- (43) Дата публикации заявки 2014.05.30
- (22) Дата подачи заявки 2012.07.11

- (51) Int. Cl. C07D 487/04 (2006.01) C07D 519/00 (2006.01) A61K 31/4985 (2006.01) A61P 19/08 (2006.01) A61P 29/00 (2006.01) A61P 31/00 (2006.01)
 - **A61P 37/00** (2006.01)

A61P 35/00 (2006.01)

(54) 4-ИМИДАЗОПИРИДАЗИН-1-ИЛ-БЕНЗАМИДЫ И 4-ИМИДАЗОТРИАЗИН-1-ИЛ-БЕНЗАМИДЫ В КАЧЕСТВЕ ВТК-ИНГИБИТОРОВ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- (31) 61/509,397; 11174578.2
- (32) 2011.07.19
- (33) US; EP
- (86) PCT/EP2012/063552
- (87) WO 2013/010868 2013.01.24
- (71) Заявитель: МЕРК ШАРП И ДОУМ Б.В. (NL)
- (72) Изобретатель:
 Барф Тьерд А., Янс Христиан
 Герардус Йоханнес Мария, Ман де
 Адрианус Петрус Антониус, Аубри
 Артур А., Раймакерс Ханс К.А.,
 Ревинкел Йоханнес Бернардус Мария,
 Стерренбург Ян-Герард, Вейкманс
 Якобус К. Х. М. (NL)
- (74) Представитель:Медведев В.Н. (RU)

(57) Настоящее изобретение относится к 6-5-членным конденсированным с пиридиновым кольцом соединениям в соответствии с формулой I

Формула І

или их фармацевтически приемлемым солям или к фармацевтическим композициям, содержащим эти соединения, и к их применению в терапии. В частности, настоящее изобретение относится к применению 6-5-членных конденсированных с пиридиновым кольцом соединений в соответствии с формулой I для лечения расстройств, опосредованных тирозинкиназой Брутона (Btk).

4-ИМИДАЗОПИРИДАЗИН-1-ИЛ-БЕНЗАМИДЫ И 4-ИМИДАЗОТРИАЗИН-1-ИЛ-БЕНЗАМИДЫ В КАЧЕСТВЕ ВТК-ИНГИБИТОРОВ

Область техники, к которой относится изобретение

Настоящее изобретение относится к 6-5-членным пиридиновым конденсированным С кольцом соединениям, фармацевтическим композициям, содержащим эти соединения, и к их терапии. В частности, настоящее изобретение применению 6-5-членных конденсированных относится к пиридиновым кольцом соединений при лечении расстройств, опосредованных тирозинкиназой Брутона (ВТК).

Предпосылки создания изобретения

Активация В-лимфоцитов является ключевым фактором генерации адаптивного иммунного ответа. Нарушенная активация Влимфоцитов является отличительной чертой многих аутоиммунных заболеваний, и поэтому **РИДИЛИЦИЯ** ЭТОГО ИММУННОГО вызывает терапевтический интерес. Недавно было обнаружено, что терапия с использованием В-клеток в аутоиммунных заболеваниях имеет успех. Лечение пациентов с ревматоидным артритом (RA) при помощи Ритуксимаба (анти-CD20 терапия) на настоящий момент является общепринятой клинической терапией. Более поздние исследования с использованием клинических испытаний показывают, что лечение при помощи Ритуксимаба также улучшает симптомы пациентов с рецидивирующим заболевания У ремиттирующим рассеянным склерозом (RRMS) и системной красной волчанкой (SLE). Этот успех подтверждает потенциальную возможность будущего применения для лечения аутоиммунных заболеваний с направленным действием на В-клеточный иммунитет.

Тирозинкиназа Брутона (Btk) представляет собой нерецепторную протеинкиназу Тес-семейства, экспрессируемую в В-клетках и миелоидных клетках. Хорошо известно, что функция Btk в сигнальных путях активируется путем занятия B-клеточного рецептора (BCR) и Fc ϵ R1 на тучных клетках. Кроме того, были предположения о функции Btk в качестве мишени в сигнальном пути

Toll-подобного рецептора. Функциональные мутации в Btk у человека приводят к заболеваниям первичного иммунодефицита, называемым XLA, которые характеризуются дефектом в развитии Вклеток с блокированием между про- и пре-В-клеточной стадией. Это приводит к почти полному отсутствию В-лимфоцитов вызывающему человека, выраженное Эти сывороточного иммуноглобулина всех классов. питисито подтверждают ключевую роль Btk в регуляции продукции аутоантител в аутоиммунных заболеваниях. Кроме того, регуляция Btk может влиять на BCR-индуцируемую продукцию провоспалительных цитокинов и хемокинов В-клетками, что указывает на широкий потенциал для Btk в лечении аутоиммунных заболеваний.

С учетом регуляторной роли, описанной для Btk в FceRопосредованной активации тучных клеток, ингибиторы Btk могут
также показывать потенциал для лечения аллергических реакций
[Gilfillan et al, Immunological Reviews 288 (2009) pp149-169].

Кроме того, также сообщалось, что Btk участвуют в RANKL-индуцированной дифференциации остеокластов [Shinohara et al, Cell 132 (2008) pp794-806], и поэтому также могут представлять интерес для лечения расстройств резорбции костей.

заболевания, в которых важную роль дисфункциональные В-клетки, представляют собой В-клеточные анти-CD20 злокачественные новообразования. Действительно, терапия эффективно используется в клинике для лечения фолликулярной лимфомы, диффузной крупноклеточной В-клеточной лимфомы и хронического лимфоцитарного лейкоза [Lim et al, Haematologica, 95 (2010) pp135-143]. Сообщалось о роли Вtk в регуляции пролиферации и апоптоза В-клеток, и это указывает, что также существует потенциал для ингибиторов Btk в лечении Bклеточных лимфом. Ингибирование Btk, по всей видимости, будет полезным, В частности, при В-клеточных лимфомах из-за постоянной активной передачи сигнала BCR [Davis et al, Nature, 463 (2010) pp88-94].

Некоторые классы 6-5-членных конденсированных пиридиновых кольцевых соединений были описаны как ингибиторы киназы, например, имидазо[1,5-f][1,2,4]триазиновые соединения были

описаны в W02005097800 и W02007064993; имидазо[1,5-а]пиразиновые соединения были описаны в W02005037836 и W02001019828 в качестве ингибиторов IGF-1R фермента.

Некоторые из Btk ингибиторов, о которых сообщалось, не являются селективными в отношении киназ Src-семейства. Существующие поразительные побочные эффекты, описанные "нокаутов" киназ Src-семейства, особенно для двойных и тройных "нокаутов", рассматривают как препятствие для разработки ингибиторов Btk, которые не являются селективными в отношении киназ Src-семейства. И Lyn-дефицитные и Fyn-дефицитные мыши демонстрирут аутоиммунитет, имитируя фенотип люпус-нефрита человека. Кроме того, Fyn-дефицитные мыши также демонстрируют выраженные неврологические дефекты. Мыши с Lyn "нокаутом" также демонстрируют подобный аллергическому фенотип, и это говорит о том, что Lyn является широким негативным регулятором IqEопосредованного аллергического ответа, контролируя реактивность тучных клеток и ассоциированные с аллергией признаки [Odom et al, J. Exp. Med., 199 (2004) pp1491-1502]. Кроме того, у старых мышей с Lyn "нокаутом" развивалась тяжелая спленомегалия (миелоидная экспансия) диссеминированные N моноцитарные/макрофагальные опухоли [Harder et al, Immunity, 15 (2001) рр603-615]. Эти наблюдения находятся в соответствии с гиперреспонсивными В клетками, тучными клетками и миелоидными клетками и повышенными Ід уровнями, наблюдаемыми у дефицитных мышей.

Самки мышей с Src "нокаутом" являются бесплодными из-за уменьшенного развития фолликулов и овуляции [Roby et al, Endocrine, 26 (2005) pp169-176].

Двойные "нокауты" $\operatorname{Src}^{-/-}\operatorname{Fyn}^{-/-}$ и $\operatorname{Src}^{-/-}\operatorname{Yes}^{-/-}$ демонстрируют тяжелый фенотип с эффектами на движение и дыхание. Животные с тройными "нокаутами" $\operatorname{Src}^{-/-}\operatorname{Fyn}^{-/-}\operatorname{Yes}^{-/-}$ умирали в день 9,5 [Klinghoffer et al, EMBO J., 18 (1999) pp2459-2471]. Что касается двойного "нокаута" $\operatorname{Src}^{-/-}\operatorname{Hck}^{-/-}$, две трети мышей умирали при рождении, при этом у выживших мышей наблюдали развитие остеопороза, экстрамедуллярного гемопоэза, анемии, лейкопении [Lowell et al, Blood, 87 (1996) pp1780-1792].

Следовательно, ингибитор, который ингибирует несколько или все киназы из Src-семейства киназ, одновременно может вызывать серьезные побочные эффекты.

Подробное описание изобретения

Задачей настоящего изобретения является обеспечение 6-5- членных конденсированных пиридиновых кольцевых соединений, фармацевтических композиций, содержащих эти соединения, и их применение в терапии. В частности, настоящее изобретение относится к применению 6-5-членных конденсированных пиридиновых кольцевых соединений для лечения расстройств, опосредованных тирозинкиназой Брутона (Btk).

Более конкретно, настоящее изобретение обеспечивает 6-5членные конденсированные пиридиновые кольцевые соединения в соответствии с формулой I или их фармацевтически приемлемые соли.

Формула 1

В этой формуле заместители определены следующим образом:

X представляет собой СН, N, О или S;

Y представляет собой C(R6), N, O или S;

Z представляет собой СН, N или связь;

А представляет собой СН или N;

В1 представляет собой N или C(R7);

- В2 представляет собой N или C(R8);
- ВЗ представляет собой N или C(R9);
- В4 представляет собой N или C(R10);
- R1 представляет собой R11C(O), R12S(O), R13SO $_2$ или (1-6C)алкил, необязательно замещенный группой R14;
 - R2 представляет собой H, (1-3C) алкил или (3-7C) циклоалкил;
- R3 представляет собой H, (1-6C) алкил или (3-7C) циклоалкил); или
- R2 и R3 образуют вместе с атомами N и C, к которым они присоединены, (3-7C) гетероциклоалкил, необязательно замещенный одним или несколькими атомами фтора, гидроксилом, (1-3C) алкокси или оксо;
 - R4 представляет собой Н или (1-3C) алкил;
- R5 представляет собой H, галоген, циано, (1-4C) алкил, (1-3C) алкокси, (3-6C) циклоалкил; все алкильные группы R5 необязательно замещены одним или несколькими атомами галогена; или R5 представляет собой (6-10C) арил или (2-6C) гетероциклоалкил;
 - R6 представляет собой H или (1-3C) алкил; или
- R5 и R6 вместе могут образовывать (3-7C) циклоалкенил или (2-6C) гетероциклоалкенил; причем каждый необязательно замещенный (1-3C) алкилом или одним или несколькими атомами галогена;
 - R7 представляет собой H, галоген или (1-3C) алкокси;
 - R8 представляет собой H или (1-3C)алкил; или
- R7 и R8 образуют вместе с атомом углерода, к которому они присоединены, (6-10C) арил или (1-9C) гетероарил;
 - R9 представляет собой H, галоген или (1-3C) алкокси;
 - R10 представляет собой H, галоген, или (1-3C) алкокси;
- R11 независимо выбирают из группы, включающей (1-6C)алкил, (2-6C)алкенил и (2-6C)алкинил, причем каждый алкил, алкенил или алкинил необязательно замещены одной или несколькими группами, выбранными из гидроксила, (1-4C)алкила, (3-7C)циклоалкила, [(1-4C)алкил]амино, [(1-3C)алкокси, (3-7C)циклоалкокси, (6-10C)арила или (3-7C)гетероциклоалкила; или
 - R11 представляет собой (1-3C) алкил-C(O)-S-(1-3C) алкил; или

R11 представляет собой (1-5C) гетероарил, необязательно замещенный одной или несколькими группами, выбранными из галогена или циано.

R12 и R13 независимо выбирают из группы, состоящей из (2-6C) алкенила или (2-6C) алкинила, причем оба необязательно замещены одной или несколькими группами, выбранными из гидроксила, (1-4C) алкила, (3-7C) циклоалкила, [(1-4C) алкил] амино, [(1-4C) алкил] амино, [(1-3C) алкокси, [(3-7C) циклоалкокси, [(3-7C) циклоалкокси, [(3-7C) гетероциклоалкила; или

(1-5С) гетероарила, необязательно замещенного одной или несколькими группами, выбранными из галогена или циано;

R14 независимо выбирают из группы, включающей галоген, циано или (2-6C) алкенил или (2-6C) алкинил, причем оба необязательно замещены одной или несколькими группами, выбранными из гидроксила, (1-4C) алкила, (3-7C) циклоалкила, [(1-4C) алкил] амино, [(1-3C) алкокси, [(3-7C) циклоалкокси, [(3-7C) циклоалкокси, [(3-7C) циклоалкокси, [(3-7C) гетероциклоалкила.

При условии, что:

- от 0 до 2 атомов групп X, Y, Z одновременно могут представлять собой гетероатом;
- когда один атом, выбранный из групп X, Y представляет собой O или S, тогда Z представляет собой связь, а другой атом, выбранный из групп X, Y, не может представлять собой O или S;
- когда Z представляет собой C или N, тогда Y представляет собой C(R6) или N, и X представляет собой C или N;
- от 0 до 2 атомов групп B1, B2, B3 и B4 представляют собой N.

Термины, используемые в настоящей заявке, относятся к следующим:

- (1-2C) Алкил означает алкильную группу, содержащую от 1 до 2 атомов углерода, такую, как метил или этил.
- (1-3C) Алкил означает разветвленную или неразветвленную алкильную группу, содержащую 1-3 атома углерода, такую, как метил, этил, пропил или изопропил.
 - (1-4С) Алкил означает разветвленную или неразветвленную

алкильную группу, содержащую 1-4 атома углерода, такую, как метил, этил, пропил, изопропил, бутил, изобутил, втор-бутил и трет-бутил, предпочтительными являются (1-3C)алкильные группы.

- (1-5C) Алкил означает разветвленную или неразветвленную алкильную группу, содержащую 1-5 атомов углерода, например, метил, этил, пропил, изопропил, бутил, изобутил, втор-бутил, трет-бутил, пентил и изопентил, предпочтительными являются (1-4C) алкильные группы.
- (1-6C) Алкил означает разветвленную или неразветвленную алкильную группу, содержащую 1-6 атомов углерода, например, метил, этил, пропил, изопропил, бутил, трет-бутил, н-пентил и н-гексил. Предпочтительными являются (1-5C) алкильные группы, наиболее предпочтительным является (1-4C) алкил.
- (1-2C) Алкокси означает алкоксигруппу, содержащую 1-2 атома углерода, при этом алкильная группа имеет значение, определенное выше.
- (1-3C) Алкокси означает алкоксигруппу, содержащую 1-3 атомов углерода, при этом алкильная группа имеет значение, определенное выше. Предпочтительными являются (1-2C) алкоксигруппы.
- (1-4C) Алкокси означает алкоксигруппу, содержащую 1-4 атома углерода, при этом алкильная группа имеет значение, определенное выше. Предпочтительными являются (1-3C) алкоксигруппы, наиболее предпочтительными являются (1-2C) алкоксигруппы.
- (2-4C) Алкенил означает разветвленную или неразветвленную алкенильную группу, содержащую 2-4 атома углерода, такую как этенил, 2-пропенил, изобутенил или 2-бутенил.
- (2-6C) Алкенил означает разветвленную или неразветвленную алкенильную группу, содержащую 2-6 атомов углерода, такую как этенил, 2-бутенил, и н-пентенил. Предпочтительными являются (2-4C) алкенильные группы.
- (2-4C) Алкинил означает разветвленную или неразветвленную алкинильную группу, содержащую 2-4 атома углерода, такую как этинил, 2-пропинил или 2-бутинил.
 - (2-6С) Алкинил означает разветвленную или неразветвленную

алкинильную группу, содержащую 2-6 атомов углерода, такую как этинил, пропинил, н-бутинил, н-пентинил, изопентинил, изогексинил или н-гексинил. Предпочтительными являются (2-4C) алкинильные группы.

- (3-6C) Циклоалкил означает циклоалкильную группу, содержащую 3-6 атомов углерода, такую как циклопропил, циклобутил, циклопентил или циклогексил.
- (3-7C) Циклоалкил означает циклоалкильную группу, содержащую 3-7 атомов углерода, такую как циклопропил, циклобутил, циклопентил, циклогексил или циклогептил.
- (2-6C) Гетероциклоалкил означает гетероциклоалкильную группу, содержащую 2-6 атомов углерода, предпочтительно 3-5 атомов углерода, и один или два гетероатома, выбранных из N, O и/или S, которая может быть присоединена через гетероатом, если это возможно, или углеродный атом. Предпочтительными гетероатомами являются N или O. Предпочтительными являются пиперидин, морфолин, пирролидин и пиперазин. Наиболее предпочтительный (2-6C) гетероциклоалкил представляет собой пирролидин. Гетероциклоалкильная группа может быть присоединена через гетероатом, если это возможно.
- (3-7С) Гетероциклоалкил означает гетероциклоалкильную группу, содержащую 3-7 атомов углерода, предпочтительно 3-5 атомов углерода, и один или два гетероатома, выбранных из N, О и/или S. Предпочтительными гетероатомами являются N или О. Предпочтительные (3-7С) гетероциклоалкильные группы представляют собой азетидинил, пирролидинил, пиперидинил, гомопиперидинил или морфолинил. Более предпочтительные (3-7С) гетероциклоалкильные группы представляют собой пиперидин, морфолин и пирролидин. Гетероциклоалкильная группа может быть присоединена через гетероатом, если это возможно.
- (3-7C) Циклоалкокси означает циклоалкильную группу, содержащую 3-7 атомов углерода, с тем же значением, как определено ранее, присоединенную через кольцевой углеродный атом к экзоциклическому атому кислорода.
- (6-10C) Арил означает ароматическую углеводородную группу, содержащую 6-10 атомов углерода, такую как фенил, нафтил,

тетрагидронафтил или инденил. Предпочтительная (6-10C) арильная группа представляет собой фенил.

(1-5C) Гетероарил означает замещенную или незамещенную ароматическую группу, содержащую 1-5 атомов углерода и 1-4 гетероатома, выбранных из N, O и/или S. (1-5C) Гетероарил может быть необязательно замещенным. Предпочтительные (1-5C) гетероарильные группы представляют собой тетразолил, имидазолил, тиадиазолил, пиридил, пиримидил, триазинил, тиенил или фурил, более предпочтительно, когда (1-5C) гетероарил представляет собой пиримидил.

(1-9C) Гетероарил означает замещенную или незамещенную ароматическую группу, содержащую 1-9 атомов углерода и 1-4 гетероатома, выбранных из N, O и/или S. (1-9C) Гетероарил может быть необязательно замещенным. Предпочтительные (1-9C) гетероарильные группы представляют собой хинолин, изохинолин и индол.

[(1-4C)Алкил]амино означает аминогруппу, монозамещенную алкильной группой, содержащей 1-4 атома углерода, которая имеет значение, определенное выше. Предпочтительная [(1-4C)алкил]аминогруппа представляет собой метиламино.

Ди[(1-4C)алкил]амино означает аминогруппу, дизамещенную алкильной группой(группами), при этом каждая содержит 1-4 атома углерода и имеет значение, определенное выше. Предпочтительная ди[(1-4C)алкил]аминогруппа представляет собой диметиламино.

Галоген означает фтор, хлор, бром или йод.

(1-3C) Алкил-C(0) -S-(1-3C) алкил означает алкил-карбонилтио-алкильную группу, при этом каждая из алкильных групп содержит от 1 до 3 атомов углерода и имеет значение, определенное выше.

(3-7C) Циклоалкенил означает циклоалкенильную группу, содержащую 3-7 атомов углерода, предпочтительно 5-7 атомов углерода. Предпочтительные (3-7C) циклоалкенильные группы представляют собой циклопентенил или циклогексенил. Циклогексенильные группы являются наиболее предпочтительными.

(2-6С) Гетероциклоалкенил означает гетероциклоалкенильную группу, содержащую 2-6 атомов углерода, предпочтительно 3-5

атомов углерода; и 1 гетероатом выбран из N, O и/или S. Предпочтительные (2-6C) гетероциклоалкенильные группы представляют собой оксициклогексенильную и азациклогексенильную группу.

В приведенных выше определениях с многофункциональными группами точка присоединения находится на последней группе.

Когда, в определении заместителя указано, что "все из алкильных групп" указанного заместителя являются необязательно замещенными, это также включает в себя алкильный фрагмент алкоксигруппы.

Круг в кольце формулы I указывает, что кольцо является ароматическим.

В зависимости от образованного кольца, азот, если он присутствует в X или Y, может нести водород.

Термин "замещенный" означает, что один или несколько водорода на обозначенном атоме/атомах атомов является замещенным и заместитель выбран из указанной группы, условии, что нормальная валентность указанного атома в рамках существующих обстоятельств не превышена, и что замещение приводит к стабильному соединению. Комбинации заместителей и/или переменных допустимы, только если такие комбинации приводят к стабильным соединениям. "Стабильное соединение" или "стабильная структура" определены как соединение или структура, которые достаточно устойчивы, чтобы выдержать выделение из реакционной смеси с пригодной степенью чистоты и формулирование в композицию эффективного терапевтического средства.

Термин "необязательно замещенный" означает необязательное замещение указанными группами, радикалами или фрагментами.

Аспекты изобретения

В одном аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где В1 представляет собой C(R7); В2 представляет собой C(R8); В3 представляет собой C(R9) и В4 представляет собой C(R10).

В другом аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где В1 представляет собой C(R7); В2 представляет собой C(R8); В3 представляет собой

C(R9); В4 представляет собой C(R10); R7, R9 и R10, каждый, представляют собой H; и R8 выбран из группы, состоящей из водорода и метила.

В одном аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где R8 представляет собой водород или метил, в частности, R8 представляет собой водород.

В другом аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где R7 представляет собой водород, фтор или (1-3C)алкокси. В частности, R7 представляет собой водород, фтор или метокси. Еще конкретнее, аспект настоящего изобретения относится к соединению в соответствии с формулой I, где R7 представляет собой водород.

В еще одном аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где R9 представляет собой водород, фтор или (1-3C)алкокси. В частности, R9 представляет собой водород, фтор или метокси. Еще конкретнее, аспект настоящего изобретения относится к соединению в соответствии с формулой I, где R9 представляет собой водород.

В другом аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где R10 представляет собой водород фтор или (1-3C)алкокси. В частности, R10 представляет собой водород, фтор или метокси. Еще конкретнее, аспект настоящего изобретения относится к соединению в соответствии с формулой I, где R10 представляет собой водород.

В еще одном аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где R7 и R8 образуют вместе с атомом углерода, к которому они присоединены, индол или хинолин или нафтил.

В другом аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где В1 представляет собой C(R7); В2 представляет собой C(R8); В3 представляет собой C(R9); В4 представляет собой C(R10) и R7, R8, R9, и R10 каждый представляют собой H.

В еще одном аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где R4 представляет

собой водород или метил. В частности, R4 представляет собой водород.

В еще одном аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где A представляет собой N.

В другом аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где A представляет собой CH.

В другом аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где кольцо, содержащее X, Y и Z, выбрано из группы, включающей пиридил, пиримидил, пиридазил, триазинил, тиазолил, оксазолил и изоксазолил. В частности, изобретение относится к соединению в соответствии с формулой I, где кольцо, содержащее X, Y и Z, выбирают из группы, включающей пиридил, пиримидил и тиазолил. Определение R5 и R6 не зависит от выбора X, Y и Z. Место присоединения R5 и, необязательно, R6 к этим гетероарильным кольцам следует из формулы I.

Изобретение также относится к соединению в соответствии с формулой I, где R5 выбирают из группы, включающей водород, галоген, циано, (1-4C)алкил, (1-3C)алкокси и (3-6C)циклоалкил. Все алкильные группы R5 необязательно замещены одним или несколькими атомами галогена. В частности, (1-4C)алкильная группа в R5 необязательно замещена одним или несколькими атомами галогена.

В другом аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где R5 выбирают из группы, включающей водород, фтор, хлор, (1-3C)алкил и (1-2C)алкокси, все алкильные группы R5 необязательно замещены одним или несколькими атомами галогена. В частности, (1-3C)алкильная группа в R5 необязательно замещена одним или несколькими атомами фтора. Еще конкретнее, изобретение относится к соединению в соответствии с формулой I, где R5 представляет собой водород, фтор, метил, этил, пропил, метокси или трифторметил.

В еще одном аспекте настоящее изобретение относится к

соединению в соответствии с формулой I, где R5 представляет собой пирролидин или фенил.

В другом аспекте, изобретение относится к соединению в соответствии с формулой I, где R6 представляет собой водород или (1-3C)алкил, предпочтительно R6 представляет собой водород.

В еще одном аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где R5 и R6 вместе образуют (3-7C) циклоалкенил или (2-6C) гетероциклоалкенил, оба необязательно замещены (1-3C) алкилом или одним или несколькими атомами галогена. В частности, (3-7C) циклоалкенильные группы представляют собой циклогексенил и циклопентенил. В частности, (2-6C) гетероциклоалкенильные группы представляют собой азациклогексенил и оксоциклогексенил. Еще более конкретно, изобретение относится к соединению в соответствии с формулой I, где (3-7C) циклоалкенил в R5 представляет собой циклогексенил.

В другом аспекте, изобретение относится к соединению в соответствии с формулой I, где R2 представляет собой водород или (1-3C) алкил. В частности, R2 представляет собой водород или метил. Наиболее предпочтительным является R2, представляющий собой водород.

В еще одном аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где R3 представляет собой (1-6C) алкил. В частности, R3 представляет собой (1-3C) алкил. Наиболее предпочтительным является R3, представляющий собой метил.

В другом аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где R3 представляет собой (3-7C) циклоалкил.

В другом аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где R2 представляет собой водород или (1-3C)алкил, и R3 представляет собой (1-6C)алкил. В частности, R2 представляет собой водород или метил, и R3 представляет собой (1-3C)алкил. Еще конкретнее, изобретение относится к соединению в соответствии с формулой I, где R2 представляет собой водород, и R3 представляет собой метил.

В еще одном аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где R2 или R3 независимо выбирают из группы, включающей циклопропил, циклобутил и циклопентил.

В другом аспекте настоящее изобретение относится к соединению формулы I, где R2 и R3 образуют вместе с атомами N и C, к которым они присоединены, (3-7C) гетероциклоалкил, необязательно замещенный одним или несколькими атомами галогена, гидроксилом, (1-3C) алкилом. В частности, R2 и R3 образуют вместе с атомами N и C, к которым они присоединены, азетидинильное, пирролидинильное, пиперидинильное, гомопиперидинильное или морфолинильное кольцо, каждое из которых необязательно замещено одним или несколькими атомами галогена, гидроксилом, (1-3C) алкилом, (1-3C) алкокси или оксо, предпочтительный галогеновый заместитель представляет собой фтор.

В еще одном аспекте настоящее изобретение относится к соединению формулы I, где R2 и R3 образуют вместе с атомами N и C, к которым они присоединены, азетидинильное, пирролидинильное, пиперидинильное, гомопиперидинильное или морфолинильное кольцо, каждое из которых необязательно замещено фтором, гидроксилом, (1-3C) алкилом, (1-3C) алкокси или оксо. В частности, R2 и R3 вместе с атомами N и C, к которым они присоединены, образуют пирролидинильное, пиперидинильное, морфолинильное или гомопиперидинильное кольцо.

В еще одном аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где R1 представляет собой R11C(O), и R11 представляет собой (1-6C)алкил, (2-6C)алкенил или (2-6C)алкинил, каждый необязательно независимо замещен одной или несколькими группами, выбранными из гидроксила, (1-4C)алкила, (3-7C)циклоалкила, (3-7C)гетероциклоалкила, [(1-4C)алкил]амино, ди[(1-4C)алкил]амино, (1-3C)алкокси, (3-7C)циклоалкокси, (6-10C)арила, (1-5C)гетероарила или (1-3C)алкил-S-C(O)-(1-3C)алкила. В частности, (1-5C)гетероарильная группа представляет собой пиримидил или триазинил, необязательно замещенный одной или

несколькими группами, выбранными из галогена или циано. В частности, (3-7C) гетероциклоалкил представляет собой пирролидинил. Еще конкретнее, изобретение относится к соединению в соответствии с формулой I, где (3-7C) циклоалкильный заместитель группы R11 представляет собой циклопропил. В частности, (6-10C) арильный заместитель группы R11 представляет собой фенил.

В еще одном аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где R1 представляет собой C(0)R11, и R11 представляет собой (2-6C)алкенил или (2-6C)алкинил, каждый необязательно замещен одной или несколькими группами, выбранными из гидроксила, (1-4C)алкила, (3-7C) циклоалкила, (3-7C) циклоалкила, (3-7C) петероциклоалкила, (3-7C) циклоалкокси. В частности, (3-7C) гетероциклоалкильный заместитель группы R11 представляет собой пирролидинил, и (3-7C) циклоалкильный заместитель группы R11 заместитель группы R11 представляет собой циклопропил.

другом аспекте настоящее изобретение относится к соединению в соответствии с формулой I, где R1 представляет собой C(O)R11, и R11 представляет собой (2-4C)алкенил или (2-4С) алкинил, каждый необязательно замещен одной или несколькими группами, выбранными из (1-4С)алкила, (3-7С)циклоалкила, (3-7C) гетероциклоалкила, (ди) [(1-4C)алкил]амино или (1-3C)алкокси. В частности, (3-7C) гетероциклоалкильный заместитель группы R11 представляет собой пинидипостип и (3-7С) циклоалкильный заместитель представляет собой циклопропил. Еще конкретнее, R11 представляет собой (2-4С) алкенил или (2-4С) алкинил, каждый одной или необязательно замещен несколькими группами, выбранными из метила, этила, циклопропила, пирролидинила, диметиламино, метокси или этокси.

В следующем аспекте изобретение относится к соединениям в соответствии с формулой I, где R1 представляет собой C(0)R11, где R11 представляет собой (1-5C) гетероарил, необязательно замещенный одной или несколькими группами, выбранными из галогена или циано. В частности, (1-5C) гетероарильный заместитель представляет собой пиримидил или триазинил,

пиримидильные кольца являются предпочтительными, необязательно замещенный одной или несколькими группами, выбранными из галогена или циано. В частности, галогеновый заместитель представляет собой хлор.

В другом аспекте, изобретение относится к соединениям в соответствии с формулой I, где R1 представляет собой R13SO₂, где R13 представляет собой (2-6C) алкенил или (2-6C) алкинил. В частности, R13 представляет собой (2-4C) алкенил. Еще конкретнее, R13 представляет собой этенил.

В другом аспекте, изобретение относится к соединениям в соответствии с формулой I, где R1 представляет собой R12S(O), где R12 представляет собой (2-6C) алкенил или (2-6C) алкинил. В частности, R13 представляет собой (2-4C) алкенил. Еще конкретнее, R12 представляет собой этенил.

В еще одном аспекте, изобретение относится к соединениям в соответствии с формулой I, где R1 представляет собой (1-3C) алкил, необязательно замещенный группой R14, где R14 представляет собой (2-4C) алкенил или (2-4C) алкинил.

В еще одном аспекте настоящее изобретение относится к соединению в соответствии с формулой I, выбранному из группы, включающей

- (S) -4-(3-(1-акрилоилпирролидин-2-ил) -8-аминоимидазо[1,5-а]пиразин-1-ил)-N-(пиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4- (пирролидин-1-ил) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4- (диметиламино) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2- ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4-карбонил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,

- (S,E) -4- (8-амино-3- (1- (4- (диметиламино) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- фторпиридин-2-ил) бензамид,
- (S) -4- (8-амино-3-(1-бут-2-иноилпирролидин-2-
- ил) имидазо [1,5-a] пиразин-1-ил) -N-(4-метилпиридин<math>-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-пропилпиридин-2-ил) бензамид,
- (S) -4-(8-амино-3-(1-бут-2-иноилпирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N-(4-(трифторметил) пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4,5,6,7-тетрагидробензо [d] тиазол-2-ил) бензамид,
- (S) -4- (3-(1-акрилоилпирролидин-2-ил) -8-аминоимидазо [1, 5-а] пиразин-1-ил) -2-фтор-N- (пиридин-2-ил) бензамид,
- (S) -4- (3-(1-акрилоилпирролидин-2-ил) -8-аминоимидазо [1, 5-а] пиразин-1-ил) -2-метокси-N-(пиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4- (диметиламино) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (тиазол-2- ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S) -4-(3-(1-акрилоилпиперидин-2-ил) -8-аминоимидазо[1,5-а] пиразин-1-ил) -N-(4-фторпиридин-2-ил) бензамид,
- (S) -4- (3- (1-акрилоилпиперидин-2-ил) -8-аминоимидазо [1,5-а] пиразин-1-ил) -N- (4-цианопиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1- (винилсульфонил) пиперидин-2- ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- (трифторметил) пиридин-2- ил) бензамид,
- (S) -4- (3-(1-акрилоилпиперидин-2-ил) -8-аминоимидазо [1, 5-а] пиразин-1-ил) -N-(пиримидин-2-ил) бензамид,
- (S) -4-(3-(1-акрилоилпиперидин-2-ил) -8-аминоимидазо[1,5-а]пиразин-1-ил) -N-(4-метилпиримидин-2-ил) бензамид,

- (S) -4- (8-амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиримидин-4-ил) бензамид,
- (S) -4- (8-амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридазин-3-ил) бензамид,
- (S) -4- (8-амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (изоксазол-3-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (5-этилтиазол-2-ил) бензамид,
- (S) -4- (3- (1-акрилоилпиперидин-2-ил) -8-аминоимидазо [1, 5-а] пиразин-1-ил) -2-фтор-N- (4-пропилпиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4- (диметиламино) бут-2- еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -2-метокси-N- (4-пропилпиридин-2-ил) бензамид,
- 4-(8-амино-3-((S)-1-бут-2-иноилпиперидин-2-ил) имидазо [1, 5-а] пиразин-1-ил) -3-метил-N- (пиридин-2-ил) бензамид,
- 4-(3-(акриламидометил)-8-аминоимидазо[1,5-а]пиразин-1-ил)- N-(пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1-бут-2-инамидоэтил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S) -S-2-(2-(8-амино-1-(4-(пиридин-2-илкарбамоил) фенил) имидазо [1,5-а] пиразин-3-ил) пирролидин-1-ил) 2-оксоэтил этантиоат,
- (S) -4- (8-амино-3- (1- (4-гидрокси-4-метилпент-2-иноил) пирролидин-2-ил) имидазо [1, 5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1- (6-хлорпиримидин-4-карбонил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1-пент-2-иноилпирролидин-2-
- ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1- (3-циклопропилпропиолоил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
 - (S) -4- (8-амино-3- (1-гекс-2-иноилпирролидин-2-
- ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- 4-(3-(1-акрилоилазепан-2-ил)-8-аминоимидазо[1,5-а]пиразин-1-ил)-N-(пиридин-2-ил) бензамид,

- (R) -4- (8-амино-3- (4-бут-2-иноилморфолин-3-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1-(N-метилбут-2- инамидо) этил) имидазо [1,5-а] пиразин-1-ил) -N- (4-(трифторметил) пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1- (4- (диметиламино) бут-2- иноил) пирролидин-2-ил) имидазо [1, 5-а] пиразин-1-ил) -N- (пиридин-2- ил) бензамид,
- (S) -4- (8-амино-3- (1- (4-метоксибут-2-иноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S) -4- (3- (1-акрилоилпирролидин-2-ил) -8-аминоимидазо [1, 5-а] пиразин-1-ил) -N- (4-фторпиридин-2-ил) бензамид,
- (S) -4- (3- (1-акрилоилпирролидин-2-ил) -8-аминоимидазо [1,5-а] пиразин-1-ил) -N- (4- (пирролидин-1-ил) пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-фторпиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S) -4- (3- (1-акрилоилпиперидин-2-ил) -8-аминоимидазо [1, 5- а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-пропилпиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4-метокси-N-метилбут-2- енамидо) этил) имидазо [1,5-а] пиразин-1-ил) -N- (4-пропилпиридин-2- ил) бензамид,
- (S) -4- (8-амино-3- (1- (винилсульфонил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-пропилпиридин-2-ил) бензамид,

ил) бензамид,

- (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -2-фтор-N- (пиридин-2-ил) бензамид, (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-метоксипиридин-2-
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -2-фтор-N- (4-метоксипиридин-2-

```
ил) бензамид,
```

- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-
- ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-фторпиридин-2-ил) бензамид,
 - (S,E)-4-(8-амино-3-(1-(4-метоксибут-2-еноил) пиперидин-2-
- ил) имидазо [1,5-а] пиразин-1-ил) -N- (изоксазол-3-ил) бензамид,
- (S,E)-4-(8-амино-3-(1-(4-метоксибут-2-еноил) пиперидин-2-
- ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиримидин-2-ил) бензамид,
- 4-(8-амино-3-((S)-1-(2-хлорпиримидин-4-карбонил) пиперидин-2-ил) имидазо[1,5-a] пиразин-1-ил) -3-метил-N-(пиридин-2-ил) бензамид,
- (S,E)-4-(8-амино-3-(1-(4-метоксибут-2-еноил) пирролидин-2-
- ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-метилпиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-изопропилпиридин-2-ил) бензамил,
- (S,E) -4- (8-амино-3- (1- (4- (диметиламино) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- метилпиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (тиазол-2-ил) бензамид,
- (S) -4-(3-(1-акрилоилпиперидин-2-ил) -8-аминоимидазо[1,5-а]пиразин-1-ил)-N-(4-пропилпиридин-2-ил) бензамид,
- (S) -4-(3-(1-акрилоилпирролидин-2-ил) -8-аминоимидазо [1,5-а] пиразин-1-ил) -N-(4-(трифторметил) пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- (трифторметил) пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-пропилпиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4- (диметиламино) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- изопропилпиридин-2-ил) бензамид,
- 4-(8-амино-3-((S)-1-(винилсульфонил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -3-метил-N-(пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -2-фтор-N- (4-пропилпиридин-2-ил) бензамид,

- 4-(3-((S)-1-акрилоилпиперидин-2-ил)-8-аминоимидазо[1,5-а]пиразин-1-ил)-3-метил-N-(пиридин-2-ил) бензамид,
- (E) -4- (8-амино-3- ((4-(диметиламино) бут-2- енамидо) метил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1-(2-хлорпиримидин-4- карбонил) пирролидин-2-ил) имидазо [1, 5-а] пиразин-1-ил) -N- (4- изопропилпиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1-(2-хлорпиримидин-4- карбонил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4,5,6,7-тетрагидробензо [d] тиазол-2-ил) бензамид,
- (S,E)-4-(8-амино-3-(1-(4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридазин-3-ил) бензамид,
- (S,E)-4-(8-амино-3-(1-(4-(диметиламино)бут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N-(пиридазин-3-ил) бензамид,
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4-карбонил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридазин-3-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4-метокси-N-метилбут-2- енамидо) этил) имидазо [1,5-а] пиразин-1-ил) -N- (4- (трифторметил) пиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4- (диметиламино) -N-метилбут-2- енамидо) этил) имидазо [1,5-а] пиразин-1-ил) -N- (4-пропилпиридин-2- ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4- (пирролидин-1-ил) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- пропилпиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4- (диметиламино) бут-2- еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4- карбонил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-пропилпиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4-карбонил) пиперидин-2-ил) имидазо [1, 5-а] пиразин-1-ил) -N- (4-фторпиридин-2-ил) бензамид,

- (S,E)-4-(8-амино-3-(1-(4-метоксибут-2-еноил) пиперидин-2-
- ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-фторпиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4,5,6,7-
- тетрагидробензо [d] тиазол-2-ил) бензамид,
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4- карбонил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -2-метокси- N- (пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4-карбонил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -2-фтор-N- (пиридин-2-ил) бензамид,
- 4-(8-амино-3-((S)-1-((E)-4-метоксибут-2-еноил) пиперидин-2-ил) имидазо[1,5-a] пиразин-1-ил) -3-метил-N-(пиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиримидин-4-ил) бензамид,
- 4-(8-амино-3-((S)-1-((E)-4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -3-метил-N-(4-пропилпиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-метилпиримидин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-метилпиримидин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4-карбонил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиримидин-2-ил) бензамид,
 - (S) -4-(8-амино-3-(1-метакрилоилпирролидин-2-
- ил) имидазо [1,5-a] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1- (2- (трифторметил) акрилоил) пирролидин-
- 2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S,E)-4-(8-амино-3-(1-бут-2-еноилпирролидин-2-ил) имидазо[1,5-а]пиразин-1-ил) -N-(пиридин-2-ил) бензамид,
 - (S)-4-(8-амино-3-(1-(цианометил) пирролидин-2-
- ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
 - (E) -4- (8-амино-3- ((4-метоксибут-2-
- енамидо) метил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-

- ил) бензамид,
- (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- (пирролидин-1-ил) пиридин-2-ил) бензамил,
- (E) -4- (8-амино-3- (1-(4-метоксибут-2-еноил) азепан-2-
- ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-цианопиридин-2-ил) бензамид,
 - (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-
- ил) имидазо[1,5-а] пиразин-1-ил) -2-метокси-N- (пиридин-2-ил) бензамид,
- (S) -4- (3- (1-акриламидоэтил) -8-аминоимидазо[1,5-а]пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S) -4-(3-(1-акрилоилпирролидин-2-ил) -8-аминоимидазо[1,5-а]пиразин-1-ил) -N-(тиазол-2-ил) бензамид,
- (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-изопропилпиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -2-метокси-N- (пиридин-2-ил) бензамид,
- (S,E) -4 (8 амино -3 (1 циннамоилпирролидин -2 ил) имидазо [1,5 а] пиразин -1 ил) -N (пиридин <math>-2 ил) бензамид,
- (S) -N- (1-(8-амино-1-(4-(пиридин-2-илкарбамоил) фенил) имидазо [1,5-а] пиразин-3-ил) этил) -2-хлорпиримидин-4-карбоксамид,
- (S) -4- (8-амино-3-(1-бут-2-иноилпирролидин-2-
- ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-фторпиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4-карбонил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-пропилпиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- (трифторметил) пиридин-2-ил) бензамил,
- (S) -4-(3-(1-акрилоилпиперидин-2-ил) -8-аминоимидазо [1,5-а] пиразин-1-ил) -N-(4-(трифторметил) пиридин-2-ил) бензамид,

- (S) -4- (8-амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -2-метокси-N- (4-пропилпиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2- ил) имидазо [1,5-а] пиразин-1-ил) -2-метокси-N- (4-пропилпиридин-2- ил) бензамид,
- 4-(8-амино-3-(бут-2-инамидометил) имидазо [1,5-а] пиразин-1-ил) -N-(пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1- (N-метилбут-2- инамидо) этил) имидазо [1,5-а] пиразин-1-ил) -N- (4-пропилпиридин-2- ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -2-фтор-N- (4-пропилпиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4-карбонил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- (трифторметил) пиридин-2-ил) бензамил,
- (S) -4- (8-амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (5-этилтиазол-2-ил) бензамид,
- (S) -4- (3- (1-акрилоилпиперидин-2-ил) -8-аминоимидазо [1, 5-а] пиразин-1-ил) -N- (5-этилтиазол-2-ил) бензамид,
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4-карбонил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (5-этилтиазол-2-ил) бензамид,
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4- карбонил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- (трифторметил) пиридин-2-ил) бензамид,
- (R,E) -4- (8-амино-3- (4- (4-метоксибут-2-еноил) морфолин-3-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-пропилпиридин-2-ил) бензамид,
- (S) -4-(3-(1-акрилоилпирролидин-2-ил) -8-аминоимидазо[1,5-а]пиразин-1-ил) -N-(4-цианопиридин-2-ил) бензамид,
- (S) -4-(8-амино-3-(1-бут-2-иноилпирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N-(4-метоксипиридин-2-ил) бензамид,

- а] пиразин-1-ил) -N- (4-метилпиридин-2-ил) бензамид,
- (S) -4- (3-(1-акрилоилпирролидин-2-ил) -8-аминоимидазо [1, 5-а] пиразин-1-ил) -N-(4-пропилпиридин-2-ил) бензамид,
- (S) -4-(3-(1-акрилоилпирролидин-2-ил)-8-аминоимидазо[1,5-а] пиразин-1-ил)-N-(4-этилпиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4- (диметиламино) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид,
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- (трифторметил) пиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4-карбонил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-метилпиридин-2-ил) бензамид,
- (S) -4-(8-амино-3-(1-бут-2-иноилпирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N-(4-цианопиридин-2-ил) бензамид,
 - (S) -4- (8-амино-3-(1-бут-2-иноилпирролидин-2-
- ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-этилпиридин-2-ил) бензамид,
- (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-фенилпиридин-2-ил) бензамид и
- (S) -4-(3-(1-акрилоилпирролидин-2-ил) -8-аминоимидазо [1,5-а] пиразин-1-ил) -N-(4-фенилпиридин-2-ил) бензамид.

Изобретение также относится к таким соединениям, где все конкретные определения для R1-R14 и всех групп заместителей в различных аспектах изобретения, определенных выше в настоящей заявке, встречаются в любой комбинации в рамках определения 6-5-членных конденсированных пиридиновых кольцевых соединений, то есть, как 8-аминоимидазо[1,5-а] пиразиновые и 4-аминоимидазо[1,5-f][1,2,4] триазиновые соединения формулы I.

6-5-Членные конденсированные пиридиновые кольцевые соединения, такие как 8-аминоимидазо[1,5-а]пиразиновые и 4-аминоимидазо[1,5-f][1,2,4]триазиновые соединения по настоящему изобретению, ингибируют активность Btk киназы. Все соединения по настоящему изобретению имеют значение EC50 10 мкМ или ниже.

В другом аспекте изобретение относится к соединениям

формулы I, которые имеют значение EC50 менее 100 нМ. В еще одном аспекте изобретение относится к соединениям формулы I, которые имеют значение EC50 менее 10 нМ.

Термин «EC50» означает концентрацию испытываемого соединения, которая требуется для 50% ингибирования его максимального эффекта in vitro.

Ингибирование активности киназы измерить ОНЖОМ С использованием анализа иммобилизованного металла для фосфосодержащих химических веществ (Immobilized Metal Assay for Phosphochemicals (IMAP)). IMAP представляет собой гомогенный поляризации флуоресценции (FP), основанный улавливании фосфорилированных пептидных субстратов по принципу сродства. Для ІМАР используют меченные флуоресцеином пептидные которые при фосфорилировании протеинкиназой с так называемыми наночастицами ІМАР, которые связываются дериватизированы с использованием комплексов трехвалентных металлов. Связывание приводит K изменению скорости молекулярного движения пептида и приводит к увеличению значения FP, наблюдаемого для флуоресцеиновой метки, присоединенной к пептидному субстрату (Gaudet et al. A homogeneous fluorescence polarization assay adaptable for a range of serine/threonine and tyrosine kinases. J. Biomol. Screen (2003) 8, 164-175).

Соединения формулы (I) могут образовывать соли, которые также входят в объем настоящего изобретения. Следует понимать, что ссылка на соединение формулы (I) в настоящей включает ссылку на его соли, если не указано иное. "соль (соли)", как он используется в настоящей заявке, означает соли, образованные С неорганическими органическими кислотами, а также основные соли, образованные с неорганическими и/или органическими основаниями. Кроме того, когда соединение формулы (І) содержит как основную группу, такую как, но не ограничиваясь этим, пиридин или имидазол, так и кислотную группу, такую как, но не ограничиваясь этим, карбоновую кислоту, могут быть образованы цвиттерионы ("внутренние соли"), и они включены в термин "соль (соли)",

используемый в настоящей заявке. Такие кислотные и основные соли, используемые в рамках настоящего изобретения, являются фармацевтически приемлемыми (то есть, нетоксичными, физиологически приемлемыми) солями. Соли соединений формулы (I) могут быть образованы, например, взаимодействием соединения формулы (I) с количеством кислоты или основания, таким как эквивалентное количество, в среде, такой как среда, в которой осаждается соль, или в водной среде с последующей лиофилизацией.

кислотно-аддитивные соли включают ацетаты, аскорбаты, бензоаты, бензолсульфонаты, бисульфаты, бораты, бутираты, цитраты, камфораты, камфорсульфонаты, фумараты, гидрохлориды, гидробромиды, гидроиодиды, лактаты, малеаты, нафталинсульфонаты, метансульфонаты, нитраты, оксалаты, фосфаты, пропионаты, салицилаты, сукцинаты, сульфаты, тартраты, тиоцианаты, толуолсульфонаты (также известные как тозилаты) и тому подобное. Кроме того, кислоты, которые обычно считаются подходящими для образования фармацевтически применимых солей из основных фармацевтических соединений, обсуждаются, например, в P. Stahl et al, Camille G. (eds.) Handbook of Pharmaceutical Salts. Properties, Selection and Use. (2002) Zurich: Wiley-VCH; S. Berge et al, Journal of Pharmaceutical Sciences (1977) 66(1) 1-19; P. Gould, International J. of Pharmaceutics (1986) 33 201-217; Anderson et al, The Practice of Medicinal Chemistry (1996), Academic Press, New York; и в The Orange Book (Food & Drug Administration, Washington, D.C. на их сайте). раскрытия включены в настоящую заявку в качестве ссылки.

Типичные основные соли включают соли аммония, соли щелочных металлов, такие как соли натрия, лития и калия, соли щелочноземельных металлов, такие как соли кальция и магния, соли с органическими основаниями (например, органические амины), такими как дициклогексиламины, трет-бутиламины, и соли с аминокислотами, такими как аргинин, лизин, и т.п. Основные азотсодержащие группы могут быть квартернизованы при помощи веществ, таких как низшие алкилгалогениды (например, метил-, этил- и бутилхлориды, бромиды и йодиды), диалкилсульфаты

(например, диметил-, диэтил- и дибутилсульфаты), галогениды с длинной цепью (например, децил-, лаурил- и стеарилхлориды, бромиды и йодиды), аралкилгалогениды (например, бензил- и фенэтилбромиды) и другие.

Соединения формулы I могут содержать асимметричные или хиральные центры и, следовательно, существуют в различных стереоизомерных формах. Предполагается, что все стереоизомерные формы соединений формулы (I), а также их смеси, включая рацемические смеси, составляют часть настоящего изобретения. Кроме того, настоящее изобретение охватывает все геометрические изомеры и изомеры положения. Например, если соединение формулы (I) включает двойную связь или конденсированное кольцо, цис- и транс-формы, а также их смеси включены в объем настоящего изобретения.

Смеси диастереомеров могут быть разделены на ИX индивидуальные диастереомеры на основе их физико-химических различий способами, хорошо известными специалистам в данной области техники, например, при помощи хроматографии и/или фракционной кристаллизации. Энантиомеры могут быть разделены путем преобразования энантиомерной смеси в диастереомерную смесь путем взаимодействия с соответствующим оптически активным соединением (например, хиральным вспомогательным элементом, таким как хиральный спирт или хлорангидрид кислоты Мошера), разделением диастереомеров N преобразованием (например, гидролизом) отдельных диастереомеров на соответствующие чистые энантиомеры. Кроме того, некоторые соединения формулы (I) могут собой атропоизомеры (например, представлять замещенные биарилы), и они рассматриваются как часть настоящего изобретения. Энантиомеры также могут быть разделены использованием хиральной ВЭЖХ колонки.

Кроме того, возможно, что соединения формулы (I) могут существовать в различных таутомерных формах, и все такие формы включены в объем настоящего изобретения. Кроме того, в изобретение включены, например, все кето-енольные и иминенаминовые формы соединений.

Все стереоизомеры (например, геометрические изомеры,

оптические изомеры и т.п.) соединений по настоящему изобретению (включая соли, сольваты, сложные эфиры И пролекарства соединений, а также соли, сольваты и сложные пролекарств), такие как те, которые могут существовать из-за углерода на различных заместителях, асимметричных атомов включая энантиомерные формы (которые могут существовать даже в отсутствие асимметрических атомов углерода), ротамерные формы, атропизомеры и диастереомерные формы, рассматриваются как охватываемые объемом настоящего изобретения, также как и изомеры положения. Отдельные стереоизомеры соединений настоящему изобретению могут, например, быть по существу свободными от других изомеров или могут быть смешаны, например, в виде рацематов или со всеми остальными или с выбранными стереоизомерами. Хиральные центры по настоящему изобретению могут иметь конфигурацию R или S, как определено в Рекомендациях IUPAC 1974. Использование терминов "соль", "сольват", "сложный эфир", "пролекарство" и подобных в равной степени относится к соли, сольвату, сложному эфиру и пролекарству энантиомеров, стереоизомеров, ротамеров, таутомеров, изомеров положения, рацематов или пролекарств соединений по настоящему изобретению.

Обсуждение пролекарств представлено в Т. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems (1987) 14 of the A.C.S. Symposium Series, и в Bioreversible Carriers in Drug Design, (1987) Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press. Термин "пролекарство" означает соединение (например, предшественник лекарственного средства), которое преобразуется in vivo c образованием соединения формулы (I) или фармацевтически приемлемой соли, гидрата или сольвата соединения. Преобразование может происходить посредством различных механизмов (например, метаболических или химических процессов), таких как, например, через гидролиз в крови. Обсуждение использования пролекарств представлено в Т. Higuchi and W. Stella, "Pro-drugs as Novel Delivery Systems," Vol. 14 of the A.C.S. Symposium Series, и в Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical

Association and Pergamon Press, 1987.

Соединения по настоящему изобретению могут образовывать гидраты или сольваты. Специалистам в данной области известно, что заряженные соединения образуют гидратированные виды при лиофилизации с водой, или образуют сольватированные виды при концентрации в растворе с подходящим органическим растворителем. Соединения по настоящему изобретению включают гидраты или сольваты перечисленных соединений.

Одно или несколько соединений по настоящему изобретению МОГУТ существовать В несольватированных, сольватированных формах С фармацевтически приемлемыми растворителями, такими как вода, этанол И подобные, изобретение предполагается, ЧТО настоящее охватывает сольватированные, так и несольватированные формы. означает физическую ассоциацию соединения ПО настоящему изобретению с одной или несколькими молекулами растворителя. Эта физическая ассоциация включает различные степени ионного и ковалентного связывания, включая водородное связывание. некоторых случаях, сольват может быть способным к выделению, молекул растворителя например, когда одна ИЛИ несколько включены в кристаллическую решетку кристаллического твердого вещества. "Сольват" охватывает как находящиеся в фазе раствора, так и выделяемые сольваты. Неограничивающие примеры подходящих сольватов включают этаноляты, метаноляты и подобные. "Гидрат" представляет собой сольват, где молекулой растворителя является H_2O .

Настоящее изобретение также относится к фармацевтической композиции, включающей 6-5-членные конденсированные пиридиновые кольцевые соединения, такие как имидазопиразиновые имидазотриазиновые соединения, или фармацевтически ИX приемлемые имеющие общую формулу I, соли, В смеси С фармацевтически приемлемыми вспомогательными веществами необязательно, С другими терапевтическими средствами. Вспомогательные вещества быть "приемлемыми" ДОЛЖНЫ В TOM смысле, NHO OTH ДОЛЖНЫ быть совместимыми С другими ингредиентами композиции и не должны быть вредными для их

реципиентов.

Настоящее изобретение, кроме того, включает соединение формулы I в комбинации с одним или несколькими другими лекарственными средствами.

Композиции включают, например, такие, которые являются подходящими для перорального, сублингвального, подкожного, внутривенного, внутримышечного, назального, местного или ректального введения и т.п., все в единичной дозированной форме для введения.

Для перорального введения, активный ингредиент может быть представлен в виде дискретных единиц, таких как таблетки, капсулы, порошки, грануляты, растворы, суспензии и подобные.

Для парентерального введения, фармацевтическая композиция по настоящему изобретению может быть представлена в однодозовых или многодозовых контейнерах, например, в виде жидкости для инъекций в предварительно определенных количествах, например, в герметично закрытых флаконах и ампулах, и также может храниться в высушенном замораживанием (лиофилизованном) состоянии, требующем только добавления стерильного жидкого носителя, например, такого как вода, перед использованием.

С фармацевтически Смешанное такими приемлемыми вспомогательными веществами, например, как описано в справочной литературе Gennaro, A.R. et al., Remington: The Science and Practice of Pharmacy (20th Edition., Lippincott Williams & Wilkins, 2000, см., в частности, Part 5: Pharmaceutical Manufacturing), активное вещество можно прессовать в твердую единичную дозированную форму, такую как пилюли, таблетки, или переработать В капсулы или суппозитории. При фармацевтически приемлемых жидкостей активное вещество можно применять в виде жидкой композиции, например, в виде препарата для инъекций, в форме раствора, суспензии, эмульсии или в виде спрея, например, назального спрея.

Для получения твердых единичных дозированных форм предусматривается использование традиционных добавок, таких как наполнители, красители, полимерные связующие и подобные. Как правило, можно использовать любую фармацевтически приемлемую

добавку, которая не оказывает неблагоприятного влияния на функцию активного соединения. Подходящие носители, при помощи которых активное средство по настоящему изобретению можно вводить в виде твердых композиций, включают лактозу, крахмал, производные целлюлозы и подобные, или NX смеси, которые используют подходящих количествах. Для парентерального введения можно использовать водные суспензии, изотонические солевые растворы и стерильные растворы для инъекций, содержащие фармацевтически приемлемые диспергирующие вещества вещества, такие смачивающие как пропиленгликоль ИЛИ бутиленгликоль.

Настоящее изобретение, кроме того, включает фармацевтическую композицию, описанную в настоящей заявке выше, в сочетании с упаковочным материалом, подходящим для указанной композиции, при этом указанный упаковочный материал включает инструкции по применению композиции для использования, описанного в настоящей заявке выше.

Точная доза и схема введения активного ингредиента или включающей его фармацевтической композиции могут варьировать в зависимости от конкретного соединения, пути введения и возраста и состояния конкретного субъекта, которому можно вводить это лекарственное средство.

Как правило, для парентерального введения требуются более низкие дозы, чем для других способов введения, которые в большей степени зависят от абсорбции. Однако доза для человека предпочтительно содержит 0,0001-25 мг на кг массы тела. Желаемая доза может быть представлена в виде одной дозы или в виде нескольких суб-доз, вводимых с подходящими интервалами в течение дня, или, в случае реципиентов-женщин, в виде доз, вводимых с подходящими суточными интервалами в течение менструального цикла. Доза, а также схема введения могут отличаться у реципиентов мужского и женского пола.

В соединениях общей Формулы I атомы могут демонстрировать их природное относительное содержание изотопов, или один или несколько атомов могут быть искусственно обогащенными конкретным изотопом, имеющим такой же атомный номер, но атомную

массу или массовое число, отличные от атомной массы или массового числа, преимущественно присутствующих в Предполагается, что настоящее изобретение включает подходящие изотопные варианты соединений родовой Формулы І. Например, различные изотопные формы водорода (Н) включают дейтерий (^{2}H) . протий (^{1}H) И Протий представляет преобладающий изотоп водорода, присутствующий В природе. Обогащение дейтерием может дать определенные терапевтические преимущества, такие как увеличение периода полураспада in vivo или снижение уровня необходимых доз, или может обеспечить соединение, полезное в качестве стандарта для характеристики образцов. Изотопно-обогащенные биологических соединения, охватываемые родовой Формулой I, можно получить без чрезмерного экспериментирования традиционными способами, хорошо известными специалистам в данной области, или способами, аналогичными тем, которые описаны в Схемах и Примерах в настоящей заявке, с использованием подходящих изотопно-обогащенных реагентов и/или промежуточных соединений.

Соединения в соответствии с настоящим изобретением можно использовать в терапии.

Еще один аспект настоящего изобретения относится к применению 6-5-членных конденсированных пиридиновых кольцевых соединений или их фармацевтически приемлемых солей, имеющих общую формулу I, для получения лекарственного средства, которое можно использовать для лечения Btk-опосредованных заболеваний или Btk-опосредованных состояний.

Еще один аспект настоящего изобретения относится к применению 6-5-членных конденсированных пиридиновых кольцевых соединений или их фармацевтически приемлемых солей, имеющих общую формулу I, для получения лекарственного средства, которое можно использовать для лечения хронических В-клеточных расстройств, в которых T клетки играют заметную роль.

В еще одном аспекте настоящее изобретение относится к применению 6-5 членных конденсированных пиридиновых кольцевых соединений, таких как 8-аминоимидазо[1,5-a]пиразиновые и 4-аминоимидазо[1,5-f][1,2,4]триазиновые соединения, имеющие общую

формулу I, для получения лекарственного средства, предназначенного для лечения Btk-опосредованных заболеваний или состояний. Такие применения включают, но не ограничиваются этим, лечение B-клеточных лимфом, развивающихся в результате постоянной активной передачи сигнала B-клеточного рецептора.

Таким образом, соединения по настоящему изобретению могут быть использованы в терапии для лечения или предотвращения заболеваний, опосредованных тирозинкиназой Брутона (Btk). Заболевания, опосредованные Btk, или состояния, опосредованные Btk, при использовании в настоящей заявке, означают любое болезненное состояние или другое опасное состояние, в котором центральную роль играют В-клетки, тучные клетки, миелоидные клетки или остеокласты. Эти заболевания включают, но не ограничиваются ими, иммунные, аутоиммунные и воспалительные заболевания, аллергии, инфекционные заболевания, резорбции костей и пролиферативные заболевания.

Иммунные, аутоиммунные и воспалительные заболевания, которые можно лечить или предотвратить при помощи соединений по настоящему изобретению, включают ревматические заболевания (например, ревматоидный артрит, псориатический артрит, инфекционный прогрессивный хронический артрит, артрит, деформирующий артрит, остеоартрит, травматический артрит, подагрический артрит, синдром Рейтера, полихондрит, острый синовит и спондилит), гломерулонефрит (с или без нефротического гематологические синдрома), аутоиммунные расстройства (например, гемолитическая анемия, апластическая анемия, идиопатическая тромбоцитопения и нейтропения), аутоиммунный гастрит и аутоиммунные воспалительные заболевания кишечника (например, язвенный колит и болезнь Крона), «трансплантат против хозяина», отторжение аллотрансплантата, хронический тиреоидит, болезнь Грейвса, склеродермию, диабет (тип I и тип II), активный гепатит (острый и хронический), панкреатит, первичный желчный цирроз, тяжелую миастению, рассеянный склероз, системную красную волчанку, псориаз, атопический дерматит, контактный дерматит, экзему, солнечные ожоги кожи, васкулит (например, болезнь Бехчета), хроническую почечную недостаточность, синдром Стивенса-Джонсона, воспалительную боль, идиопатический синдром мальабсорбции, кахексию, саркоидоз, синдром Гийена-Барре, увеит, конъюнктивит, кератоконъюнктивит, средний отит, пародонтоз, легочный интерстициальный фиброз, астму, бронхит, ринит, синусит, пневмокониоз, синдром легочной недостаточности, эмфизему легких, легочный фиброз, силикоз, хроническое воспалительное заболевание легких (например, хроническое обструктивное заболевание легких) и другие воспалительные или обструктивные заболевания дыхательных путей.

Аллергические заболевания, которые можно лечить или предотвратить, включают, среди прочего, аллергию на пищевые продукты, пищевые добавки, яды насекомых, пылевых клещей, пыльцу, животные материалы и контактные аллергены, аллергическую бронхиальную астму I типа, аллергический ринит, аллергический конъюнктивит.

Инфекционные заболевания, которые можно лечить или предотвратить, включают, среди прочего, сепсис, септический шок, эндотоксиновый бактериально-токсический шок, сепсис, вызванный грам-отрицательными бактериями, шигеллез, менингит, малярию, пневмонию, туберкулез, церебральную миокардит, вирусный гепатит (гепатит А, гепатит В и гепатит С), ВИЧ-инфекцию; ретинит, вызванный цитомегаловирусом; герпес; лечение инфекций, связанных с тяжелыми ожогами; миалгию, вызванную инфекциями; кахексию, вторичную по отношению к инфекции, и ветеринарные вирусные инфекции, такие лентивирус, вирус козьего артрита, вирус меди-висна, вирус иммунодефицита кошачьих, бычий вирус иммунодефицита или вирус иммунодефицита собак.

Расстройства, такие как резорбция кости, которые можно лечить или предотвратить, включают, среди прочего, остеопороз, остеоартрит, травматический артрит, подагрический артрит и костные заболевания, связанные с множественной миеломой.

Пролиферативные заболевания, которые можно лечить или предотвращать, включают, среди прочего, не-ходжкинскую лимфому (в частности, подтипы диффузной крупноклеточной В-клеточной

лимфомы (DLBCL) и лимфому из клеток мантийной зоны (MCL)), Вклеточный хронический лимфоцитарный лейкоз и острый лимфобластный лейкоз (ALL) со зрелыми В-клетками, особенно ALL.

В частности, соединения по настоящему изобретению можно использовать для лечения В-клеточных лимфом, возникающих в результате постоянного активного сигнала В-клеточного рецептора.

ОНЖОМ Ингибирование активности киназы измерить С иммобилизованного использованием анализа металла ПЛЯ фосфосодержащих химических веществ (Immobilized Metal Assay for Phosphochemicals (IMAP)). IMAP представляет собой гомогенный флуоресценции (FP), анализ поляризации основанный улавливании фосфорилированных пептидных субстратов по принципу сродства. Для ІМАР используют меченные флуоресцеином пептидные фосфорилировании субстраты, которые при протеинкиназой связываются с так называемыми наночастицами ІМАР, которые дериватизированы с использованием комплексов трехвалентных металлов. Связывание приводит K изменению молекулярного движения пептида и приводит к увеличению значения FP, наблюдаемого для флуоресцеиновой метки, присоединенной к пептидному субстрату.

Активность Btk также можно определить в В-клеточных линиях, таких как клетки Ramos, или в первичных клеточных анализах, например, с использованием РВМС или цельной крови или обезьяны, крысы ИЛИ МЫШИ изолированных спленоцитов обезьяны, крысы или мыши. Ингибирование активности Btk можно исследовать путем измерения анти-IgM-индуцированной продукции MIP1 β (Ramos, PBMC, спленоциты), H_2O_2 -индуцированного Btk и PLCy2 фосфорилирования (клетки Ramos) или анти-IqMиндицированной В-клеточной пролиферации или экспрессии CD86 на первичных В-клетках (РВМС и спленоциты).

Регуляцию активности Btk также можно определить на тучных клетках человека, обезьяны, крысы или мыши, после дегрануляции, индуцированной активацией FceR, продукции цитокинов и экспрессии на клеточной поверхности, индуцированной CD63.

Кроме того, регуляцию активности Btk можно определить на

CD14+ моноцитах, дифференцированных после обработки при помощи M-CSF до остеокластов и активированных при помощи RANKL.

Активность ингибиторов Btk можно исследовать в спленоцитах мыши после введения in vivo. В типичном эксперименте мыши могут умерщвлены через 3 часа после введения соединения. быть у обработанных мышей для Селезенки удалить выделения Спленоциты МОЖНО поместить В 96-луночные спленоцитов. культуральные планшеты и стимулировать при помощи анти-IgM, без дальнейшего добавления соединений. Стимуляцию В-клеток, индуцированная анти-IgM, и их ингибирование Btk ингибиторами можно измерить на оснвании В-клеточной пролиферации, продукции $MIP1\beta$ или экспрессии CD86 на спленоцитных В клетках CD19+.

Эффективность ингибиторов Btk также можно исследовать в мышиной модели коллаген-индуцированного артрита с использованием терапевтического протокола при начале лечения после возникновения заболевания, с использованием измерительной оценки болезни, рентгеновского анализа деструкции костной ткани, разрушения хряща и гистологии суставов.

Эффективность ингибиторов Btk на регуляцию активированных тучных клеток можно исследовать in vivo с использованием модели пассивной кожной анафилаксии.

Эффект ингибиторов Btk на резорбцию кости in vivo можно исследовать с использованием крысиной модели OVX. B этой модели y овариэктомированных животных развиваются симптомы остеопороза, которые можно регулировать с использованием ингибитора Btk.

Обший синтев

8-Аминоимидазо[1,5-а] пиразиновые и 4-аминоимидазо[1,5-f][1,2,4] триазиновые производные по настоящему изобретению можно получить способами, хорошо известными в области органической химии. См., например, J. March, 'Advanced Organic Chemistry' 4^{th} Edition, John Wiley and Sons. При последовательном осуществлении синтеза может быть необходимым и/или желательным защитить чувствительные или реактивные группы в любой из соответствующих молекул. Это достигается при помощи обычных защитных групп, таких как те, которые описаны в Т.W.

Greene and P.G.M. Wutts 'Protective Groups in Organic Synthesis' 3rd Edition, John Wiley and Sons, 1999. Защитные группы необязательно удаляют на удобной для этого последующей стадии с использованием способов, хорошо известных в данной области.

Продукты реакций необязательно выделяют и очищают, при желании, с использованием обычных способов, но не ограничиваясь ими, таких как фильтрование, перегонка, кристаллизация, хроматография и подобные. Для характеристики таких веществ необязательно используют обычные средства, включая физические константы и спектральные данные.

8-Аминоимидазо[1,5-а] пиразиновые соединения формулы I, где R_1 - R_5 имеют ранее определенные значения, можно получить общим путем синтеза, показанным на схеме I.

Восстановление 3-хлорпиразин-2-карбонитрила (II)осуществить путем гидрирования в присутствии подходящей системы И растворителя, например, никеля катализаторов получением (3-хлорпиразин-2-ил) метанамина (III). Это соединение подвергнуть взаимодействию С соответствующим затем ОНЖОМ образом амин-защищенной аминокислотой. Реакцию $N(R_2) CR_3R_4) COOH$ можно осуществлять в растворителе, таком как DMF, $T\Gamma\Phi$ или DCM, в присутствии основания, такого как DIPEA, Nметилморфолин, 4-DMAP или триэтиламин, и в присутствии

связующего реагента, такого как РуВОР, ТВТИ, EDCI или НАТИ, с образованием N-((3-хлорпиразин-2-ил)метил)амида IV. Циклизацию хлорпиразина IV можно осуществить с использованием конденсации, таких как фосфороксихлорид, в условиях нагревания получением 8-хлоримидазо[1,5-а] пиразиновых производных V. Последующее бромирование можно осуществить с использованием брома или N-бромсукцинимида в подходящем растворителе, таком как DCM или DMF, при соответствующей температуре, с получением VI. 8-Аминоимидазо[1,5-а]пиразиновые соединений формулы ИЗ соединений производные OHWOM (IIV) получить использованием аммиака (газ) в изопропаноле при повышенной температуре в сосуде высокого давления (>4 атм). Соединения ΙX можно получить ИЗ соединений формулы VII использованием соответствующей бороновой кислоты пинаконового сложного эфира (VIII), в присутствии подходящей палладиевой каталитической системы и растворителя, например, комплекса бис (дифенилфосфино) ферроцен палладий (II) хлорида или тетракис (трифенилфосфин) палладия (0) в присутствии калия в смеси диоксан/вода, с получением соединений формулы IX. Наконец, отщепление защитной группы соединений с формулой IX который после незащищенный амин, функционализации использованием способов, хорошо известных В этой области техники, и соответствующих реакционноспособных групп, имеющих определенные выше значения, дает соединения формулы І. Примером защитной стратегии является защиты амина бензилоксикарбонильной защитной группы для аминокислот, используемых ЧТО после СНЯТИЯ защиты использованием 33% НВr/НОАс или концентрированной НСl, давало в результате амины.

Аминокислоты $HN(R_2) CR_3R_4) COOH$ являются либо коммерчески доступными, либо их можно легко получить с использованием способов, хорошо известных специалистам в данной области органической химии, для введения защитных групп, таких как бензилоксикарбонил или τpet -бутилоксикарбонил.

Палладиевые катализаторы и условия для образования пинаконовых эфиров или для связывания бороновых кислот или пинаконовых эфиров с 1-бромимидазо[1,5-а]пиразин-8-амином хорошо известны специалистам в области органической химии - см., например, Ei-ichi Negishi (Editor), Armin de Meijere (Associate Editor), Handbook of Organopalladium Chemistry for Organic Synthesis, John Wiley and Sons, 2002.

4-Аминоимидазо[1,5-f][1,2,4]триазиновые соединения формулы I, где R_1 - R_5 имеют ранее определенные значения, можно получить общим синтетическим способом, показанным на схеме II.

вещество 3-амино-6-(аминометил)-1,2,4-триазин-5(4H)-он X можно получить посредством реакции конденсации этилбромпирувата, дибензиламина и аминогуанидинкарбоната, с последующим дебензилированием путем гидрирования над катализатором [Mitchel, W.L.et al, J. Heterocycl. Chem. (1984) рр697]. Это соединение может затем взаимодействовать с соответствующим оразом амин-защищенной аминокислотой. Реакцию $Cbz-N(R_2)CR_3R_4)COOH$ можно осуществлять в растворителе, таком как DMF, $T\Gamma\Phi$ или DCM, в присутствии основания, такого как DIPEA, N-4-DMAPили триэтиламин, метилморфолин, И В присутствии связующего реагента, такого как РуВОР, ТВТИ, EDCI или НАТИ, с N-((3-амино-5-оксо-4,5-дигидро-1,2,4-триазин-6образованием ил) метил) амида XI. Циклизацию аминотриазинона ОНЖОМ осуществить с использованием агентов конденсации, таких как фосфороксихлорид, В УСЛОВИЯХ нагревания С получением

производных 2-аминоимидазо[1,5-f][1,2,4]триазин-4(3H)-она XII. Последующее йодирование можно осуществить с использованием йода или N-йодсукцинимида в подходящем растворителе, таком как DCM ИЛИ DMF, при соответствующей температуре С получением соединений формулы XIII. Удаление 2-аминогруппы в производных 2-аминоимидазо [1, 5-f] [1, 2, 4] триазин-4(3H)-она XIII ОНЖОМ осуществить с использованием трет-бутилнитрита в растворителях, таких как $DMF/T\Gamma\Phi$, при комнатной температуре с образованием имидазо[1,5-f][1,2,4]триазин-4(3H)-она производных XIV. 4-аминоимидазо[1,5-f][1,2,4]триазина получить из соединений XIV с использованием фосфороксихлорида, 1,2,4-триазола В пиридине И последующим аммонолизом использованием аммиака(газ) изопропаноле В при комнатной получить температуре. Соединения формулы XVI ОНЖОМ соединений формулы XV С использованием соответствующей бороновой кислоты или пинаконового эфира (VIII), в присутствии подходящей палладиевой каталитической системы и растворителя, бис (дифенилфосфино) ферроцен например, комплекса палладий (II) хлорид или *тетракис* (трифенилфосфин) палладия (0) в присутствии карбоната калия в смеси диоксан/вода, с получением соединений формулы XVI. Наконец, отщепление защитной группы соединений с формулой XVI дает незащищенный амин, который после функционализации с использованием способов, хорошо известных в этой области техники, и соответствующих реакционноспособных групп, имеющих определенные выше значения, дает соединения формулы I. Примером такой защитной стратегии является использование бензилоксикарбонильной защитной группы для защиты амина от используемых аминокислот, что после снятия защиты с использованием 33% НВг/НОАс или концентрированной НС1 давало в результате амины.

Аминокислоты $HN(R_2)CR_3R_4)COOH$ являются либо коммерчески доступными, либо их можно легко получить с использованием способов, хорошо известных специалистам в данной области органической химии, для введения защитных групп, таких как бензилоксикарбонил или $\mathit{трет}$ -бутилоксикарбонил.

Палладиевые катализаторы и условия для образования

пинаконовых эфиров или для связывания бороновых кислот или пинаконовых эфиров с 1-бромимидазо[1,5-а]пиразин-8-амином хорошо известны специалистам в области органической химии - см., например, Ei-ichi Negishi (Editor), Armin de Meijere (Associate Editor), Handbook of Organopalladium Chemistry for Organic Synthesis, John Wiley and Sons, 2002.

Настоящее изобретение также охватывает своим объемом все стереоизомерные формы 8-аминоимидазо[1,5-а]пиразиновых и 4аминоимидазо[1,5-f][1,2,4] триазиновых производных В соответствии с настоящим изобретением, являющиеся результатом, например, конфигурационной или геометрической изомерии. Такие стереоизомерные формы представляют собой энантиомеры, диастереоизомеры, цис- и транс-изомеры и т.д. Например, когда азепан-2-карбоновую кислоту используют в качестве аминокислоты, существует смесь двух энантиомеров. В случае отдельных стереоизомеров соединений формулы I или их солей или сольватов, настоящее изобретение включает вышеуказанные стереоизомеры по существу свободные от, то есть, связанные с менее чем 5%, предпочтительно менее 2% и, в частности, менее 1%, другого Смеси стереоизомеров стереоизомера. в любой пропорции, например, рацемическая смесь, содержащая по существу равные количества двух энантиомеров, также включены в объем настоящего изобретения.

Для хиральных соединений хорошо известны в данной области методы асимметрического синтеза, в результате чего получают чистые стереоизомеры, например, синтез с хиральной индукцией, синтез, исходя из хиральных промежуточных соединений, энантиоселективные ферментативные преобразования, разделение стереоизомеров с использованием хроматографии на хиральной среде. Такие способы описаны в Chirality in Industry (под редакцией A.N. Collins, G.N. Sheldrake and J. Crosby, 1992; John Wiley). Таким же образом, в данной области хорошо известны способы синтеза геометрических изомеров.

8-Аминоимидазо[1,5-a] пиразиновые и 4-аминоимидазо[1,5-f] [1,2,4] триазиновые производные по настоящему изобретению, которые могут быть в форме свободного основания, можно выделить

из реакционной смеси в виде фармацевтически приемлемой соли. Фармацевтически приемлемые соли также можно получить путем обработки свободного основания формулы I органической или неорганической кислотой, такой как хлористоводородная, бромистоводородная, йодистоводородная, серная кислота, фосфорная кислота, уксусная кислота, пропионовая кислота, ГЛИКОЛЕВАЯ КИСЛОТА, МАЛЕИНОВАЯ КИСЛОТА, МАЛОНОВАЯ КИСЛОТА, метансульфоновая кислота, фумаровая кислота, янтарная кислота, лимонная кислота, бензойная кислота винная кислота, аскорбиновая кислота.

8-Аминоимидазо[1,5-а] пиразиновые и 4-аминоимидазо[1,5-f][1,2,4] триазиновые производные по настоящему изобретению также существуют в виде аморфных форм. Также возможны несколько кристаллических форм. Все физические формы включены в объем настоящего изобретения.

Общеизвестно получение сольватов. Таким образом, например, M. Caira et al, J. Pharmaceutical Sci., 93(3), 601-611 (2004) описывает получение сольватов противогрибкового флуконазола в этилацетате, а также из воды. Подобные получения сольватов, полусольватов, гидратов и т.п. описаны в Е. С. van Tonder etal, AAPS PharmSciTech., 5(1), article 12 (2004); и в А. L. et al, Chem. Commun. 603-604 (2001). неограничивающий способ включает растворение соединения по настоящему изобретению в желаемых количествах желаемого растворителя (органического вещества или воды или их смеси) при температуре, более высокой, чем температура окружающей среды, и охлаждение раствора со скоростью, достаточной для образования кристаллов, которые затем выделяют стандартными способами. Аналитические методы, такие как, например, ИК-спектроскопия, показывают присутствие растворителя (или воды) в кристаллах в виде сольвата (или гидрата).

Настоящее изобретение также охватывает изотопно-меченные соединения по настоящему изобретению, которые идентичны тем, которые указаны в настоящей заявке, но при этом один или несколько атомов замещены атомом, имеющим атомную массу или массовое число, отличное от атомной массы или массового числа,

обычно встречающихся в природе. Примеры изотопов, которые могут быть включены в соединения по настоящему изобретению, включают изотопы водорода, углерода, азота, кислорода, фосфора, фтора и хлора, такие как 2 H, 3 H, 13 C, 14 C, 15 N, 17 O, 18 O, 31 P, 32 P, 35 S, 18 F и 36 Cl, соответственно.

Некоторые меченные изотопами соединения Ι (например, меченные изотопами 3 H и 14 C) являются полезными в анализах распределения соединения и/или тканей субстрата. Изотопы трития (то есть, 3 H) и углерода-14 (то есть, 14 C) являются особенно предпочтительными из-за простоты их получения и возможность обнаружения. Кроме того, замещение более тяжелыми изотопами, такими как дейтерий (то есть, 2 H) может давать определенные терапевтические преимущества в результате более высокой метаболической стабильности (например, увеличенный период полураспада in vivo или снижение уровня необходимых доз), и, следовательно, могут быть предпочтительными в некоторых обстоятельствах. Изотопно-меченные соединения формулы I обычно можно получить, следуя процедурам, аналогичным тем, которые раскрыты далее в Схемах и/или в Примерах, путем замещения не меченного изотопом реагента соответствующим изотопно-меченным реагентом.

Изобретение проиллюстрировано следующими примерами.

Примеры

Следующие примеры представляют собой иллюстративные варианты воплощения настоящего изобретения, при этом никоим образом не ограничивая объем настоящего изобретения. Реагенты являются коммерчески доступными, или их получают в соответствии с процедурами, описанными в литературе.

Масс-спектрометрия: спектры, получаемые методом электронного распыления, регистрировали на масс-спектрометре Applied Biosystems API-165 с одной квадрупольной линзой в режиме чередования положительных и отрицательных ионов, с использованием проточно-инжекционного метода. Массовый диапазон составлял 120-2000 Да, и сканирование осуществляли с размером шага 0,2 Да, и капиллярное напряжение устанавливали на 5000 В. Для распыления использовали N_2 -газ.

LC-MS спектрометр (Waters) Детектор: PDA (200-320 нм), Macc-детектор: ZQ

Элюенты: А: ацетонитрил с 0,05% трифторуксусной кислоты, В: ацетонитрил/вода = 1/9 (об/об) с 0,05% трифторуксусной кислоты

Meтод LCMS (A)

Колонка 1: Chromolith Performance, RP-18e, 4,6×100 мм, Градиентный метод: Поток: 4 мл/мин

Время (мин.)	A (%)	В (%)
0,00	100	0
3,60	0	100
4,00	0	100
4,05	100	0
6,00	100	0

Meтод LCMS (В)

Колонка 2: XBridge C18, 3,5 мкм, 4,6 \times 20 мм

Градиентный метод: Поток: 4 мл/мин

Время (мин.)	A (%)	B (%)
0,0	100	0
1,60	0	100
3,10	0	100
3,20	100	0
5 , 00	100	0

UPLC: Система Water acquity UPLC; Колонка: BEH C18 1,7
мкм, 2,1×100 мм, Детектор: PDA (200-320 нм), Масс-детектор: SQD
Элюенты: А: ацетонитрил с 0,035% трифторуксусной кислоты,
В: ацетонитрил/вода=1/9 (об/об) с 0,035% трифторуксусной кислоты

Метод	UPLC	(A)	UPLC (B)		UPLC (C)	
	Метод 60_100		Метод 40_80		<i>Метод 0_60</i>	
	Поток: 0,75 мл/мин		Поток: 0,65		Поток:0,60	
			мл/	мл/мин		мл/мин
Время	A (%)	B(%)	A(%)	B(%)	A(%)	B(%)
(MNH.)						
0,0	40	60	60	40	100	0

3,00	0	100	20	80	40	60
3,20	0	100	0	100	0	100
3,69	0	100	0	100	0	100
3,70	40	60	60	40	100	0

Препаративную ВЭЖХ осуществляли на колонке $(50\times10~\text{мм}~\text{в.д.},$ 5 мкм, Xterra Prep MS C18) при скорости потока 5 мл/мин, объем вводимой пробы 500 мкл, при комнатной температуре и УФ детекции при 210 нм.

Следующие сокращения используют повсеместо в настоящей заявке в соответствии с химической терминологией:

НАТИ О-(7-Азабензотриазол-1-ил)-1, 1, 3, 3-тетраметилуроний гексафторфосфат Сbz Бензилоксикарбонил

DMF N, N-Диметилформамид

DCM Дихлорметан

EtOAc Этилацетат

DIPEA N, N-Диизопропилэтиламин

ТГФ Тетрагидрофуран

EtOH Этанол

EDCI.HCl 1-(3-Диметиламинопропил)-3-этилкарбодиимид. гидрохлорид

4-DMAP 4-Диметиламинопиридин

РуВОР О-Бензотриазол-1-ил-окситриспирролидинофосфоний

гексафторфосфат

ТВТИ О-Бензотриазол-1-ил-N, N, N', N'-тетраметилуроний

тетрафторборат

HBr Бромистый водород

HCl Хлористый водород

НОАс Уксусная кислота

Z Бензилоксикарбонил

Pro Пролин

POCl₃ Фосфороксихлорид

ВЭЖХ Высокоэффективная жидкостная хроматография

UPLC

LiHMDS Гексаметилдисилазид лития

МеОН Метанол

Gly Глицин

Ala Аланин

n-BuLi н-Бутиллитий

СО2 Диоксид углерода

Названия конечных продуктов в примерах были получены с использованием Chemdraw Ultra (версия 9.0.7).

Промежуточное соединение 1

(S) –Бензил 2-(8-амино-1-бромимидазо[1,5-а] пиразин-3-ил) пирролидин-1-карбоксилат

(а) (3-Хлорпиразин-2-ил) метанамин. гидрохлорид

К раствору 3-хлорпиразин-2-карбонитрила (160 г, 1,147 моль) в уксусной кислоте (1,5 л) добавляли никель Ренея (50% воде, 70 г, 409 ммоль). Полученную смесь суспензия в перемешивали под давлением 4 бар $(4,079 \text{ кг/cm}^2)$ водорода при комнатной температуре в течение ночи. Никель Ренея удаляли при помощи фильтрации через декалит и фильтрат концентрировали при пониженном давлении И упаривали совместно с толуолом. Оставшееся твердое коричневое вещество растворяли в этилацетате при 50°C и охлаждали на бане со льдом. Добавляли 2M раствор хлористого водорода в диэтиловом эфире (1,14 л) в течение 30 минут. Смесь оставляли перемешиваться при комнатной температуре в течение уик-энда. Кристаллы собирали при помощи фильтрации, промывали диэтиловым эфиром и сушили при пониженном давлении при 40°C. Полученное твердое коричневое вещество растворяли в

метаноле при 60° С. Смесь фильтровали и частично концентрировали, охлаждали до комнатной температуры и добавляли диэтиловый эфир (1000 мл). Смесь оставляли перемешиваться при комнатной температуре в течение ночи. Образованные твердые вещества собирали при помощи фильтрации, промывали диэтиловым эфиром и сушили при пониженном давлении при 40° С с получением 153,5 г (3-хлорпиразин-2-ил) метанамин. гидрохлорида в виде коричневого твердого вещества (74,4%, содержание 77%).

(b) (S) –бензил 2 – ((3-хлорпиразин-2-ил) метилкарбамоил) пирролидин-1 – карбоксилат

К раствору (3-хлорпиразин-2-ил) метанамин. НС1 (9,57 г, 21,26 ммоль, 40% вес.) и Z-Pro-OH (5,3 г, 21,26 ммоль) в дихлорметане (250 мл) добавляли триэтиламин (11,85 мл, 85 ммоль) и реакционную смесь охлаждали до 0°С. Через 15 минут перемешивания при 0°С добавляли НАТИ (8,49 г, 22,33 ммоль). Смесь перемешивали в течение 1 часа при 0°С и затем в течение ночи при комнатной температуре. Смесь промывали 0,1 М раствором НС1, 5% раствором NaHCO3, водой и насыщенным солевым раствором, сушили над сульфатом натрия и концентрировали в вакууме. Продукт очищали с использованием хроматографии на силикагеле (гептан/этилацетат=1/4 об/об%) с получением 5 г (S)-бензил 2- ((S)-хлорпиразин-S-ил) метилкарбамоил) пирролидин-S-карбоксилата (S).

- (c) (S) –Бензил 2-(8-хлоримидазо[1,5-а] пиразин-3-ил) пирролидин-1-карбоксилат
- (S)-Бензил $2-((3-хлорпиразин-2-ил) метилкарбамоил) пирролидин-1-карбоксилат <math>(20,94\,$ ммоль, $7,85\,$ г) растворяли в ацетонитриле $(75\,$ мл), добавляли 1,3-диметил-2-имидазолидинон $(62,8\,$ ммоль, $6,9\,$ мл, $7,17\,$ г) и реакционную смесь охлаждали до 0° С перед добавлением $POCl_3$ $(84\,$ ммоль, $7,81\,$ мл, $12,84\,$ г) по каплям, поддерживая при этом температуру около 5° С. Реакционную смесь кипятили с обратным холодильником при $60-65^{\circ}$ С в течение ночи. Реакционную смесь выливали осторожно в 25° раствор гидроксида аммония в воде $(250\,$ мл)/колотый лед $(500\,$ мл) с получением желтой суспензии (pH~8-9), которую перемешивали в

течение 15 минут до тех пор, пока в суспензии больше не оставалось льда. Добавляли этилацетат, слои разделяли и водный слой экстрагировали этилацетатом (3x). Органические слои объединяли и промывали насыщенным солевым раствором, сушили над сульфатом натрия, фильтровали и упаривали с получением 7,5 г неочищенного продукта. Неочищенный продукт очищали с использованием хроматографии на силикагеле (гептан/этилацетат=1/4 об/об%) с получением 6,6 г (S)-бензил 2-(8-хлоримидазо[1,5-а]пиразин-3-ил) пирролидин-1-карбоксилата (88%).

(d) (S)-Бензил 2-(1-бром-8-хлоримидазо[1,5-а]пиразин-3-ил) пирролидин-1-карбоксилат

(24**,**69 ммоль, 4,4 г) N-Бромсукцинимид добавляли перемешиваемому раствору (S)-бензил 2-(8-хлоримидазо[1,5а]пиразин-3-ил)пирролидин-1-карбоксилата (24,94 ммоль, 8,9 г) в DMF (145 мл). Реакционную смесь перемешивали 3 часа при Смесь выливали комнатной температуре. (медленно) перемешиваемую смесь воды (145 мл), этилацетата (145 мл) и насыщенного солевого раствора (145 мл). Смесь затем переносили экстрагировали. делительную воронку и Водный слой экстрагировали при помощи 2×145 мл этилацетата. Объединенные органические слои промывали при помощи 3×300 мл воды, 300 мл насыщенного солевого раствора, сушили над сульфатом натрия, фильтровали и упаривали. Продукт очищали с использованием хроматографии на силикагеле (этилацетат/гептан=3/1 об/об%) с получением 8,95 Г (S)-бензил 2-(1-бром-8-хлоримидазо[1,5а] пиразин-3-ил) пирролидин-1-карбоксилата (82,3%).

- (e) (S)-Бензил 2-(8-амино-1-бромимидазо[1,5-а]пиразин-3-ил) пирролидин-1-карбоксилат
- (S) –Бензил 2-(8-амино-1-бромимидазо[1,5-а]пиразин-3ил) пирролидин-1-карбоксилат (20,54 ммоль, 8,95 r) суспендировали в 2-пропаноле (113 мл) в сосуде высокого -78°C давления. 2-Пропанол (50 мл) охлаждали ДО предварительно взвешенной колбе (с пробкой и магнитным стержнем) и загружали газообразный аммиак (646 ммоль, 11 г) в

течение 15 минут. Полученный раствор добавляли к суспензии в сосуде высокого давления. Сосуд закрывали и перемешивали при температуре и наблюдали небольшое увеличение давления. Затем суспензию нагревали до 110°C, что привело к повышению давления до 4,5 бар $(4,589 \text{ кг/см}^2)$. Чистый раствор перемешивали при 110°C, 4,5 бар в течение ночи. Через 18 часов давление оставалось 4 бар. Реакционную смесь концентрировали в вакууме, остаток суспендировали в этилацетате и далее промывали водой. Слои разделяли И водный слой экстрагировали этилацетатом. Объединенные органические слои промывали водой, насыщенным раствором хлорида натрия, сушили над сульфатом натрия и концентрировали с получением 7,35 г (S)-бензил 2-(8амино-1-бромимидазо[1,5-а]пиразин-3-ил)пирролидин-1карбоксилата (86%).

Промежуточное соединение 2

- (S) -4- (8-Амино-3- (пирролидин-2-ил) имидазо[1,5-а] пиразин-1-ил)-N- (пиридин-2-ил) бензамид
- (а) (S) –Бензил 2-(8-амино-1-(4-(пиридин-2-илкарбамоил) фенил) имидазо <math>[1,5-a] пиразин-3-ил) пирролидин-1-карбоксилат
- (S)-Бензил 2-(8-амино-1-бромимидазо[1,5-а]пиразин-3-ил)пирролидин-1-карбоксилат $(0,237\,$ ммоль, $98,5\,$ мг) и 4-(пиридин-2-ил-аминокарбонил)бензолбороновую кислоту $(0,260\,$ ммоль, $63,0\,$ мг) суспендировали в смеси $2N\,$ водного раствора карбоната калия $(2,37\,$ ммоль, $1,18\,$ мл) и диоксана $(2,96\,$ мл).

Азот барботировали через смесь с последующим добавлением 1,1'-бис (дифенилфосфино) ферроцен палладий (ii) хлорида (0,059 ммоль, 47,8 мг). Реакционную смесь нагревали в течение 20 минут при $140\,^{\circ}$ С в микроволновой печи. В реакционную смесь добавляли воду с последующей экстракцией этилацетатом (2х). Объединенный органический слой промывали насыщенным солевым раствором, сушили над сульфатом магния и упаривали. Продукт очищали с использованием силикагеля и смеси дихлорметан/метанол=9/1 06/06% в качестве элюента с получением 97,1 мг (S)-бензил 2-(8-амино-1-(4-(пиридин-2-илкарбамоил) фенил) имидазо[1,5-а] пиразин-3-ил) пирролидин-1-карбоксилата (77%).

(b) (S)-4-(8-Амино-3-(пирролидин-2-ил) имидазо[1,5-а] пиразин-1-ил)-N-(пиридин-2-ил) бензамид

К (S)-бензил 2-(8-амино-1-(4-(пиридин-2-илкарбамоил) фенил) имидазо [1,5-а] пиразин-3-ил) пирролидин-1-карбоксилату (0,146 ммоль, 78 мг) добавляли раствор 33% бромистоводородная кислота/уксусная кислота (11,26 ммоль, 2 мл) и смесь оставляли при комнатной температуре в течение 1 часа. Смесь разбавляли водой и экстрагировали дихлорметаном. Водную фазу нейтрализовали с использованием 2N раствора гидроксида натрия и затем экстрагировали дихлорметаном. Органический слой сушили над сульфатом магния, фильтровали и упаривали с получением 34 мг (S)-4-(8-амино-3-(пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил)-N-(пиридин-2-ил) бензамида (S8%).

Пример 1

(S) -4-(3-(1-Акрилоилпирролидин-2-ил) -8-аминоимидазо [1, 5-

а]пиразин-1-ил)-N-(пиридин-2-ил)бензамид

К раствору (S)-4-(8-амино-3-(пирролидин-2-ил) имидазо[1,5а] π пиразин-1-ил) -N- (π пиридин-2-ил) бензамида (0,626 ммоль, 250 мг) в дихлорметане (25 мл) при 0°С добавляли триэтиламин (0,626 ммоль, 0,087 мл, 63,3 мг) и по каплям добавляли акрилоилхлорид (0,657 ммоль, 0,053 мл, 59,5 мг). Полученную смесь перемешивали при 0°C в течение 2 часов. Смесь промывали водой, сушили над сульфатом магния. После упаривания остаток очищали при помощи препаративной ВЭЖХ. Фракции, содержащие продукт, собирали и получением 126 (S) - 4 - (3 - (1 лиофилизировали С МΓ акрилоилпирролидин-2-ил) -8-аминоимидазо [1,5-а] пиразин-1-ил) -N-(пиридин-2-ил) бензамида (44,4% выход). Данные: UPLC (C) R_t : 1,50 MUH; m/z 454,3 $(M+H)^+$.

Пример 2

(S,E) – 4- (8-амино-3- (1- (4- (пирролидин-1-ил) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) –N- (пиридин-2-ил) бензамид

К раствору (S)-4-(8-амино-3-(пирролидин-2-ил) имидазо [1,5а]пиразин-1-ил)-N-(пиридин-2-ил)бензамида (промежуточное соединение 2b, 19,7 мг, 0,049 ммоль), триэтиламина (20 мг, 0,197 ммоль, 0,027 мл) и гидрохлорида (E)-4- (пирролидин-1ил) бут-2-еновой кислоты (9,45 мг, 0,049 ммоль) в дихлорметане (2 мл) добавляли HATU (18**,**75 $M\Gamma$, 0,049 ммоль). перемешивали в течение 30 минут при комнатной температуре. промывали водой, СУШИЛИ над сульфатом магния концентрировали в вакууме. Остаток очищали при помощи

препаративной ВЭЖХ. Фракции, содержащие продукт, собирали и упаривали досуха с получением 7,1 мг (S,E)-4-(8-амино-3-(1-(4-(пирролидин-1-ил) бут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N-<math>(пиридин-2-ил) бензамида (26,8% выход). Данные: UPLC (C) R_t : 1,25 мин; m/z 537,4 $(M+H)^+$.

Пример 3

(S,E) -4- (8-амино-3- (1- (4- (диметиламино) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2- ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из соединения, описанного в промежуточном соединении 2b, и (E)-4-(диметиламино) бут-2-еновой кислоты, с получением указанного в заголовке соединения (11,8 мг, 46,6%). Данные: UPLC (C) R_t : 1,29 мин; m/z 511,0 (M+H) $^+$.

Промежуточное соединение 3

(E) -4-Метоксибут-2-еновая кислота

Метоксид натрия (30%/Метанол, 30,3 ммоль, 5,68 мл) добавляли через стеклянный шприц к перемешиваемому раствору 4-бромкротоновой кислоты (6,06 ммоль, 1 г) в метаноле (60 мл) при комнатной температуре. Светло-желтый раствор перемешивали в течение 30 минут при комнатной температуре и в течение 2 часов при кипячении с обратным холодильником. После охлаждения реакционной смеси растворитель удаляли при пониженном давлении. Остаток распределяли между водой (50 мл) и диэтиловым эфиром (50 мл). Добавляли 2М водный раствор гидрохлорида (3,5 мл) до тех пор, пока рН не достигал \sim pH 1. Водный слой отделяли и

экстрагировали диэтиловым эфиром (3×20 мл). Объединенные органические слои промывали насыщенным солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали в вакууме, с получением 650 мг (E)-4-метоксибут-2-еновой кислоты (92%).

Пример 4

(S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из соединения, описанного в Промежуточном соединении 2b, и (E)-4-метоксибут-2-еновой кислоты (промежуточное соединение 3), с получением указанного в заголовке соединения (11 мг, 29,9%). Данные: UPLC (C) R_t : 1,58 мин; m/z 498,3 $(M+H)^+$.

Пример 5

(S) -4- (8-амино-3- (1- (2-хлорпиримидин-4- карбонил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N-

(пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из соединения, описанного в промежуточном соединении 2b, и 2-хлорпиримидин-4-карбоновой кислоты, с получением указанного в заголовке соединения (8,3 мг, 40,4%). Данные: UPLC (C) R_t : 1,64 мин; m/z 540,1 (M+H) $^+$.

Пример 6

(S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-ил) имидазо [1, 5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из соединения, описанного в промежуточном соединении 2b, и 2-бутиновой кислоты, с получением указанного в заголовке соединения (10,5 мг, 18,0%). Данные: LCMS (B) R_t : 2,08 мин; m/z 466,1 (M+H) $^+$.

Промежуточное соединение 4

 $N-(4-\Phi$ торпиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензамид

(a) 4-(4,4,5,5-Тетраметил-1,3,2-диоксаборолан-2ил) бензоилхлорид

К холодному (0°С) раствору 4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензойной кислоты (40,3 ммоль, 10,01 г) в дихлорметане (206 мл) добавляли каталитическое количество DMF. Раствор оксалилхлорида (101 ммоль, 8,66 мл, 12,8 г) добавляли по каплям. После перемешивания в течение 30 минут при 0°С реакционную смесь оставляли нагреваться до комнатной температуры и смесь перемешивали в течение дополнительных 3 часов. Реакционную смесь концентрировали с получением 10,9 г неочищенного 4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензоилхлорида (101%).

(b) N- $(4-\Phi$ торпиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензамид

К раствору 4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензоилхлорида $(1,688\,$ ммоль, $450\,$ мг) в ацетонитриле $(24,8\,$ мл) добавляли 2-амино-4-фторпиридин $(4,22\,$ ммоль, $473\,$ мг). Реакционную смесь перемешивали при комнатной температуре в течение $1,5\,$ часов. Реакционную смесь концентрировали до небольшого объема, добавляли $38\,$ водный раствор лимонной кислоты $(18\,$ мл) и смесь экстрагировали дихлорметаном $(2\times15\,$ мл). Объединенный органический слой промывали $38\,$ водным раствором лимонной кислоты, сушили над сульфатом магния, фильтровали и упаривали с получением $542,2\,$ мг N-(4-фторпиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензамида $(948)\,$ в виде не совсем белого твердого вещества.

Промежуточное соединение 5

(S) -4-(8-Амино-3-(пирролидин-2-ил) имидазо [1, 5-а] пиразин-1-ил) -N-(4-фторпиридин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 2b, из (S)-бензил 2-(8-амино-1-бромимидазо[1,5-а]пиразин-3-ил)пирролидин-1-карбоксилата (промежуточное соединение 1e) и N-(4-фторпиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)бензамида (промежуточное соединение 4b) с получением указанного в заголовке соединения (331 мг, 93%).

Пример 7

(S,E) –4- (8-Амино-3- (1- (4- (диметиламино) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) –N- (4- фторпиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в

Примере 2, из соединения, описанного в промежуточном соединении 5, и (E)-4-(диметиламино)бут-2-еновой кислоты, с получением указанного в заголовке соединения (33,4 мг, 54,1%). Данные: UPLC (C) R_t : 1,72 мин; m/z 529,3 $(M+H)^+$.

Промежуточное соединение 6

N-(4-Метилпиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2- диоксаборолан-2-ил) бензамид

К перемешиваемому раствору 4-метилпиридин-2-амина (7,86 850 мг) в ТГФ (50 мл) при комнатной температуре ммоль, добавляли по каплям раствор 1M LiHMDS в $T\Gamma\Phi$ (8,0 ммоль, 8 мл). Когда реакционная смесь становилась темно-зеленой, добавляли по 4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2каплям раствор ил) бензоилхлорида (9,6 ммоль, 2,56 г) в дихлорметане (55 мл). Смесь перемешивали при комнатной температуре в течение 2,5 часов и затем концентрировали. Добавляли 3% водный раствор лимонной кислоты (18 мл) и смесь экстрагировали дихлорметаном (2×15 мл). Объединенный органический слой промывали 3% водным раствором лимонной кислоты, сушили над сульфатом магния, фильтровали и упаривали. Остаток растворяли в ТГФ (15 мл) и добавляли 6М NaOH раствор (15 мл). Смесь перемешивали в течение 4 часов при комнатной температуре. Добавляли этилацетат и слои Органический слой промывали водой и насыщенным солевым раствором, сушили над сульфатом натрия, фильтровали и упаривали. Остаток очищали при помощи хроматографии на силикагеле (элюент: DCM/MeOH=98/2 до DCM/MeOH=95/5) с получением 1,1 г N-(4-метилпиридин-2-ил)-4-(4,4,5,5-тетраметил1,3,2-диоксаборолан-2-ил)бензамида (40,7%).

Промежуточное соединение 7

(S) -4- (8-Амино-3- (пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-метилпиридин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 2, из (S)-бензил 2-(8-амино-1-бромимидазо[1,5-а] пиразин-3-ил) пирролидин-1-карбоксилата (промежуточное соединение 1е) и N-(4-метилпиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензамида (промежуточное соединение 6) с получением указанного в заголовке соединения (125,5 мг, 82%).

Пример 8

(S) -4-(8-Амино-3-(1-бут-2-иноилпирролидин-2-ил) имидазо[1,5-а] пиразин-1-ил) -N-(4-метилпиридин-2-ил) бензамид Это соединение получали способом, аналогичным описанному в

Примере 2, из (S)-4-(8-амино-3-(пирролидин-2-ил) имидазо[1,5-a] пиразин-1-ил)-N-(4-метилпиридин-2-ил) бензамида (промежуточное соединение 7) и 2-бутиновой кислоты, с получением указанного в заголовке соединения (6,3 мг, 27,2%). Данные: UPLC (C) Rt: 1,56 мин; m/z 480,3 (M+H)⁺.

Промежуточное соединение 8

N-(4-Пропилпиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2- диоксаборолан-2-ил) бензамид

Это соединение получали способом, аналогичным описанному для промежуточного соединения 6, исходя из 4-пропилпиридин-2-амина, с получением указанного в заголовке соединения (371,5 мг, 54,1%).

Промежуточное соединение 9

(S) -4- (8-Амино-3- (пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-пропилпиридин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 2, из (S)-бензил 2-(8-амино-1-бромимидазо[1,5-а]пиразин-3-ил)пирролидин-1-карбоксилата (промежуточное соединение 1e) и N-(4-пропилпиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)бензамида (промежуточное соединение 8) с получением указанного в заголовке соединения (147,8 мг, 93%).

Пример 9

(S,E) — 4— (8—Амино—3— (1— (4—метоксибут—2—еноил) пирролидин—2—ил) имидазо [1,5—а] пиразин—1—ил) — N— (4—пропилпиридин—2—ил) бензамид Это соединение получали способом, аналогичным описанному в Примере 2, из (S) — 4— (8—амино—3— (пирролидин—2—ил) имидазо [1,5—а] пиразин—1—ил) — N— (4—пропилпиридин—2—ил) бензамида (промежуточное соединение 9) и (E) —4—метоксибут—2—еновой кислоты (промежуточное соединение 3), с получением указанного в заголовке соединения (30,9 мг, 65,7%). Данные: UPLC (C) R_t : 2,73 мин; m/z 566,3 $(M+H)^+$.

Промежуточное соединение 10

4-(4,4,5,5-Тетраметил-1,3,2-диоксаборолан-2-ил)-N-(4-(трифторметил) пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному для промежуточного соединения 6, исходя из 4- (трифторметил) пиридин-2-амина, с получением указанного в заголовке соединения (657,2 мг, 89%).

Промежуточное соединение 11

(S) -4- (8-Амино-3- (пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-(трифторметил) пиридин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 2, из (S)-бензил 2-(8-амино-1-бромимидазо[1,5-а]пиразин-3-ил)пирролидин-1-карбоксилата (промежуточное соединение 1e) и 4-(4,4,5,5- тетраметил-1,3,2-диоксаборолан-2-ил)-N-(4-

(трифторметил) пиридин-2-ил) бензамида (промежуточное соединение

10) с получением указанного в заголовке соединения (163 мг, 87%).

Пример 10

(S) – 4 – (8 – Амино – 3 – (1 – бут – 2 – иноилпирролидин – 2 – ил) имидазо [1, 5 – а] пиразин – 1 – ил) – N – (4 – (трифторметил) пиридин – 2 – ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из (S)-4-(8-амино-3-(пирролидин-2-ил)имидазо[1,5-а]пиразин-1-ил)-N-(4-(трифторметил)пиридин-2-ил)бензамида (промежуточное соединение 11) и 2-бутиновой кислоты, с получением указанного в заголовке соединения (7,1 мг, 31,1%). Данные: UPLC (C) R_t: 2,63 мин; m/z 534,2 (M+H)+.

Промежуточное соединение 12

N-(4-Этилпиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2- диоксаборолан-2-ил) бензамид

Это соединение получали способом, аналогичным описанному для промежуточного соединения 4, исходя из 4-этилпиридин-2-

амина, с получением указанного в заголовке соединения (334,5 $\,$ мг, 50,6%).

Промежуточное соединение 13

(S) -4- (8-Амино-3- (пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-этилпиридин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 2, из (S) - бензил 2-(8-амино-1-бромимидазо[1,5-а] пиразин-3-ил) пирролидин-1-карбоксилата (промежуточное соединение 1e) и N-(4- этилпиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензамида (промежуточное соединение 12) с получением указанного в заголовке соединения (133,8 мг, 89%).

Пример 11

(S,E) – 4- (8-Амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) –N- (4-этилпиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из (S)-4-(8-амино-3-(пирролидин-2-ил)имидазо[1,5-а]пиразин-1-ил)-N-(4-этилпиридин-2-ил)бензамида (промежуточное соединение 13) и (E)-4-метоксибут-2-еновой кислоты (промежуточное соединение 3), с получением указанного в заголовке соединения (10,6) мг, (28,8)%(10,6) мин; (10,6) мг, (1

Промежуточное соединение 14

N-(4,5,6,7-Тетрагидробензо[d]тиазол-2-ил)-4-(4,4,5,5тетраметил-1,3,2-диоксаборолан-2-ил)бензамид

(a) 4-Бром-N-(4,5,6,7-тетрагидробензо[d] тиазол-2ил) бензамид

4-Бромбензоилхлорид (1,5 г, 6,83 ммоль) и 4,5,6,7-тетрагидро-1,3-бензотиазол-2-амин (1,054 г, 6,83 ммоль) растворяли в пиридине (15 мл) и перемешивали при 50° С в течение 1,5 часов. Реакционную смесь охлаждали до комнатной температуры и выливали в воду. Образовавшееся твердое вещество фильтровали, промывали водой. Твердые вещества дважды совместно упаривали с толуолом с получением 1,8 г 4-бром-N-(4,5,6,7-тетрагидробензо[d]тиазол-2-ил) бензамида (78%) в виде желтого твердого вещества.

(b) N-(4,5,6,7-Тетрагидробензо[d] тиазол-2-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензамид

К раствору 4-бром-N-(4,5,6,7-тетрагидробензо[d] тиазол-2-ил) бензамида (1,8 г, 5,34 ммоль) в диоксане (40 мл) добавляли бис (пинаконато) дибор (1,762 г, 6,94 ммоль) и ацетат калия

 $(1,048\ r,\ 10,68\ mmoль)$. Реакционную смесь дегазировали азотом. Затем добавляли 1,1'-бис (дифенилфосфино) ферроценпалладий (II) дихлорид $(0,218\ r,\ 0,267\ mmoль)$ и реакционную смесь перемешивали при 80° С в течение 5 дней. Смесь охлаждали до комнатной температуры и после добавления воды экстрагировали три раза при помощи EtOAC. Органические слои объединяли, промывали насыщенным солевым раствором, сушили над сульфатом натрия, фильтровали и упаривали. Неочищенный продукт очищали с использованием хроматографии на силикагеле (гептан/этилацетат от 3/7 до 7/3 об/об%) с получением 600 мг N-(4,5,6,7- тетрагидробензо[d] тиазол-2-ил) -4-(4,4,5,5- тетраметил-1,3,2- диоксаборолан-2-ил) бензамида (29,3%).

Промежуточное соединение 15

(S) -4- (8-Амино-3- (пирролидин-2-ил) имидазо[1,5-а] пиразин-1-ил)-N- (4,5,6,7-тетрагидробензо[d] тиазол-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 2, из (S)-бензил 2-(8-амино-1-бромимидазо[1,5-а] пиразин-3-ил) пирролидин-1-карбоксилата (промежуточное соединение 1е) и N-(4,5,6,7-тетрагидробензо[d] тиазол-2-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензамида (промежуточное соединение 14b) с получением указанного в заголовке соединения (260 мг, 60%).

Пример 12

(S) -4- (8-Амино-3- (1-бут-2-иноилпирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4,5,6,7-тетрагидробензо [d] тиазол-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из (S)-4-(8-амино-3-(пирролидин-2-ил) имидазо[1,5-а] пиразин-1-ил)-N-(4,5,6,7-тетрагидробензо[d] тиазол-2-ил) бензамида (промежуточное соединение 15) и 2-бутиновой кислоты, с получением указанного в заголовке соединения (7 мг, 19,2%). Данные: UPLC (C) R_t : 2,41 мин; m/z 526,3 (M+H) $^+$.

Промежуточное соединение 16

 $2-\Phi$ тор-N- (пиридин-2-ил) -4- (4, 4, 5, 5-тетраметил-1, 3, 2-диоксаборолан-2-ил) бензамид

Это соединение получали способом, аналогичным описанному для промежуточного соединения 14, исходя из 4-бром-2-фторбензойной кислоты, с получением указанного в заголовке

соединения (2,54 г, 76%).

Промежуточное соединение 17

(S) –4- (8-Амино-3- (пирролидин-2-ил) имидазо [1,5-a] пиразин-1-ил) –2-фтор-N- (пиридин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 2, из (S)-бензил 2-(8-амино-1-бромимидазо[1,5-а]пиразин-3-ил)пирролидин-1-карбоксилата (промежуточное соединение 1e) и 2-фтор-N- (пиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензамида (промежуточное соединение 16) с получением указанного в заголовке соединения (160 мг, 76%).

Пример 13

(S) -4-(3-(1-акрилоилпирролидин-2-ил) -8-аминоимидазо [1,5-а] пиразин-1-ил) -2-фтор-N-(пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 1, из (S)-4-(8-амино-3-(пирролидин-2-ил)имидазо[1,5-

а] пиразин-1-ил) -2-фтор-N- (пиридин-2-ил) бензамида (промежуточное соединение 17) и акрилоилхлорид, с получением указанного в заголовке соединения (13 мг, 38,4%). Данные: UPLC (C) R_t : 1,67 мин; m/z 472,3 (M+H) $^+$.

Промежуточное соединение 18

2-Метокси-N-(пиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2диоксаборолан-2-ил) бензамид

Это соединение получали способом, аналогичным описанному для промежуточного соединения 14, исходя из 4-бром-2-метоксибензойной кислоты, с получением указанного в заголовке соединения $(2,6\ r,\ 90\%)$.

Промежуточное соединение 19

(S) -4- (8-Амино-3- (пирролидин-2-ил) имидазо[1,5-а] пиразин-1-ил) -2-метокси-N- (пиридин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 2, из (S)-

бензил 2-(8-амино-1-бромимидазо[1,5-а] пиразин-3-ил) пирролидин-1-карбоксилата (промежуточное соединение 1е) и <math>2-метокси-N-(пиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензамида (промежуточное соединение 18) с получением указанного в заголовке соединения (175 мг, 56,6%).

Пример 14

(S) -4- (3- (1-Акрилоилпирролидин-2-ил) -8-аминоимидазо [1,5-а] пиразин-1-ил) -2-метокси-N- (пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 1, из (S)-4-(8-амино-3-(пирролидин-2-ил)имидазо[1,5-а]пиразин-1-ил)-2-метокси-N-(пиридин-2-ил)бензамида (промежуточное соединение 19) и акрилоилхлорида, с получением указанного в заголовке соединения (14 мг, 35,5%). Данные: UPLC (C) R_t : 1,74 мин; m/z 484,3 $(M+H)^+$.

Промежуточное соединение 20

(S) -4-(8-Амино-3-(пирролидин-2-ил) имидазо [1,5-а] пиразин-1-

ил) -N- (тиазол-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 2, из (S)-бензил 2-(8-амино-1-бромимидазо[1,5-а]пиразин-3-ил)пирролидин-1-карбоксилата (промежуточное соединение 1e) и коммерчески доступного N-2-тиазолил 4-борбензамида с получением указанного в заголовке соединения (229 мг, 73,1%).

Пример 15

(S,E) – 4 – (8 – Амино – 3 – (1 – (4 – (диметиламино) бут – 2 – еноил) пирролидин – 2 – ил) имидазо [1,5 – а] пиразин – 1 – ил) – N – (тиазол – 2 – ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из (S)-4-(8-амино-3-(пирролидин-2-ил)имидазо[1,5-а]пиразин-1-ил)-N-(тиазол-2-ил)бензамида (промежуточное соединение 20) и (E)-4-(диметиламино)бут-2-еновой кислоты, с получением указанного в заголовке соединения (18,9 мг, 29,7%). Данные: UPLC (C) R_t : 1,38 мин; m/z 517,3 $(M+H)^+$.

Промежуточное соединение 21

(S) –4- (8-Амино-3- (пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) –N- (пиридин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 1, из (S) - 1 - (бензилоксикарбонил) пиперидин-2 - карбоновой кислоты с получением (S) - бензил 2 - (8 - амино-1 - бромимидазо [1,5 - а] пиразин-3 - ил) пиперидин-1 - карбоксилата. Следующая далее реакция с коммерчески доступной 4 - (пиридин-2 - ил- аминокарбонил) бензолбороновой кислотой, аналогичная описанной для промежуточного соединения 2, давала указанное в заголовке соединение (491 мг, 91%).

Пример 16

(S,E) -4- (8-Амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в

Примере 2, из (S) –4-(8-амино-3-(пиперидин-2-ил) имидазо[1,5-а] пиразин-1-ил) –N-(пиридин-2-ил) бензамида (промежуточное соединение 21) и (E) –4-метоксибут-2-еновой кислоты (промежуточное соединение 3), с получением указанного в заголовке соединения (21,1) мг, 54,3% . Данные: LCMS (B) R_t: 2,22 мин; m/z 512,3 (M+H)+.

Промежуточное соединение 22

(S) -4- (8-Амино-3- (пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-фторпиридин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 1, из (S) - 1 - (бензилоксикарбонил) пиперидин-2 - карбоновой кислоты с получением (S) - бензил 2 - (8 - амино-1 - бромимидазо [1,5 - a] пиразин-3 - ил) пиперидин-1 - карбоксилата. Следующая далее реакция с N - (4 - 4 фторпиридин-2 - ил) 4 -

Пример 17

(S) -4- (3- (1-Акрилоилпиперидин-2-ил) -8-аминоимидазо [1, 5-а] пиразин-1-ил) -N- (4-фторпиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 1, из (S)-4-(8-амино-3-(пиперидин-2-ил)имидазо[1,5-а]пиразин-1-ил)-N-(4-фторпиридин-2-ил)бензамида (промежуточное соединение 22) и акрилоилхлорида, с получением указанного в заголовке соединения (12 мг, 42,7%). Данные: UPLC(C) R_t : 2,29 мин; m/z 486,3 $(M+H)^+$.

Промежуточное соединение 23

N-(4-Цианопиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2- диоксаборолан-2-ил) бензамид

Это соединение получали способом, аналогичным описанному для промежуточного соединения 4, исходя из 2-аминоизоникотинонитрила, с получением указанного в заголовке соединения (1,3 г, 99%).

Промежуточное соединение 24

(S) –4- (8-Амино-3- (пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) –N- (4-цианопиридин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 1, из (S) - 1 - (бензилоксикарбонил) пиперидин-2 - карбоновой кислоты с получением (S) - бензил 2 - (8 - амино-1 - бромимидазо [1, 5 - a] пиразин-3 - ил) пиперидин-1 - карбоксилата. Следующая далее реакция с N - (4 - цианопиридин-2 - ил) -4 - (4, 4, 5, 5 - тетраметил-1, 3, 2 - диоксаборолан-2 - ил) бензамидом (промежуточное соединение 23), аналогичная описанной для промежуточного соединения 2, давала указанное в заголовке соединение (82 мг, 35, 7%).

(S) -4- (3-(1-Акрилоилпиперидин-2-ил) -8-аминоимидазо [1,5-а] пиразин-1-ил) -N- (4-цианопиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 1, из (S)-4-(8-амино-3-(пиперидин-2-ил)имидазо[1,5-а]пиразин-1-ил)-N-(4-цианопиридин-2-ил)бензамида (промежуточное соединение 24) и акрилоилхлорида, с получением указанного в заголовке соединения $(4,8 \text{ мг},\ 10,4\%)$. Данные: UPLC(C) R_t : 2,31 мин.

Промежуточное соединение 25

(S) -4- (8-Амино-3- (пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- (трифторметил) пиридин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 1, из (S) - 1 - (бензилоксикарбонил) пиперидин-2-карбоновой кислоты с получением (S) - бензил 2 - (8 - амино-1 - бромимидазо [1,5 - a] пиразин-3 - ил) пиперидин-1 - карбоксилата. Следующая далее реакция с 4 - (4,4,5,5 - тетраметил-1,3,2 - диоксаборолан-2 - ил) - N- (4 - (трифторметил) пиридин-2 - ил) бензамидом (промежуточное соединение 10), аналогичная описанной для промежуточного соединения 2 , давала указанное в заголовке соединение (144 мг, 59, 1%) .

Пример 19

(S) -4- (8-Амино-3- (1- (винилсульфонил) пиперидин-2- ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- (трифторметил) пиридин-2- ил) бензамил

Это соединение получали способом, аналогичным описанному в Примере 1, из (S)-4-(8-амино-3-(пиперидин-2-ил) имидазо[1,5-а] пиразин-1-ил)-N-(4-(трифторметил) пиридин-2-ил) бензамида (промежуточное соединение 25) и этенсульфонилхлорида, полученного в соответствии с процедурой, описанной King et.al. в Can. J. Chem. 66 (1988) pp1109-1116, с получением указанного в заголовке соединения $(6,1\ \text{мг},\ 20,5\%)$. Данные: UPLC(B) R_t : 1,24 мин; m/z 572,2 $(M+H)^+$.

Промежуточное соединение 26

N- (Пиримидин-2-ил) -4- (4, 4, 5, 5-тетраметил-1, 3, 2- диоксаборолан-2-ил) бензамид

Это соединение получали способом, аналогичным описанному для промежуточного соединения 14, исходя из 2-аминопиримидина,

с получением указанного в заголовке соединения (855 мг, 42,6%).

Промежуточное соединение 27

(S) -4- (8-Амино-3- (пиперидин-2-ил) имидазо [1, 5-а] пиразин-1-ил) -N- (пиримидин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 1, из (S) - 1 - (бензилоксикарбонил) пиперидин-2-карбоновой кислоты с получением (S) - бензил 2 - (8 - амино-1 - бромимидазо [1, 5 - a] пиразин-3 - ил) пиперидин-1 - карбоксилата. Следующая далее реакция с N- (пиримидин-2 - ил) - 4 - (4, 4, 5, 5 - тетраметил-1, 3, 2 - диоксаборолан-2 - ил) бензамидом (промежуточное соединение 26), аналогичная описанной для промежуточного соединения 2, давала указанное в заголовке соединение (100, 8 мг, 95, 4%).

Пример 20

(S) -4-(3-(1-Акрилоилпиперидин-2-ил) -8-аминоимидазо [1,5-а] пиразин-1-ил) -N-(пиримидин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 1, из (S)-4-(8-амино-3-(пиперидин-2-ил) имидазо[1,5-а] пиразин-1-ил) -N-(пиримидин-2-ил) бензамида (промежуточное соединение 27) и акрилоилхлорида, с получением указанного в заголовке соединения $(5,9\text{ мг},\ 26,2\%)$. Данные: UPLC(C) R_t : 1,70 мин; m/z 469,3 $(M+H)^+$.

Промежуточное соединение 28

N-(4-Mетилпиримидин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2- диоксаборолан-2-ил) бензамид

Это соединение получали способом, аналогичным описанному для промежуточного соединения 14, исходя из 2-амино-4-метилпиримидина, с получением указанного в заголовке соединения (420 мг, 60,6%).

Промежуточное соединение 29

(S) -4- (8-Амино-3- (пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-метилпиримидин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 1, из (S) - 1 - (бензилоксикарбонил) пиперидин-2-карбоновой кислоты с получением (S) - бензил 2 - (8 - амино-1 - бромимидазо [1,5 - a] пиразин-3 - ил) пиперидин-1 - карбоксилата. Следующая далее реакция с N - (4 - метилпиримидин-2 - ил) -4 - (4,4,5,5 - тетраметил-1, 3, 2 - диоксаборолан-2 - ил) бензамидом (промежуточное соединение 28), аналогичная описанной для промежуточного соединения 2, давала указанное в заголовке соединение (83 мг, 50,4%).

Пример 21

(S) -4-(3-(1-Акрилоилпиперидин-2-ил)-8-аминоимидазо[1,5-а] пиразин-1-ил)-N-(4-метилпиримидин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 1, из (S)-4-(8-амино-3-(пиперидин-2-ил) имидазо[1,5-а] пиразин-1-ил) -N- (4-метилпиримидин-2-ил) бензамида (промежуточное соединение 29) и акрилоилхлорида, с получением указанного в заголовке соединения $(4,5\text{ мг},\ 27,4\%)$. Данные: UPLC(C) R_t : 1,79 мин; m/z 483,3 $(M+H)^+$.

Промежуточное соединение 30

 $N-(\Pi$ иримидин-4-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензамид

Это соединение получали способом, аналогичным описанному для промежуточного соединения 14, исходя из 4-аминопиримидина, с получением указанного в заголовке соединения $(1 \, \text{г, } 59,4\%)$.

Промежуточное соединение 31

(S) -4- (8-Амино-3- (пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиримидин-4-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 1, из (S) - 1-(бензилоксикарбонил) пиперидин-2-карбоновой кислоты с получением (S) - бензил 2-(8-амино-1-бромимидазо[1,5-а] пиразин-3-ил) пиперидин-1-карбоксилата. Следующая далее реакция с N-(пиримидин-4-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензамидом (промежуточное соединение 30), аналогичная описанной для промежуточного соединения 2, давала указанное в

заголовке соединение (66 мг, 42,8%).

Пример 22

(S) -4- (8-Амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1, 5- а] пиразин-1-ил) -N- (пиримидин-4-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из (S)-4-(8-амино-3-(пиперидин-2-ил) имидазо[1,5-а] пиразин-1-ил) -N- (пиримидин-4-ил) бензамида (промежуточное соединение 31) и 2-бутиновой кислоты, с получением указанного в заголовке соединения $(10,3\text{ мг},\ 26,9\%)$. Данные: UPLC(C) R_t : 1,91 мин; m/z 481,3 $(M+H)^+$.

Промежуточное соединение 32

 $N-(\Pi$ иридазин-3-ил) -4-(4,4,5,5-тетраметил-1,3,2- диоксаборолан-2-ил) бензамид

Это соединение получали способом, аналогичным описанному для промежуточного соединения 14, исходя из 3-аминопиридазина, с получением указанного в заголовке соединения $(1,25\ r,\ 71,3\%)$.

Промежуточное соединение 33

(S) -4- (8-Амино-3- (пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил)-N- (пиридазин-3-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 1, из (S) - 1 - (бензилоксикарбонил) пиперидин-2-карбоновой кислоты с получением (S) - бензил 2 - (8 - амино-1 - бромимидазо [1, 5 - a] пиразин-3 - ил) пиперидин-1 - карбоксилата. Следующая далее реакция с N- (пиридазин-3 - ил) - 4 - (4, 4, 5, 5 - тетраметил-1, 3, 2 - диоксаборолан-2 - ил) бензамидом (промежуточное соединение 32) и реакция удаления защиты, аналогичные описанным для промежуточного соединения 2, давали указанное в заголовке соединение (258 мг, 85%).

Пример 23

(S) –4- (8-Амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5- а] пиразин-1-ил) –N- (пиридазин-3-ил) бензамид

Это соединение получали способом, аналогичным описанному в

Примере 2, из (S) –4-(8-амино-3-(пиперидин-2-ил)имидазо[1,5-а]пиразин-1-ил) –N-(пиридазин-3-ил) бензамида (промежуточное соединение 33) и 2-бутиновой кислоты, с получением указанного в заголовке соединения (11 мг, 31,8%). Данные: UPLC(C) R_t : 1,92 мин; m/z 481,3 $(M+H)^+$.

Промежуточное соединение 34

N-(Изоксазол-3-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензамид

Это соединение получали способом, аналогичным описанному для промежуточного соединения 14, исходя из 3-аминоизоксазола, с получением указанного в заголовке соединения $(1,64\ r,\ 95\%)$.

Промежуточное соединение 35

(S) -4- (8-Амино-3- (пиперидин-2-ил) имидазо [1, 5-а] пиразин-1-ил) -N- (изоксазол-3-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 1, из (S) - 1 - (бензилоксикарбонил) пиперидин-2 - карбоновой кислоты с

получением (S)-бензил 2-(8-амино-1-бромимидазо[1,5-а] пиразин-3-ил) пиперидин-1-карбоксилата. Следующая далее реакция с N-(изоксазол-3-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензамидом (промежуточное соединение 34) и реакция удаления защиты, аналогичные описанным для промежуточного соединения 2, давали указанное в заголовке соединение (72 мг, 129%).

Пример 24

(S) -4- (8-Амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (изоксазол-3-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из (S)-4-(8-амино-3-(пиперидин-2-ил)) имидазо [1,5-а] пиразин-1-ил) -N- (изоксазол-3-ил) бензамида (промежуточное соединение 35) и 2-бутиновой кислоты, с получением указанного в заголовке соединения (2 мг, 6,6%). Данные: UPLC(C) R_t : 2,23 мин; m/z 470,3 $(M+H)^+$.

Промежуточное соединение 36

N-(5-Этилтиазол-2-ил)-4-(4,4,5,5-тетраметил-1,3,2-

диоксаборолан-2-ил) бензамид

Это соединение получали способом, аналогичным описанному для промежуточного соединения 4, исходя из 5-этилтиазол-2-амина, с получением указанного в заголовке соединения (191 мг, 34,2%).

Промежуточное соединение 37

(S) -4- (8-Амино-3- (пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (5-этилтиазол-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 1, из (S)- 1-(бензилоксикарбонил) пиперидин-2-карбоновой кислоты с получением (S)-бензил 2-(8-амино-1-бромимидазо[1,5-а] пиразин-3-ил) пиперидин-1-карбоксилата. Следующая далее реакция с N-(5-) этилтиазол-2-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензамидом (промежуточное соединение 36) и реакция удаления защиты, аналогичные описанным для промежуточного соединения 2, давали указанное в заголовке соединение (146 мг, 52,4%).

Пример 25

(S,E) -4- (8-Амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (5-этилтиазол-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из (S)-4-(8-амино-3-(пиперидин-2-ил) имидазо[1,5-а] пиразин-1-ил) -N-(5-этилтиазол-2-ил) бензамида (промежуточное соединение 37) и (E)-4-метоксибут-2-еновой кислоты (промежуточное соединение 3), с получением указанного в заголовке соединения (11,7 мг, 47,6%). Данные: UPLC(C) R_t : 2,59 мин; m/z 546,3 $(M+H)^+$.

Промежуточное соединение 38

2-Фтор-N-(4-пропилпиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензамид

Это соединение получали способом, аналогичным описанному для промежуточного соединения 4, исходя из коммерчески доступной $2-\phi$ тор-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-

ил) бензойной кислоты и 4-пропилпиридин-2-иламина, с получением указанного в заголовке соединения (830 мг, 63,3%).

Промежуточное соединение 39

(S) -4- (8-Амино-3- (пиперидин-2-ил) имидазо [1,5-a] пиразин-1-ил) -2- ϕ тор-N- (4-пропилпиридин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 1, из (S)-1- (бензилоксикарбонил) пиперидин-2-карбоновой кислоты получением (S)-бензил 2-(8-амино-1-бромимидазо[1,5-а]пиразин-3ил) пиперидин-1-карбоксилата. Следующая далее реакция с 2-фтор-N-(4-пропилпиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2диоксаборолан-2-ил) бензамидом (промежуточное соединение 38) и реакция защиты, удаления аналогичные описанным промежуточного соединения 2, давали указанное в заголовке соединение (75,4 мг, 62%).

Пример 26

(S) -4-(3-(1-Акрилоилпиперидин-2-ил) -8-аминоимидазо [1, 5-а] пиразин-1-ил) -2-фтор-N-(4-пропилпиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из (S)-4-(8-амино-3-(пиперидин-2-ил) имидазо[1,5-а] пиразин-1-ил) -2-фтор-N-(4-пропилпиридин-2-ил) бензамида (промежуточное соединение 39) и акриловой кислоты, с получением указанного в заголовке соединения $(5,9\text{ мг},\ 28,9\%)$. Данные: UPLC(C) R_t : 2,41 мин; m/z 528,4 $(M+H)^+$.

Промежуточное соединение 40

2-Метокси-N-(4-пропилпиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензамид

Это соединение получали способом, аналогичным описанному для промежуточного соединения 14, исходя из коммерчески доступной 4-бром-2-метоксибензойной кислоты и 4-пропилпиридин-2-иламина, с получением указанного в заголовке соединения (240

мг, 15,1%).

Промежуточное соединение 41

(S) -4- (8-Амино-3- (пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -2-метокси-N- (4-пропилпиридин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 1, из (S)-1-(бензилоксикарбонил) пиперидин-2-карбоновой кислоты получением (S)-бензил 2-(8-амино-1-бромимидазо[1,5-а]пиразин-3ил) пиперидин-1-карбоксилата. Следующая далее реакция с 2метокси-N-(4-пропилпиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2диоксаборолан-2-ил) бензамидом (промежуточное соединение 40) и реакция удаления защиты, аналогичные описанным для промежуточного соединения 2, давали указанное в заголовке соединение (74,5 мг, 75%).

Пример 27

(S,E) -4- (8-Амино-3- (1- (4- (диметиламино) бут-2- еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -2-метокси-N- (4-пропилпиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из (S)-4-(8-амино-3-(пиперидин-2-ил) имидазо[1,5-а] пиразин-1-ил)-2-метокси-N-(4-пропилпиридин-2-ил) бензамида (промежуточное соединение 41) и (E)-4-(диметиламино) бут-2-еновой кислоты, с получением указанного в заголовке соединения (13,1 мг, 38,4%). Данные: UPLC(C) R_t : 1,86 мин; m/z 597,4 $(M+H)^+$.

Промежуточное соединение 42

3-Метил-N-(пиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензамид

Это соединение получали способом, аналогичным описанному для промежуточного соединения 14, исходя из коммерчески доступной 4-бром-3-метилбензойной кислоты и 2-аминопиридина, с получением указанного в заголовке соединения $(2,5\ r,\ 71,3\%)$.

Промежуточное соединение 43

4-(8-Амино-3-((S)-пиперидин-2-ил) имидазо[1,5-a] пиразин-1-ил)-3-метил-N-(пиридин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 1, из (S)- 1-(бензилоксикарбонил) пиперидин-2-карбоновой кислоты с получением (S)-бензил 2-(8-амино-1-бромимидазо[1,5-a] пиразин-3-ил) пиперидин-1-карбоксилата. Следующая далее реакция с 3-метил-N-(пиридин-2-ил)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) бензамидом (промежуточное соединение 42) и реакция удаления защиты, аналогичные описанным для промежуточного соединения 2, давали указанное в заголовке соединение (150 мг, 71,7%).

Пример 28

4-(8-Амино-3-((S)-1-бут-2-иноилпиперидин-2-ил) имидазо [1, 5-а] пиразин-1-ил) -3-метил-N-(пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из $4-(8-\text{амино}-3-((S)-\text{пиперидин}-2-\text{ил})\,\text{имидазо}[1,5-\text{а}]\,\text{пиразин}-1-\text{ил})-3-\text{метил}-\text{N}-(\text{пиридин}-2-\text{ил})\,\text{бензамида}$ (промежуточное соединение 43) и 2-бутиновой кислоты, с получением указанного в заголовке соединения (13,7 мг, 59,1%). Данные: UPLC(C) R_t : 2,28 мин; m/z 494,3 (M+H) $^+$.

Промежуточное соединение 44

4-(8-Амино-3-(аминометил) имидазо[1,5-a] пиразин-1-ил)-N-

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 1, из Z-(8-амино-1-бромимидазо[1,5с получением бензил а]пиразин-3-ил)метилкарбамата. Следующая далее реакция с 4-(пиридин-2-илкоммерчески доступной аминокарбонил) бензолбороновой кислотой, аналогичная описанной для промежуточного соединения 2, давала указанное в заголовке соединение (261 мг, 81%).

Пример 29

4-(3-(Акриламидометил)-8-аминоимидазо[1,5-a] пиразин-1-ил)-N-(пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 1, из 4-(8-амино-3-(аминометил)имидазо[1,5-а]пиразин-1-ил)-N-(пиридин-2-ил)бензамида (промежуточное соединение 44) и

акрилоилхлорида, с получением указанного в заголовке соединения (1,7 мг, 4%). Данные: UPLC(C) R_t : 1,22 мин; m/z $414,2 \text{ (M+H)}^+$.

Промежуточное соединение 45

(S) –4- (8-Амино-3- (1-аминоэтил) имидазо [1,5-а] пиразин-1-ил) – N- (пиридин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 1, из Z-(S) -бензил 1-(8-амино-1-Ala-OH получением бензил С бромимидазо[1,5-а]пиразин-3-ил) этилкарбамата. Следующая далее с коммерчески доступной 4-(пиридин-2-илреакция аминокарбонил) бензолбороновой кислотой и реакция удаления защиты при помощи 33%НВr/НОАс, аналогичные описанным для промежуточного соединения 2, давали указанное в заголовке соединение (133,6 мг, 80%).

Пример 30

(S) -4- (8-Амино-3- (1-бут-2-инамидоэтил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из (S)-4-(8-амино-3-(1-аминоэтил)имидазо[1,5-

а] пиразин-1-ил) -N- (пиридин-2-ил) бензамида (промежуточное соединение 45) и 2-бутиновой кислоты, с получением указанного в заголовке соединения (9,5 мг, 26,9%). Данные: UPLC(C) R_t : 1,38 мин; m/z 440,3 (M+H) $^+$.

Пример 31

(S) -S-2-(2-(8-Амино-1-(4-(пиридин-2-илкарбамоил) фенил) имидазо [1,5-а] пиразин-3-ил) пирролидин-1-ил) - 2-оксоэтилэтантиоат

Это соединение получали способом, аналогичным описанному в Примере 1, из соединения, описанного в промежуточном соединении 2b, и 2,5-диоксопирролидин-1-ил 2-(ацетилтио)ацетата, с получением указанного в заголовке соединения (12,3 мг, 31,8%). Данные: UPLC (C) R_t : 1,51 мин; m/z 516,3 (M+H) $^+$.

Пример 32

(S) -4- (8-Амино-3- (1- (4-гидрокси-4-метилпент-2-

иноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из соединения, описанного в промежуточном соединении 2b и 4-гидрокси-4-метилпент-2-иновой кислоты, с получением указанного в заголовке соединения (8,0 мг, 25,1%). Данные: UPLC (C) R_t : 1,53 мин; m/z 510,3 (M+H) $^+$.

Пример 33

(S) -4- (8-Амино-3- (1- (6-хлорпиримидин-4- карбонил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из соединения, описанного в промежуточном соединении 2b, и 6-хлорпиримидин-4-карбоновой кислоты, с получением указанного в заголовке соединения (2,5 мг, 6,2%). Данные: UPLC (C) R_t : 1,64 мин; m/z 540,3 (M+H) $^+$.

Пример 34

(S) -4-(8-Амино-3-(1-пент-2-иноилпирролидин-2-ил) имидазо [1, 5-а] пиразин-1-ил) -N-(пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из соединения, описанного в промежуточном соединении 2b, и пент-2-иновой кислоты, с получением указанного в заголовке соединения (7,4 мг, 24,7%). Данные: UPLC (C) R_t : 1,73 мин; m/z 480,3 $(M+H)^+$.

Пример 35

(S) –4- (8-Амино-3- (1- (3-циклопропилпропиолоил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) –N- (пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из соединения, описанного в промежуточном соединении 2b, и 3-циклопропилпропиоловой кислоты, с получением указанного в заголовке соединения (8 мг, 26%). Данные: UPLC (C) R_t : 1,73

мин; m/z 492,3 (M+H)⁺.

Пример 36

(S) –4-(8-Амино-3-(1-гекс-2-иноилпирролидин-2-ил) имидазо [1, 5-а] пиразин-1-ил) –N-(пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из соединения, описанного в промежуточном соединении 2b, и гекс-2-иновой кислоты, с получением указанного в заголовке соединения (8,1 мг, 26,2%). Данные: UPLC (C) R_t : 1,94 мин; m/z 494,3 (M+H) $^+$.

Промежуточное соединение 46

4-(8-Амино-3-(азепан-2-ил) имидазо[1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 1, из 1- (бензилоксикарбонил) азепан-2-карбоновой кислоты, с получением

бензил 2-(8-амино-1-бромимидазо[1,5-а] пиразин-3-ил) азепан-1-карбоксилата. Следующая далее реакция с коммерчески доступной 4-(пиридин-2-ил-аминокарбонил) бензолбороновой кислотой, аналогичная описанной для промежуточного соединения 2, давала указанное в заголовке соединение (436 мг, количественный выход, неочищенное).

Пример 37

4-(3-(1-Акрилоилазепан-2-ил)-8-аминоимидазо[1,5-а] пиразин-1-ил)-N-(пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 1, из 4-(8-амино-3-(азепан-2-ил) имидазо[1,5-а] пиразин-1-ил)-N-(пиридин-2-ил) бензамида (промежуточное соединение 46) и акрилоилхлорида, с получением указанного в заголовке соединения (11 мг, 32,6%). Данные: UPLC(C) R_t : 1,88 мин; m/z 482,3 (M+H) $^+$.

Промежуточное соединение 47

(R) -4- (8-Амино-3- (морфолин-3-ил) имидазо [1,5-a] пиразин-1-

ил) -N- (пиридин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 1, из (S) - 4-(бензилоксикарбонил) морфолин-3-карбоновой кислоты, с получением (R) -бензил 3-(8-амино-1-бромимидазо[1,5-а] пиразин-3-ил) морфолин-4-карбоксилата. Следующая далее реакция с коммерчески доступной 4-(пиридин-2-ил-аминокарбонил) бензолбороновой кислотой и последующая реакция удаления защиты с использованием TFA при 60° C, аналогичные описанным для промежуточного соединения 2, давали указанное в заголовке соединение (62 мг, 69, 5%).

Пример 38

(R) -4- (8-Амино-3- (4-бут-2-иноилморфолин-3-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из (R) –4-(8-амино-3-(морфолин-3-ил) имидазо[1,5-а] пиразин-1-ил) –N-(пиридин-2-ил) бензамида (промежуточное соединение 47) и 2-бутиновой кислоты, с получением указанного в заголовке соединения (4,9 мг, 14,1%). Данные: UPLC(C) R_t : 1,38 мин; m/z 482,3 $(M+H)^+$.

Промежуточное соединение 48

(S) -4- (8-Амино-3- (1- (метиламино) этил) имидазо [1,5- а] пиразин-1-ил) -N- (4- (трифторметил) пиридин-2-ил) бензамид

Это промежуточное соединение получали способом, аналогичным описанному для промежуточного соединения 1, из (S) - 2-((бензилоксикарбонил) (метил) амино) пропановой кислоты, с получением (S) -бензил 1-(8-амино-1-бромимидазо[1,5-а] пиразин-3-ил) этил (метил) карбамата. Следующая далее реакция с 4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил) -N-(4-

(трифторметил) пиридин-2-ил) бензамидом (промежуточное соединение 10), аналогичная описанной для промежуточного соединения 2, давала указанное в заголовке соединение (71 мг, 64, 7%).

Пример 39

(S) - 4 - (8-амино-3 - (1-(N-метилбут-2-инамидо) этил) имидазо [1,5-а] пиразин-1-ил) -N- (4-

(трифторметил) пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из (S)-4-(8-амино-3-(1-(метиламино)этил) имидазо[1,5-а]пиразин-1-ил)-N-(4-(трифторметил) пиридин-2-ил) бензамида (промежуточное соединение 48) и 2-бутиновой кислоты, с получением указанного в заголовке соединения (11,5 мг, 33,4%). Данные: UPLC(C) R_t : 2,54 мин; m/z 522,2 $(M+H)^+$.

Промежуточное соединение 49

4-(Диметиламино)бут-2-иновая кислота

 $n ext{-BuLi}$ в гексане (2,5M, 24,06 ммоль, 9,62 мл) медленно добавляли к раствору $N, N ext{-}$ диметилпроп-2-ин-1-амина (24,06 ммоль, 2,59 мл, 2 г) в безводном ТГФ (10 мл) при -78°С. Смесь перемешивали в течение 1 часа при -78°С, затем одной порцией добавляли измельченный CO_2 (241 ммоль, 10,59 г) и реакционную смесь перемешивали в течение дополнительных 10 минут. Полученный раствор вливали в воду и промывали этилацетатом. Водный слой упаривали в вакууме с получением неочищенной аминокислоты. Эту кислоту растворяли в метаноле и нерастворимые соли удаляли путем фильтрации. Фильтрат упаривали с получением 3,25 г 4-(диметиламино) бут-2-иновой кислоты (106%).

Пример 40

(S) -4- (8-Амино-3- (1- (4- (диметиламино) бут-2- иноил) пирролидин-2-ил) имидазо [1, 5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в

Примере 2, из соединения, описанного в промежуточном соединении 2b, и 4-(диметиламино) бут-2-иновой кислоты (промежуточное соединение 49), с получением указанного в заголовке соединения (5,6 мг, 12%). Данные: UPLC (C) R_t : 0,97 мин; m/z 509,3 (M+H) $^+$.

Промежуточное соединение 50

4-Метоксибут-2-иновая кислота

n-Buli в гексане (2,5M, 28,5 ммоль, 11,41 мл) медленно добавляли к раствору 3-метоксипроп-1-ина (28,5 ммоль, 2,41 мл, 2 г) в сухом ТГФ (10 мл) при -78°С. Смесь перемешивали в течение 1 часа при -78°С, затем одной порцией добавляли измельченный CO_2 (285 ммоль, 12,56 г) и реакционную смесь перемешивали в течение дополнительных 10 минут. Полученный раствор вливали в воду и промывали этилацетатом. Водный слой упаривали в вакууме с получением неочищенной аминокислоты. Эту кислоту растворяли в метаноле и нерастворимые соли удаляли путем фильтрации. Фильтрат упаривали с получением 3,35 г 4-метоксибут-2-иновой кислоты (103%).

Пример 41

(S) -4- (8-Амино-3- (1- (4-метоксибут-2-иноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид

Это соединение получали способом, аналогичным описанному в Примере 2, из соединения, описанного в промежуточном соединении 2b, и 4-метоксибут-2-иновой кислоты (промежуточное соединение 50), с получением указанного в заголовке соединения (9,1 мг, 24,78). Данные: UPLC (C) R_t : 1,44 мин; m/z 496,2 (M+H) $^+$.

Следующие Примеры синтезировали, следуя способам,

описанным для примеров 1-41.

Пример	Структура	Название	(M+H) +	UPLC (C)
			m/z	R _t
42	F	(S) -4-(3-(1-	472,3	2,25 мин
	O H N N	акрилоилпирролидин-2-		
	NH ₂	ил) -8-		
	Z Z Z	аминоимидазо[1,5-		
	C 7	а]пиразин-1-ил)-N-(4-		
		фторпиридин-2-		
		ил) бензамид		
43		(S) -4-(3-(1-	523,3	1,72 мин
	0 N	акрилоилпирролидин-2-		
		ил) -8-		
		аминоимидазо[1,5-		
	N	а]пиразин-1-ил)-N-(4-		
		(пирролидин-1-		
		ил) пиридин-2-		
		ил) бензамид		
44	F	(S)-4-(8-амино-3-(1-	489,3	2,47 мин
	0 N	бут-2-иноилпиперидин-		
	N S	2-ил) имидазо[1,5-		
	N N O	а]пиразин-1-ил)-N-(4-		
		фторпиридин-2-		
		ил) бензамид		
45	o N	(S)-4-(8-амино-3-(1-	480,3	2,26 мин
	12.7	бут-2-иноилпиперидин-		LCMS(B)
	NH ₂	2-ил) имидазо[1,5-		
	N O	а]пиразин-1-ил)-N-		
		(пиридин-2-ил)бензамид		
46		(S) -4-(3-(1-	468,3	2,49 мин
	Ď	акрилоилпиперидин-2-		
	N N N N N N N N N N N N N N N N N N N	ил) -8-		
	N N N	аминоимидазо[1,5-		
		а]пиразин-1-ил)-N-		
		(пиридин-2-ил) бензамид		

47		(a) 4 (0 2 /1	T = 0.0 0	
47		(S)-4-(8-амино-3-(1-	508,3	2,00 мин
	o N	бут-2-иноилпирролидин-		
	N S	2-ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-(4-		
	N	пропилпиридин-2-		
		ил) бензамид		
48		(S,E)-4-(8-амино-3-(1-	528,3	1,89 мин
	HN	(4-метокси-N-метилбут-		
	NH.	2-енамидо) этил) имидазо		
	N N O	[1,5-а]пиразин-1-ил)-		
		N-(4-пропилпиридин-2-		
		ил) бензамид		
49		(S)-4-(8-амино-3-(1-	546,3	2,15 мин
	N N O	(винилсульфонил)		
		пиперидин-2-		
	N N N N N N N N N N N N N N N N N N N	ил) имидазо[1,5-		
	N S O	а]пиразин-1-ил)-N-(4-		
		пропилпиридин-2-		
		ил) бензамид		
50	O N N	(S)-4-(8-амино-3-(1-	484,3	1,84 мин
		бут-2-иноилпирролидин-		
		2-ил) имидазо[1,5-		
		а]пиразин-1-ил)-2-		
		фтор-N-(пиридин-2-		
		ил) бензамид		
51	6	(S,E)-4-(8-амино-3-(1-	528,4	1,60 мин
	O N	(4-метоксибут-2-		
	N ()	еноил) пирролидин-2-		
	N O	ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-(4-		
		метоксипиридин-2-		
		ил) бензамид		

52		(<i>S</i> , <i>E</i>)-4-(8-амино-3-(1-	516,3	1,79 мин
	P NH	(4-метоксибут-2-		
	NH ₂	еноил) пирролидин-2-		
	N O O	ил) имидазо[1,5-		
		а]пиразин-1-ил)-2-		
		фтор-N-(4-		
		метоксипиридин-2-		
		ил) бензамид		
53	F	(S,E)-4-(8-амино-3-(1-	516,3	2,31 мин
	O Y Z H	(4-метоксибут-2-		
	NH ₂	еноил) пирролидин-2-		
	N N O O	ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-(4-		
		фторпиридин-2-		
		ил) бензамид		
54	O N	(S,E)-4-(8-амино-3-(1-	502,3	2,01 мин
	N N	(4-метоксибут-2-		
	N N	еноил) пиперидин-2-		
	N N O	ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-		
		(изоксазол-3-		
		ил) бензамид		
55	N N	(S,E)-4-(8-амино-3-(1-	513,3	1,79 мин
	l L	(4-метоксибут-2-		
	NH ₂	еноил) пиперидин-2-		
	N N O O O	ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-		
		(пиримидин-2-		
		ил) бензамид		

56	N N	4-(8-амино-3-((S)-1-	568,3	2,23 мин
	0 N	(2-хлорпиримидин-4-		
	Z Z	карбонил) пиперидин-2-		
	N N N	ил) имидазо[1,5-		
	N CI	а]пиразин-1-ил)-3-		
		метил-N-(пиридин-2-		
		ил) бензамид		
57		(S,E)-4-(8-амино-3-(1-	512,4	1,67 мин
	O N	(4-метоксибут-2-		
	N N	еноил) пирролидин-2-		
	N O O	ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-(4-		
		метилпиридин-2-		
		ил) бензамид		
58	-	(S,E)-4-(8-амино-3-(1-	540,3	1,74 мин
	O N	(4-метоксибут-2-		
	NH ₂	еноил) пирролидин-2-		
	N O O	ил) имидазо[1,5-		
	C _N	а]пиразин-1-ил)-N-(4-		
		изопропилпиридин-2-		
		ил) бензамид		
59		(S,E)-4-(8-амино-3-(1-	525,4	1,11 мин
	ONN	(4-(диметиламино)бут-		
	NH ₂	2-еноил) пирролидин-2-		
	N N N	ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-(4-		
		метилпиридин-2-		
		ил) бензамид		
60	o N S	(S)-4-(8-амино-3-(1-	472,0	2,24 мин
		бут-2-иноилпирролидин-		
	Z Z Z C	2-ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-		
		(тиазол-2-ил) бензамид		

61	<u></u>	(S)-4-(3-(1-	510,3	2,11 мин
	N	акрилоилпиперидин-2-		
	N O	ил) -8-		
	N	аминоимидазо[1,5-		
	N N O			
		а]пиразин-1-ил)-N-(4-		
		пропилпиридин-2-		
		ил) бензамид		
62	F	(S)-4-(3-(1-	522,0	2,37 мин
	o N	акрилоилпирролидин-2-		
	N	ил) -8-		
	N N O	аминоимидазо[1,5-		
		а] пиразин-1-ил) -N-(4-		
		(трифторметил) пиридин-		
		2-ил) бензамид		
63	CF ₃	(S)-4-(8-амино-3-(1-	548,3	1,09 мин
	0 N	бут-2-иноилпиперидин-		UPLC(B)
	N 🔎	2-ил) имидазо[1,5-		
	N N N	а]пиразин-1-ил)-N-(4-		
		(трифторметил) пиридин-		
		2-ил) бензамид		
64		(S)-4-(8-амино-3-(1-	522,3	2,29 мин
	o N	бут-2-иноилпиперидин-		
	NH NH	2-ил) имидазо[1,5-		
	N O	а]пиразин-1-ил)-N-(4-		
	l v	пропилпиридин-2-		
		ил) бензамид		
65	O_N_ /	(S,E)-4-(8-амино-3-(1-	553,3	1,31 мин
	N N	(4-(диметиламино)бут-		
		2-еноил) пирролидин-2-		
	N N	ил) имидазо[1,5-		
		a]пиразин-1-ил)-N-(4-		
		изопропилпиридин-2-		
		ил) бензамид		
		July Collocation		

(винилсульфонил) пиперидин-2-	
ил) имидазо[1,5-	
а] пиразин-1-ил) -3-	
метил-N-(пиридин-2-	
ил) бензамид	
67 (S)-4-(8-амино-3-(1- 540,3 2,56	МИН
бут-2-иноилпиперидин-	
2-ил) имидазо[1,5-	
а] пиразин-1-ил) -2-	
фтор-N-(4-	
пропилпиридин-2-	
ил) бензамид	
68 4-(3-((S)-1- 482,2 1,98	МИН
акрилоилпиперидин-2-	
N) -8-	
аминоимидазо[1,5-	
а]пиразин-1-ил)-3-	
метил-N-(пиридин-2-	
ил) бензамид	
69 (Е) -4-(8-амино-3-((4- 471,2 1,16	МИН
(диметиламино) бут-2-	
NH. eнамидо) метил)	
имидазо[1,5-а]пиразин-	
1-ил) -N- (пиридин-2-	
ил) бензамид	
70 (S)-4-(8-амино-3-(1- 582,2 1,89	МИН
ун. (2-хлорпиримидин-4-	
карбонил) пирролидин-2-	
ил) имидазо[1,5-	
а] пиразин-1-ил) -N- (4-	
изопропилпиридин-2-	
ил) бензамид	

71	O H N	(S)-4-(8-амино-3-(1-	600,2	2,49 мин
	NH ₂ S	(2-хлор пиримидин-4-		
	N O	карбонил) пирролидин-2-		
	N N N	ил) имидазо [1,5-		
	ĠI	 а]пиразин-1-ил)-N-		
		(4,5,6,7-		
		тетрагидробензо		
		[d] тиазол-2-		
		ил) бензамид		
72	, N	(S,E)-4-(8-амино-3-(1-	513,3	1,84 мин
	O N	(4-метоксибут-2-	·	
	NH ₂	еноил) пиперидин-2-		
		ил) имидазо[1,5-		
	, and the second	 а]пиразин-1-ил)-N-		
		(пиридазин-3-		
		ил) бензамид		
73	N N	(<i>S</i> , <i>E</i>)-4-(8-амино-3-(1-	526,4	1,26 мин
	P H	(4-(диметиламино)бут-		
	NH ₂	2-еноил) пиперидин-2-		
	N N N N N N N N N N N N N N N N N N N	ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-		
		(пиридазин-3-		
		ил) бензамид		
74	Z	(S)-4-(8-амино-3-(1-	555,3	1,96 мин
	N	(2-хлорпиримидин-4-		
	NH ₂	карбонил) пиперидин-2-		
	N O	ил) имидазо[1,5-		
	CI N	а]пиразин-1-ил)-N-		
		(пиридазин-3-		
		ил) бензамид		
•	1	I .	1	i

75	F	(<i>S</i> , <i>E</i>)-4-(8-амино-3-(1-	554,2	2,47 мин
	N N	(4-метокси-N-метилбут-		
		2-енамидо) этил) имидазо		
	NH ₂	[1,5-а]пиразин-1-ил)-		
	N O O O	N-(4-(трифторметил)		
	,	пиридин-2-ил) бензамид		
76		(<i>S</i> , <i>E</i>)-4-(8-амино-3-(1-	541,3	1,41 мин
	HN O	(4-(диметиламино)-N-		
	NH.	метилбут-2-енамидо)		
	N N O N	этил) имидазо[1,5-		
) h	а]пиразин-1-ил)-N-(4-		
		пропилпиридин-2-		
		ил) бензамид		
77		(S,E)-4-(8-амино-3-(1-	579,3	1,64 мин
	HN O	(4-(пирролидин-1-		
	NH,	ил) бут-2-		
	N N O N	еноил) пирролидин-2-		
		ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-(4-		
		пропилпиридин-2-		
		ил) бензамид		
78		(S,E)-4-(8-амино-3-(1-	525,3	2,10 мин
	H Z	(4-(диметиламино)бут-		LCMS(B)
	NH ₂	2-еноил) пиперидин-2-		
	N O N	ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-		
		(пиридин-2-ил) бензамид		
79		(S)-4-(8-амино-3-(1-	582,3	1,95 мин
	O N H	(2-хлорпиримидин-4-		
	NH ₂	карбонил) пирролидин-2-		
	N O	ил) имидазо[1,5-		
	N N N	а]пиразин-1-ил)-N-(4-		
	CI	пропилпиридин-2-		
		ил) бензамид		

80	F	(S)-4-(8-амино-3-(1-	572,3	2,45 мин
	O N	(2-хлорпиримидин-4-		
	NH ₂	карбонил) пиперидин-2-		
	N N O	ил) имидазо[1,5-		
	NNNN	а]пиразин-1-ил)-N-(4-		
	CI	фторпиридин-2-		
		ил) бензамид		
81		(S,E)-4-(8-амино-3-(1-	530,3	2,38 мин
	O NH	(4-метоксибут-2-		
	NH ₂	еноил) пиперидин-2-		
	N N O O	ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-(4-		
		фторпиридин-2-		
		ил) бензамид		
82	O H	(S,E)-4-(8-амино-3-(1-	558,3	2,33 мин
	NH ₂	(4-метоксибут-2-		
	N O O	еноил) пирролидин-2-		
		ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-		
		(4,5,6,7-		
		тетрагидробензо[d]		
		тиазол-2-ил) бензамид		
83	O N	(S)-4-(8-амино-3-(1-	570 , 3	2,01 мин
	-o H	(2-хлорпиримидин-4-		
	NH ₂	карбонил) пирролидин-2-		
	N N N	ил) имидазо[1,5-		
	N CI	а]пиразин-1-ил)-2-		
		метокси-N-(пиридин-2-		
		ил) бензамид		

84		(S)-4-(8-амино-3-(1-	558,2	1,95 мин
	o NH	(2-хлорпиримидин-4-		
	NH ₂	карбонил) пирролидин-2-		
	N N O	ил) имидазо[1,5-		
	Z Z G	а]пиразин-1-ил)-2-		
		фтор-N-(пиридин-2-		
		ил) бензамид		
85		4-(8-амино-3-((<i>S</i>)-1-	526,3	2,12 мин
	O T I	((Е)-4-метоксибут-2-		
	NH ₂	еноил) пиперидин-2-		
		ил) имидазо[1,5-		
		а]пиразин-1-ил)-3-		
		метил-N-(пиридин-2-		
		ил) бензамид		
86	N	(S,E)-4-(8-амино-3-(1-	513,3	1,83 мин
	HZ	(4-метоксибут-2-		
	NH ₂	еноил) пиперидин-2-		
	N N O O	ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-		
		(пиримидин-4-		
		ил) бензамид		
87		4-(8-амино-3-((S)-1-	554,4	1,86 мин
	o N	((Е)-4-метоксибут-2-		
	NH ₂	еноил) пирролидин-2-		
	N O O	ил) имидазо[1,5-		
		а]пиразин-1-ил)-3-		
		метил-N-(4-		
		пропилпиридин-2-		
		ил) бензамид		

88	<u> </u>	(S,E)-4-(8-амино-3-(1-	527,3	1,88 мин
	0 N N	(4-метоксибут-2-	02170	1,00 MM
	NH ₂			
	N N O	еноил) пиперидин-2-		
		ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-(4-		
		метилпиримидин-2-		
		ил) бензамид		
89	N	(S)-4-(8-амино-3-(1-	495,3	1,97 мин
	O NH	бут-2-иноилпиперидин-		
	NH ₂	2-ил) имидазо[1,5-		
	N N O	а]пиразин-1-ил)-N-(4-		
		метилпиримидин-2-		
		ил) бензамид		
90	o, N=N	(S)-4-(8-амино-3-(1-	555,3	1,91 мин
	NH H	(2-хлорпиримидин-4-		
	N N	карбонил) пиперидин-2-		
	N	ил) имидазо[1,5-		
	CI	а]пиразин-1-ил)-N-		
		(пиримидин-2-		
		ил) бензамид		
91		(S)-4-(8-амино-3-(1-	468,4	1,61 мин
	HZ,	метакрилоилпирролидин-		
	NH ₂	2-ил) имидазо[1,5-		
	N	а]пиразин-1-ил)-N-		
		(пиридин-2-ил) бензамид		
92		(S)-4-(8-амино-3-(1-	522,3	1,99 мин
	PH TH	(2-(трифторметил)		
	NH ₂	акрилоил) пирролидин-2-		
	N N N	ил) имидазо[1,5-		
	CF ₃	а]пиразин-1-ил)-N-		
		(пиридин-2-ил)бензамид		
		l	<u>I</u>	1

93		(S,E)-4-(8-амино-3-(1-	468,4	1,59 мин
	O N H	бут-2-еноилпирролидин-		-,
	NH ₂	2-ил) имидазо [1,5-		
	N O	а]пиразин-1-ил)-N-		
	N	(пиридин-2-ил)бензамид		
94		(S) -4-(8-амино-3-(1-	439,3	1,55 мин
74	O N	(цианометил) пирролидин	433,3	1,33 MMH
	NH,	-2-ил) имидазо [1,5-		
	N N N			
	N	а]пиразин-1-ил)-N-		
0.5		(пиридин-2-ил) бензамид	450.0	1 05
95	O N	(Е) -4-(8-амино-3-((4-	458,2	1,35 мин
	H	метоксибут-2-енамидо)		
	N N O	метил) имидазо[1,5-		
	N N	а]пиразин-1-ил)-N-		
		(пиридин-2-ил)бензамид		
96		(S)-4-(8-амино-3-(1-	535,3	2,27 мин
	o N	бут-2-иноилпирролидин-		LCMS(B)
	NH,	2-ил) имидазо[1,5-		
	N N O	а]пиразин-1-ил)-N-(4-		
		(пирролидин-1-		
		ил) пиридин-2-		
		ил) бензамид		
97	0	(E)-4-(8-амино-3-(1-	526,3	1,97 мин
	N N	(4-метоксибут-2-		
	NH ₂	еноил) азепан-2-		
	N	ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-		
		(пиридин-2-ил) бензамид		
98	N	(S,E)-4-(8-амино-3-(1-	523,3	2,12 мин
	O N	(4-метоксибут-2-		
	NH,	еноил) пирролидин-2-		
	N O	ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-(4-		
		цианопиридин-2-		
		ил) бензамид		
	I .	l .	I .	1

99		(S)-4-(8-амино-3-(1-	496,3	1,87 мин
	O N	бут-2-иноилпирролидин-		
	NH ₂	2-ил) имидазо[1,5-		
	N O	а]пиразин-1-ил)-2-		
		метокси-N-(пиридин-2-		
		ил) бензамид		
100		(S) -4-(3-(1-	428,3	1,15 мин
	O H	акриламидоэтил)-8-		
	NH ₂	аминоимидазо[1,5-		
		a]пиразин-1-ил)-N-		
	/ H	(пиридин-2-ил)бензамид		
101	N S	(S) -4-(3-(1-	460,2	2,03 мин
	I	акрилоилпирролидин-2-		
	NH ₂	ил) -8-		
	N O	аминоимидазо[1,5-		
		а]пиразин-1-ил)-N-		
		(тиазол-2-ил)бензамид		
102		(S)-4-(8-амино-3-(1-	507,8	1,82 мин
	NH ₂	бут-2-иноилпирролидин-		
	N N O	2-ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-(4-		
		изопропилпиридин-2-		
		ил) бензамид		
103		(S,E)-4-(8-амино-3-(1-	528,3	1,84 мин
	H	(4-метоксибут-2-		
	NH ₂	еноил) пирролидин-2-		
	, in the second	ил) имидазо[1,5-		
		а]пиразин-1-ил)-2-		
		метокси-N-(пиридин-2-		
		ил) бензамид		
104	o San	(S,E)-4-(8-амино-3-(1-	530,4	2,09 мин
	l Š	циннамоилпирролидин-2-		
	NH ₂	ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-		
		(пиридин-2-ил)бензамид		

105		(S)-N-(1-(8-амино-1-	514,3	1,56 мин
) H	(4-(пиридин-2-		
	NH ₂	илкарбамоил)фенил)		
	N O	имидазо[1,5-а]пиразин-		
	H N CI	3-ил) -2-		
		хлорпиримидин-4-		
		карбоксамид		
106		(S)-4-(8-амино-3-(1-	484,2	2,38 мин
	O H	бут-2-иноилпирролидин-		
	NH ₂	2-ил) имидазо[1,5-		
	N N O	а]пиразин-1-ил)-N-(4-		
		фторпиридин-2-		
		ил) бензамид		
107		(S)-4-(8-амино-3-(1-	596,3	2,19 мин
	HN O	(2-хлорпиримидин-4-		
	NH,	карбонил) пиперидин-2-		
	N N O	ил) имидазо[1,5-		
	N N CI	а]пиразин-1-ил)-N-(4-		
		пропилпиридин-2-		
		ил) бензамид		
108	CF ₃	(S,E)-4-(8-амино-3-(1-	580,3	1,03 мин
	o H	(4-метоксибут-2-		UPLC(B)
	NH ₂	еноил) пиперидин-2-		
	N N O O O	ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-(4-		
		(трифторметил) пиридин-		
		2-ил) бензамид		
109	CF ₃	(S) -4-(3-(1-	536,3	1,02 мин
	O H	акрилоилпиперидин-2-		UPLC(B)
	NH ₂	ил) -8-		
	N N N	аминоимидазо[1,5-		
		а]пиразин-1-ил)-N-(4-		
		(трифторметил) пиридин-		
		2-ил) бензамид		

110		(S)-4-(8-амино-3-(1-	552,4	2,57 мин
	O N	бут-2-иноилпиперидин-		
	NH.	2-ил) имидазо[1,5-		
	N N O	а]пиразин-1-ил)-2-		
	N	метокси-N-(4-		
		пропилпиридин-2-		
		ил) бензамид		
111		(S,E)-4-(8-амино-3-(1-	584,4	2,49 мин
	O N	(4-метоксибут-2-		
	NH ₂	еноил) пиперидин-2-		
	N O O	ил) имидазо[1,5-		
		а]пиразин-1-ил)-2-		
		метокси-N-(4-		
		пропилпиридин-2-		
		ил) бензамид		
112		4-(8-амино-3-(бут-2-	426,2	1,35 мин
	Ä	инамидометил) имидазо		
	NH ₂	[1,5-а]пиразин-1-ил)-		
	NA NA	N-(пиридин-2-		
	•	ил) бензамид		
113		(S)-4-(8-амино-3-(1-	496,3	1,94 мин
	HN O	(N-метилбут-2-инамидо)		
	NH,	этил) имидазо[1,5-		
	N N O	а] пиразин-1-ил) -N- (4-		
) N	пропилпиридин-2-		
		ил) бензамид		
114		(S,E)-4-(8-амино-3-(1-	572 , 4	2,48 мин
	o H	(4-метоксибут-2-		
	NH ₂	еноил) пиперидин-2-		
	N O O O	ил) имидазо[1,5-		
		а]пиразин-1-ил)-2-		
		фтор-N-(4-		
		пропилпиридин-2-		
		ил) бензамид		
	I	1	I	1

115	CF ₃	(S)-4-(8-амино-3-(1-	622,2	1,15 мин
	O N H	(2-хлорпиримидин-4-		UPLC(B)
	NH ₂	карбонил) пиперидин-2-		
	N N O	ил) имидазо[1,5-		
	N N N	а]пиразин-1-ил)-N-(4-		
		(трифторметил) пиридин-		
		2-ил) бензамид		
116		(S)-4-(8-амино-3-(1-	514,3	2,68 мин
	o N	бут-2-иноилпиперидин-		
	H	2-ил) имидазо[1,5-		
	N O	а]пиразин-1-ил)-N-(5-		
	N	этилтиазол-2-		
		ил) бензамид		
117		(S) -4-(3-(1-	502,3	2,53 мин
	o N	акрилоилпиперидин-2-		
	NH.	ил) -8-		
	N N O	аминоимидазо[1,5-		
	l V	а]пиразин-1-ил)-N-(5-		
		этилтиазол-2-		
		ил) бензамид		
118		(S)-4-(8-амино-3-(1-	588,3	2,71 мин
	o N	(2-хлорпиримидин-4-		
	NH,	карбонил) пиперидин-2-		
	N N O	ил) имидазо[1,5-		
	N N N	а]пиразин-1-ил)-N-(5-		
	Si Gi	этилтиазол-2-		
		ил) бензамид		
119	FF	(S)-4-(8-амино-3-(1-	608,2	2,68 мин
	0 N	(2-хлорпиримидин-4-		
	NH ₂	карбонил) пирролидин-2-		
	N O	ил) имидазо[1,5-		
	N N N	а]пиразин-1-ил)-N-(4-		
	ĆI	(трифторметил)пиридин-		
		2-ил) бензамид		
<u> </u>	I .	I .	L	1

		T	T =	T
120	N	(R, E) - 4 - (8 - амино - 3 - (4 -))	514,3	1,34 мин
	HNO	(4-метоксибут-2-		
	NH ₂	еноил) морфолин-3-		
	N O O	ил) имидазо[1,5-		
		а]пиразин-1-ил)-N-		
		(пиридин-2-ил) бензамид		
121		(S,E)-4-(8-амино-3-(1-	554,4	2,07 мин
	HN O	(4-метоксибут-2-		
	NIH	еноил) пиперидин-2-		
	N O O	ил) имидазо[1,5-		
	N	а]пиразин-1-ил)-N-(4-		
		пропилпиридин-2-		
		ил) бензамид		
122	CN	(S) -4-(3-(1-	479,0	1,86 мин
	N N	акрилоилпирролидин-2-		
	NH ₂	ил) -8-		
	N N	аминоимидазо[1,5-		
		а]пиразин-1-ил)-N-(4-		
		цианопиридин-2-		
		ил) бензамид		
123	6	(S)-4-(8-амино-3-(1-	496,3	1,50 мин
	o N	бут-2-иноилпирролидин-		
	NH,	2-ил) имидазо[1,5-		
	N N O	а]пиразин-1-ил)-N-(4-		
		метоксипиридин-2-		
		ил) бензамид		
124		(S)-4-(3-(1-	468,1	1,37 мин
	O NH	акрилоилпирролидин-2-		
	NH ₂	ил) -8-		
		аминоимидазо[1,5-		
		а]пиразин-1-ил)-N-(4-		
		метилпиридин-2-		
		ил) бензамид		
	<u> </u>			

125		(S)-4-(3-(1-	496,1	1,76 мин
	0 N	акрилоилпирролидин-2-	,	,
	H H	ил) -8-		
	NH ₂	аминоимидазо[1,5-		
	N	а]пиразин-1-ил)-N-(4-		
		пропилпиридин-2-		
		ил) бензамид		
126		(S) -4-(3-(1-	482,1	1,53 мин
	o N	акрилоилпирролидин-2-		
	NH,	ил) -8-		
	N O	аминоимидазо[1,5-		
	N	а]пиразин-1-ил)-N-(4-		
		этилпиридин-2-		
		ил) бензамид		
127		(S,E)-4-(8-амино-3-(1-	511,0	1,29 мин
	O N	(4-(диметиламино)бут-		
	NH ₂	2-еноил) пирролидин-2-		
	N N O N	ил) имидазо[1,5-		
	N	a]пиразин-1-ил)-N-		
		(пиридин-2-ил) бензамид		
128	FF	(S,E)-4-(8-амино-3-(1-	566,3	2,73 мин
	o N	(4-метоксибут-2-		
	NH,	еноил) пирролидин-2-		
	N O	ил) имидазо[1,5-		
	N	а]пиразин-1-ил)-N-(4-		
		(трифторметил) пиридин-		
		2-ил) бензамид		
129		(S)-4-(8-амино-3-(1-	554,2	1,38 мин
	O N H	(2-хлорпиримидин-4-		
	NH ₂	карбонил) пирролидин-2-		
	N O	ил) имидазо[1,5-		
	N N N N	а]пиразин-1-ил)-N-(4-		
	Ci	метилпиридин-2-		
		ил) бензамид		
L	I	I .	I	<u> </u>

130	CN	S)-4-(8-амино-3-(1-	491,2	2,20 мин
	O H	бут-2-иноилпирролидин-		
	NH ₂	2-ил) имидазо[1,5-		
	N O	а]пиразин-1-ил)-N-(4-		
		цианопиридин-2-		
		ил) бензамид		
131		(S)-4-(8-амино-3-(1-	494,3	1,65 мин
	O N	бут-2-иноилпирролидин-		
	NH ₂	2-ил) имидазо[1,5-		
	N N O	а]пиразин-1-ил)-N-(4-		
		этилпиридин-2-		
		ил) бензамид		
132		(S)-4-(8-амино-3-(1-	542,3	2,57 мин
	o N	бут-2-иноилпирролидин-		
	N N	2-ил) имидазо[1,5-		
	NH ₂	а]пиразин-1-ил)-N-(4-		
	N N	фенилпиридин-2-		
		ил) бензамид		
133		(S) -4-(3-(1-	530,3	2,38 мин
	0 N	акрилоилпирролидин-2-		
	N N	ил) -8-		
	NH ₂	аминоимидазо[1,5-		
	N N	а]пиразин-1-ил)-N-(4-		
		фенилпиридин-2-		
		ил) бензамид		

Пример 134. Методы анализа

Btk ферментативная активность

 ${\sf Btk}$ ферментативную активность измеряли с использованием ${\sf IMAP}$ (поляризация флуоресценции на основании сродства с иммобилизованным металлическим ионом) анализа, описанного ниже.

Btk фермент (His-Btk (Millipore catalog# 14-552) разбавляли до 0,4 Ед./мл в KR буфере (10 мМ Tris-HCl, 10 мМ MgCl₂, 0,01% Tween-20, 0,05% NaN₃, 1 мМ DTT, 2 мМ MnCl₂, pH 7,2).

Серийные разведения log10 от 2 мM до 63,2 нМ испытываемых

соединений осуществляли в 100% DMSO. Разведения в DMSO затем разбавляли 50-кратно в KR-буфере. Конечная концентрация соединения в анализе находилась в пределах от 10 мкМ до 0,316 нМ.

5 мкл/лунка испытываемого соединения в KR буфере (конечная концентрация DMSO в анализе составляла 1%) смешивали с 5 мкл/лунка 0,4 Ед./мл Вtk фермента (конечная концентрация в анализе составляла 0,1 Ед./мл). Испытываемые соединения и Btk фермент предварительно инкубировали в течение 60 минут при затем добавляли 5 мкл/лунка 200 нМ комнатной температуре, флуоресцин-меченного пептидного субстрата (Blk/Линтид субстрат, #R7188/#R7233, Molecular Devices) В KR-буфере. например, 50 Конечная концентрация пептида в анализе составляла Киназный анализ начинали путем добавления 5 мкл/лунка 20 мкМ АТР в КR-буфере (конечная концентрация АТР составляла 5 мкМ ATP, Km ATP в Btk IMAP анализе). После инкубации в течение 2 часов идп комнатной температуре ферментную реакцию останавливали путем добавления 40 мкл/лунка ІМАР прогрессивного связующего раствора (в соответствии с протоколом изготовителей (Molecular Devices) с использованием 75% 1х буфера А и 25% 1х буфера В с 1:600 прогрессивного связующего раствора). После 60 инкубации при комнатной температуре осуществляли считывание FP сигнала. Флуоресценцию при 535 нм измеряли с использованием параллельных и перпендикулярных фильтров для определения разницы вращения из-за связывания фосфорилированного пептидного субстрата с шариками. Значения рассчитывали как процент разницы данных считывания относительно контролей с и без ATP. EC_{50} значения определяли путем подгонки кривой экспериментальных результатов использованием Activity Base.

Все примеры имели значение ЕС50 10 мкМ или меньше.

Таблица 1

Е	Btk активность, значения EC50	
EC50	Пример	
≥1мкМ	91,	
≥100 нМ		
<1 _{MK} M	52, 53, 54, 55, 68, 72, 74, 85, 86, 87, 88, 90, 92, 93, 94, 104	
≥10 нМ	2, 4, 5, 7, 11, 24, 40, 41, 50, 51, 56, 57, 58, 59, 60, 69, 70, 71, 73, 80, 81, 82, 83,	
<100 нМ	84, 89, 95, 96, 97, 98, 99, 103, 105, 106, 112, 113, 114, 119	
	1, 3, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29,	
<10 нМ	30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 61, 62, 63,	
	64, 65, 66, 67, 75, 76, 77, 78, 79, 100, 101, 102, 107, 108, 109, 110, 111, 115,	
	116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,	
	133	

Lck ферментативная активность

Lck ферментативную активность измеряли с использованием IMAP (поляризация флуоресценции на основании сродства с иммобилизованным металлическим ионом) анализа, описанного ниже.

Lck фермент (Millipore catalog# 14-442) разбавляли до 0,4 $\rm Eg./mл$ в KR буфере (10 мМ Tris-HCl, 10 мМ MgCl₂, 0,01% Tween-20, 0,05% NaN₃, 1 мМ DTT, 2 мМ MnCl₂, pH 7,2).

Серийные разведения log10 от 2 мМ до 63,2 нМ испытываемых соединений осуществляли в 100% DMSO. Разведения в DMSO затем разбавляли 50-кратно в KR-буфере, из которых 5 мкл использовали в анализе, что давало конечную концентрацию соединения в анализе в пределах от 10 мкМ до 0,316 нМ.

5 мкл/лунка испытываемого соединения в КR буфере (конечная концентрация DMSO в анализе составляла 1%) смешивали с 5 мкл/лунка 0,4 Ед./мл Lck фермента (конечная концентрация в анализе составляла 0,1 Ед./мл). Испытываемые соединения и Lck фермент предварительно инкубировали в течение 60 минут при комнатной температуре, затем добавляли 5 мкл/лунка 400 нМ флуоресцин-меченного пептидного субстрата (р34cdc2 пептидный субстрат, например, #R7157/#R7172, Molecular Devices) в KR-буфере. Конечная концентрация пептида в анализе составляла 100 нМ. Киназный анализ начинали путем добавления 5 мкл/лунка 24

мкМ ATP в KR-буфере (конечная концентрация ATP составляла 6 мкМ ATP, Km ATP в Lck IMAP анализе). После инкубации в течение 2 при комнатной температуре ферментную останавливали путем добавления 40 мкл/лунка ІМАР прогрессивного связующего раствора (в соответствии с протоколом изготовителей (Molecular Devices) с использованием 75% 1х буфера A и 25% 1х буфера В с 1:600 прогрессивного связующего раствора). После 60 TYHNM инкубации при комнатной температуре В темноте осуществляли считывание FP сигнала. Флуоресценцию при 535 нм измеряли с использованием параллельных и перпендикулярных фильтров для определения разницы вращения из-за связывания фосфорилированного пептидного субстрата с шариками. Значения рассчитывали как процент разницы данных считывания (Δ mPi) относительно контролей с и без ATP. EC_{50} значения определяли кривой экспериментальных результатов подгонки использованием Activity Base.

Таблица 2

EC5	EC50 значения активности Lck		
EC50	Пример		
≥1 мкМ	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 123, 127, 128, 129, 130, 131		
≥100 _H M			
<1 мкМ	60, 62, 64, 76, 104, 122, 124, 125, 126, 132, 133		

Src ферментативная активность

Src ферментативную активность измеряли с использованием IMAP (поляризация флуоресценции на основании сродства с иммобилизованным металлическим ионом) анализа, описанного ниже.

Src фермент (Millipore catalog# 14-326) разбавляли до 0,8 $\rm Eg./mл$ в KR буфере (10 мМ Tris-HCl, 10 мМ MgCl₂, 0,01% Tween-20, 0,05% NaN₃, 1 мМ DTT, 2 мМ MnCl₂, pH 7,2).

Серийные разведения log10 от 2 мМ до 63,2 нМ испытываемых соединений осуществляли в 100% DMSO. Разведения в DMSO затем разбавляли 50-кратно в KR-буфере, из которых 5 мкл использовали в анализе, что давало конечную концентрацию соединения в анализе в пределах от 10 мкМ до 0,316 нМ.

5 мкл/лунка испытываемого соединения в KR буфере (конечная концентрация DMSO в анализе составляла 1%) смешивали с 5 мкл/лунка 0,8 Ед./мл Src фермента (конечная концентрация в анализе составляла 0,2 Ед./мл). Испытываемые соединения и Src фермент предварительно инкубировали в течение 60 минут при комнатной температуре, затем добавляли 5 мкл/лунка 400 нМ флуоресцин-меченного пептидного субстрата (p34cdc2 пептидный субстрат, например, #R7157/#R7172, Molecular Devices) в KRбуфере. Конечная концентрация пептида в анализе составляла 100 нМ. Киназный анализ начинали путем добавления 5 мкл/лунка 16 мкМ ATP в KR-буфере (конечная концентрация ATP составляла 4 мкМ ATP, Km ATP в Src IMAP анализе). После инкубации в течение 2 часов при комнатной температуре ферментную останавливали путем добавления 40 мкл/лунка ІМАР прогрессивного связующего раствора (в соответствии с протоколом изготовителей (Molecular Devices) с использованием 75% 1х буфера А и 25% 1х буфера В с 1:600 прогрессивного связующего раствора). После 60 при инкубации комнатной температуре темноте ТУНИМ осуществляли считывание FP сигнала. Флуоресценцию при 535 нм использованием параллельных и перпендикулярных измеряли С фильтров для определения разницы вращения из-за связывания фосфорилированного пептидного субстрата с шариками. Значения рассчитывали как процент разницы данных считывания (Δ mPi) относительно контролей с и без АТР. ЕС50 значения определяли кривой экспериментальных результатов путем подгонки использованием Activity Base.

Таблица 3

Src активность, значения EC50		
EC50	Пример	
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,	
	25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,	
	46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,	
≥1 _{MK} M	67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,	
	88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106,	
	107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122,	
	123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133	

FynT ферментативная активность

FynT ферментативную активность измеряли с использованием IMAP (поляризация флуоресценции на основании сродства с иммобилизованным металлическим ионом) анализа, описанного ниже.

FynT фермент (Biomol catalog# SE-287) разбавляли до 0,5 мкг/мл в KR буфере (10 мМ Tris-HCl, 10 мМ MgCl₂, 0,01% Tween-20, 0,05% NaN₃, 1 мМ DTT, 2 мМ MnCl₂, pH 7,2).

Серийные разведения log10 от 2 мМ до 63,2 нМ испытываемых соединений осуществляли в 100% DMSO. Разведения в DMSO затем разбавляли 50-кратно в KR-буфере, из которых 5 мкл использовали в анализе, что давало конечную концентрацию соединения в анализе в пределах от 10 мкМ до 0,316 нМ.

5 мкл/лунка испытываемого соединения в КК буфере (конечная концентрация DMSO в анализе составляла 1%) смешивали с 5 мкл/лунка 0,5 мкг/мл FynT фермента (конечная концентрация в анализе составляла 125 нг/мл). Испытываемые соединения и FynT фермент предварительно инкубировали в течение 60 минут при комнатной температуре, затем добавляли 5 мкл/лунка 400 нМ флуоресцин-меченного пептидного субстрата (р34cdc2 пептидный субстрат, например, #R7157/#R7172, Molecular Devices) в KR-буфере. Конечная концентрация пептида в анализе составляла 100 нМ. Киназный анализ начинали путем добавления 5 мкл/лунка 0,8 мкМ АТР в KR-буфере (конечная концентрация АТР составляла 0,2 мкМ АТР, Км АТР в FynT IMAP анализе). После инкубации в течение

2 часов при комнатной температуре ферментную реакцию останавливали путем добавления 40 мкл/лунка ІМАР прогрессивного связующего раствора (в соответствии с протоколом изготовителей (Molecular Devices) с использованием 75% 1х буфера А и 25% 1х буфера В с 1:600 прогрессивного связующего раствора). После 60 инкубации комнатной температуре МИНУТ при темноте осуществляли считывание FP сигнала. Флуоресценцию при 535 нм измеряли с использованием параллельных и перпендикулярных фильтров для определения разницы вращения из-за связывания фосфорилированного пептидного субстрата с шариками. Значения рассчитывали как процент разницы данных считывания (Δ mPi) относительно контролей с и без ATP. EC_{50} значения определяли подгонки кривой экспериментальных результатов использованием Activity Base.

Таблица 4

FynT активность, значения EC50	
EC50	Пример
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
	25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
	46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
≥1 мкМ	67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
	88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106,
	107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122,
	123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133

Lyn ферментативная активность

Lyn ферментативную активность измеряли с использованием IMAP (поляризация флуоресценции на основании сродства с иммобилизованным металлическим ионом) анализа, описанного ниже.

Lyn фермент (Millipore catalog# 14-510), разбавляли до 250 мЕд./мл в KR буфере (10 мМ Tris-HCl, 10 мМ MgCl₂, 0,01% Tween-20, 0,05% NaN₃, 1 мМ DTT, 2 мМ MnCl₂, pH 7,2).

Серийные разведения log10 от 2 мM до 63,2 нМ испытываемых соединений осуществляли в 100% DMSO. Разведения в DMSO затем разбавляли 50-кратно в KR-буфере, из которых 5 мкл использовали

в анализе, что давало конечную концентрацию соединения в анализе в пределах от $10\,\mathrm{mkM}$ до $0,316\,\mathrm{hM}$.

5 мкл/лунка испытываемого соединения в KR буфере (конечная концентрация DMSO в анализе составляла 1%) смешивали с 5 мкл/лунка 250 мЕд./мл Lyn фермента (конечная концентрация в анализе составляла 62,5 мЕд./мл). Испытываемые соединения и Lyn фермент предварительно инкубировали в течение 60 минут при комнатной температуре, затем добавляли 5 мкл/лунка 400 нМ флуоресцин-меченного пептидного субстрата (Blk/Линтид субстрат, #R7188/#R7233, Molecular Devices) Конечная концентрация пептида в анализе составляла 100 нМ. Киназный анализ начинали путем добавления 5 мкл/лунка 8 мкМ АТР в KR-буфере (конечная концентрация ATP составляла 2 мкМ ATP, Km ATP в Lyn IMAP анализе). После инкубации в течение 2 часов при комнатной температуре ферментную реакцию останавливали путем добавления 40 мкл/лунка ІМАР прогрессивного связующего раствора (в соответствии с протоколом изготовителей (Molecular Devices) с использованием 75% 1х буфера А и 25% 1х буфера В с 1:600 прогрессивного связующего раствора). После 60 минут инкубации при комнатной температуре в темноте осуществляли считывание FP сигнала. Флуоресценцию при 535 нм измеряли с использованием параллельных И перпендикулярных фильтров ДЛЯ определения разницы вращения из-за связывания фосфорилированного пептидного субстрата с шариками. Значения рассчитывали как процент разницы данных считывания (Δ mPi) относительно контролей с и без ATP. EC_{50} значения определяли путем подгонки кривой экспериментальных результатов с использованием Activity Base.

Таблица 5

Lyn	Lyn активность, значения EC50		
EC50	Пример		
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,		
	25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,		
	46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67,		
≥1 мкМ	68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,		
	89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,		
	108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123,		
	127, 128, 129, 130, 131, 132		
≥100 нМ			
<1мкМ	60, 124, 125, 126, 133		

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Соединение в соответствии с формулой І

Формула I

или его фармацевтически приемлемая соль, где

X представляет собой СН, N, O или S;

Y представляет собой C(R6), N, O или S;

Z представляет собой СН, N или связь;

А представляет собой СН или N;

В1 представляет собой N или C(R7);

В2 представляет собой N или C(R8);

ВЗ представляет собой N или C(R9);

В4 представляет собой N или C(R10);

R1 представляет собой R11C(O), R12S(O), R13SO $_2$ или (1-6C) алкил, необязательно замещенный группой R14;

R2 представляет собой H, (1-3C)алкил или (3-7C)циклоалкил;

R3 представляет собой H, (1-6C) алкил или (3-7C) циклоалкил); или

R2 и R3 образуют, вместе с атомами N и C, к которым они присоединены, (3-7C) гетероциклоалкил, необязательно замещенный одним или несколькими атомами фтора, гидроксилом, (1-3C) алкокси или оксо;

R4 представляет собой Н или (1-3C) алкил;

R5 представляет собой H, галоген, циано, (1-4C)алкил, (1-3C)алкокси, (3-6C)циклоалкил, любая алкильная группа которых

необязательно замещена одним или несколькими атомами галогена; или R5 представляет собой $(6-10\mathrm{C})$ арил или $(2-6\mathrm{C})$ гетероциклоалкил;

R6 представляет собой H или (1-3C)алкил; или

R5 и R6 вместе могут образовывать (3-7C) циклоалкенил или (2-6C) гетероциклоалкенил; причем каждый необязательно замещен (1-3C) алкилом или одним или несколькими атомами галогена;

R7 представляет собой H, галоген или (1-3C) алкокси;

R8 представляет собой H или (1-3C)алкил; или

R7 и R8 образуют вместе с атомом углерода, к которому они присоединены, (6-10C)арил или (1-9C)гетероарил;

R9 представляет собой H, галоген или (1-3C) алкокси;

R10 представляет собой H, галоген или (1-3C) алкокси;

R11 независимо выбирают из группы, включающей (1-6C)алкил, (2-6C)алкенил и (2-6C)алкинил, причем каждый алкил, алкенил или алкинил необязательно замещен одной или несколькими группами, выбранными из гидроксила, (1-4C)алкила, (3-7C)циклоалкила, [(1-4C)алкил]амино, [(1-3C)алкокси, (3-7C)циклоалкокси, (6-10C)арила или (3-7C)гетероциклоалкила; или

R11 представляет собой (1-3C) алкил-C(O)-S-(1-3C) алкил; или

R11 представляет собой (1-5C) гетероарил, необязательно замещенный одной или несколькими группами, выбранными из галогена или циано;

R12 и R13 независимо выбирают из группы, состоящей из (2-6C) алкенила или (2-6C) алкинила, причем оба необязательно замещены одной или несколькими группами, выбранными из гидроксила, (1-4C) алкила, (3-7C) циклоалкила, [(1-4C) алкил] амино, (1-3C) алкокси, (3-7C) циклоалкокси, (6-10C) арила или (3-7C) гетероциклоалкила; или

(1-5С) гетероарила, необязательно замещенного одной или несколькими группами, выбранными из галогена или циано;

R14 независимо выбирают из группы, включающей галоген, циано или (2-6C)алкенил или (2-6C)алкинил, причем оба необязательно замещены одной или несколькими группами, выбранными из гидроксила, (1-4C)алкила, (3-7C)циклоалкила, [(1-4C)алкил]амино, [(1-3C)алкокси, (3-7C)

7C) циклоалкокси, (6-10C) арила, (1-5C) гетероарила или (3-7C) гетероциклоалкила;

при условии, что

- от 0 до 2 атомов групп X, Y, Z одновременно могут представлять собой гетероатом;
- когда один атом, выбранный из групп X, Y, представляет собой O или S, тогда Z представляет собой связь, а другой атом, выбранный из групп X, Y, не может представлять собой O или S;
- когда Z представляет собой C или N, тогда Y представляет собой C(R6) или N, и X представляет собой C или N;
- от 0 до 2 атомов из B1, B2, B3 и B4 представляют собой N.
- 2. Соединение по п. 1, где В1 представляет собой C(R7); В2 представляет собой C(R8); В3 представляет собой C(R9); В4 представляет собой C(R10);
 - R7, R9 и R10 каждый представляют собой H; и
 - R8 выбирают из группы, состоящей из водорода и метила.
- 3. Соединение по любому одному из пп. 1-2, где R4 выбирают из группы, состоящей из водорода и метила.
- 4. Соединение по любому одному из пп. 1-3, где кольцо, содержащее X, Y и Z, выбирают из группы, включающей пиридил, пиримидил, пиридазил, триазинил, тиазолил, оксазолил и изоксазолил.
- 5. Соединение по любому одному из пп. 1-4, где кольцо, содержащее X, Y и Z, выбирают из группы, включающей пиридил, пиримидил и тиазолил.
- 6. Соединение по любому одному из пп. 1-5, где R5 выбирают из группы, включающей водород, фтор, хлор, (1-3C)алкил и (1-2C)алкокси; (1-3C)алкильная группа которого необязательно замещена одним или несколькими атомами галогена.
- 7. Соединение по любому одному из пп. 1-6, где R5 выбирают из группы, включающей водород, фтор, метил, этил, пропил, метокси и трифторметил.
- 8. Соединение по любому одному из пп. 1-7, где R2 представляет собой водород или (1-3C)алкил; и R3 представляет собой (1-6C)алкил.

- 9. Соединение по любому одному из пп. 1-7, где R2 и R3 вместе образуют гетероциклоалкильное кольцо, выбранное из азетидинила, пирролидинила, пиперидинила, гомопиперидинила или морфолинила, необязательно замещенное одним или несколькими атомами фтора, гидроксилом, (1-3C) алкилом, (1-3C) алкокси, или оксо.
- 10. Соединение по любому одному из пп. 1-9, где R1 представляет собой R11C(O), и R11 независимо выбирают из (1-6C) алкил, (2-6C) алкенил (2 включающей ИЛИ группы, 6С) алкинил, причем каждый необязательно замещен одной несколькими группами, выбранными из гидроксила, (1-4С)алкила, (3-7C) циклоалкила, [(1-4C) алкил] амино, ди [(1-4C) алкил] амино, (3-7С) циклоалкокси, (6-10С) арила (1-3С) алкокси, (3 или 7С) гетероциклоалкила; ИЛИ R11 представляет собой (1 -5С) гетероарил, необязательно замещенный одной или несколькими группами, выбранными из галогена или циано.
- 11. Соединение по любому одному из пп. 1-10, где R1 представляет собой R11C(O), и R11 выбирают из группы, включающей (2-6C) алкенил или (2-6C) алкинил, причем каждый необязательно замещен одной или несколькими группами, выбранными из гидроксила, (1-4C) алкила, (3-7C) циклоалкила, ди[(1-4C) алкил] амино, (1-3C) алкокси, (3-7C) циклоалкокси или (3-7C) гетероциклоалкила.
 - 12. Соединение по п. 1, выбранное из группы, включающей
- (S) -4- (3- (1-акрилоилпирролидин-2-ил) -8-аминоимидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
- (S,E) -4- (8-амино-3- (1- (4- (пирролидин-1-ил) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
- (S,E) -4- (8-амино-3-(1-(4-(диметиламино) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
- (S) 4 (8 амино 3 (1 (2 хлорпиримидин 4 карбонил) пирролидин 2 ил) имидазо [1, 5 а] пиразин 1 ил) N –

```
(пиридин-2-ил) бензамид;
```

- (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-
- ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
- (S,E) -4- (8-амино-3- (1- (4- (диметиламино) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-
- фторпиридин-2-ил) бензамид;
 - (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-
- ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-метилпиридин-2-ил) бензамид;
- (S,E) 4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) N- (4-пропилпиридин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- (трифторметил) пиридин-2-ил) бензамид;
- $(S,E)-4-(8-амино-3-(1-(4-метоксибут-2-еноил) пирролидин-2- \\ ил) имидазо [1,5-а] пиразин-1-ил) -N-(4-этилпиридин-2-ил) бензамид;$
- (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил)-N- (4,5,6,7-тетрагидробензо [d] тиазол-2-ил) бензамид;
- (S) -4-(3-(1-акрилоилпирролидин-2-ил) -8-аминоимидазо [1,5-а] пиразин-1-ил) -2-фтор-N-(пиридин-2-ил) бензамид;
- (S) -4-(3-(1-акрилоилпирролидин-2-ил) -8-аминоимидазо [1,5-а] пиразин-1-ил) -2-метокси-N-(пиридин-2-ил) бензамид;
- (S,E) –4- (8-амино-3- (1- (4- (диметиламино) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) –N- (тиазол-2-ил) бензамид;
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
- (S) -4- (3-(1-акрилоилпиперидин-2-ил) -8-аминоимидазо [1,5-а] пиразин-1-ил) -N- (4-фторпиридин-2-ил) бензамид;
- (S) -4-(3-(1-акрилоилпиперидин-2-ил) -8-аминоимидазо[1,5-а]пиразин-1-ил) -N-(4-цианопиридин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1- (винилсульфонил) пиперидин-2- ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- (трифторметил) пиридин-2- ил) бензамид;
 - (S) 4 (3 (1 акрилоилпиперидин 2 ил) 8 аминоимидазо [1, 5 1]

```
а] пиразин-1-ил) -N- (пиримидин-2-ил) бензамид;
      (S) - 4 - (3 - (1 - акрилоилпиперидин - 2 - ил) - 8 - аминоимидазо [1, 5 - 1]
а] пиразин-1-ил) -N- (4-метилпиримидин-2-ил) бензамид;
      (S) -4-(8-амино-3-(1-бут-2-иноилпиперидин-2-ил) имидазо [1, 5-
а] пиразин-1-ил) -N- (пиримидин-4-ил) бензамид;
      (S)-4-(8-амино-3-(1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-
а] пиразин-1-ил) -N- (пиридазин-3-ил) бензамид;
     (S) -4- (8-амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-
а] пиразин-1-ил) -N- (изоксазол-3-ил) бензамид;
      (S,E) -4-(8-амино-3-(1-(4-метоксибут-2-еноил) пиперидин-2-
ил) имидазо [1, 5-a] пиразин-1-ил) -N-(5-этилтиазол-2-ил) бензамид;
     (S)-4-(3-(1-акрилоилпиперидин-2-ил)-8-аминоимидазо[1,5-
а] пиразин-1-ил) -2-фтор-N- (4-пропилпиридин-2-ил) бензамид;
      (S, E) - 4 - (8 - \text{амино} - 3 - (1 - (4 - (\text{диметиламино}) \text{бут} - 2 -
еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -2-метокси-N-
(4-пропилпиридин-2-ил) бензамид;
     4-(8-амино-3-((S)-1-бут-2-иноилпиперидин-2-ил) имидазо[1,5-
а] пиразин-1-ил) -3-метил-N- (пиридин-2-ил) бензамид;
     4-(3-(акриламидометил)-8-аминоимидазо[1,5-а]пиразин-1-ил)-
N-(пиридин-2-ил) бензамид;
      (S) -4- (8-амино-3- (1-бут-2-инамидоэтил) имидазо [1, 5-
а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
      (S) -S-2-(2-(8-амино-1-(4-(пиридин-2-
илкарбамоил) фенил) имидазо [1,5-a] пиразин-3-ил) пирролидин-1-ил) -
2-оксоэтил этантиоат;
     (S) -4-(8-амино-3-(1-(4-гидрокси-4-метилпент-2-
иноил) пирролидин-2-ил) имидазо [1, 5-а] пиразин-1-ил) -N- (пиридин-2-
ил) бензамид;
      (S) -4- (8-амино-3- (1-(6-хлорпиримидин-4-
карбонил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N-
(пиридин-2-ил) бензамид;
      (S) -4- (8-амино-3- (1-пент-2-иноилпирролидин-2-
ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
      (S) – 4 – (8 – амино – 3 – (1 – (3 – циклопропилпропиолоил) пирролидин – 2 –
ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
      (S) -4-(8-амино-3-(1-гекс-2-иноилпирролидин-2-
```

```
ил) имидазо [1,5-a] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
     4-(3-(1-акрилоилазепан-2-ил)-8-аминоимидазо[1,5-а]пиразин-
1-ил) -N- (пиридин-2-ил) бензамид;
     (R) -4-(8-амино-3-(4-бут-2-иноилморфолин-3-ил) имидазо [1,5-
а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
     (S) -4- (8-амино-3- (1-(N-метилбут-2-
инамидо) этил) имидазо [1,5-а] пиразин-1-ил) -N- (4-
(трифторметил) пиридин-2-ил) бензамид;
     (S) -4- (8-амино-3- (1- (4-(диметиламино) бут-2-
иноил) пирролидин-2-ил) имидазо[1,5-a] пиразин-1-ил) -N- (пиридин-2-
ил) бензамид;
     (S) -4- (8-амино-3- (1-(4-метоксибут-2-иноил) пирролидин-2-
ил) имидазо [1,5-a] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
     а] пиразин-1-ил) -N- (4-фторпиридин-2-ил) бензамид;
     (S) - 4 - (3 - (1 - акрилоилпирролидин - 2 - ил) - 8 - аминоимидазо [1, 5 - 1]
а]пиразин-1-ил) -N-(4-(пирролидин-1-ил) пиридин-2-ил) бензамид;
     (S) -4-(8-амино-3-(1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-
а] пиразин-1-ил) -N- (4-фторпиридин-2-ил) бензамид;
     (S)-4-(8-амино-3-(1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-
а]пиразин-1-ил)-N-(пиридин-2-ил)бензамид;
     (S)-4-(3-(1-акрилоилпиперидин-2-ил)-8-аминоимидазо[1,5-
а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
     (S) -4- (8-амино-3-(1-бут-2-иноилпирролидин-2-
ил) имидазо[1,5-а] пиразин-1-ил) -N- (4-пропилпиридин-2-
ил) бензамид;
     (S,E) -4- (8-амино-3- (1- (4-метокси-N-метилбут-2-
енамидо) этил) имидазо [1,5-a] пиразин-1-ил) -N- (4-пропилпиридин-2-
ил) бензамид;
     (S) -4- (8-амино-3- (1-(винилсульфонил) пиперидин-2-
ил) имидазо[1,5-a] пиразин-1-ил) -N-(4-пропилпиридин-2-
ил) бензамид;
     (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-
ил) имидазо [1,5-a] пиразин-1-ил) -2-фтор-N- (пиридин-2-ил) бензамид;
     (S, E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-
```

ил) имидазо[1,5-а] пиразин-1-ил) -N- (4-метоксипиридин-2-

```
ил) бензамид;
```

- (S,E) 4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) 2-фтор-N- (4-метоксипиридин-2-ил) бензамид;
- (S,E) 4 (8 амино 3 (1 (4 метоксибут 2 еноил) пирролидин 2 ил) имидазо [1,5 а] пиразин 1 ил) N (4 фторпиридин 2 ил) бензамид;
- (S,E)-4-(8-амино-3-(1-(4-метоксибут-2-еноил) пиперидин-2-
- ил) имидазо [1,5-а] пиразин-1-ил) -N- (изоксазол-3-ил) бензамид;
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиримидин-2-ил) бензамид;
- 4-(8-амино-3-((S)-1-(2-хлорпиримидин-4-карбонил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -3-метил-N-(пиридин-2-ил) бензамид;
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-метилпиридин-2-ил) бензамид;
- (S,E) 4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) –N- (4-изопропилпиридин-2-ил) бензамид;
- (S,E) -4- (8-амино-3- (1- (4- (диметиламино) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- метилпиридин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (тиазол-2-ил) бензамид;
- (S) -4-(3-(1-акрилоилпиперидин-2-ил) -8-аминоимидазо[1,5-а]пиразин-1-ил)-N-(4-пропилпиридин-2-ил) бензамид;
- (S) -4- (3- (1-акрилоилпирролидин-2-ил) -8-аминоимидазо [1,5-а] пиразин-1-ил) -N- (4- (трифторметил) пиридин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- (трифторметил) пиридин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-пропилпиридин-2-ил) бензамид;
- (S,E) 4- (8-амино-3- (1- (4- (диметиламино) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) –N- (4- изопропилпиридин-2-ил) бензамид;
- 4-(8-амино-3-((S)-1-(винилсульфонил) пиперидин-2-ил) имидазо[1,5-a] пиразин-1-ил)-3-метил-N-(пиридин-2-

```
ил) бензамид;
```

- (S) -4- (8-амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -2-фтор-N- (4-пропилпиридин-2-ил) бензамид;
- 4-(3-((S)-1-акрилоилпиперидин-2-ил)-8-аминоимидазо[1,5-а]пиразин-1-ил)-3-метил-N-(пиридин-2-ил) бензамид;
- (E) -4- (8-амино-3- ((4- (диметиламино) бут-2-енамидо) метил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4-карбонил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-изопропилпиридин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1-(2-хлорпиримидин-4- карбонил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4,5,6,7-тетрагидробензо [d] тиазол-2-ил) бензамид;
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридазин-3-ил) бензамид;
- (S,E) 4 (8 амино 3 (1 (4 (диметиламино) бут 2 еноил) пиперидин 2 ил) имидазо [1,5 а] пиразин 1 ил) N (пиридазин 3 ил) бензамид;
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4-карбонил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридазин-3-ил) бензамид;
- (S,E) -4- (8-амино-3- (1- (4-метокси-N-метилбут-2-енамидо) этил) имидазо [1,5-а] пиразин-1-ил) -N- (4- (трифторметил) пиридин-2-ил) бензамид;
- (S,E) -4- (8-амино-3- (1- (4- (диметиламино) -N-метилбут-2- енамидо) этил) имидазо [1,5-а] пиразин-1-ил) -N- (4-пропилпиридин-2- ил) бензамид;
- (S,E) -4- (8-амино-3- (1- (4- (пирролидин-1-ил) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- пропилпиридин-2-ил) бензамид;
- (S,E) –4- (8-амино-3- (1- (4- (диметиламино) бут-2- еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) –N- (пиридин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4- карбонил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- пропилпиридин-2-ил) бензамид;
 - (S)-4-(8-амино-3-(1-(2-хлорпиримидин-4-карбонил) пиперидин-

- 2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-фторпиридин-2-ил) бензамид;
- (S,E) -4 -(8-амино-3-(1-(4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N-(4-фторпиридин-2-ил) бензамид;
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4,5,6,7-

тетрагидробензо [d] тиазол-2-ил) бензамид;

- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4- карбонил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -2-метокси- N- (пиридин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4-карбонил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -2-фтор-N- (пиридин-2-ил) бензамид;
- 4-(8-амино-3-((S)-1-((E)-4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -3-метил-N- (пиридин-2-ил) бензамил;
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиримидин-4-ил) бензамид;
- 4-(8-амино-3-((S)-1-((E)-4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -3-метил-N-(4-пропилпиридин-2-ил) бензамид;
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-метилпиримидин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-метилпиримидин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4-карбонил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиримидин-2-ил) бензамид;
 - (S) -4- (8-амино-3-(1-метакрилоилпирролидин-2-
- ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1- (2- (трифторметил) акрилоил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
 - (S,E)-4-(8-амино-3-(1-бут-2-еноилпирролидин-2-
- ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
 - (S) -4- (8-амино-3- (1-(цианометил) пирролидин-2-
- ил) имидазо [1,5-a] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;

```
(E) -4- (8-амино-3- ( (4-метоксибут-2-
енамидо) метил) имидазо[1,5-a] пиразин-1-ил) -N- (пиридин-2-
ил) бензамид;
      (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-
ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- (пирролидин-1-ил) пиридин-2-
ил) бензамид;
      (E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) азепан-2-
ил) имидазо [1,5-a] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
      (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-
ил) имидазо [1,5-a] пиразин-1-ил) -N-(4-цианопиридин<math>-2-ил) бензамид;
      (S) -4- (8-амино-3-(1-бут-2-иноилпирролидин-2-
ил) имидазо [1,5-а] пиразин-1-ил) -2-метокси-N- (пиридин-2-
ил) бензамид;
      (S) - 4 - (3 - (1 - акриламидоэтил) - 8 - аминоимидазо [1, 5 - а] пиразин-
1-ил) -N- (пиридин-2-ил) бензамид;
      (S) - 4 - (3 - (1 - акрилоилпирролидин - 2 - ил) - 8 - аминоимидазо [1, 5 -
а]пиразин-1-ил)-N-(тиазол-2-ил)бензамид;
      (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-
ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-изопропилпиридин-2-
ил) бензамид;
      (S,E) – 4 – (8-амино – 3 – (1 – (4-метоксибут – 2 – еноил) пирролидин – 2 –
ил) имидазо [1,5-а] пиразин-1-ил) -2-метокси-N- (пиридин-2-
ил) бензамил;
      (S,E) -4- (8-амино-3- (1-циннамоилпирролидин-2-
ил) имидазо [1,5-a] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
      (S) -N-(1-(8-амино-1-(4-(пиридин-2-
илкарбамоил) фенил) имидазо [1,5-a] пиразин-3-ил) этил) -2-
хлорпиримидин-4-карбоксамид;
      (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-
ил) имидазо [1,5-a] пиразин-1-ил) -N-(4-фторпиридин<math>-2-ил) бензамид;
      (S) - 4 - (8 - \text{амино} - 3 - (1 - (2 - \text{хлорпиримидин} - 4 - \text{карбонил}) пиперидин-
```

(S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- (трифторметил) пиридин-2-ил) бензамид;

2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-пропилпиридин-2-

ил) бензамид;

- (S) -4- (3-(1-акрилоилпиперидин-2-ил) -8-аминоимидазо [1, 5-а] пиразин-1-ил) -N- (4-(трифторметил) пиридин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -2-метокси-N- (4-пропилпиридин-2-ил) бензамид;
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -2-метокси-N- (4-пропилпиридин-2-ил) бензамид;
- 4-(8-амино-3-(бут-2-инамидометил) имидазо[1,5-а] пиразин-1-ил)-N-(пиридин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1- (N-метилбут-2- инамидо) этил) имидазо [1,5-а] пиразин-1-ил) -N- (4-пропилпиридин-2- ил) бензамид;
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -2-фтор-N- (4-пропилпиридин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4-карбонил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4- (трифторметил) пиридин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1-бут-2-иноилпиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (5-этилтиазол-2-ил) бензамид;
- (S) -4- (3-(1-акрилоилпиперидин-2-ил) -8-аминоимидазо [1,5-а] пиразин-1-ил) -N- (5-этилтиазол-2-ил) бензамид;
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4-карбонил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (5-этилтиазол-2-ил) бензамид;
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4-карбонил) пирролидин-2-ил) имидазо [1, 5-а] пиразин-1-ил) -N- (4- (трифторметил) пиридин-2-ил) бензамид;
- (R,E) -4- (8-амино-3- (4- (4-метоксибут-2-еноил) морфолин-3-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2-ил) бензамид;
- (S,E) -4- (8-амино-3- (1- (4-метоксибут-2-еноил) пиперидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-пропилпиридин-2-ил) бензамид;
- (S) -4- (3-(1-акрилоилпирролидин-2-ил) -8-аминоимидазо [1, 5-а] пиразин-1-ил) -N- (4-цианопиридин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-метоксипиридин-2-

ил) бензамид;

- (S) -4- (3- (1-акрилоилпирролидин-2-ил) -8-аминоимидазо [1,5-а] пиразин-1-ил) -N- (4-метилпиридин-2-ил) бензамид;
- (S) -4-(3-(1-акрилоилпирролидин-2-ил) -8-аминоимидазо [1,5-а] пиразин-1-ил) -N-(4-пропилпиридин-2-ил) бензамид;
- (S) -4-(3-(1-акрилоилпирролидин-2-ил)-8-аминоимидазо[1,5-а] пиразин-1-ил)-N-(4-этилпиридин-2-ил) бензамид;
- (S,E) -4- (8-амино-3- (1- (4- (диметиламино) бут-2- еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (пиридин-2- ил) бензамид;
- (S,E) 4- (8-амино-3- (1- (4-метоксибут-2-еноил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) –N- (4- (трифторметил) пиридин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1- (2-хлорпиримидин-4-карбонил) пирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-метилпиридин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-цианопиридин-2-ил) бензамид;
 - (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-
- ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-этилпиридин-2-ил) бензамид;
- (S) -4- (8-амино-3- (1-бут-2-иноилпирролидин-2-ил) имидазо [1,5-а] пиразин-1-ил) -N- (4-фенилпиридин-2-ил) бензамид и
- (S) –4- (3- (1-акрилоилпирролидин-2-ил) –8-аминоимидазо [1, 5-а] пиразин-1-ил) –N- (4-фенилпиридин-2-ил) бензамид.
- 13. Соединение по любому из пп. 1-12 для применения в терапии.
- 14. Соединение по любому из пп. 1-12 для применения в лечении расстройств, опосредованных тирозинкиназой Брутона (Btk).
- 15. Применение соединения формулы I по любому из пп. 1-12 или его фармацевтически приемлемой соли для получения лекарственного средства для лечения расстройств, опосредованных тирозинкиназой Брутона (Btk).
- 16. Комбинация соединения по любому одному из пп. 1-12, или его фармацевтически приемлемой соли и дополнительного

терапевтического средства.

17. Фармацевтическая композиция, содержащая соединение по любому одному из пп. 1-12, или его фармацевтически приемлемую соль и фармацевтически приемлемый эксципиент.

По доверенности