(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

(51) Int. Cl. *E21B 33/138* (2006.01) **C09K 8/506** (2006.01)

2020.03.12

(21) Номер заявки

201800280

(22) Дата подачи заявки

2018.03.07

(54) СПОСОБ ИЗОЛЯЦИИ ВОДОПРИТОКОВ В СКВАЖИНЕ

(43) 2019.09.30

(96) 2018/017 (AZ) 2018.03.07

(71)(73) Заявитель и патентовладелец:

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ПРОЕКТНЫЙ ИНСТИТУТ НЕФТИ И ГАЗА (НИПИНГ) (AZ)

(72) Изобретатель:

Сулейманов Багир Алекпер оглы, Гасанов Фазиль Гурбан оглы, Кязимов Фазиль Кямал оглы, Рзаева Сабина Джангир кызы (АZ), Тулешева Гульнара Дюсеновна (КZ)

(74) Представитель:

Зейналова О.А. (АZ)

(56) RU-C1-2121570 RU-C1-2099520 RU-C1-2358097 US-A1-20140345867

Изобретение относится к нефтедобывающей промышленности, в частности к способам изоляции водопритоков в скважине. Задача изобретения заключается в увеличении добычи нефти в результате изоляции высокопроницаемых зон и вовлечения в разработку низкопроницаемых нефтяных зон пласта путем применения органических отходов производства. Поставленная задача решается тем, что в способе ограничения водопритока в скважину, включающем закачку в скважину водного раствора силиката натрия, перед закачкой водного раствора силиката натрия в него добавляют молочную сыворотку (МС) при следующем соотношении компонентов, мас. %: силикат натрия 2-8%; молочная сыворотка 10-50%; пресная вода - остальное. Перед закачкой водного раствора силиката натрия с добавкой молочной сыворотки в призабойную зону пласта закачивают оторочку пресной или умягченной морской или пластовой воды.

Изобретение относится к нефтедобывающей промышленности, в частности к способам изоляции водопритоков в скважине.

Известен способ изоляции водопритока и зоны поглощения, включающий закачку в скважину раствора, содержащего силикат натрия, минеральную кислоту, биополимер и воду [1].

Недостатком этого способа является неэффективность селективной изоляции высокопроницаемых зон пласта.

Известен способ изоляции призабойной зоны пласта, включающий закачку биологически активной среды, состоящий из молочной сыворотки и активного ила, при этом предварительно перед закачкой вводят оторочку, состоящую из активного ила и полиакриламида [2].

Недостатком известного способа является его низкая эффективность в результате постепенного вымывания изолирующего состава при существующих депрессиях в системе пласт-скважина и, как следствие, низкой продолжительности изоляции водопритоков в скважину. Применение дефицитного и дорогостоящего полиакриламида также снижает эффективность способа.

Наиболее близким техническим решением к предлагаемому изобретению является способ ограничения водопритока в скважину путем последовательной закачки в скважину водного раствора силиката натрия, разделителя и отвердителя.

Недостатком известного способа является то, что закачанная в качестве отвердителя соляная кислота не позволяет регулировать время гелеобразования. Эффективность способа также снижается в результате неполного смешения в пласте закачанных в скважину компонентов гелеобразующего раствора. С другой стороны взаимодействие HCl с остаточными сульфитами способствует загрязнению нефти серой и, как следствие, усложнению технологического процесса. Кроме этого в результате закачки в качестве отвердителя соляной кислоты происходит интенсивная коррозия промыслового оборудования. Также соляная кислота негативно влияет на здоровье рабочего персонала и окружающую среду.

Задача изобретения заключается в увеличении добычи нефти в результате изоляции высокопроницаемых зон и вовлечения в разработку низкопроницаемых нефтяных участков призабойной зоны пласта путем применения экологически чистых органических отходов производства.

Поставленная задача решается тем, что в способе ограничения водопритока в скважину, включающий закачку в скважину водного раствора силиката натрия, перед закачкой водного раствора силиката натрия в него добавляют молочную сыворотку (МС), при этом концентрацию силиката натрия и молочной сыворотки регулируют в зависимости от температуры на данной глубине призабойной зоны пласта и времени, необходимых для гелеобразования.

Перед закачкой водного раствора силиката натрия с добавкой молочной сыворотки в призабойную зону пласта закачивают оторочку пресной или умягченной морской или пластовой воды.

Для приготовления гелеобразующих составов, с целью изоляции или ограничения водопритока в призабойную зону пласта, были использованы жидкое стекло или силикат натрия (ГОСТ 13078-81), молочная сыворотка (ГОСТ Р 53438-2009) и пресная вода. Для приготовления раствора расчетное количество силиката натрия добавляется к определенному количеству пресной воды и к нему добавляют расчетное количество МС. Раствор смешивают до образования однородной массы.

МС является отходом молочного производства, полученным при переработке молока в творог. Физико-химические свойства молочной сыворотки при 20° С следующие: вязкость 1,324 мПа·с, плотность 1019 кг/м^3 , pH=4,45. Состав молочной сыворотки показан в табл. 1.

Таблица 1

Компоненты	Количество, г/100г		
Вода	93,5		
Сухие вещества	6,5		
В том числе:			
лактоза	4,66		
белки	0,91		
молочный жир	0,37		
минеральные вещества	0,50		
другие вещества	0,06		

Известно, что силикат натрия в кислой и спиртовой среде образует устойчивые гели. МС в своем составе одновременно содержит остатки различных органических кислот и спиртов, которые при взаимодействии с силикатом натрия способствуют образованию устойчивых гелей.

Силикат натрия является солью слабой кремниевой кислоты H_2SiO_3 . Молочные кислоты и другие аминокислоты, входящие в состав MC, по своей кислотности сильнее, чем кремниевая кислота. Поэтому при их взаимодействии происходят химические и микробиологические замещения иона Na^+ , т.е. могут образоваться аммонийная соль кремниевой кислоты и кремниевая кислота. Эти два компонента стимулируют дальнейший процесс гелеобразования в молочнокислой среде силиката натрия.

Помимо этого МС в своем составе содержит до 5% лактозы. Лактоза относится к дисахаридам, ко-

торые в зависимости от pH среды гидролизуются и образуют циклические моносахариды, которые при дальнейшем восстановлении в щелочной среде приводят к образованию алкоголятов. Алкоголятные производные в свою очередь стимулируют процесс гелеобразования. Известно, что для гелеобразования силиката натрия с лактозой в качестве стимулятора добавляют хлорид кальция. А MC богата органическими и неорганическими минеральными солями, т.е. содержит в своем составе катионы Na^+ , K^+ , Ca^{2+} , Mg^{2+} и анионы Cl^- и R- COO^- , которые являются минеральными добавками. Кроме этого белки, входящие в состав MC, также в свою очередь играют роль коагулянта, т.е. стимулируют процесс гелеобразования.

В случае, когда пластовая вода жесткая, для предотвращения процесса коагуляции при смешении гелеобразующего раствора с жесткой пластовой водой в скважину предварительно закачивают оторочку пресной или умягченной морской или пластовой воды. Водный раствор силиката натрия с добавкой молочной сыворотки продавливают в скважину пресной водой или легкой нефтью. Закачанный гелеобразующий раствор продвигается в высокопроницаемые водоносные каналы и изолирует их, образуя там гель. В результате этого в разработку подключаются ранее не работающие нефтенасыщенные зоны.

При добавке в приготовленный водный раствор Na_2SiO_3 в качестве инициатора гелеобразования МС в интервале температур 40-90°C можно полностью регулировать время гелеобразования. В зависимости от концентрации силиката натрия и МС время гелеобразования изменяется. Из табл. 2 видно, что при низкой температуре и низких концентрациях МС гелеобразования не наблюдается. При малых концентрациях МС процесс гелеобразования бывает более продолжительный, с увеличением концентрации МС гель образуется за короткое время. В зависимости от пластовых характеристик, используя различные концентрации приготовленных композиций, можно изолировать или ограничить поток воды в призабойной зоне.

Таблица 2

Гаолица 2 Концентрация Концентрация Время гелеобразования (в минутах) при температуре					тературе		
Na ₂ SiO ₃ , %	MC, %	40°C	50°C	60°C	70°C	80°C	90°C
	10	-	 -	-	662	289	95
	20	-	-	540	308	118	54
2	30	-	654	291	156	71	42
	40	516	340	190	97	46	25
	50	45	32	24	15	8	5
	10	-	-	719	456	242	85
	20	-	840	420	293	100	46
4	30	685	511	298	128	60	45
	40	342	286	180	82	38	21
	50	100	70	45	26	8	6
	10	-	812	502	322	251	77
	20	556	421	373	216	142	52
6	30	321	232	209	102	61	38
	40	210	164	122	51	22	19
	50	110	86	39	21	7	4
	10	-	588	411	278	205	81
	20	412	319	261	184	121	68
8	30	285	195	184	92	75	55
	40	180	121	87	72	66	46
•	50	90	55	38	19	10	4

Пример 1. Способ испытан в лабораторных условиях на двухпластовой модели пласта, где проницаемость низкопроницаемого пласта составляла 0,3 мкм, высокопроницаемого 3 мкм. Геометрические размеры модели следующие: длина - 0.8 м, внутренний диаметр - 0.04 м. Модель заполнялась кварцевым песком различной фракции с добавками бентонитовой глины (4%) и карбонатной пыли (12,0%). После этого модель насыщалась пластовой водой и устанавливалось распределение фильтрационного потока R_1 $(R_1=Q_B/Q_H, \ r$ де $Q_B, \ Q_H$ - соответственно расходы жидкости в высокопроницаемом и низкопроницаемом пластах. В опыте №1 насыщение пористой среды производилось гидрокарбонатной (щелочной) пластовой водой с рН=8, вторую модель насыщали хлоркальциевой (жесткой) пластовой водой с рН=6, третью модель насыщали пресной водой (по прототипу). Затем на выход моделей (против направления фильтрации воды), при термостатировании 80°C, подавали водный раствор силиката натрия (4%) и MC (20%), в объеме 15% от объема пор и закрывали модели с обеих концов на время гелеобразования. Во вторую модель, насыщенную жесткой пластовой водой для предотвращения ее смешения с гелеобразующей композицией предварительно закачивали оторочку умягченной пластовой воды в объеме 2% от объема пор. По истечении этого времени вход модели соединялся с водой, которой производили насыщение,и вновь устанавливалось распределение фильтрационного потока R2. Результаты экспериментальных исследований показаны в табл. 3.

Таблина 3

N	Вода, насыщающая поры модели	Рабочие агенты, закачанные в модель		одность рации	Улучшение неоднородности
			До воздействия R ₁	После воздействия R_2	фильтрации ((R ₁ -R ₂)/R ₁)*100 %
1	Щелочная пластовая вода	Раствор Na ₂ SiO ₃ + MC	6,26	0,39	93,8
2	Жесткая пластовая вода	умягченная пластовая вода,раствор Na ₂ SiO ₃ + MC	6,15	0,41	93,3
3	По прототипу (пресная вода)	Раствор Na ₂ SiO ₃ , легкая нефть, раствор HCl	6,21	2,3	63,0

Из результатов экспериментальных исследований видно, что блокирование высокопроницаемых зон способствует существенному улучшению неоднородности фильтрации. Из табл. 3 видно, что при закачке предложенного гелеобразующего раствора неоднородность фильтрации улучшается более чем на 93%. В исследованиях по прототипу улучшение неоднородности фильтрации составило 63,0%.

Пример 2. В данном исследовании экспериментально определялась надежность созданного гелевого экрана. Геометрические размеры линейной модели такие же, как в примере 1. После создания в первой модели пористой среды, состоящей из кварцевого песка, и ее полного насыщения гидрокарбонатной (щелочной) пластовой водой с рH=8, на основе формулы Дарси определялась проницаемость $1,38\cdot10^{-12}$ м². Вторую модель насыщали хлоркальциевой (жесткой) пластовой водой с рH=6, в этом случае проницаемость составила $1,28\cdot10^{-12}$ м². Третью модель насыщали пресной водой (по прототипу), проницаемость составила $1,31\cdot10^{-12}$ м².

Затем на выход моделей (против направления фильтрации воды), при термостатировании 80°С, подавали водный раствор силиката натрия (4%) и МС (20%), в объеме 15% от объема пор и закрывали модели с обоих концов на время гелеобразования. Во вторую модель, насыщенную жесткой пластовой водой для предотвращения ее смешения с гелеобразующей композицией предварительно закачивали оторочку умягченной морской воды в объеме 2% от объема пор. По истечении этого времени вход модели вновь соединяли с водой, которой производили насыщение, и определяли проницаемость пористой среды. Результаты экспериментальных исследований показаны в табл. 4. Для определения надежности блокирующего экрана в него закачивали щелочной раствор (10-%-ный водный раствор NaOH). Через определенный промежуток времени (2 ч) продолжали фильтрацию через пористую среду воды (соответственно через первую модель - щелочную, через вторую - жесткую, а через третью - пресную воду) и вновь определяли проницаемость модели. Отношение проницаемости после закачки щелочного раствора к проницаемости до закачки щелочного раствора (после блокирования предложенным составом) показало, насколько блокирующий экран надежен.

Таблина 4

	т иолици ч						
No	Вода,	Начальная	Рабочие агенты,	Конечная	Отношение		
	насыщающая	проницаемость,	закачанные в	проницаемость	проницаемостей,		
	поры модели	K_1 , $10^{-12} \mathrm{m}^2$	модель	модели,	K		
				K_2 , 10^{-12} m^2			
1	Щелочная		раствор				
	пластовая	1,38	Na ₂ SiO ₃ + MC	0,37	1,05		
	вода						
2	W		умягченная				
	Жесткая	1,28	морская вода,	0,33	1,03		
	пластовая		раствор				
	вода		Na ₂ SiO ₃ + MC				
			раствор Na ₂ SiO ₃ ,				
3	По прототипу	1,31	легкая нефть,	0,65	1,42		
			раствор HCl				

Как видно из табл. 3, при закачке в модель предложенного гелеобразующего состава, а следом щелочного раствора (опыт 1 и 2) проницаемость увеличивается максимум на 5%. При закачке известного состава (по прототипу) надежность блокирующего экрана значительно ниже (проницаемость в данном случае увеличивается на 42%). В промысловых условиях способ изоляции водопритоков осуществляется в следующей последовательности. После определения состояния скважины и устранения возможных неполадок определяют необходимые концентрации и объем реагентов. На устье скважины готовят гелеобразующий раствор с рассчитанной концентрацией силиката натрия и МС, устье соединяют с насосным агрегатом. В скважину при необходимости предварительно закачивают оторочку пресной, или умягченной морской или пластовой воды, затем гелеобразующий раствор. Закачанный гелеобразующий раствор продавливают в скважину пресной водой или легкой нефтью.

Литература

- 1) Патент РФ 1774689, E21B 33/138, 1996.
- 2) Патент Азербайджана I 2001 0121, E21B 43/01, 2001.
- 3) Патент РФ 2121570, E21B 43/32; 33/138, 1998.
- 4) US 4640361

034715

ФОРМУЛА ИЗОБРЕТЕНИЯ

- 1. Способ изоляции водопритоков в скважине, включающий закачку в скважину водного раствора силиката натрия, отличающийся тем, что перед закачкой водного раствора силиката натрия в него добавляют молочную сыворотку (МС) при следующем соотношении компонентов, мас.%: силикат натрия 2-8%; молочная сыворотка 10-50%; пресная вода остальное.
- 2. Способ изоляции водопритоков в скважине по п.1, отличающийся тем, что перед закачкой водного раствора силиката натрия с добавкой молочной сыворотки в призабойную зону пласта закачивают оторочку пресной или умягченной морской, или умягченной пластовой воды.

