

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

2018.04.30

(21) Номер заявки

201600005

(22) Дата подачи заявки

2015.11.24

(51) Int. Cl. A61K 38/21 (2006.01)

A61K 47/02 (2006.01)

A61K 47/10 (2006.01)

A61K 47/12 (2006.01)

A61K 47/48 (2006.01)

A61K 9/19 (2006.01) A61P 35/00 (2006.01)

ПРОТИВООПУХОЛЕВОЕ СРЕДСТВО НА ОСНОВЕ РЕКОМБИНАНТНОГО ИНТЕРФЕРОНА АЛЬФА-2Ь В ВИДЕ МИКРОЧАСТИЦ ДЛЯ ПАРЕНТЕРАЛЬНОГО ПРИМЕНЕНИЯ

(43) 2017.05.31

(96) 2015/EA/0145 (BY) 2015.11.24

(71)(73) Заявитель и патентовладелец:

УЧРЕЖДЕНИЕ БЕЛОРУССКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА "НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ФИЗИКО-ХИМИЧЕСКИХ ПРОБЛЕМ" (НИИ ФХП БГУ) (ВҮ)

(72) Изобретатель:

Юркштович Татьяна Лукинична, Голуб Наталья Васильевна, Юркштович Николай Константинович, Бычковский Павел Михайлович (ВУ)

(56) RU-C1-2447083

ЮРКШТОВИЧ Т.Л. и др. Микрогели фосфатов декстрана в качестве полимеровпротивоопухолевых носителей веществ. Российский биотерапевтический журнал, № 1/т. 13/2014, c. 143

Изобретение относится к области биотехнологии, конкретно к противоопухолевому средству на основе рекомбинантного интерферона альфа-2b в виде микрочастиц, и может быть использовано в медицине. Задачей изобретения является получение нового противоопухолевого средства на основе рекомбинантного интерферона альфа-2b в виде микрочастиц для парентерального применения, обеспечивающего увеличение эффекта противоопухолевого действия. Поставленная задача достигается тем, что противоопухолевое средство на основе рекомбинантного интерферона альфа-2b в виде микрочастиц для парентерального применения содержит рекомбинантный интерферон альфа-2b, ацетат натрия, хлорид натрия, этилендиаминтетрауксусную кислоту, dманнит и Tween 20, а в качестве микрочастиц - микрогели фосфатов декстрана или крахмала, при этом оно представляет собой лиофилизат при следующем содержании компонентов в лиофилизате, мг: рекомбинантный интерферон альфа- $2b - 10^4 - 2 \cdot 10^8$ МЕ, фосфат декстрана или фосфат крахмала -5-10, d-маннит - 10-20, хлорид натрия - 0,001-5,8, ацетат натрия - 0-1,6, этилендиаминтетрауксусная кислота - 0,008-84,1, Tween® 20 - 0-0,1.

Изобретение относится к области биотехнологии, конкретно к противоопухолевому средству на основе интерферона альфа-2b в виде микрочастиц, и может быть использовано в медицине.

В настоящее время благодаря интенсивному развитию биотехнологии получено большое число биомакромолекул (протеины, пептиды и гены), которые используются для лечения особо опасных для жизни людей болезней, например онкологических, вирусных. К таким препаратам относится интерферон альфа, который стимулирует деятельность Т-клеток и макрофагов, подавляет рост и активность ДНК- и РНК-содержащих вирусов, задерживает рост и разрушает злокачественные клетки.

Существенными недостатками интерферона альфа является токсичность и короткий период клиренса из кровотока, что препятствует достижению его максимального лечебного действия. Вследствие этого для продолжения лечения необходимо получить новую дозу препарата, что весьма проблематично из-за высокой токсичности и стоимости данных лекарственных средств, особенно это касается инъекционных форм.

Для преодоления указанных недостатков разработаны пролонгированные формы интерферона альфа, для получения которых используются различные подходы: изменение аминокислотной последовательности; сшивка с другими белковыми молекулами; пасилирование; присоединение различных полимеров; включение в микро-/наночастицы и другие.

Среди перечисленных подходов более простыми и технологично приемлемыми являются способы присоединения интерферона альфа к водорастворимым полимерам, а также включение его в состав нано-/микрочастиц.

Известно, что присоединение интерферона альфа к полимеру-носителю посредством ковалентной, ионной, донорно-акцепторных и др. связей обеспечивает эффект сохранения терапевтической активности в течение длительного времени. В качестве полимерных носителей, как правило, используются водорастворимые биодеструктируемые полимеры: полиэтиленгликоль, поливинилпироллидон, декстран, карбоксиметилцеллюлоза, альбумин и др. На сегодняшний день наиболее востребованными являются пролонгированные формы интерферона альфа для инъекций, полученные путем ковалентного взаимодействия белка с полиэтиленгликолем (пегилированный α -2b-интерферон (ПегИнтрон, 2000 г., ПегАльтевир), пегилированный α-2а-интерферон (Пегассис, 2001 г.). ПегИнтрон и Пегасис входят в список жизненно важных лекарственных средств и востребованы в больших количествах для терапии больных с вирусом гепатита С. Однако лечение препаратами ПегИнтрон (Пегассис) больных с вирусом гепатита С - дорогостоящее: стоимость 12-18-месячного курса лечения варьирует от 12 до 50 тыс. долларов США. Применение ПегИнтрона (Пегассиса) для лечения онкологических заболеваний не привело к значимому увеличению показателя общей выживаемости больных, т.е. оказалось недостаточно эффективным. Таким образом, к основным недостаткам пегилированного интерферона альфа следует отнести высокую стоимость, а также тот факт, что по выраженности действия противоопухолевая активность пегилированных пролонгированных форм оказалась практически такой же, как у традиционно применяемой инъекционной формы интерферона альфа.

Другим подходом получения пролонгированных форм интерферона, характеризующимся простотой технологического процесса, является включение их в состав нано-/микрочастиц.

Следует отметить, что понятие "микрочастицы" [1] включает микросферы, микрокапсулы, микрогели. Микрогели - это пористые, хорошо набухающие частицы, сформированные из биосовместимых, биодеструктируемых полимеров синтетического и природного происхождения, размер которых находится в области 1-1000 мкм. Известно [2], что для инъекционной формы лекарственных веществ подходят микрогели с размером менее 250 мкм, лучше всего до 125 мкм.

В настоящее время в качестве нано-/микрочастиц для получения пролонгированных форм интерферона альфа-2b были использованы наночастицы на основе сополимеров молочной и гликолевой кислот [3], липосомы [4-6], микрочастицы на основе хитозана [7] и блок-сополимера полиэтиленгликольтерефталата и полибутилентерефталата [8]. Известно, что разработка пролонгированной формы интерферона альфа с использованием наночастиц из полилактидгликолида затруднена вследствие денатурации белка в процессе получения, хранения препарата, а также в процессе релиза. В настоящее время для лечения и профилактики вирусных заболеваний используются липосомальные формы интерферона альфа-2b для орального применения (например, препарат Реаферон-ЕС-Липинт, ЗАО "Вектор-Медика). Общий недостаток предлагаемых композиций липосомальных форм интерферона альфа-2b для орального [4], парентерального [5] и вагинального применения [6], а также пролонгированной формы интерферона альфа-2b на основе микрочастиц хитозана - отсутствие экспериментального подтверждения наличия противоопухолевой активности. Наиболее близким к заявляемому средству техническим решением, выбранным в качестве прототипа, является лекарственная форма с контролируемым высвобождением интерферона альфа-2b в виде микрочастиц на основе блок-сополимера полиэтиленгликольтерефталата и полибутилентерефталата для лечения инфекции hcv [8]. Этот препарат содержит в качестве действующего вещества либо отдельно взятый интерферон альфа-2b, либо смесь интерферонов (0,2-10%), микрочастиц биодеструктирующий сополимер полиэтиленгликольтерефталата и полибутилентерефталата (до 100 г). К недостаткам этой пролонгированной формы интерферона альфа-2b следует отнести отсутствие сведений по оценке их терапевтической активности, размерам микросфер, стабильности.

Задачей изобретения является получение нового противоопухолевого средства на основе рекомбинантного интерферона альфа-2b в виде микрочастиц для парентерального применения, обеспечивающего увеличение эффекта противоопухолевого действия.

Поставленная задача достигается тем, что противоопухолевое средство на основе рекомбинантного интерферона альфа-2b в виде микрочастиц для парентерального применения содержит рекомбинантный интерферон альфа-2b, ацетат натрия, хлорид натрия, этилендиаминтетрауксусную кислоту, d-маннит и Tween 20, а в качестве микрочастиц - микрогели фосфатов декстрана или крахмала, при этом оно представляет собой лиофилизат при следующем содержании компонентов в лиофилизате, мг:

Рекомбинантный интерферон альфа-2b	$10^4 - 2 \cdot 10^8 \text{ ME}$
фосфат декстрана или фосфат крахмала	5 – 10
d-маннит	10 - 20
хлорид натрия	0,001 - 5,8
ацетат натрия	0 - 1,6
этилендиаминтетрауксусная кислота	0,008 - 84,1
Tween [®] 20	0 - 0,1

Содержащийся в составе пролонгированной формы рекомбинантный интерферон альфа-2b представляет собой белковую молекулу с молекулярной массой около 19,3 кДа и длиной 165 аминокислотных остатков, имеющих доступные для связывания с фосфатами полисахаридов аминогруппы.

Для осуществления настоящего изобретения выбраны микрогели фосфатов декстрана и крахмала, технологическими достоинствами которых являются гидрофильная матрица, наличие фосфорнокислых и карбаматных групп, предопределяющих включение интерферона альфа-2b в состав микрочастиц путем многоточечного кооперативного взаимодействия с образованием интерполимерных комплексов, а также путем диффузии белка в трехмерную полимерную сетку. Микрогели фосфатов декстрана и крахмала обладают собственной противоопухолевой активностью, биосовместимостью, низкой токсичностью, способностью к биодеградации без воспалительной реакции [9]. В качестве криопротектора (средства, необходимого для предупреждения разрушения и слипания микрочастиц при лиофильной сушке и ресуспензировании) использован d-маннит. Введение в состав пролонгированной формы наполнителя позволяет снизить инактивирующее воздействие на белок таких факторов, как осмоляльность и кислотно-щелочной баланс. В качестве поверхностно-активного вещества использован Tween® 20.

Получение заявляемого противоопухолевого средства осуществляют путем последовательного выполнения следующих операций: получение микрочастиц фосфата и декстрана, соединение солевого раствора интерферона альфа-2b и суспензии, лиофильная сушка пролонгированной формы интерферона альфа-2b.

В соответствии с разработанными условиями получения заявляемого средства на основе рекомбинантного интерферона альфа-2b использованы три различных образца фосфатов крахмала и декстрана, отличающихся между собой степенью набухания, природой исходного полисахарида. Микрогели получают путем ультразвуковой обработки 0,1% суспензий, используя следующие параметры процесса:

- 1) мощность 30 Вт/см², температура около 0°С; время 15 мин;
- 2) мощность 1,0 Вт/см², температура около 40°C, время 45 мин.

Максимальное содержание рекомбинантного интерферона альфа-2b в одной дозе препарата ($2 \cdot 10^8$ ME) соответствует действующей концентрации протеина для лечения некоторых онкологических заболеваний (например, меланомы), нижний предел (10^4 ME) определяется минимальной эффективностью заявляемого противоопухолевого средства.

Массовое соотношение компонентов рекомбинантный интерферон альфа-2b:фосфат крахмала (фосфат декстрана), а также содержание наполнителя (ацетат натрия, хлорид натрия, этилендиаминтетрауксусная кислота, d-маннит), поверхностно-активного вещества (Tween 20) в составе заявляемого средства подобрано экспериментальным путём, главным образом, по эффективности терапевтического действия, стабильности при лиофилизации и хранении.

После лиофильной сушки к образцам добавляют воду для инъекций в объеме 1,0 мл. Ресуспензированное противоопухолевое средство на основе рекомбинантного интерферона альфа-2b представляет собой мутную суспензию без видимых агломератов или включений.

Сущность изобретения поясняется фиг. 1-3.

На фиг. 1 представлена микрофотография с изображением частиц противоопухолевого средства на основе рекомбинантного интерферона альфа-2b. Микрофотографии получали с использованием электронного микроскопа LEO 1420 (Германия).

Фиг. 2 показывает степень высвобождения рекомбинантного интерферона альфа-2b из микрочастиц со средним размером в интервале 56,9-58,2 мкм в зависимости от времени. 1 - ФД (степень набухания

3700%); 2 - ФК₂ (степень набухания 1440%); 3 - ФК₁ (степень набухания 2680%).

Фиг. 3 показывает влияние размера микрочастиц на кинетику высвобождения рекомбинантного интерферона альфа-2b из фазы ΦK_1 в фосфатный буферный раствор (1, 3) и воду (2, 4). Средний размер микрочастиц составляет 20,1 мкм (1, 2) и 58,2 мкм (3, 4).

Заявляемое изобретение иллюстрируется примерами конкретного выполнения.

Пример 1. Реакцию фосфорилирования осуществляют согласно способу, описанному в работе [9]: смесь декстрана (50 г), мочевины (74,4 г) и ортофосфорной кислоты (21,6 мл) выдерживают в вакуумном шкафу при температуре 125°C и остаточном давлении 0,05-0,2 атм в течение 4 ч. После охлаждения реакционной смеси до комнатной температуры добавляют 1,6 л дистиллированной воды. Продукт модификации переводят в Na-форму: для этого к полученной смеси приливают 2,0 л раствора NaCl (30 г на 1 л раствора 70% этилового спирта, рН которого доводят гидроксидом натрия до значения 11,5). Смесь выдерживают в течение 12 ч при периодическом перемешивании. Полученные фосфорилированные образцы декстрана промывают 5 раз смесью вода-этанол (модуль ванны (г/мл) - 1:10) для удаления остатков этерифицирующей смеси и хлорида натрия, которые фиксируют определением в промывных средах мочевины и СГ-ионов. Отделение гелеобразующих образцов от водно-этанольной смеси проводят на нутчфильтре с размером пор 160 мкм. Продукт реакции высушивают в вакуумном шкафу (HSPT-200) при температуре 50°С и остаточном давлении 0,1 атм в течение 24 ч. Сухой фосфат декстрана помещают в стерильную емкость, укупоривают пробкой и стерилизуют у-излучением в дозе 2.5 Мрад. Выход микрогелей фосфата декстрана со средним диаметром частиц около 492 мкм от теоретически возможного составляет 93,6%. Содержание фосфора в полученном образце - 9,9%, азота - 2,1%. Степень набухания -3700%.

В асептических условиях готовят 1 л 0.1% суспензии, полученной из микрогелей предварительно стерилизованного фосфата декстрана. Полученную суспензию подвергают УЗ-воздействию (мощность $1.0~\rm BT/cm^2$) и фильтруют через стеклянный фильтр (размер пор $100~\rm mkm$) под вакуумом. После фильтрации суспензию разливают по $10~\rm m$ в стерильные флаконы (объем $20~\rm m$ л), добавляют 1 мл стерильного солевого раствора интерферона альфа- $2b~(10^8~\rm ME)$, содержащего следующие компоненты: хлорид натрия, ацетат натрия, этилендиаминтетрауксусная кислота, Tween 20, d-маннит. Состав заявляемого средства приведен в табл. 1.

Таблица Состав заявляемого противоопухолевого средства на основе рекомбинантного интерферона альфа-2b

запынежого протпыватуюменного ередетна на венове рекомони										деление		
Состав противоопухолевого средства										частиц по		
									размерам в			
									суспензии			
№ при-	фа-					MF		ar.		pН		Размер
		на,	ша	E E							eb,	частиц
ме-	Ě	гра	KW	Фосфат крахмала (ФК ₁), мг Фосфат крахмала (ФК ₂), мг NaCl, мг СН ₃ COONa, мг ЕDTA, мг Тwee n [®] 20, мг	TH	pn	33M	при				
pa .) H(rpar		NaCl, n	CH3COON	EDTA,	Twee n [®] 2	д-маннит		Средний размер,	объем-
	нрефе 3, МЕ сфат		T F									ном
		рат	осфат Г Босфа ФК ₁),									содер-
		COC									5	жании 90%
1	2.108	<mark>∯</mark> ⅓			5.0	1.6	041	0.1	20	7.5	56.0	
1	2.10		-		5,8	1,6	84,1	0,1	20	7,5	56,9	120,0
2	2.108	_	10		5,8	1,6	84,1	0,1	20	7,4	20,1	47,6
3	2.108	_	10	_	5,8	1,6	84,1	0,1	20	7,4	57,2	116,9
4	1·10 ⁶	-	_	5	0,06	0,02	0,8	0	20	7,5	53,5	116,7
5	1·10 ⁶	_	10	_	0,06	0,02	0,8	0	20	7,1	58,2	120,4
6	1.10^{7}	_	5	-	0,6	0,16	8,4	0,01	20	7,5	55,8	119,0
7	1.104	_	_	10	0,001	0	0,008	0	10	7,5	54,3	118,3
8	2.108	5	_	_	5,8	1,6	84,1	0,1	20	7,5	59,9	125,0

Примечание. Оценка размеров частиц в суспензии проведена после добавления к лиофилизованным образцам 1 мл воды.

Содержимое каждого флакона перемешивают, замораживают и подвергают лиофилизации. К лиофилизованному препарату добавляют 1 мл воды для инъекций, встряхивают вручную и производят измерения. Из табл. 1 следует, что средний размер микрочастиц противоопухолевого средства на основе рекомбинантного интерферона альфа-2b, полученного на основании микрочастиц фосфата декстрана, составляет 56,9 мкм (размер частиц в суспензии измеряли методом лазерного рассеивания с помощью анализатора размера частиц Mastersizer 3000, Malvern, Великобритания).

Пример 2. К 50 г картофельного крахмала при постоянном перемешивании добавляют 74,4 г мочевины и 17,3 мл 85% ортофосфорной кислоты. Выдерживают при температуре 125°С и остаточном давлении 0,10-0,25 атм в течение 4 ч. По окончании реакции фосфорилирования реакционную смесь охлажда-

ют до комнатной температуры. Последующие операции осуществляют аналогично предыдущему примеру. Выход фосфата крахмала (Φ K₁) количественный. Содержание фосфора в полученном образце составляет 10,5%, азота - 0,7%. Степень набухания (Q) гидрогеля фосфата декстрана в воде 2680%.

В асептических условиях готовят 1π 0,1% суспензии фосфата крахмала, которую подвергают УЗвоздействию (мощность $30~\mathrm{Br/cm^2}$) в течение $15~\mathrm{mun}$ при температуре около $0^\circ\mathrm{C}$, фильтруют через стеклянный фильтр (диаметр пор $100~\mathrm{mkm}$) под вакуумом. Последующие операции осуществляют аналогично предыдущему примеру. Как видно из данных табл. 1, средний размер микрочастиц пролонгированной формы интерферона альфа-2b, полученной на основании микрочастиц $\Phi\mathrm{K}_1$, составляет $20,1~\mathrm{mkm}$. Из фиг. $1~\mathrm{видно}$, что лиофилизированный порошок заявляемого средства на основе интерферона альфа- $2b~\mathrm{пред-ставляет}$ собой частицы вытянутой формы с толщиной менее $1~\mathrm{mkm}$ и длиной до $30~\mathrm{mkm}$.

Пример 3. Образец фосфата крахмала получают аналогично примеру 2. Приготовление пролонгированной формы интерферона альфа-2b в виде микрогелей со средними размерами частиц 57,2 мкм проводят аналогично примеру 1.

Пример 4. К 50 г картофельного крахмала при постоянном перемешивании добавляют 74,4 г мочевины и 21,6 мл 85% ортофосфорной кислоты. Выдерживают при температуре 125°С и остаточном давлении 0,06-0,27 атм в течение 4 ч. Последующие операции осуществляют аналогично примеру 1. Содержание фосфора в полученном образце составляет 11,2%, азота 5,7%. Степень набухания (Q) гидрогеля фосфата крахмала (Φ K₂) в воде 1440%. Приготовление пролонгированной формы интерферона альфа-2b проводят аналогично примеру 1 за исключением того, что количество Φ K₁ и интерферона в разовой дозе уменьшают до 5 мг и 10^6 МЕ соответственно. Состав приведен в табл. 1.

Примеры 5 и 6. Пролонгированные формы интерферона альфа получают аналогично примеру 3 за исключением количества фосфата крахмала и интерферона в разовой дозе. Состав заявляемого средства приведен в табл. 1.

Пример 7. Пролонгированные формы интерферона альфа получают аналогично примеру 4, за исключением количества фосфата крахмала и интерферона в разовой дозе. Состав заявляемого средства приведен в табл. 1.

Пример 8. Пролонгированную форму интерферона альфа получают аналогично примеру 1 за исключением количества фосфата декстрана в разовой дозе. Состав заявляемого средства приведен в табл. 1.

Оценка пролонгированного высвобождения интерферона альфа-2b из микрогелей фосфатов крахмала и декстрана проведена при температуре 37° C в фосфатном буферном растворе (pH 7,4), а также в дистиллированной воде. Для этого заявляемое средство в виде суспензии (1 мл) помещают в 9 мл фосфатного буферного раствора или 9 мл дистиллированной воды, перемешивают на магнитной мешалке при скорости 300 об/мин. Начальное содержание интерферона альфа-2b в разовой дозе заявляемого средства $2 \cdot 10^{8}$ МЕ/мл, содержание микрогелей составляет 10 мг/мл. Через заданные интервалы времени отбирают по 0,3 мл суспензии и центрифугируют в течение 60 мин со скоростью 7000 об/мин. Количество высвободившегося интерферона альфа-2b определяют по методу Брэдфорд.

Результаты исследования, представленные на фиг. 2 и 3, позволяют сделать заключение, что новое противоопухолевое средство на основе рекомбинантного интерферона альфа-2b обладает пролонгированным эффектом, и продолжительность его зависит от степени набухания микрогелей, их размеров. По длительности пролонгированного действия все образцы условно можно разбить на две группы:

- 1) суспензия в виде микрочастиц со средними размерами 53,5-57,2 мкм, полученная на основании фосфата крахмала (ΦK_1) со степенью набухания 2680%. Эта суспензия является противоопухолевым средством более длительного действия: 50% интерферона альфа высвобождается из фазы микрогелей ΦK_1 в буферный раствор через 6 ч, 80% в течение 24 ч;
- 2) суспензии в виде микрочастиц со средними размерами 54,3-58,2 мкм, полученные на основании фосфата крахмала (ΦK_2) с более низкой степенью набухания (1440%) и фосфата декстрана ($\Phi Д$). Помимо названных, все суспензии в виде микрочастиц со средними размерами 20,1 мкм представляют собой препараты более быстрого действия: 60% протеина высвобождается уже в течение первых 10-30 мин, 100% протеина выделяется из микрогелей за 24 ч.

Антипролиферативная активность in vitro. Антипролиферативная активность заявляемого противоопухолевого средства на основе рекомбинантного интерферона альфа-2b исследована на монослойной культуре опухолевых клеток HeLa (эпителиоидная карцинома шейки матки человека, клон М). Для оценки цитотоксического эффекта количество выживших клеток сравнивают с исходным числом клеток до воздействия пролонгированной и инъекционной форм интерферона. Следует отметить, что снижение числа клеток после воздействия пролонгированных форм ниже исходного уровня свидетельствует о преобладании цитотоксического действия, а выше исходного, но ниже контроля - о преобладании цитостатического действия. В случае цитотоксического действия препаратов гибель клеток по отношению к исходному уровню определяют по формуле

$$(N - N_{\mu cx}) / N_{\mu cx}$$

Все результаты приведены в сравнении с исходными компонентами противоопухолевого средства: фосфатом крахмала и декстрана, рекомбинантным интерфероном альфа-2b.

Результаты, представленные в табл. 2 и 3, свидетельствуют о том, что в отличие от инъекционной формы интерферона альфа-2b, противоопухолевое средство на основе рекомбинантного интерферона альфа-2b в виде микрочастиц фосфатов крахмала не только задерживает рост, но приводит к гибели имеющихся злокачественных клеток, т.е. вызывает статистически достоверный цитотоксический эффект. Противоопухолевое средство на основе рекомбинантного интерферона α-2b с использованием микрогелей фосфатов декстрана, так же как и инъекционная, обладает цитостатическим действием, следовательно, их противоопухолевая активность выражена в гораздо меньшей степени.

Таблица 2 Влияние заявляемого противоопухолевого средства на основе рекомбинантного интерферона альфа-2b (ИНФ) на рост культуры опухолевых клеток HeLa при инкубации в течение 72 ч

Ф) на рост куль		жание	Число кл	Прирост	
	компонен	тов в 1 мл		в%к	
Группа		ензии		контролю	
	ФК или	Интерфе-	N	N-N _{ucx}	
	ФД, мг	рон, МЕ			
Контроль N _{исх.} =215±25	0	0	700±68	485	100
ФК ₁ (степень набухания –	5,0	0	448±71	233	48
2680%)	10,0	0	10 ±0	-205	-95
ФК ₂ (степень набухания – 1440%)	5,0	0	482±60	264	56
	10,0	0	475±75	260	54
ФД (степень	5,0	0	530±30	315	65
набухания – 3700%)	10,0	0	460±60	245	51
ИНФ	0	10 ⁵	428±40	213	44
	0	10 ⁶	400±40	185	38
ИНФ+ФК1	5,0	10 ⁶	10±0	-205	-95
	10,0	10 ⁶	2±0	-213	-99
ИНФ+ФК2	5,0	10 ⁶	19±0	-196	-91
	10,0	10 ⁶	2±0	-213	-99
ИНФ+ФД	5,0	10 ⁶	405±55	190	39
	10,0	10 ⁶	341±46	126	26

Примечание. Оценка антипролиферативной активности проведена после добавления к лиофилизованному заявляемому средству 1 мл воды.

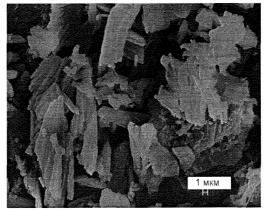
Как видно из данных табл. 2 и 3, противоопухолевый эффект всех препаратов является дозозависимым: с увеличением концентрации компонентов количество опухолевых клеток уменьшается.

Таблица 3
Влияние содержания рекомбинантного интерферона-альфа-2b (ИНФ) в составе противоопухолевого средства на рост культуры опухолевых клеток HeLa при инкубации в течение 72 ч

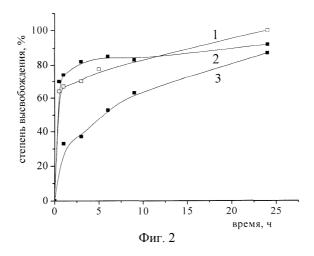
Группа	Концентрация	Число к	Прирост в % к		
1 pyllina	ИНФ (МЕ/мл)	N	N-N _{ucx}	контролю	
Контроль (N _{исх.} =140±20)	0	845±10	705	100	
	10 ³	558±22	418	59	
	10^{4}	488±10	348	49	
ИНФ	10 ⁵	426±26	286	41	
	10^{6}	410±32	270	38	
	10 ⁷	359±30	219	31	
ФК ₁ (5 мг/мл)	0	475±27	335	48	
	10 ³	196±21	56	8	
	10 ⁴	101±83	-39	-28	
ФК1+ИНФ	10 ⁵	40±16	-100	-71	
	10 ⁶	13±0	-127	-91	
	10 ⁷	1±0	-139	-99	

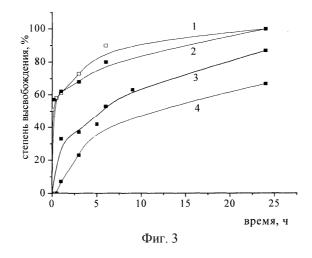
Заявляемое противоопухолевое средство является стабильным: его терапевтическая активность, размеры и внешний вид сохраняются в течение срока наблюдения (1 год) при хранении в сухом защищенном от света месте при температуре от 4 до 10° C.

Таким образом, результаты исследования in vitro позволяют оценить заявляемое противоопухолевое средство на основе рекомбинантного интерферона альфа-2b в виде микрочастиц как новую эффективную пролонгированную форму цитокина с противоопухолевой активностью, превышающей активность используемой в настоящее время инъекционной формы рекомбинантного интерферона альфа-2b.


Новое противоопухолевое средство на основе рекомбинантного интерферона альфа-2b в виде микрочастиц предназначено для лечения ряда онкологических заболеваний: волосатоклеточный лейкоз, хронический миелолейкоз, множественная миелома, неходжкинская лимфома, меланома, саркома Капоши на фоне СПИД, прогрессирующий рак почки, и может быть получено в условиях предприятий, выпускающих фармацевтическую продукцию.

Источники информации.


- 1. Патент US 6268053, B32B 15/02, опубл. 14.01. 2000.
- 2. Yapar E.A. Injectable in situ forming microparticles: A novel drug delivery system / E.A. Yapar, Ö. İnal, Y. Özkan, T. Baykara // Tropical Journal of Phar maceutical Research. 2012. V.11. №2. P..307-318.
- 3. Ansary Rezaul H. Biodegradable Poly(D,L-lactic-co-glycolic acid)-Based Micro/Nanoparticles for Sustained Release of Protein Drugs / Rezaul H. Ansary, Mohamed BIN, Awang Rahman MD Mokhlesur // Tropical Journal of Pharmaceutical Research. 2014 Vol. 3. № 7. P. 1179-1190.
- 4. Патент RU 02361572, A 61К 9/127, A 61К 38/21, опубл. 20.07.2009.
- 5. Патент ЕР 0172007, А61К 9/127, опубл. 19. 02.1986.
- 6. Патент RU 2552851, A61P31/12, A61K9/48, A61K9/127, A61K47/48, A61K38/21, опубл. 10.06.2015.
- 7. Губайдуллина А.А. Микрочастицы хитозана для получения пролонгированной формы альфа-интерферона / А.А. Губайдуллина, Г.И. Смагина, А.И. Мелентьев, М.М. Алсынбаев // Биотехнология— $2010 N\stackrel{.}{>} 5.$ С. 37-45.
- 8. Заявка RU 2010106646 на изобретение, A61K31/74, опубл. 27.08.2011.
- 9. Патент BY 16349, МПК⁷ C08B 37/02, A 64P 35/00, опубл. 30.06.2011.


ФОРМУЛА ИЗОБРЕТЕНИЯ

Противоопухолевое средство на основе рекомбинантного интерферона альфа-2b в виде микрочастиц для парентерального применения, представляющее собой лиофилизат, содержащее рекомбинантный интерферон альфа-2b, ацетат натрия, хлорид натрия, этилендиаминтетрауксусную кислоту, d-маннит и Tween® 20, а в качестве микрочастиц - микрогели фосфатов декстрана или крахмала, при следующем содержании компонентов в лиофилизате, мг: рекомбинантный интерферон альфа-2b - 10^4 -2· 10^8 ME, фосфат декстрана или фосфат крахмала - 5-10, d-маннит - 10-20, хлорид натрия - 0,001-5,8, ацетат натрия - 0-1,6, этилендиаминтетрауксусная кислота - 0,008-84,1, Tween® 20 - 0-0,1.

Фиг. 1

Евразийская патентная организация, ЕАПВ Россия, 109012, Москва, Малый Черкасский пер., 2