Евразийское патентное ведомство

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- (43) Дата публикации заявки 2019.12.30
- (22) Дата подачи заявки 2019.06.17

(51) Int. Cl. *C08L* 7/00 (2006.01)

(54) РЕЗИНОВАЯ СМЕСЬ НА ОСНОВЕ БУТАДИЕН-СТИРОЛЬНОГО КАУЧУКА С ВЫСОКИМИ УПРУГО-ПРОЧНОСТНЫМИ СВОЙСТВАМИ

- (31) 2018122807
- (32) 2018.06.22
- (33) RU
- (71) Заявитель:
 ФЕДЕРАЛЬНОЕ
 ГОСУДАРСТВЕННОЕ
 АВТОНОМНОЕ
 ОБРАЗОВАТЕЛЬНОЕ
 УЧРЕЖДЕНИЕ ВЫСШЕГО
 ОБРАЗОВАНИЯ "СЕВЕРОВОСТОЧНЫЙ ФЕДЕРАЛЬНЫЙ
 УНИВЕРСИТЕТ ИМЕНИ М.К.
 АММОСОВА" (RU)
- (72) Изобретатель:
 Дьяконов Афанасий Алексеевич,
 Тапыев Сергей Александрович,
 Мухин Василий Васильевич,
 Охлопкова Айталина Алексеевна,
 Слепцова Сардана Афанасьевна,
 Петрова Наталия Николаевна (RU)
- (74) Представитель: Винокуров А.А. (RU)

(57) Изобретение относится к резиновой промышленности и может быть использовано при изготовлении сайлентблоков, пыльников, применяющихся в автомобильной промышленности, а также при изготовлении резинотехнических изделий общего назначения. Резиновая смесь, включающая бутадиен-стирольный каучук, стеариновую кислоту, оксид цинка, серу, отличается тем, что в качестве наполнителя дополнительно содержит активный технический углерод К-354 в сочетании с измельченным минералом шунгитом, и ускоритель вулканизации в виде каптакса, при соотношении ингредиентов, мас.ч. (на 100,0 мас.ч. каучука): бутадиен-стирольный каучук - 100,0; стеариновая кислота - 2,0; технический углерод К-354 - 25,0-45,0; шунгит - 5,0-25,0; каптакс - 2,0; оксид цинка - 5,0; сера -2,0. Использование настоящего изобретения позволит обеспечить улучшение показателей упруго-прочностных характеристик резиновой смеси и изделий на ее основе.

Резиновая смесь на основе бутадиен-стирольного каучука с высокими упруго-прочностными свойствами

Изобретение относится к резиновой промышленности, и может быть использовано при изготовлении сайлентблоков, пыльников, применяющихся в автомобильной промышленности, а также при изготовлении резинотехнических изделий общего назначения.

Известна резиновая смесь на основе бутадиен-нитрильного каучука (см. RU №2495889, кл. C08L 9/02, C08K 3/04, C08F 28/02, опубл. 20.10.2013), содержащая наполнитель, вулканизующие агенты, активаторы вулканизации, пластификатор и модифицирующую добавку Новантокс 8 ПФДА с шунгитом.

При этом резиновая смесь обладает не лучшими показателями физикомеханических свойств, а именно, относительному удлинению (178-181%) и прочности при растяжении (12,1-12,4 МПа).

Резиновая смесь на основе бутадиен-метилстирольного каучука по патенту RU №2010814 (кл. C08L 9/06, C08K 13/02, C08L 27/06, C08L 79/00, C08K 3/22, C08K 5/18, опубл. 15.04.1994), включающая серу (0,5), альтакс (2,5), оксид цинка (5,0), стеариновую кислоту (2,0), технический углерод (40,0) и поли-(N-3,5-дитретбутил-4-окситолил)этиленимид (1,0-1,5), также имеет низкие значения относительного удлинения.

Наиболее близкой по достижению технического результата является состав резиновой смеси на основе бутадиен-метилстирольного каучука (прототип, см. RU № 2603366, кл. C08L 9/06, C08K 3/04, C08K 3/06, C08K 3/22, C08K 5/09, C08K 5/31, C08K 5/47), содержащий наполнитель, вулканизующие агенты, активаторы вулканизации, пластификатор и модифицирующую добавку – перлит (10,0 мас.ч.).

Однако состав также характерен низкими показателями относительного удлинения (460%) и прочности при растяжении (19,12 МПа).

Задача, на решение которой направлено изобретение, является получение резиновой смеси на основе бутадиен-стирольного каучука, обладающего улучшенными эластичными и прочностными свойствами.

Технический эффект, получаемый при решении поставленной задачи, выражается в достижении улучшенных упруго-прочностных характеристик резиновой смеси, что позволяет повысить срок службы резинотехнических изделий на ее основе.

Для решения поставленной задачи, резиновая смесь, содержащая бутадиен-стирольный каучук, стеариновую кислоту, оксид цинка, серу, отличается тем что, в качестве наполнителя дополнительно включает активный технический углерод К-354 в сочетании с измельченным минералом шунгитом, используемым в виде порошка с размерами частиц 5-90 мкм; а в качестве ускорителя вулканизации - каптакс. При этом соотношения ингредиентов составляет (в мас. ч. на 100,0 мас.ч. каучука): бутадиен-стирольный каучук – 100,0; стеариновая кислота – 2,0; технический углерод К354 – 25,0-45,0; шунгит – 5,0-25,0; каптакс – 2,0; оксид цинка – 5,0; сера – 2,0.

Сопоставительный анализ признаков заявленного решения с признаками аналогов свидетельствует о соответствии заявленного решения критерию «новизна».

Признаки отличительной части формулы изобретения обеспечивают увеличение показателей резиновой смеси по относительному удлинению и прочности при растяжении, что приводит к существенному улучшению эксплуатационных свойств. Полученные результаты позволяют использовать заявленное решение в изготовлении резинотехнических изделий, испытывающих значительные механические воздействия, в частности, в производстве резинометаллических шарниров (сайлентблоков), защитных чехлов подвижных механизмов транспорта (пыльников) и др.

Применение активного технического углерода в сочетании с измельченным природным минералом шунгитом позволяет добиться

высоких упруго-прочностных характеристик резины, а также снизить затраты за счет частичного замещения части технического углерода более дешевым наполнителем — шунгитом, который, в отличие от перлита, не требует предварительной обработки кроме измельчения.

Заявленное техническое решение осуществляется следующим образом.

Смешение ингредиентов резиновой смеси проводят в резиносмесителе при скорости вращения валков 50 об/мин и начальной температуре $40\pm2^{\circ}$ С. Пластификацию каучука проводят вместе со стеариновой кислотой в течение 2 минут; технический углерод вводят на 2-ой минуте одновременно с шунгитом. Оксид цинка и каптакс вводят на 8-ой минуте, а серу - на 14-ой минуте. Общее время смешения каучука и ингредиентов составляет в среднем 20 минут. Вариативное сравнение составов резиновых смесей приведено в таблице 1. Технологические этапы введения ингредиентов резиновой смеси приведены в таблице 2.

Получаемая резиновая смесь включает (в мас. ч. на 100,0 мас.ч. каучука): бутадиен-стирольный каучук — 100,0; стеариновую кислоту — 2,0; технический углерод К354-25,0-45,0; шунгит — 0,0-25,0; каптакс — 2,0; оксид цинка — 5,0; серу — 2,0.

Вулканизацию проводят при температуре $155\pm2^{\circ}$ С, под давлением $12,0\pm0,5$ МПа в течение 20 минут. Выдержка вулканизатов до испытаний составляет не менее 16 ч.

Физико-механические показатели определяют по ГОСТ 270-75, относительную остаточную деформацию сжатия - по ГОСТ 9.029-74. Свойства вулканизатов приведены в таблице 3.

Результаты испытаний показывают, что использование заявленного технического решения позволяет повысить прочностные характеристики резины в среднем на 20% при одновременном повышении показателей относительного удлинения при растяжении на 161%. Таким образом, получаемая резина обладает высокими упруго-прочностными характеристиками.

Таблица 1 Состав резиновых смесей (варианты)

Состав резиновых смесси (варианты)										
Ингре-			Состав, мас.ч.							
диенты	Известная		Предлагаемые варианты							
	(прототип)									
	1	2	3	4	5	6	7	8	9	10
Бутадиен-	100,0	-	-	-	-	-	-	_	-	-
метилсти-										
рольный										
каучук										
CKMC-30										
APKM-15										
Стеариновая	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
кислота										
Оксид	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0
цинка										
Cepa	0,5	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Альтакс	1,5	-	-	-	-	-	-	-	-	-
Дифенил-	0,3	-	-	-	-	-	-	-	-	-
гуанидин										
ТУ П324	40,0	-	-	-	-	-	-	-	-	-
Указанный	10,0	-	-	-	-	-	-	-	-	-
перлит										
Бутадиен-	-	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0
стирольный										
каучук		_								
ТУ К354	-	35,0	35,0	35,0	35,0	35,0	30,0	25,0	45,0	40,0
Шунгит	-	5,0	10,0	15,0	20,0	25,0	5,0	5,0	5,0	5,0
Каптакс		2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0

Таблица 2 Технологические этапы введения ингредиентов резиновой смеси

Ингредиенты	Мас.ч.	Время ввода, мин			
Бутадиен-стирольный каучук	100	0			
Стеариновая кислота	2,0	0			
ТУ К354	25,0-45,0	2			
Шунгит	0,0-25,0	2			
Каптакс	2,0	8			
Оксид цинка	5,0	8			
Cepa	2,0	14			
ИТОГО:	136,0-181,0	20			

Таблица 3 Свойства вулканизатов (варианты)

Ингредиенты		Резиновая смесь по примерам								
	Известная	Предлагаемые варианты								
	1	2	3	4	5	6	7	8	9	10
Условная прочность при растяжении, МПа	19,1	22,2	21,5	22,6	23,3	21,8	21,5	14,8	20,4	23,7
Относительное удлинение при разрыве, %	460	959	685	743	982	934	1204	523	401	864
Напряжение при 100% удлинении, МПа	-	1,7	2,4	2,6	2,1	2,1	1,3	1,23	4,12	2,0
Остаточная деформация сжатия при 100°C в течение 72 ч, %	-	71	74	77	81	72	70	71	69	73
Твердость по Шору	89	60	63	62	61	61	55	47	83	64

Формула изобретения

Резиновая смесь на основе бутадиен-стирольного каучука, серы, оксида цинка, стеариновой кислоты, отличающаяся тем, что дополнительно содержит шунгит, каптакс, технический углерод К354, при следующих соотношениях ингредиентов, мас.ч.:

бутадиен-стирольный каучук	100
стеариновая кислота	2,0
шунгит	5,0-25,0
технический углерод К354	25,0-45,0
оксид цинка	5,0
каптакс	2,0
cepa	2,0