(19)

Евразийское ⁽¹¹⁾ 034340 патентное ведомство

(13) **B1**

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

- (45) Дата публикации и выдачи патента 2020.01.29
- (21) Номер заявки 201700582

(51) Int. Cl. C09K 11/78 (2006.01) *C09K 11/55* (2006.01) **C09K 11/63** (2006.01) C09K 11/74 (2006.01)

(22) Дата подачи заявки 2017.12.21

КРАСНОИЗЛУЧАЮЩИЙ ФОТОЛЮМИНОФОР ДЛЯ ЭКРАНОВ ПЛАЗМЕННЫХ (54) ПАНЕЛЕЙ

- (31) 2017143431
- (32) 2017.12.12
- (33) RU
- (43) 2019.06.28
- (71)(73) Заявитель и патентовладелец: ФЕДЕРАЛЬНОЕ **ГОСУДАРСТВЕННОЕ** БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ИНСТИТУТ ХИМИИ СИЛИКАТОВ ИМ. И.В. ГРЕБЕНЩИКОВА РОССИЙСКОЙ АКАДЕМИИ НАУК (ИХС РАН); ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" (СПбГУ) (RU)

- (72) Изобретатель: Бубнова Римма Сергеевна, Шаблинский Андрей Павлович, Колесников Илья Евгеньевич, Галафутник Лидия Георгиевна, Кржижановская Мария Георгиевна, Поволоцкий Алексей Валерьевич, Филатов Станислав Константинович (RU)
- (74) Представитель: Матвеев А.А., Матвеева Т.И., Леонов И.Ф. (RU)
- (56) US-A1-20060208270 US-A1-20090214893 YU-CHENG HAO et al., PbCd2B6O12 and EuZnB5O10: syntheses, crystal structures and characterizations of two new mixed metal borates, CrystEngComm, 2014, 16, p.p. 7689-7695
- Изобретение относится к светоизлучающим материалам для индикаторной техники, (57) конкретно к фотолюминофорам (Фл) для газоразрядных (плазменных) панелей (ПП), возбуждаемых постоянным и переменным полем, и способу получения такого люминофора. Заявленный красноизлучающий фотолюминофор состава Sr₃Bi₂(BO₃)₄:0.15Eu³⁺ обеспечивает самое интенсивное испускание среди всех изученных боратов и является перспективным красным люминофором.

034340

B

034340

Изобретение относится к светоизлучающим материалам для индикаторной техники, конкретно к фотолюминофорам (Фл) для газоразрядных (плазменных) панелей (ПП), возбуждаемых постоянным и переменным полем, и способу получения такого люминофора.

Актуальность проблемы в рассматриваемой области техники заключается в том, что на сегодняшний день технологии производства дисплеев нуждаются в новых материалах для плазменных панелей (plasma display panels PDPs), дисплеев с автоэлектронной эмиссией (field emission display FEDS) и электролюминесцентных панелей. Красные люминофоры используемые в современных плазменных панелях (например $Y_2O_3:Eu^{3+}$, (Y, Gd)BO₃:Eu³⁺) имеют ряд недостатков. $Y_2O_3:Eu^{3+}$ обладает слабым испусканием, а (Y, Gd)BO₃:Eu³⁺ излучает оранжево красный цвет вместо красного.

Для оценки новизны заявленного решения рассмотрим ряд известных технических средств аналогичного назначения, характеризуемых совокупностью сходных с заявленным устройством признаков.

Известен красноизлучающий фотолюминофор для экранов плазменной дисплейной панели по патенту №2236432 на основе ортоборатов редкоземельных элементов, который характеризуется тем, что в состав указанного люминофора дополнительно введены элементы III группы, взятые из пар Al, Ga и Sc, Yb, образующие общую стехиометрическую формулу в виде $(Y_x, Gd_y, Eu_z, Ln_p)_1B_{1-q}Me_qO_3$, где Ln = Sc, Yb, Me=Al и Ga, а стехиометрические индексы имеют значение: $0,50 \le x \le 0,70$, $0,22 \le y \le 0,38$, $0,01 \le z \le 0,10$, $0,02 \le p \le 0,05$, $0,02 \le q \le 0,10$, притом, что указанный состав интенсивно возбуждается в области ВУФ с соотношением основных линий излучения $\lambda_{592}/\lambda_{628}=2:1$ до 1:2.

Оптико-физическая сущность данного технического решения заключается в том, что фотолюминесценция иттрий-гадолиний-европиевых ортоборатов возрастает при введении в их состав даже небольших количеств иона скандия Sc, что приводит к росту яркости Фл. Возможная причина подобного явления, по-видимому, заключается в уменьшении параметров элементарной ячейки ортобората и соответственно в возрастании параметров кристаллического поля фотолюминофора. Последнее явление обуславливает увеличение вероятности излучения с ${}^{5}D_{0.1,2}$ - возбужденных уровней иона Eu^{+3} , что сопровождается ростом яркости Фл. Также было обнаружено, что дополнительно вводимый в состав Фл ион иттербия Yb⁺³ уменьшает вероятность излучения с верхних переходов ${}^{5}D_{2}$, ${}^{5}D_{1}$ иона Eu^{+3} , перераспределяя часть возбужденной энергии в состоянии ${}^{5}D_{0}$, которое является более насыщенно красным, чем излучение с верхних возбужденных уровней ${}^{5}D_{1}$ и ${}^{5}D_{2}$.

Известен красный люминофор для плазменных дисплейных панелей Sr₃Y₂(BO₃)₄ (SYB) активированный Eu⁺³, который для улучшения цветности получен путем термического разложения нитратов по соответствующей методике, подробно исследованы его спектры фотолюминесценции, см. (L. He, Y. Wang, J. Alloys Сотр. 431 (2007) 226. Doi: 10.1016/j.jallcom.2006.05.047). При возбуждении 254 нм или 147 нм фосфоры Sr₃Y₂(BO₃)₄: Еи показали сильное красное излучение при 612 нм, соответствующее электрическому дипольному ⁵D₀-⁷F₂-переходу Eu³⁺. Это связано с тем, что Eu³⁺, замещающий Y³⁺, занял нецентросимметричное положение в кристаллической структуре Sr₃Y₂(BO₃)₄. Концентрация тушения Sr₃Y₂(BO₃)₄:Eu составляет 10% при возбуждении 234 нм по данным (Y. Zhang, Y. Li, Alloys Compd. 384 (2004) 88, http://dx.doi.org/10.1016/j.jallcom.2004.04.081), 15% при возбуждении 254 нм и 5% при 147 нм возбуждении по данным (L. He, Y. Wang. J. Alloys Сотр. 431 (2007) 226. Doi: 10.1016/ j.jallcom. 2006.05.047). По сравнению с (Y, Gd) ВО₃:Eu, Sr₃Y_{1.95}Eu_{0.05}(ВО₃)₄ имеет хорошую чистоту цвета (x=0,640, у=0,359), а его интенсивность фотолюминесценции составляет 40% от значения (Y, Gd)BO₃:Eu. Интенсивность фотолюминесценции была улучшена на 40 и 60% соответственно после того, как La^{3+} и A^{3+} были совместно легированы в Sr₃Y₂(BO₃)₄:Eu. Из этого сделан вывод, что Sr₃Y₂(BO₃)₄:Eu³⁺ является перспективным красным вакуумным ультрафиолетовым (VUV) люминофором для плазменных дисплеев (PDP).

Данное техническое решение, как наиболее близкое к заявленному по техническому существу и достигаемому результату, принято в качестве его прототипа.

Недостатком данного вещества является неустойчивая оптимальная концентрация европия, так данные авторов (Zhang, 2004; He, Wang, 2007) существенно отличаются (на 5%) для небольшой области спектров 20 нм, а также высокая стоимость входящих в его состав редкоземельных элементов.

Задачей заявляемого изобретения является оптимизация концентрации европия в красноизлучающем люминофоре, а также применение менее дорогостоящих компонентов. Оптимальная концентрация иона активатора достигнута как в прототипе. При этом присутствует оранжевая полоса люминесценции в соотношении около 1:2 к красной. На этом фоне снижение стоимости за счёт замены РЗИ является основным преимуществом.

Сущность заявленного технического решения выражается в следующей совокупности существенных признаков, достаточной для решения вышеуказанной задачи изобретения.

Согласно изобретению красноизлучающий фотолюминофор для экранов плазменных панелей на основе боратов редкоземельных элементов, характеризуется тем, что он синтезирован в виде бората Sr₃Bi₂(BO₃)₄:xEu³⁺ (0.015≤x≤0.18), кристаллическая структура матрицы которого состоит из изолированных треугольных радикалов BO₃, при этом в кристаллографически неэквивалентных катионных позициях M1, M2 и M3 расположены атомы Sr и Bi.

В структуре присутствуют три независимых атома В в треугольной координации. Длина связи В-О в треугольниках ВО₃ изменяется в интервале от 1.32 до 1.39 Å, а средняя длина связи <В-О> составляет 1.345 Å и является типичной для изолированных треугольников ВО₃. Треугольники ВО₃ расположены преимущественно в плоскости сb и окружены тремя катионными позициями M1, M2 и M3, заселенными атомами Sr и Bi.

Заявленная совокупность существенных признаков обеспечивает достижение технического результата, который заключается в том, что заявленный нами красноизлучающий фотолюминофор состава $Sr_3Bi_2(BO_3)_4$:0.15Eu³⁺ обеспечивает самое интенсивное испускание среди всех изученных боратов серии $Sr_3Bi_2(BO_3)_4$:Eu³⁺. На основании этого можно заключить, что $Sr_3Bi_2(BO_3)_4$:0.15Eu³⁺ является перспективным красным люминофором.

Сущность заявляемого технического решения поясняется графическими материалами, где на фиг. 1 представлена кристаллическая структура $Sr_3Bi_2(BO_3)_4$ в сопоставлении с сечениями фигур тензора термического расширения: сплошной линией показано сечение при температуре $25^{\circ}C$, а штриховой при 700°C, на фиг. 2 - окружение катионов и сочленение полиэдров в кристаллической структуре $Sr_3Bi_2(BO_3)_4$, на фиг. 3 -двумерная картина терморентгеновского эксперимента для $Sr_3Bi_2(BO_3)_4$, на которой штриховая линия при $520^{\circ}C$ обозначает начало кристаллизации $SrBi_2O(BO_3)_2$, штриховая линия при $740^{\circ}C$ - начало распада фазы $Sr_3Bi_2(BO_3)_4$, а звездочками обозначены пики фазы $SrBi_2O(BO_3)_2$, на фиг. 4 - зависимости параметров элементарной ячейки от температуры: а $-Sr_3Bi_2(BO_3)_4$, б - ($Sr_0.5Ba_{0.5}$) $Bi_2(BO_3)_4$, на фиг. 5 - спектры люминесценции $Sr_3Bi_2(BO_3)_4$: Еu³⁺ при накачке 393 нм (в полосу поглощения Eu³⁺), на фиг. 6 - зависимость интегральной интенсивности люминесценции от концентрации Eu^{3+} для $Sr_3Bi_2(BO_3)_4$: Еu³⁺.

Новое соединение $Sr_3Bi_2(BO_3)_4$ и серия допированных европием боратов $Sr_3Bi_2(BO_3)_4$: Еu³⁺ были синтезированы методом кристаллизации из расплава в условиях 1200°C/15 мин с последующем охлаждении с печью.

В качестве исходных веществ для синтеза использовались SrCO₃, BaCO₃, H₃BO₃, Eu₂O₃ (все осч) и Bi₂O₃ (хч). Синтез проводился в керамических и платиновых тиглях, а также на платиновых крышках. После смешивания шихта прессовалась под нагрузкой 90-100 кг/см³.

После смешивания шихта прессовалась под нагрузкой 90-100 кг/см³. Допирование Sr₃Bi₂(BO₃)₄ атомами Eu³⁺. Данный борат был допирован Eu³⁺ в довольно широких пределах по формуле (Sr_{1-3y/2}Eu_v)₃Bi₂(BO₃)₄:/Eu³⁺ (y = 0.0015; 0.0075, 0.015, 0.045, 0.09, 0.12, 0.15, 0.18). Для всех составов следует отметить наличие аморфной фазы на рентгенограммах, что говорит о метастабильности данной фазы.

Рентгенофазовый анализ образцов был проведен на порошковом дифрактометре Bruker AXS D2 Phaser с монохроматизированным излучением $CuK_{\alpha 1+\alpha 2}$. Образцы содержали основную кристаллическую фазу $Sr_3Bi_2(BO_3)_4$ и аморфную фазу.

Монокристальный эксперимент.

Определена кристаллическая структура нового бората $Sr_3Bi_2(BO_3)_4$ и твердого раствора $Sr_3Bi_{1.66}Eu_{0.34}(BO_3)_4$, допированного европием. Монокристаллы получили плавлением стехиометричной пробы. Рентгеноструктурный анализ проводили на дифрактометрах Bruker "Smart APEX" и Bruker "Карра APEX DUO" с использованием монохроматизированного МоК α излучения. Параметры элементарной ячейки уточняли методом наименьших квадратов. Массив интенсивностей был проинтегрирован, затем вводились поправки на фактор Лоренца, поляризацию и фоновое излучение с использованием программ APEX и XPREP. Поправка на поглощение введена в программе SADABS. Структуры решены методом изменения знака заряда (charge flipping) и уточнены в программе Jana 2006.

Описание кристаллической структуры Sr₃Bi₂(BO₃)₄.

Структура уточнена в центросимметричной пространственной группе Pnma, хотя ранее бораты этого семейства с формулой Sr₃Ln₂(BO₃)₄ уточнялись в нецентросимметричной пространственной группе Pna2₁ в работах (Палкина и др., 1972; 1973; Абдулаев и др., 1973; Абдулаев, Мамедов, 1974; Zhang, Li, 2004). Следует заметить, что в последних работах (Reuther, 2013; Нöерре et al., 2013), как и в нашем случае, структуры ряда Sr₃Ln₂(BO₃)₄ (Ln = Gd, Ho, Er) были уточнены в пространственной группе Pnma.

Координация катионов.

В структуре присутствуют три независимых атома В в треугольной координации. Длина связи B-O в треугольниках BO₃ изменяется в интервале от 1.32 до 1.39 Å, а средняя длина связи <B-O> составляет 1.345 Å и является типичной для изолированных треугольников BO₃. Треугольники BO₃ расположены преимущественно в плоскости сb и окружены тремя катионными позициями M1, M2 и M3, заселенными атомами Sr и Bi (фиг. 1). Параметры анизотропных атомных смещений для атомов кислорода относительно большие из-за того, что катионы разупорядочены по трем позициям. Попытки расщепить атомы кислорода во время уточнения не привели к успеху.

Каждая из трех катионных позиций M1, M2 и M3 заселена атомами Sr и Bi. Позиция M1 координирована восемью атомами кислорода с длинами связей 2.47-3.02 Å, длина следующей связи составляет 3.59 Å; эта позиция заселена ~ 80% Sr и 20 % Bi. Позиция M2, заселенная ~ 60% Sr и 40% Bi, окружена также восемью атомами кислорода с длинами связей 2.42-2.94 Å; следующая связь M2-O 3.21 Å. Полиэдр МЗ является восьмивершинником с длинами связей 2.41-2.56 Å, следующая связь 3.89 Å; эта позиция заселена на ~ 80% Ві и 20% Sr. Окружение катионов и сочленение полиэдров показано на фиг. 2. Связанные через вершины и ребра, полиэдры М1, М2 и МЗ формируют цепочки (колонны) вдоль оси b (фиг. 2). Такие цепи, соединяясь друг с другом, формируют трехмерный каркас, как это показано в (Zhang, Li, 2004; Reuther, 2013). Анализ валентных усилий, сходящихся на катионах, показал хорошую сходимость с формальной валентностью атомов, отклонения не превышали 1/7.

Высокотемпературная порошковая рентгенография.

Термическое поведение Sr₃Bi₂(BO₃)₄ изучали порошковой терморентгенографией в температурном интервале 25-800°С с шагом 25°С. Измерение проводили в атмосфере воздуха на дифрактометре Rigaku Ultima IV (СиКα-излучение). Проба подготовлена осаждением из гептановой суспензии на Pt-Rh подложку. Параметры решетки при каждой температуре рассчитаны в программе Topas. Фигуры коэффициентов термического расширения построены с помощью программы Theta To Tensor (Бубнова и др., 2013). Фазовые превращения.

Двумерная картина терморентгеновского эксперимента представлена на фиг. 3. Образец изначально содержал фазу $Sr_3Bi_2(BO_3)_4$ и аморфную фазу. До 500°С никаких изменений на дифракционной картине не происходит: дифракционные пики не исчезают и не появляются, не меняется и их интенсивность. При температуре, приблизительно равной 520°С, из аморфной фазы начинает кристаллизоваться SrBi₂O(BO₃)₂, а интенсивность дифракционных пиков фазы $Sr_3Bi_2(BO_3)_4$ начинает понижаться. Резкое

снижение интенсивности пиков этой фазы происходит при ~740°С, хотя пики $Sr_3Bi_2(BO_3)_4$ не исчезают до 800°С.

Термическое расширение.

На фиг. 4 показана зависимость параметров решетки от температуры. Зависимость имеет изгиб для разных параметров при температуре ~500°С, поэтому параметры решетки были независимо аппроксимированы в интервалах 25-500 и 500-725°С. Аппроксимацию проводили полиномами второй степени: a_t =7.5318+0.105·10⁻³t+0.004·10⁻⁶t², b_t =16.3364+0.200·10⁻³t+0.205·10⁻⁶t², c_t =8.8275+0.059·10⁻³t+0.033·10⁻⁶t², V_t =1086.0+0.0356t+0.0000243t² для 25-500°С и a_t =7.6037-0.222·10⁻³t+0.0412·10⁻⁶t², b_t =16.2553+0.444·10⁻³t + 0.015·10⁻⁶t², c_t =8.8539+0.072·10⁻³t-0.093·10⁻⁶t², V_t =1094.6+0.0056t+0.0000504t² для 500-725°С. Главные значения коэффициентов термического расширения были вычислены в программе Theta To Tensor (Бубнова и др., 2013) и приведены в табл. 1.

Таблица 1. Коэффициенты термического расширения Sr₃Bi₂(BO₃)₄ при разных температурах

Температура,	0	300	500	600	700
°C					
aa	14(1)	17.1(2)	19(1)	35.7(3)	46(1)
a_b	12(1)	19.7(3)	25(1)	28.0 (3)	28(1)
α_c	7(1)	9.0(2)	10(1)	-4(1)	-7(2)
α_V	37(1)	46(1)	54(1)	59(1)	68(2)

Сопоставление термического расширения с кристаллической структурой. Как было сказано ранее, катионы в структуре разупорядочены по трем позиция M1, M2 и M3 таким образом, что позиции M1 и M2 заселены в основном атомами Sr, а позиция M3 - атомами Bi. В структуре твердого раствора $Sr_{1.35}Ba_{1.65}Bi_2(BO_3)_4$ позиции M1 и M3 расщеплены, а позиция M2 заселена атомами Ba. Распределение катионов по позициям связано в основном с размерным фактором, т.е. меньшие катионы входят в меньшую позицию, а большие - в большую. С повышением температуры, за счет увеличения параметров атомного смещения, частично стираются различия между катионами, а размер позиций в кристаллической структуре наоборот возрастает, что, как правило, приводит к перераспределению катионов. На зависимости параметров элементарной ячейки от температуры (фиг. 4), при ~500°C видны перегибы, или особые точки. Структурную природу появления таких точек впервые описал Г.Б. Бокий (Бокий, 1956), связав их с перераспределением катионов по позициям с температурой. Стоит отметить, что при температуре 520°C происходит также кристаллизация фазы SrBi₂O(BO₃)₂, что может влиять на характер термического расширения.

Соответственно, можно предположить, что при ~500°С может происходить перераспределение катионов в ряду твердых растворов $Sr_3Bi_2(BO_3)_4$ - $Ba_3Bi_2(BO_3)_4$. Такие же перегибы на зависимостях параметров от температуры наблюдались для соединения $Ba_3Bi_2(BO_3)_4$, изученного в (Volkov et al., 2013). Для редкоземельного аналога $Sr_3Gd_2(BO_3)_4$ изученных твердых растворов в работе (Reuther, 2013) была уточнена кристаллическая структура с использованием синхротронного излучения при комнатной температуре и при 700°С. В этом соединении катионы перераспределяются по позициям, это проявляется на зависимостях параметров ячейки от температуры. Хотя следует отметить, что кристаллическая структура не совсем корректно уточнена при высоких температурах, что проявляется в не реалистичных длинах связей для борокислородных треугольников BO_3 .

Изменение характера термического расширения может быть также обусловлено возрастанием анизотропии колебаний атомов с температурой. Резкая анизотропия термического расширения объясняется предпочтительной ориентировкой борокислородных треугольников в кристаллической структуре (Filatov, Bubnova, 2015). В структуре плоскость борокислородных треугольников близка по ориентировке к плоскости сb. В этой плоскости термическое расширение минимально, а по нормали к ней максимально. Это согласуется с принципами высокотемпературной кристаллохимии боратов, которые изложены в работах (Бубнова, Филатов, 2008; Bubnova, Filatov, 2013). Возможно также, что возрастание анизотропии колебаний приводит к сдвигам треугольников BO₃ и более преимущественной параллельной ориентировке относительно плоскости cb.

Люминесценция.

В материалах, активированных REE, всегда наблюдается эффект концентрационного тушения люминесценции, в связи с чем должна быть выявлена оптимальная концентрация европия в матрице. Для того чтобы ее определить, необходимо синтезировать и исследовать концентрационную серию.

Для соединения Sr₃Bi₂(BO₃)₄, допированного Eu³⁺, нами была синтезирована такая серия. Для восьми образцов Sr₃Bi₂(BO₃)₄:yEu³⁺, допированных атомами Eu³⁺, были измерены спектры люминесценции при накачке в полосу поглощения Eu³⁺ (фиг. 5). Зависимость интегральной интенсивности люминесценции от концентрации Eu по замещению Sr представлена на фиг. 6. Как видно из фиг. 6, оптимальная концентрация европия находится в области 15 ат.%. Этот результат соизмерим по оптимальной концентрации европия в алюмо-иттриевом гранате (16%) и в оксиде иттрия (12%).

Новый перспективный красный фосфор $Sr_3Bi_2(BO_3)_4$: Eu^{3+} был получен кристаллизацией из расплава. Была решена кристаллическая структура нового соединения $Sr_3Bi_2(BO_3)_4$ и твердого раствора $Sr_3Bi_{1.66}Eu_{0.34}(BO_3)_4$, допированного европием, и уточнена в ромбической пространственной группе Pnma. Структура состоит из изолированных треугольников BO_3 и 7-, 8- и 8-координированных позиций M1, M2 и M3. Тепловое расширение $Sr_3Bi_2(BO_3)_4$ максимально вдоль оси а.

Спектры фотолюминесценции Sr₃Bi₂(BO₃)₄:Eu³⁺ демонстрируют линии, характерные для ионов Eu³⁺. В спектре излучения преобладает вынужденный электрический дипольный переход ${}^{5}D_{0}$ - ${}^{7}F_{2}$ с максимумом при 611 нм. Было установлено, что оптимальная концентрация допирования европием Sr₃Bi₂(BO₃)₄ составляет 15 ат.%, что сопоставимо с YAG и Y₂O₃. Было установлено, что среднее значение времени жизни составляет 1.73 мс, независимо на концентрацию допирования.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Красноизлучающий фотолюминофор для экранов плазменных панелей на основе боратов редкоземельных элементов, отличающийся тем, что он синтезирован в виде бората $Sr_3Bi_2(BO_3)_4:Eu^{3+}$ (0.015 $\leq x \leq 0.18$), кристаллическая структура матрицы которого состоит из изолированных треугольных радикалов BO₃, а в кристаллографически неэквивалентных катионных позициях M1, M2и M3 расположены атомы Sr и Bi: позиция M1 координирована с восемью атомами кислорода и заселена на 80 ат.% Sr и 20 ат.% Bi; позиция M2 окружена восемью атомами кислорода и заселена на 60 ат.% Sr и 40 ат.% Bi; позиция полиэдр M3 представлена восьмивершинником и заселена на 80 ат.% Sr.

Фиг. 1

Фиг. 2

034340

