ведомство

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

2019.11.26

(21) Номер заявки

201700390

(22) Дата подачи заявки

2017.07.05

(51) Int. Cl. A61K 9/06 (2006.01) A61K 36/185 (2006.01) A61K 36/899 (2006.01) **A61K 47/10** (2017.01)

(**56**) EA-A1-200901364

RU-C1-2072861

RU-C1-2072861

EA-A1-201500407

A61K 47/14 (2017.01) A61K 47/20 (2006.01) **A61P 9/14** (2006.01)

(54) СОСУДОУКРЕПЛЯЮЩЕЕ СРЕДСТВО В ВИДЕ МАЗИ

(43) 2019.01.31

(96) 2017/026 (AZ) 2017.07.05

(71)(73) Заявитель и патентовладелец:

ЮСИФОВА ДЖАМИЛЯ ЮСИФ

КЫЗЫ (АZ)

(72) Изобретатель:

Юсифова Джамиля Юсиф кызы, Сулейманов Таир Аббасали оглы (АZ)

Изобретение относится к медицине и фармакологии, в частности к созданию мазей для лечения (57) и профилактики патологических поражений сосудов и тканей. Препарат может быть использован при лечении болезней, связанных с венозной недостаточностью, варикозным расширением вен, тромбофлебитами, геморроем, посттравматическими отеками и гематомами, дерматитами и трофическими язвами. Сущность заявляемого изобретения состоит в том, что разработанное сосудоукрепляющее средство в виде мази содержит основу и биологически активное вещество. В качестве биологически активного вещества мазь содержит густой экстракт лещины; а в качестве основы - масло кукурузное, эмульгатор № 1, полиэтиленоксид-400, нипагин, нипазол и остальное вода, очищенная при определенном соотношении компонентов (в г/100 г). Технический эффект заявляемого изобретения состоит в решении поставленной задачи.

Изобретение относится к медицине и фармакологии, в частности к созданию мазей для лечения и профилактики патологических поражений сосудов и тканей. Препарат может быть использован при лечении болезней, связанных с венозной недостаточностью, варикозным расширением вен, тромбофлебитами, геморроем, посттравматическими отеками и гематомами, дерматитами и трофическими язвами.

Сосудистые заболевания занимают существенное место в структуре заболеваемости населения, и с каждым годом увеличивается рост числа заболеваний вен воспалительного (флебиты, тромбофлебиты) и не воспалительного (атеросклероз, тромбоз) характера. Заболевания, связанные с хронической венозной недостаточностью, характеризуются такими проявлениями, как отек и трофические поражения, варикозное расширение вен, тромбофлебит, перифлебит, посттромботический синдром. При нарушениях венозного кровообращения - застойных явлениях, расширении вен, флебитах и тромбофлебитах широко применяют ангиопротекторы, которые еще называют капилляропротекторами. Большая группа флебоактивных средств (троксерутин, детралекс, эскузан, цикло-3-форт и др.) не только улучшает венозный и лимфатический отток, но и уменьшает проницаемость капилляров, повышает тонус сосудистой стенки, оказывает противоотечное действие. Для решения этих проблем при болезнях сосудов и окружающих тканей применяют некоторые комбинированные препараты - композиция из известных лекарственных средств, в частности мази и гели.

Известна [1] фармацевтическая композиция для лечения заболевания вен, которая содержит комбинацию троксерутина, декспантенола, гепарина в виде натриевой соли и фенилэтилового спирта и целевые добавки при определенном соотношении компонентов, г/на 100 г общей массы композиции. Указанный препарат в виде мягкой лекарственной формы, преимущественно геля, обладает полифункциональным действием, направленным на разные стороны патологического процесса, обусловленного венозной недостаточностью. Он проявляет ангиопротекторное действие, устраняет патологию микроциркуляции, оказывает антикоагулянтное и противовоспалительное действие и способствует ускорению репаративных процессов.

В качестве прототипа был взят известный [2] "Препарат "веногепанол" для лечения и профилактики патологических поражений сосудов и тканей" в виде мягкой лекарственной формы - геля. Препарат содержит гелевую основу и действующие активные компоненты: гепарин, декспантенол и венорутинол при определенном соотношении компонентов. Препарат обеспечивает улучшение кровообращения и микроциркуляции в сосудах и тканях при хронической венозной недостаточности тромбофлебитов, гематом и трофических язв сосудов и кожи, которые сопровождаются закупорками, воспалениями и отеками. Задача заявляемого изобретения состоит, учитывая необходимость в эффективных и безопасных лекарственных препаратах для лечения варикозных заболеваний сосудистой системы, в создании нового лекарственного средства мягкой формы - мази на основе растительного сырья и расширения арсенала лекарственных средств отечественного производства.

Сущность заявляемого изобретения состоит в том, что разработанное сосудоукрепляющее средство в виде мази содержит основу и биологически активное вещество. В качестве биологически активного вещества мазь содержит густой экстракт лещины; а в качестве основы - масло кукурузное, эмульгатор \mathbb{N} 1, полиэтиленоксид-400, нипагин, нипазол и воду очищенную при следующем соотношении компонентов (в г/100 г):

```
густой экстракт лещины - 4,9-5,1; масло кукурузное - 19,0-21,0; эмульгатор № 1: 9,5-10,5; полиэтиленоксид-400: 9,5-10,5; нипагин - 0,14-0,16; нипазол - 0,049-0,051; вода очищенная - остальное.
```

Сопоставительный анализ заявляемого изобретения и известного показал, что заявляемое лекарственное средство отличается от прототипа составом, входящих в него компонентов и новым биологически активным компонентом - густого экстракта лещины, полученного из нового вида сырья - листьев лещины обыкновенной.

Основным биологически активным компонентом заявляемого изобретения является густой экстракт лещины обыкновенной - новое вещество, способ получения которого был разработан автором заявляемого изобретения и на который был получен евразийский патент № 026414. Густой экстракт лещины обыкновенной содержит дубильные вещества, алкалоиды, флавоноиды, аминокислоты, органические кислоты, витамины, каратиноиды и минеральные вещества. Экстракт обладает противовоспалительным действием, уменьшает застой в венозной части капилляров и накопление жидкости в тканях, улучшает лимфоотток и венозное кровообращение, снижает проницаемость сосудистых стенок и оказывает капилляроукрепляющее действие. Содержащиеся в нем витамин С и хлорогеновая кислота являются мощными природными антиоксидантами. Стимулируя обмен азота и участвуя в строительстве белка, хлорогеновая кислота в сочетании с дигидрокверцетином оказывает направленный капилляро- и сосудорасширяющий эффект; снижает риск повышенного тромбообразования, улучшает коронарный кровоток и способствует уменьшению спазмов сосудов. Терапевтическая эффективность биологически активного компонента

определена в пределах 4,9-5,1 г на 100 г мази. В качестве основы мази была выбрана эмульсионная основа которая с учетом свойств основного биологически активного компонента и его растворимости в воде обладает преимущественной адгезией, однородностью и равномерно распределяется на поверхности кожи. В состав основы входят известные и широко применяемые в фармации компоненты для мазевых основ: кукурузное масло, эмульгатор № 1, полиэтиленоксид-400, нипагин, нипазол и вода очищенная. Для получения стабильной основы и в конечном итоге самой мази, предварительными исследованиями было установлено, что для заявляемого продукта наилучшим показателем обладает эмульгатор №1, а в качестве структурообразующих веществ основы и в сочетании с биологически активным компонентом рационально использовать полиэтиленоксид-400 и масло кукурузное в указанных пределах. Также были проведены исследования и на количественное содержание эмульгатора № 1, найденное оптимальное содержание которого для этой мази составляет 9,5-10,2 г на 100 г мази.

Мазь получают следующим образом.

Для получения 100 г мази готовят эмульсионную основу, для чего 20 г масла кукурузного и 10 г эмульгатора № 1 загружают в реактор с паровой рубашкой и мешалкой. Смесь нагревают при постоянном перемешивании до температуры 80°С. Нагревание и перемешивание проводят до полного растворения компонентов и получения однородной массы. 0,15 г нипагина, 0,5 г нипазола и треть необходимого количества очищенной воды загружают в реактор с мешалкой, нагревают до 80°С и перемешивают до полного растворения компонентов.

В реактор с мешалкой загружают 10 г ПЭО-400 и 5г густого экстракта лещины и перемешивают в течение 5-10 мин до полного растворения компонентов. К полученному раствору добавляют оставшееся количество воды очищенной и водный раствор нипагина с нипазолом.

В реактор-гомогенизатор с мешалкой и рубашкой охлаждения загружают масляную основу (фазу) и затем непрерывной струей и при постоянном перемешивании вводят водный раствор с действующим веществом.

Диспергирование проводят в течение 3-5 мин, поддерживая температуру в пределах 80°С. После этого реактор охлаждают до 30°С, подавая холодную воду в рубашку аппарата.

Охлажденный готовый продукт светло-кремового цвета, практически без запаха, однородной консистенции и плотностью $\pm 1~\text{г/cm}^2$ поступает на расфасовку.

Мазь в пределах заявляемых значений входящих в нее компонентов термостабильна, микробиологически чиста, рН 5,68, коллоидно стабильна и отвечает заявленным в ней свойствам.

Другие примеры приготовления мази представлены в табл. 1.

Таблица 1

No	Наименование компонентов			пример	ы	
п/п		1	2	3	4	5
1	густой экстракт лещины	4,5	4,9	5,0	5,1	5,2
2	масло кукурузное	19.0	19,3	20,0	20,5	21,0
3	эмульгатор № 1	9,5	9,8	10,0	10,2	10,5
4	полиэтиленоксид -400	10,5	10,3	10,0	9,8	9,5
5	нипагин	0,14	0.14	0,15	0,16	0,16
6	ипазол -	0,04	0,04	0,05	0,052	0,052
7	вода очищенная			остальн	юе	

Более предпочтительными интервалами содержания ингредиентов являются интервалы в примерах 2-4.

Свойства мази были исследованы в "Проблемной лаборатории морфофункциональных исследований" Национального фармацевтического университета Министерства здравоохранения Украины. Исследования влияния заявляемой мази на развитие венозного отека и противовоспалительной активности на различных моделях проводились на подопытных животных: крысах и мышах по известным методикам [3, 4].

Для исследования влияния мази на развитие венозного отека хвоста у крыс (табл. 2), у которых вызывали веностаз с последующим отеком путем окклюзии вен хвоста в течение 5 ч после наложения лигатуры. Выбор данной модели обоснован патоморфологическими изменениями в тканях, имеющими много

общего с патологией сосудистой стенки. Травматизация эндотелия и базальной мембраны, изменения структуры и состояния основного вещества соединительной ткани приводят к снижению резистентности капилляров. В ходе исследования измеряли исходный объем хвоста до метки на его основании. Хвост просушивали и наносили на него (по метке, не втирая) один из препаратов для сравнения в количестве 250 мг. Через 1 ч после нанесения препаратов основание хвоста в области метки сдавливали лигатурой с усилием и регистрировали динамику прироста объема хвоста через 1, 2, 3 и 6 ч после наложения лигатуры. За 1 ч до снятия лигатуры (лигатуру снимали через 5 ч после наложения) препарат наносили повторно. Инволюцию отека регистрировали через 1, 3, 6 и 24 ч после снятия лигатуры. Величину отека рассчитывали по разнице между входными данными и объемом, полученным в результате лигатурного веностаза в условных единицах, активность исследуемых препаратов выражали в % по изменению отека у опытных животных в сравнении с животными группы контрольной патологии.

В качестве препарата сравнения использовали троксевазин гель 2% (содержит троксерутин - 20 мг/г геля). Выбор данного средства в качестве препарата сравнения обоснован его фармакологическими свойствами, а именно способностью преимущественно действовать на капилляры и вены, за счет уменьшения пор между эндотелиальными клетками в результате модификации волокнистого матрикса, расположенного между клетками эндотелия.

Как показали результаты исследований, мазь на основе густого экстракта из листьев лещины обыкновенной тормозит развитие и ускоряет инволюцию острого венозного застоя. Кроме того, результаты данных исследований демонстрируют, что мазь на основе лещины начинает эффективно действовать уже с первых часов после наложения лигатуры, что свидетельствует в пользу ее сосудоукрепляющих свойств. Эффективность на данной модели мази на основе экстракта из листьев лещины обыкновенной была на уровне препарата сравнения троксевазин гель 2%. Таким образом, в ходе данного эксперимента было доказано противоотечное и сосудоукрепляющее действие изучаемого средства.

				Таблица 2
N₂	Время	Контрольная	Мазь из лещины	Троксевазин гель
п/п	наблюдения	патология		
			ΔV, y.e. / A %	D
		Фаза р	азвития острого вен	озного застоя
1	1-й час	6,5±0,43	4,75±0,48*	4,33±0,21*
2	2-й час	7,33±0,42	5,33±0,42*	6,0±0,36
3	3-й час	9,16±0,48	7,17±0,52*	7,0±0,57*
4	6-й час	12,2±0,60	8,87±0,80*	8,00±0,78*
№	Время	Контрольная	Мазь из лещины	Троксевазин гель
п/п	наблюдения	патология		
		A \$ 7	/ A 0/	

	Фаза инволюции				
1	1-й час	9,33±1,09	7,00±0,58	6,33±0,76	
2	3-й час	8,00±0,97	5,83±0,60	5,00±0,93	
3	6-й час	5,33±0,93	4,50±0,43	4,17±0,6	
4	24-й час	5,0±0,49	3,83±0,31	3,33±0,49	

^{*} Различия достоверны по отношению к контролю (р≤0,05);

Известно, что в патогенезе венозных патологий воспаление играет ведущую роль, так как уменьшение венозного оттока является причиной нарушения капиллярного кровотока и микроциркуляции, повышается проницаемость сосудистых стенок, что приводит к вторичным воспалительным процессам. В связи с этим были проведены исследования влияния заявляемой сосудоукрепляющей мази на воспалительные процессы. Исследования противовоспалительной активности мази были проведены на моделях

n - количество животных в группе (n=6).

карагенинового отека. В качестве экспериментальных животных использовали крыс-самцов массой 200-270 г. В качестве препаратов для сравнения использовали мазь эскузан и мазь диклофенак. О выраженности воспалительного процесса судили по приросту объёма пораженной конечности. Противовоспалительную активность вычисляли по формуле

$$\Pi BA = \frac{P_{\kappa} - P_0}{P_{\kappa}} \times 100\%,$$

где P_{κ} - средняя разница в объеме пораженной и здоровой конечности в контрольной группе;

 P_{o} - средняя разница в объеме пораженной и здоровой конечности в опытной группе.

Результаты опыта обрабатывали методом математической статистики с использованием t-критерия Стьюдента, значимыми считали результаты р≤0,05.

Результаты исследований представлены в табл. 3.

Данные проведенных исследований демонстрируют прогрессирование отека под влиянием флогогена у животных в группе контрольной патологии до 3 ч эксперимента и последующее уменьшение степени отека вплоть до 24 ч наблюдения, однако размеры лап у крыс не вернулись к исходным.

Таблица 3 Nº Контрольная Диклофенак Время Мазь из Эскузан п/п наблюдения патология мазь лещины, мазь P_o, y.e. / ΠΒΑ % 10,500±1,23* 1 1 часа 19,20±1,10 11,62±2,79* 8,00±1,63* 45,3 39,5 58,3 13,20±0,95*/** 2 2 часа 26.50±1.09 14,62±2,79* 8,43±1,17* 50,1 44,8 68,1 3 3 часа 35,67±1,17 19,25±2,80* 14,83±1,19* 12,29±1,21* 46,0 58,4 65,54 36,88±1,66 21,12±2,63* 30,41±2,80 4 4 часа 16,00±1,54* /*** 42,7 17,54 56,61 5 24 часа 22.50±1.63 19.13±1.19 21.20±1.12 18.14±1.20 14.2 5,7 18,2

Мазь на основе густого экстракта из листьев лещины обыкновенной проявила в условиях острого карагенинового отека антиэксудативные свойства, о чем свидетельствует достоверное снижение объема лапы животных на протяжении всего эксперимента. Противовоспалительная активность мази из лещины обыкновенной на модели карагенинового отека составляла в среднем на протяжении первых 3 ч эксперимента 47,1±1,5%. Максимум активности исследуемой мази на 2 ч индуцированного воспалительного процесса (50,1%), спустя 24 ч от начала наблюдения отмечено снижение ПВА мази из лещины до 14,2%.

Полученные результаты позволяют предположить, что биологически активные вещества мази на основе густого экстракта из листьев лещины обыкновенной ингибируют активность гистамина, серотонина и кининов, поскольку препарат имеет высокую активность в первые 3 ч эксперимента. По ПВА активности в этот период мазь лещины максимально приближалась к значениям, полученным на фоне применения мази с диклофенаком, и превосходила ПВА мази эскузан.

Таким образом, на основании представленных данных можно сделать вывод, что мазь на основе листьев лещины обыкновенной на модели острого карагенинового отека проявляет выраженные противовоспалительные свойства, в значительной мере влияя на простагландиновую фазу воспаления.

Технический эффект заявляемого изобретения состоит в решении поставленной задачи.

Литература

- 1. Патент РФ № 2299070. "Фармацевтическая композиция для лечения заболевания вен и способ ее получения", от 08.02.2005.
 - 2. Патент РФ № 2238737. "Препарат "Веногепанол" для лечения и профилактики патологических

^{*} Различия достоверны по отношению к контролю (p≤0,05).

^{**} Различия достоверны по отношению к диклофенаку (р≤0,05).

^{***} Различия достоверны по отношению к мази эскузан (p≤0,05).

n - количество животных в группе (n=10).

поражений сосудов и тканей", от 17.04.2003.

- 3. Голиков П.П. К методике одновременного изучения противовоспалительного эффекта у крыс при разных видах воспалений // Фармакология и токсикология. 1964. Т. 5, № 6. С. 742-743.
- 4. Методические рекомендации по экспериментальному доклиническому изучению нестероидных противовоспалительных фармакологических веществ. Москва: Фармакологический комитет, 1992. 14 с.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Сосудоукрепляющее средство в виде мази содержит основу и биологически активное вещество, отличающееся тем, что в качестве биологически активного вещества мазь содержит густой экстракт из листьев лещины, а в качестве основы - масло кукурузное, эмульгатор № 1, полиэтиленоксид-400, нипагин, нипазол и воду очищенную при следующем соотношении компонентов (в вес.%): густой экстракт листьев лещины - 4,9-5,1; масло кукурузное - 19,0-21,0; эмульгатор № 1 - 9,5-10,5; полиэтиленоксид-400 - 9,5-10,5; нипагин - 0,14-0,16; нипазол - 0,049-0,051; вода очищенная - остальное.

Евразийская патентная организация, ЕАПВ

Россия, 109012, Москва, Малый Черкасский пер., 2