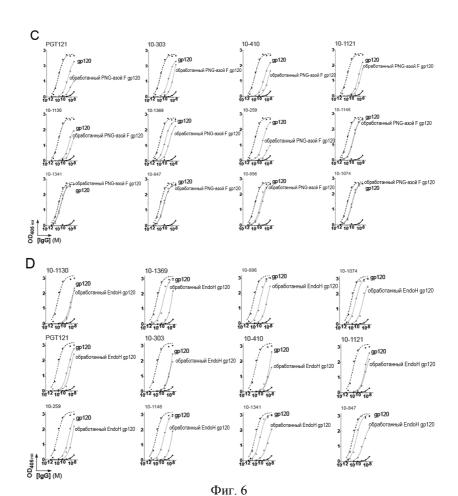


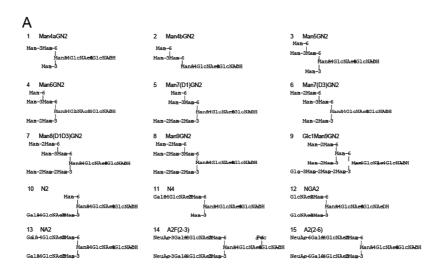


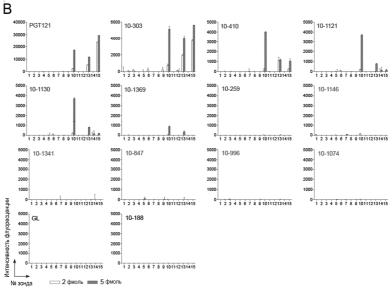

Фиг. 3

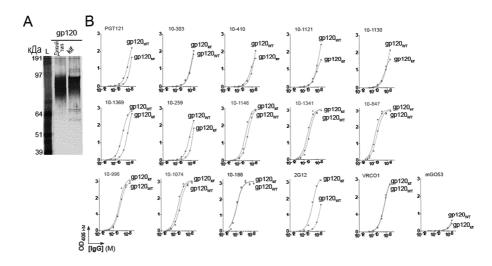

Фиг. 4

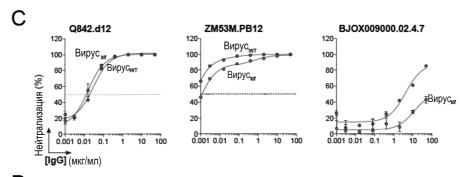


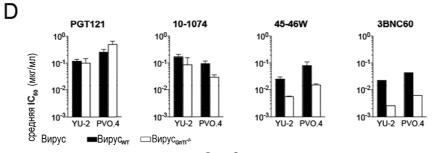


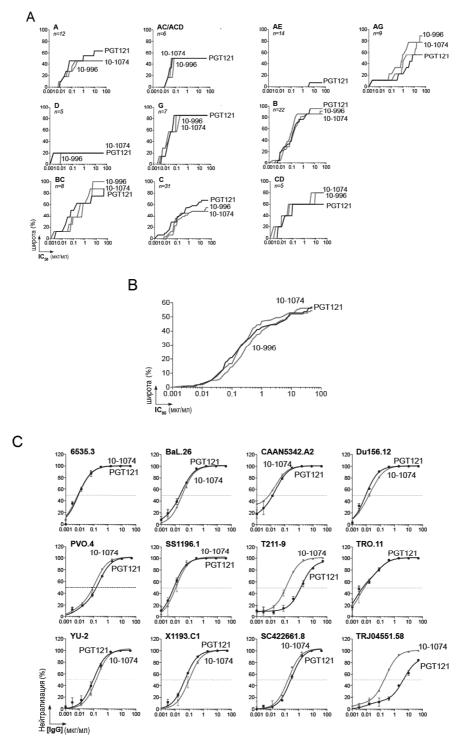


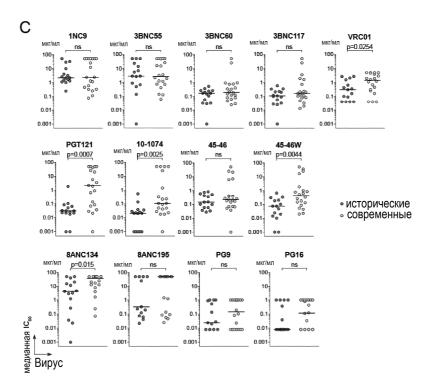

Фиг. 5







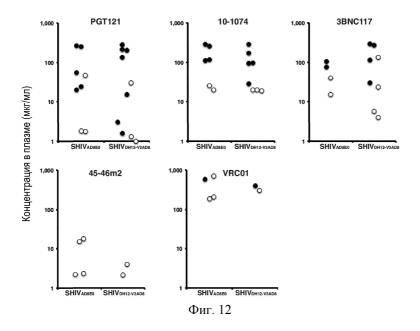

Фиг. 7



Фиг. 8

Фиг. 9

Фиг. 10


	A	
4	4	
,	-	

	IC50 TZM-bl (мкг/мл)
VRC01	0.94
NIH 45-46	0.92
45-46m2	0.29
45-46 G54W	0.28
3BNC117	0.14
12A12	6.36
1NC9	2.04
8ANC195	3.38
10-1074	0.15
PGT-121	0.10
PGT-126	0.09

B

	IC50 TZM-bl (мкг/мл)
VRC01	2.35
NIH 45-46	1.48
45-46m2	0.52
45-46 G54W	0.44
3BNC117	0.39
12A12	86.27
1NC9	30.26
8ANC195	3.08
10-1074	0.06
PGT-121	0.01
PGT-126	0.16

Фиг. 11

а		ID ₅₀ (мкг/мл)		
		10-1074	3BNC117	
X2088	9	0.013	>100	
Q769_c	122	>100	0.024	

Титр ID50 в сыворотке, преобразованный Титр ID₀ в сыворотке в соответствующую концентрацию антитела 10-1074 и ЗВNC117 (мкг/мл)

				(manis)
плазма + мАт	X2088_9	Q769_d22	X2088_9	Q769_d22
preP_0.01_3BNC117	<20	<20	<0.26	<0.48
preP 0.1 3BNC117	<20	<20	<0.26	<0.48
preP 1 3BNC117	<20	27	< 0.26	0.65
preP_10_3BNC117	<20	340	<0.26	8.16
preP_100_3BNC117	<20	5,369	<0.26	128.86
preP_0.01_10-1074	<20	<20	<0.26	<0.48
preP_0.1_10-1074	<20	<20	< 0.26	<0.48
preP_1_10-1074	54	<20	0.70	<0.48
preP_10_10-1074	516	<20	6.71	<0.48
preP 100 10-1074	11.419	<20	148.45	<0.48

preT - плазма разных NHP до обработки (DBZ3, DC99A, DCM8, DCF1, DBXE)

Титр ID 50	мкг/мл
>5000	>75
>1000 - 5000	>15 - 75
>200 -1000	>5 -15
40 - 200	1 - 5

Уровни мАт у NHP

С		Титр	ID ₅₀ в плазме	преобразован концентрац	ию антитела 3BNC117		
NHP	дни после инъекции	X2088_9	Q769_d22	10-1074	3BNC117		
	до иммунизаци		<20	<0.26	<0.48		
	3	15385	3178	200.01	76.27		
	6 10	5784 3150	1460 848	75,19 40,95	35.04 20.35		
	14	2114	567	27.48	13.61		
DBZ3	17	1331	317	17.30	7.61		
œ.	20	1300	188	16.90	4.51		
	24	485	<20	6.31	< 0.48		
	27	333	<20	4.33	<0.48		
	34	85	<20	1,11	<0.48		
	41	<20	<20	<0.26	<0.48		
	49	<20	<20	<0.26	<0.48		
Į.	о иммунизации	<20	<20	<0.26	<0.48		
	3	6649	1977	86.44	47.45		
DCM8	6	4799	1388	62.39	33.31		
≥	10	2432	877	31.62	21.05		
8	14	1222	477	15.89	11.45		
ш	17 20	797 296	249 37	10.36	5.98		
	20 23	148	<20	3.85 1.92	0.89 <0.48	1	
				500112002000000000000000000000000000000			
Д	о иммунизации	<20	24	<0.26	0.58	-». 	
	3 6	6962 3827	1497 927	90.61	35.93 22.25		
m	10	1446	504	49.75 18.80	12.10		
DBXE	14	957	242	12.44	5.81		
	17	696	208	9.05	4.99		
	20	415	190	5.40	4.56		
	23	378	131	4.91	3.14		
nr	иммунизации	<20	<20	<0.26	<0.48	-0	
	3	20244	3306	263.17	79,34		
	6	8614	1595	111.98	38.28		
	10	7756	1532	100.83	36.77		
⋖	14	3429	717	44.58	17.21		
DC99A	17	2655	647	34.52	15.53		
Ö	20	2242	540	29.15	12.96		
Ω	24	1638	384	21.29	9.22		
	27 34	2439	576	31.71	13.82		
	41	1001 968	195 <20	13.01 12.58	4.68 <0.48		
	49	461	35	5.99	0.84		
				200722000000000000000000000000000000000		→	
Д	о иммунизации	<20	<20	< 0.26	<0.48	-	
	3	<20	2138	<0.26	51.31		
Σ.	6	29	1172	0.38	28.13	T 15	мкг/мл
DCF1	10	<20	133	< 0.26	3.19	Титр ІО 50	
ă	14 17	21 <20	35 30	0.27	0.84	>5000	>75
_	20	23	28	<0.26 0.30	0.72 0.67	>1000 - 5000 >200 -1000	>15 - 75 >5 -15

Фиг. 13

Евразийская патентная организация, ЕАПВ

Россия, 109012, Москва, Малый Черкасский пер., 2