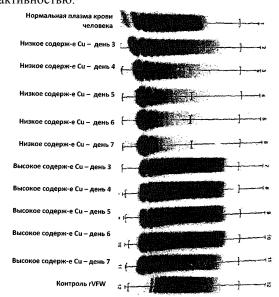
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ


- (43) Дата публикации заявки 2013.06.28
- (22) Дата подачи заявки 2011.07.08

(51) Int. Cl. C07K 14/755 (2006.01) C12N 5/00 (2006.01) A61K 38/36 (2006.01) C12N 5/10 (2006.01)

(54) СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНОГО ВЫСОКОМОЛЕКУЛЯРНОГО vWF В КУЛЬТУРЕ КЛЕТОК

- (31) 61/362,635
- (32) 2010.07.08
- (33) US
- (86) PCT/US2011/043455
- (87) WO 2012/006591 2012.01.12
- (71) Заявитель: БАКСТЕР ИНТЕРНЭШНЛ ИНК. (US); БАКСТЕР ХЕЛТКЭР С.А. (CH)
- (72) Изобретатель: Грилльбергер Леопольд, Райтер Манфред, Мундт Вольфганг (АТ)
- (74) Представитель: Медведев В.Н. (RU)

(57) Настоящее изобретение относится, среди прочих аспектов, к условиям культивирования клеток для получения высокомолекулярного vWF, в частности WF, состоящего из большого количества мультимеров, с высокой удельной активностью и ADAMTS13 с высокой удельной активностью. Условия культивирования клеток согласно настоящему изобретению могут включать, например, среду для клеточной культуры с повышенной концентрацией меди и/или супернатант культуры клеток с низкой концентрацией аммония (NH₄⁺). Настоящее изобретение также обеспечивает способы культивирования клеток в условиях клеточной культуры для экспрессии высокомолекулярных vWF и rA13, обладающих высокой удельной активностью.

СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНОГО ВЫСОКОМОЛЕКУЛЯРНОГО vWF В КУЛЬТУРЕ КЛЕТОК

ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА ЗАЯВКИ

[0001] Настоящая заявка испрашивает приоритет согласно предварительной заявке на патент США, № 61/362635, поданной 8 июля 2010 г., описание которой включено в настоящую заявку посредством ссылки во всей полноте для любых целей.

ОБЛАСТЬ ТЕХНИКИ

[0002] Рекомбинантная экспрессия терапевтических белков в культуре клеток (в частности, крупномасштабных культурах клеток), включая культуры эукариотических клеток, и, конкретнее, культуры клеток млекопитающих, требует применения специальных культуральных сред, обеспечивающих питательные вещества для эффективного роста клеток. В составы сред для клеточных культур часто входят различные добавки, включая эмбриональную телячью сыворотку (ЭТС), животные белки и/или гидролизаты белков крупного рогатого скота, а также белковые гидролизаты, полученные из растений или дрожжей. Одна из проблем, связанных с такими культурами, состоит в том, что количество получаемого белка, а также общая и удельная активность указанного белка, часто варьируют в разных культурах клеток, даже в случае, когда состав среды для культуры клеток неизменен. Эта вариабельность особенно очевидна в случае крупномасштабных производственных процессов с применением объемов клеточных культур от 10 литров до более чем 20 000 литров. Вариабельность для разных культур клеток особенно часто наблюдают для сред для клеточных культур, содержащих гидролизаты, что приводит к уменьшению продукции общего продуцируемого количества белка, а также уменьшению общей и удельной активности.

[0003] Одной из возможных причин вариабельности, наблюдаемой в разных культурах клеток, является то, что загрязняющие примеси в добавках, таких как гидролизаты, варьируют от партии к партии. Как правило, сыворотка или полученные из сыворотки

вещества, такие как, например, альбумин, трансферрин или инсулин, могут содержать нежелательные агенты, которые могут загрязнять культуры клеток и получаемые из них биологические продукты. Кроме того, получаемые из сыворотки крови человека добавки должны быть проверены на все известные вирусы, включая вирусы гепатита и ВИЧ, которые могут передаваться через сыворотку крови. Более того, бычья сыворотка и получаемые из нее продукты несут риск заражения КГЭ. Помимо этого, все полученные из сыворотки продукты могут быть загрязнены неизвестными веществами. При применении для культуры клеток сыворотки или белковых добавок, полученных от человека или животных, возникают многочисленные проблемы (например, варьирующие качество и свойства составов из разных партий и риск загрязнения микоплазмой, вирусами или КГЭ), в частности, если указанные клетки применяют для производства лекарственных средств или вакцин для введения человеку. Поэтому было предпринято множество попыток получения эффективной системы хозяина и условий культивирования, для которых не требуется сыворотка или другие белковые вещества животного происхождения.

[0004] Такие бессывороточные среды разрабатывались на основе белковых экстрактов, получаемых из растений или дрожжей. Например, известно, что гидролизаты сои подходят для процессов ферментации и могут усиливать рост многих микроорганизмов со сложными питательными потребностями, дрожжей и грибов. В WO 96/26266 указано, что папаиновые гидролизаты соевой муки являются источником углеводов и азота, и многие ее компоненты могут применяться для тканевых культур. Franek et al. (Biotechnology Progress (2000) 16, 688–692) описывают эффекты стимуляции роста и продуктивности определенных пептидных фракций гидролизатов сои и пшеницы.

[0005] В WO 96/15231 описана бессывороточная среда, состоящая из синтетической минимальной питательной среды и дрожжевого экстракта, для размножения клеток позвоночных животных и процесса воспроизводства вирусов. Состав среды, состоящей из основной среды для культур клеток, содержащей пептид риса, экстракт дрожжей и их ферментативный гидролизат, и/или растительные липиды для роста животных клеток, описан в WO 98/15614. Содержащая очищенный соевый гидролизат среда для культивирования рекомбинантных клеток описана в WO 01/23527. В WO 00/03000

описана среда, которая содержит соевый гидролизат и дрожжевой экстракт, но также требует и присутствия рекомбинантных форм животных белков, таких как факторы роста.

[0006] В ЕР-А-0 481 791 описана культуральная среда с заданным биохимическим составом для культивирования сконструированных клеток СНО, не содержащая белков, липидов и углеводов, выделенных из животных источников, содержащая также рекомбинантный инсулин или аналог инсулина, 1% к 0,025% (масса/объем) пептона расщепленной папаином сои, и путресцин. В WO 98/08934 описана бессывороточная культура эукариотических клеток, содержащая гидролизованные соевые пептиды (1–1000 мг/л), от 0,01 до 1 мг/л путресцина и разнообразные компоненты животного происхождения, включая альбумин, фетуин, различные гормоны и другие белки. В этом контексте следует отметить, что, как известно, путресцин входит также в стандартные среды, например, в среду DMEM/Хэма F12 в концентрации 0,08 мг/л.

[0007] Растительные и/или дрожжевые гидролизаты, однако, представляют собой неопределенные смеси олигопептидов и других неизвестных компонентов и загрязнителей. При этом свойства коммерчески доступных партий гидролизатов существенно варьируют. В результате выход рекомбинантных белков или вирусных продуктов значительно различается (разница составляет до троекратной) в зависимости от партии используемого гидролизата («разброс от партии к партии»). Этот недостаток влияет на пролиферацию клеток, а также экспрессию белков в каждой клетке. В US 2007/0212770 описаны различные не содержащие животных белков и олигопептидов, культуральные среды с заданным химическим составом, подходящие для крупномасштабного производства рекомбинантных белковых биофармацевтических средств.

[0008] Гемостаз включает взаимодействие различных путей гемостатических реакций, в итоге приводящих к образованию тромба. Тромбы представляют собой отложения компонентов крови на поверхности стенок сосудов, состоящие в основном из агрегированных тромбоцитов крови и нерастворимого перекрестно-сшитого фибрина. Образование фибрина происходит в результате сдерживания протеолиза фибриногена под действием тромбина, фермента свертывания. Тромбин представляет собой конечный продукт каскада свертывания, последовательной активации зимогена на поверхности

активированных тромбоцитов и лейкоцитов, и различных клеток сосудов (для ознакомления см. К. G. Mann et al., Blood, 1990, Vol. 76, pp. 1–16).

[0009] Важной функцией каскада свертывания является активация фактора Х комплексом активированного фактора IX (Фактора IXa) и активированного фактора VIII (Фактора VIIIa). Дефицит или дисфункция компонентов этого комплекса связаны с заболеванием крови, известным как гемофилия (J. E. Sadler & E. W. Davie: Hemophilia A, Hemophilia B, and von Willebrand's Disease («Гемофилия А, гемофилия В и болезнь Виллебранда»), в G. Stamatoyannopoulos et al., (Eds.): The molecular basis of blood diseases («Молекулярные основы заболеваний крови»). W.B. Saunders Co., Philadelphia, 1987, pp. 576-602). Гемофилия А связана с дефицитом активности фактора VIII, в то время как гемофилия В связана с дефицитом фактора IX. Современное лечение представляет собой заместительную терапию с применением фармацевтических препаратов, содержащих нормальный фактор свертывания. Из указанных тромбопатий гемофилия А встречается чаще, поражая примерно одного человека из 10 000. Заместительная терапия у пациентов с гемофилией А включает повторяющееся введение препаратов, содержащих нормальный фактор VIII, путем внутривенной инфузии. Интервал между инфузиями представляет собой функцию от снижения активности фактора VIII в кровотоке. Полупериод активности фактора VIII после инфузии различен у разных индивидуумов, варьируя от 10 до 30 часов. Таким образом, профилактическая терапия требует инфузий каждые 2-3 дня. Это является тяжелым бременем для пациентов с гемофилией, в частности, в случаях, когда венозный доступ затруднен в результате местной карбонизации после частых проколов иглой для внутривенных инфузий.

[0010] Снижение частоты инфузий за счет применения фактора VIII с продленным периодом полужизни было бы очень благоприятно. В данной области техники хорошо известно, что время полураспада неактивированного гетеродимера фактора VIII сильно зависит от присутствия фактора фон Виллебранда, проявляющего высокое сродство к фактору VIII (но не к фактору VIIIa) и служащего белком-переносчиком (J. E. Sadler and E. W. Davie: Hemophilia A, Hemophilia B and von Willebrand's disease, в G. Stamatoynnopoulos et al. (Eds.): The molecular basis of blood diseases. W.B. Saunders Co., Philadelphia, 1987, pp. 576–602). Известно, что пациенты, страдающие от болезни Виллебранда типа 3, не

имеющие детектируемого уровня фактора фон Виллебранда в кровотоке, страдают также от вторичного дефицита фактора VIII. Кроме того, период полураспада введенного внутривенно фактора VIII у таких пациентов составляет от 2 до 4 часов, что заметно меньше 10–30 часов, наблюдаемых у пациентов с гемофилией А. Из полученных результатов следует, что фактору VIII свойственна тенденция к быстрому выведению из кровотока, и что этот процесс до некоторой степени подавляется комплексообразованием с его естественным переносчиком — фактором фон Виллебранда.

[0011] Фактор фон Виллебранда (vWF) представляет собой гликопротеин, циркулирующий в плазме в виде ряда мультимеров, размер которых варьирует, как правило, от приблизительно 500 до 20 000 кДа (или 2—40 димеров vWF). Димерные и мультимерные формы vWF составлены 250 кДа полипептидными субъединицами, связанными друг с другом дисульфидными связями. vWF опосредует первичную адгезию тромбоцитов к субэндотелию поврежденной стенки сосуда; только мультимеры большего размера проявляют также гемостатическую активность. Мультимеризованный VWF связывается с поверхностным гликопротеином тромбоцитов Gp1b□ посредством взаимодействия в домене A1 VWF, содействуя адгезии тромбоцитов. Предполагается, что эндотелиальные клетки секретируют крупные полимерные формы vWF, а те формы vWF, которые имеют низкие молекулярные массы (низкомолекулярный vWF), возникают за счет протеолитического расщепления. Мультимеры с большими молекулярными массами накапливаются в тельцах Вейбеля—Палада эндотелиальных клеток и высвобождаются при стимуляции.

[0012] Снижение связывающей активности FVIII благодаря сниженным уровням белка vWF или уменьшению связывающей способности FVIII приводит к одному из трех типов болезни Виллебранда. Дополнительно или альтернативно, определенные типы болезни Виллебранда характеризуются повышением или снижением уровня Gp1b□- опосредованного связывания тромбоцитов, а именно типы 2A, 2B и 2M (обобщенные данные см. у Castaman et al., Disorders of Hemostasis 88(1):94−108 (2003)). Соответственно, модулирование взаимодействия vWF как с FVIII, так и с Gp1b□ представляет собой целесообразную стратегию для лечения как гемофилии, так и болезни Виллебранда.

[0013] Учитывая биологическую важность vWF, существует постоянная необходимость в совершенствовании техники способов получения vWF для терапевтического применения. Общеизвестно, что vWF может быть выделен из эндогенных источников, таких как плазма крови человека. Выделенный vWF обладает таким преимуществом, как высокая удельная активность в отношении выполнения его биологической функции и может, таким образом, эффективно применяться в качестве терапевтического белка для лечения соответствующих заболеваний, таких как болезнь Виллебранда. Как правило, vWF плазмы обладает удельной ристоцетиновой активностью, составляющей приблизительно 100 мЕ/мкг, однако выделение из плазмы крови человека имеет недостатки, так как, например, такая плазма может содержать различные вирусы, такие как ВИЧ и/или вирусы гепатита, которые могут переноситься пациенту. Кроме того, плазма представляет собой ограниченный ресурс и, таким образом, дефицит плазмы может приводить к проблематичности получения достаточного количества vWF для лечения. Соответственно, рекомбинантные способы получения vWF обладают преимуществами, разрешая некоторые проблемы, связанные с зависимостью от плазмы в качестве источника vWF. Для рекомбинантного получения была клонирована полноразмерная кДНК vWF; указанный прополипептид соответствует аминокислотным остаткам 23-764 полноразмерного препро-vWF (Eikenboom et al (1995) Haemophilia 1, 77 90).

[0014] К сожалению, vWF представляет собой молекулу, подвергающуюся сложным посттрансляционным модификациям. Кроме того, мультимеризация димеров vWF в большие и ультрабольшие мультимеры в аппарате Гольджи представляет собой сложную задачу при экспрессии в клетках млекопитающих. Так, экспрессия высокомолекулярного vWF в культуре клеток, например, эндотелиальных клетках человека (первичных), зависит от специфического накопления ультрабольших молекул vWF в тельцах Вейбеля—Палада. Такие культуры клеток не подходят для получения терапевтических белков. Описаны и другие способы культивирования клеток; известно, что условия культивирования клеток могут влиять на продуцирование vWF различным образом. Например, показано, что высокие концентрации аммония (NH4⁺) нарушают посттрансляционную модификацию. Мауаdas et al. (J. Biol. Chem., 264(23):13497—13503, 1989) показали, что уровень аммония 25 мМ приводили к снижению мультимеризации vWF в эндотелиальных клетках, что также негативно влияет на удельную ристоцетиновую активность рекомбинантного vWF.

Снижение мультимеризации, как правило, связано со снижением активности, в частности, удельной ристоцетиновой активности, рекомбинантного vWF.

[0015] До сих пор трудно предсказать, какие параметры могут положительно или отрицательно влиять на продуцирование того или иного белка, в особенности – сложных гликопротеинов, таких как фактор VIII и vWF. Например, показано, что определенные компоненты среды для клеточной культуры влияют на продуцирование фактора VIII. Согласно описанию в патенте США №5804420 добавление полиола, меди и других следовых металлов может положительно влиять на выход фактора VIII. Также, согласно описанию в WO 2009/086309, показано, что применение меди в процессе культивирования клеток повышает выработку фактора VIII. У Mignot et al. (1989) описано также осуществление экспрессии vWF в рекомбинантных клетках СНО. Однако ни в одном из указанных примеров не содержится информации относительно удельной активности vWF или уровня его мультимеризации.

[0016] Белки ADAMTS (дезинтегрин и металлопротеиназа с мотивами тромбоспондина I типа) представляют собой семейство металлопротеиназ, содержащих ряд консервативных доменов, включая цинк-зависимый каталитический домен, цистеин-богатый домен, дезинтегрин-подобный домен и по меньшей мере один, а в большинстве случаев множество повторов тромбоспондина типа I (для ознакомления см. Nicholson et al., BMC Evol Biol. 2005 Feb 4;5(1):11). Указанные белки, эволюционно родственные семействам металлопротеиназ ADAM и MMP (Jones GC, Curr Pharm Biotechnol. 2006 Feb;7(1):25–31), являются секретируемыми ферментами, для которых установлена связь с рядом заболеваний и состояний, включая тромботическую тромбоцитопеническую пурпуру (ТТП) (Moake JL, Semin Hematol. 2004 Jan;41(1):4–14), соединительнотканные расстройства, раковые заболевания, воспаление (Nicholson et al.) и тяжелую плазмодийную тропическую малярию (Larkin et al., PLoS Pathog, 2009 Mar;5(3):e1000349). Из-за этих связей ферменты ADAMTS были признаны потенциальными мишенями для терапии ряда патологий (Jones GC, Curr Pharm Biotechnol. 2006 Feb;7(1):25-31). Соответственно, существует потребность в способах получения больших количеств белков ADAMTS, обладающих высокой удельной активностью, не содержащих загрязнителей, таких как вирусы, КГЭ и патогены типа бактерий Mycoplasma.

[0017] Один из представителей семейства ADAMTS, ADAMTS13, расщепляет фактор фон Виллебранда (vWF) между остатками Туг 1605 и Met 1606; эта функция отвечает за разложение больших мультимеров vWF in vivo. Установлена связь потери активности ADAMTS13 с некоторыми состояниями, такими как ТТП (Moake JL, Semin Hematol. 2004 Jan;41(1):4–14), острое и хроническое воспаление (Chauhan et al., J Exp Med. 2008 Sep 1;205(9):2065–74), и, совсем недавно, с тяжелой плазмодийной тропической малярией (Larkin et al., PLoS Pathog. 2009 Mar;5(3):e1000349).

[0018] Протеаза ADAMTS13 представляет собой гликозилированный белок массой 190 кДа, синтезируемый преимущественно в печени (Levy et al., Nature. 2001; 413:488–494; Fujikawa et al., Blood. 2001; 98:1662–1666; Zheng et al., J Biol Chem. 2001; 276:41059–41063; Soejima et al., J Biochem (Tokyo). 2001; 130:475–480; и Gerritsen et al., Blood. 2001; 98:1654–1661). В значительной степени кА и в случае с мультимерами rVWF высшего порядка, рекомбинантная экспрессия больших ADAMTS13 в культурах клеток млекопитающих сопряжена с множеством трудностей.

[0019] Таким образом, существует необходимость в условиях культивирования клеток, в частности, условиях культивирования при крупномасштабном производстве, обеспечивающих стабильный общий выход белка и/или стабильную общую и удельную активность продуцируемых белков в различных культурах клеток. Стабильность в культурах при крупномасштабных производственных процессах важна для производства терапевтических белков. Существует также необходимость в условиях культивирования клеток для крупномасштабного производства rVWF с уровнями мультимеризации и удельной ристоцетиновой активностью, сравнимыми или превышающими таковые VWF, присутствующего в нормальной плазме человека. Сходным образом, так как белки ADAMTS вовлечены в ряд заболеваний и состояний, в данной области техники существует потребность в способах крупномасштабного производства рекомбинантных белков ADAMTS, обладающих высокой удельной активностью, которые подходят для получения фармацевтических средств и для фармацевтического введения. Настоящее изобретение удовлетворяет указанные и другие потребности данной области техники в получении рекомбинантного фактора фон Виллебранда и рекомбинантного ADAMTS13.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0020] Согласно определенным аспектам настоящее изобретение основано на неожиданном открытии, заключающемся в том, что введение добавок в среды для клеточных культур, применяемые для экспрессии рекомбинантного фактора фон Виллебранда (rVWF) и рекомбинантного ADAMTS13 (rA13), приводит к значительному повышению экспрессии белков и ферментативной активности.

[0021] Согласносвоему первому аспекту настоящее изобретение обеспечивает способ получения композиции рекомбинантного фактора фон Виллебранда (rVWF); указанный способ включает этапы: (а) обеспечения основных сред для культуры клеток; (b) добавления в основные среды для клеточных культур меди до конечной концентрации меди по меньшей мере 2,4 мкг/л; (c) обеспечения одной или более клеток, содержащих нуклеиновую кислоту, кодирующую белок rVWF; (d) культивирования указанной одной или более клеток в среде для клеточных культур с добавлением меди таким образом, что происходит экспрессия и экскреция rVWF из клеток в культуральный супернатант; и (e) отделения по меньшей мере части указанного культурального супернатанта, причем указанный отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 30 мЕ/мкг rVWF.

[0022] Согласно одному из вариантов реализации предложенных выше способов указанный способ дополнительно включает этап добавления в указанную основную среду для клеточных культур гидролизата перед культивированием указанной одной или более клеток.

[0023] Согласно одному из вариантов реализации предложенных выше способов указанный гидролизат представляет собой растительный гидролизат. Согласно конкретному варианту реализации указанный гидролизат представляет собой соевый гидролизат.

[0024] Согласно одному из вариантов реализации предложенных выше способов основная среда для клеточных культур представляют собой не содержащую животных белков культуральную среду.

[0025] Согласно одному из вариантов реализации предложенных выше способов основные среды для клеточных культур представляют собой не содержащие белков культуральные среды.

[0026] Согласно одному из вариантов реализации предложенных выше способов указанные основные среды для клеточных культур представляет собой культуральные среды с заданным химическим составом.

[0027] Согласно одному из вариантов реализации предложенных выше способов конечная концентрация меди в основной среде для клеточных культур с добавлением меди составляет по меньшей мере 4 мкг/л меди.

[0028] Согласно одному из вариантов реализации предложенных выше способов конечная концентрация меди в основной среде для клеточных культур с добавлением меди составляет от 2,4 мкг/л до 20 мкг/л меди.

[0029] Согласно одному из вариантов реализации предложенных выше способов медь добавляют в основные среды для клеточных культур в виде соли меди, хелата меди или их комбинации.

[0030] Согласно одному из вариантов реализации предложенных выше способов указанная соль меди выбрана из группы, состоящей из сульфата меди, ацетата меди, карбоната меди, хлорида меди, гидроксида меди, нитрата меди и оксида меди.

[0031] Согласно одному из вариантов реализации предложенных выше способов указанная одна или более клетка представляет собой клетку млекопитающего. Согласно конкретному варианту реализации указанные клетки млекопитающих представляют собой клетки СНО.

[0032] Согласно одному из вариантов реализации предложенных выше способов культивирование указанной одной или более клеток включает периодическое культивирование указанных клеток.

[0033] Согласно одному из вариантов реализации предложенных выше способов культивирование указанной одной или более клеток включает непрерывное культивирование указанных клеток. Согласно конкретному варианту реализации

непрерывное культивирование клеток производится в хемостатическом режиме. Согласно другому конкретному варианту реализации непрерывное культивирование клеток производится в режиме перфузии.

[0034] Согласно одному из вариантов реализации предложенных выше способов указанную одну или более клетку культивируют по меньшей мере в 100 л дополненной основной среды для клеточных культур.

[0035] Согласно одному из вариантов реализации предложенных выше способов плотность клеток поддерживают на уровне менее чем $2,5 \times 10^6$ клеток/мл на протяжении этапа культивирования указанной одной или более клеток.

[0036] Согласно одному из вариантов реализации предложенных выше способов плотность клеток поддерживают на уровне менее чем 2,0×10⁶ клеток/мл на протяжении этапа культивирования указанной одной или более клеток.

[0037] Согласно одному из вариантов реализации предложенных выше способов плотность клеток поддерживают на уровне менее чем $1,5\times10^6$ клеток/мл на протяжении этапа культивирования указанной одной или более клеток.

[0038] Согласно одному из вариантов реализации предложенных выше способов этап отделения по меньшей мере части указанного культурального супернатанта включает фильтрацию или центрифугирование для удаления клеток из части культурального супернатанта.

[0039] Согласно одному из вариантов реализации предложенных выше способов отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 40 мЕ/мкг rVWF. Согласно конкретному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более конкретному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 60 мЕ/мкг rVWF. Согласно более конкретному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF. Согласно еще одному более конкретному варианту

реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 80 мЕ/мкг rVWF.

[0040] Согласно одному из вариантов реализации предложенных выше способов по меньшей мере 10% rVWF в указанном супернатанте присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно конкретному варианту реализации по меньшей мере 15% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно другому конкретному варианту реализации по меньшей мере 20% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно другому конкретному варианту реализации по меньшей мере 25% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно другому конкретному варианту реализации по меньшей мере 30% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров.

[0041] Согласно одному из вариантов реализации предложенных выше способов указанный супернатант содержит высокомолекулярные мультимеры VWF из 14–22 димеров.

[0042] Согласно одному из вариантов реализации предложенных выше способов содержание NH4⁺ в указанном культуральном супернатанте поддерживают на уровне концентрации ниже 10 мМ.

[0043] Согласно одному из вариантов реализации предложенных выше способов содержание $\mathrm{NH_4}^+$ в указанном культуральном супернатанте поддерживают на уровне концентрации ниже 4 мМ.

[0044] Согласно одному из вариантов реализации предложенных выше способов rVWF коэкспрессируется с рекомбинантным фактором VIII (rFVIII). Согласно конкретному варианту реализации указанный способ дополнительно включает этап очистки rVWF от по меньшей мере 50% rFVIII, присутствующего в отделенном супернатанте. Согласно одному из вариантов реализации отношение rVWF к rFVIII после этапа очистки составляет по меньшей мере 10:1.

[0045] Согласно одному из вариантов реализации предложенных выше способов указанный способ дополнительно включает этап обогащения rVWF.

[0046] Согласно второму аспекту настоящее изобретение обеспечивает композицию рекомбинантного фактора фон Виллебранда (rVWF), полученную описанным в настоящей заявке способом.

[0047] Согласно одному варианту реализации вышеописанных композиций указанная композиция также содержит рекомбинантный фактор VIII (rFVIII). Согласно конкретному варианту реализации отношение rVWF к rFVIII составляет по меньшей мере 10:1.

[0048] Согласно одному варианту реализации вышеописанных композиций указанную композицию получают в форме для фармацевтического введения. Согласно конкретному варианту реализации указанную композицию получают в форме для внутривенного введения.

[0049] Согласно третьему аспекту настоящее изобретение обеспечивает супернатант культуры клеток, содержащий рекомбинантный фактор фон Виллебранда (rVWF), отличающийся тем, что указанный супернатант получают описанным в настоящей заявке способом.

[0050] Согласно четвертому аспекту настоящее изобретение обеспечивает супернатант культуры клеток, содержащий рекомбинантный фактор фон Виллебранда (rVWF), при этом по меньшей мере 10% rVWF в указанном супернатанте присутствует в виде высокомолекулярного VWF мультимера из более чем 10 димеров. Согласно конкретному варианту реализации по меньшей мере 15% rVWF в указанном супернатанте присутствует в виде высокомолекулярного VWF мультимера из более чем 10 димеров. Согласно другому конкретному варианту реализации по меньшей мере 20% rVWF в указанном супернатанте присутствует в виде высокомолекулярного VWF мультимера из более чем 10 димеров. Согласно другому конкретному варианту реализации по меньшей мере 25% rVWF в указанном супернатанте присутствует в виде высокомолекулярного VWF мультимера из более чем 10 димеров. Согласно другому конкретному варианту реализации по меньшей мере 30% rVWF в указанном супернатанте присутствует в виде высокомолекулярного VWF мультимера из более чем 10 димеров. Согласно еще одному

конкретному варианту реализации вышеописанных супернатантов указанный супернатант получают согласно описанному в настоящей заявке способу.

[0051] Согласно пятому аспекту настоящее изобретение обеспечивает супернатант культуры клеток, содержащий рекомбинантный фактор фон Виллебранда (rVWF), отличающийся тем, что указанный супернатант содержит по меньшей мере 0,4 МЕ ристоцетин-кофакторной активности на мл. Согласно конкретному варианту реализации указанный супернатант содержит по меньшей мере 0,5 МЕ ристоцетин-кофакторной активности на мл. Согласно другому конкретному варианту реализации указанный супернатант содержит по меньшей мере 0,6 МЕ ристоцетин-кофакторной активности на мл. Согласно другому конкретному варианту реализации указанный супернатант содержит по меньшей мере 0,7 МЕ ристоцетин-кофакторной активности на мл. Согласно еще одному конкретному варианту реализации вышеописанных супернатантов супернатант получают согласно описанному в настоящей заявке способу.

[0052] Согласно шестому аспекту настоящее изобретение обеспечивает способ получения композиции рекомбинантного ADAMTS13 (гА13); указанный способ включает этапы: (а) обеспечения основных сред для культуры клеток; (b) добавления в основные среды для клеточных культур меди до конечной концентрации меди по меньшей мере 1,0 мкг/л; (c) обеспечения одной или более клеток, содержащих нуклеиновую кислоту, кодирующую белок гА13; (d) культивирования указанной одной или более клеток в среде для клеточных культур с добавлением меди таким образом, что происходит экспрессия и экскреция гА13 из клеток в культуральный супернатант; и (е) отделения по меньшей мере части указанного культурального супернатанта, причем в отделенном культуральном супернатанте присутствует по меньшей мере 1500 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день.

[0053] Согласно одному из вариантов реализации предложенных выше способов основные среды для клеточных культур представляют собой не содержащие животных белков культуральные среды.

[0054] Согласно одному из вариантов реализации предложенных выше способов основные среды для клеточных культур представляют собой не содержащие белков культуральные среды.

[0055] Согласно одному из вариантов реализации предложенных выше способов основные среды для клеточных культур представляют собой культуральные среды с заданным химическим составом.

[0056] Согласно одному из вариантов реализации предложенных выше способов конечная концентрация меди в дополненных основной среде для клеточных культур составляет по меньшей мере 1 мкг/л меди.

[0057] Согласно одному из вариантов реализации предложенных выше способов конечная концентрация меди в дополненных основной среде для клеточных культур составляет по меньшей мере 2 мкг/л меди.

[0058] Согласно одному из вариантов реализации предложенных выше способов конечная концентрация меди в дополненных основной среде для клеточных культур составляет по меньшей мере 4 мкг/л меди.

[0059] Согласно одному из вариантов реализации предложенных выше способов конечная концентрация меди в дополненных основной среде для клеточных культур составляет от 1 мкг/л до 6 мкг/л меди.

[0060] Согласно одному из вариантов реализации предложенных выше способов конечная концентрация меди в дополненных основной среде для клеточных культур составляет от 2 мкг/л до 4 мкг/л меди.

[0061] Согласно одному из вариантов реализации предложенных выше способов медь добавляют в основные среды для клеточных культур в виде соли меди, хелата меди или их комбинаций. Согласно конкретному варианту реализации указанная соль меди выбрана из группы, состоящей из сульфата меди, ацетата меди, карбоната меди, хлорида меди, гидроксида меди, нитрата меди и оксида меди.

[0062] Согласно одному из вариантов реализации предложенных выше способов указанная одна или более клетка представляет собой клетку млекопитающего. Согласно конкретному варианту реализации указанные клетки млекопитающих представляют собой клетки СНО.

[0063] Согласно одному из вариантов реализации предложенных выше способов культивирование указанной одной или более клеток включает периодическое культивирование указанных клеток.

[0064] Согласно одному из вариантов реализации предложенных выше способов культивирование указанной одной или более клеток включает непрерывное культивирование указанных клеток. Согласно конкретному варианту реализации указанное непрерывное культивирование клеток производится в хемостатическом режиме. Согласно другому конкретному варианту реализации указанное непрерывное культивирование клеток производится в режиме перфузии.

[0065] Согласно одному из вариантов реализации предложенных выше способов указанную одну или более клетку культивируют по меньшей мере в 100 л дополненной основной среды для клеточных культур.

[0066] Согласно одному из вариантов реализации предложенных выше способов плотность клеток поддерживают на уровне менее чем 4,0×10⁶ клеток/мл на протяжении этапа культивирования указанной одной или более клеток.

[0067] Согласно одному из вариантов реализации предложенных выше способов плотность клеток поддерживают на уровне менее чем 3.5×10^6 клеток/мл на протяжении этапа культивирования указанной одной или более клеток.

[0068] Согласно одному из вариантов реализации предложенных выше способов плотность клеток поддерживают на уровне менее чем 3.0×10^6 клеток/мл на протяжении этапа культивирования указанной одной или более клеток.

[0069] Согласно одному из вариантов реализации предложенных выше способов плотность клеток поддерживают на уровне менее чем 2,5×10⁶ клеток/мл на протяжении этапа культивирования указанной одной или более клеток.

[0070] Согласно одному из вариантов реализации предложенных выше способов плотность клеток поддерживают на уровне менее чем 2,0×10⁶ клеток/мл на протяжении этапа культивирования указанной одной или более клеток.

[0071] Согласно одному из вариантов реализации предложенных выше способов плотность клеток поддерживают на уровне менее чем 1,5×10⁶ клеток/мл на протяжении этапа культивирования указанной одной или более клеток.

[0072] Согласно одному из вариантов реализации предложенных выше способов этап отделения по меньшей мере части указанного культурального супернатанта включает фильтрацию или центрифугирование для удаления клеток из указанной части культурального супернатанта.

[0073] Согласно одному из вариантов реализации предложенных выше способов в отделенном культуральном супернатанте присутствует по меньшей мере 2000 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день.

[0074] Согласно одному из вариантов реализации предложенных выше способов в отделенном культуральном супернатанте присутствует по меньшей мере 2500 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день.

[0075] Согласно одному из вариантов реализации предложенных выше способов отделенный супернатант обладает удельной FRETS-VWF73 активностью rA13, составляющей по меньшей мере 800 мЕ/мкг.

[0076] Согласно предпочтительному варианту реализации описанных выше способов отделенный супернатант обладает удельной FRETS-VWF73 активностью rA13, составляющей по меньшей мере 1200 мЕ/мкг.

[0077] Согласно более предпочтительному варианту реализации описанных выше способов отделенный супернатант обладает удельной FRETS-VWF73 активностью rA13, составляющей по меньшей мере 1600 мЕ/мкг.

[0078] Согласно одному из вариантов реализации предложенных выше способов содержание $\mathrm{NH_4}^+$ в указанном культуральном супернатанте поддерживают на уровне ниже $10~\mathrm{MM}$.

[0079] Согласно одному из вариантов реализации предложенных выше способов содержание $\mathrm{NH_4}^+$ в указанном культуральном супернатанте поддерживают на уровне ниже 5 мМ.

[0080] Согласно одному из вариантов реализации предложенных выше способов содержание $\mathrm{NH_4}^+$ в указанном культуральном супернатанте поддерживают на уровне концентрации ниже 4 мМ.

[0081] Согласно одному из вариантов реализации предложенных выше способов указанный способ дополнительно включает этап обогащения гА13.

[0082] Согласно седьмому аспекту настоящее изобретение обеспечивает супернатант культуры клеток, содержащий рекомбинантный ADAMTS13 (гА13), отличающийся тем, что указанный супернатант получают описанным в настоящей заявке способом.

[0083] Согласно восьмому аспекту настоящее изобретение обеспечивает супернатант культуры клеток, содержащий рекомбинантный фактор фон Виллебранда (rVWF), отличающийся тем, что указанный супернатант содержит по меньшей мере 5 единиц активности FRETS-VWF73 на мл. Согласно конкретному варианту реализации указанный супернатант содержит по меньшей мере 6 единиц активности FRETS-VWF73 на мл. Согласно другому конкретному варианту реализации указанный супернатант содержит по меньшей мере 7 единиц активности FRETS-VWF73 на мл. Согласно другому конкретному варианту реализации указанный супернатант содержит по меньшей мере 8 единиц активности FRETS-VWF73 на мл. Согласно другому конкретному варианту реализации указанный супернатант содержит по меньшей мере 9 единиц активности FRETS-VWF73 на мл. Согласно другому конкретному варианту реализации указанный супернатант содержит по меньшей мере 10 единиц активности FRETS-VWF73 на мл. Согласно еще одному конкретному варианту реализации вышеописанных супернатантов супернатант получают согласно описанному в настоящей заявке способу.

[0084] Согласно девятому аспекту настоящее изобретение обеспечивает супернатант культуры клеток, содержащий рекомбинантный фактор фон Виллебранда (rVWF), при этом указанный супернатант содержит по меньшей мере 2 мкг rA13 на мл. Согласно конкретному варианту реализации супернатант содержит по меньшей мере 3 мкг rA13 на

мл. Согласно другому конкретному варианту реализации супернатант содержит по меньшей мере 4 мкг гА13 на мл. Согласно другому конкретному варианту реализации супернатант содержит по меньшей мере 5 мкг гА13 на мл. Согласно другому конкретному варианту реализации супернатант содержит по меньшей мере 6 мкг гА13 на мл. Согласно еще одному конкретному варианту реализации вышеописанных супернатантов супернатант получают согласно описанному в настоящей заявке способу.

[0085] Согласно десятому аспекту в соответствии с настоящим изобретением предложена композиция рекомбинантного ADAMTS13 (гА13), полученная согласно любому из вышеописанных способов.

[0086] Согласно одному варианту реализации вышеописанных композиций указанную композицию получают в форме для фармацевтического введения. Согласно конкретному варианту реализации указанную композицию получают в форме для внутривенного введения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0087] Фиг. 1. (1A) Электрофорез в агарозном геле низкого разрешения (1 %) rVWF, экспрессируемого в культурах клеток млекопитающих в присутствии низкой (1,0 мкг/л) и высокой (4,3 мкг/л) концентраций меди, согласно описанию в примере 2. Отметим, что день культивирования 3 эквивалентен дню периодической культуры 1 из табл. 7 и табл. 8. (1B) Относительное содержание мультимеров VWF, содержащих от 1 до 10 димеров (зона № 1) и более чем 10 димеров (зона № 2) согласно оценке зон, приведенных на Фиг. 1A, количественно определяли денситометрическим анализом.

[0088] Фиг. 2. (2A) Интервальный график средней удельной активности rVWF в супернатантах клеточных культур rVWF, выращенных при высокой и низкой плотности клеток в присутствии высоких или низких уровней меди. **(2B)** Интервальный график средней концентрации $\mathrm{NH_4}^+$, обнаруживаемой в супернатантах клеточных культур rVWF, выращенных при высокой и низкой плотности клеток в присутствии высоких или низких уровней меди.

[0089] Фиг. 3. Супернатанты культур клеток, экспрессирующих рекомбинантный ADAMTS13 в присутствии возрастающих уровней меди, исследовали с применением анализа ДСН-ПААГ. После ДСН-ПААГ rA13 визуализировали с помощью (3A) окрашивания серебром и (3B) анти-A13 вестерн-блоттинга.

[0090] Фиг. 4. График зависимости объемной продуктивности (P Frets) от концентрации меди, показывающий экстраполированный (сплошная линия) эффект оптимальной концентрации меди на выработку rA13.

[0091] Фиг. 5А-К. Ступенчатые диаграммы при непрерывном суспензионном (хемостатическом) культивировании клеток, экспрессирующих гА13 на протяжении времени культивирования 8 недель, сравнивающие эффекты основных уровней меди (0,66 мкг/л) с таковыми в культурах, дополненных до конечной концентрации меди 2 мкг/л. Каждый столбец представляет среднее значение за неделю хемостатической культуры. Легенда относится к конкретным неделям, для которых представлены данные.

[0092] Фиг. 6. (6A) Электрофорез в агарозном геле низкого разрешения (1 %) rVWF, экспрессируемого в культурах клеток млекопитающих в присутствии низкой (1,0 мкг/л) и высокой (4,3 мкг/л) концентраций меди при высокой и низкой плотности клеток согласно описанию в примере 3. Следует отметить, что дни культивирования 8 и 17 («CST8» и «CST17») эквивалентны дню 8 и дню 17 в табл. 10–13. (6B) Относительное содержание мультимеров VWF, содержащих от 1 до 10 димеров и более чем 10 димеров согласно оценке зон, приведенных на Фиг. 6A, количественно определяли денситометрическим анализом.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

I. Введение

[0093] Рекомбинантный vWF (rVWF) и рекомбинантный ADAMTS13 (rA13) могут быть получены посредством экспрессии в крупномасштабных культурах клеток млекопитающих. Однако активность указанных белков при получении с применением стандартных условий культивирования клеток часто варьирует от культуры к культуре

клеток, даже в тех случаях, когда общий состав сред неизменен; удельная активность рекомбинантных белков часто отличается от таковой vWF и rA13, полученных из плазмы крови. Кроме того, rVWF, экспрессируемый в культурах клеток млекопитающих, склонен образовывать белковые составы с низким (менее 10%) процентным содержанием мультимеров высшего порядка (мультимеры высшего порядка включают молекулы, содержащие более чем 10 димеров VWF). Эти недостатки стандартных способов получения rVWF и rA13 представляют особенные сложности при создании культур для крупномасштабного производства (т.е. от 10 до более чем 20 000-литровых культур).

[0094] Одним из потенциальных источников вариабельности, часто наблюдаемой в разных партиях клеточной культур, является присутствие загрязнителей в компонентах сред для клеточных культур. Указанные загрязнители могут присутствовать в различном количестве в разных партиях, что приводит к варьирующим результатам при получении гVWF и гA13. После изучения различных загрязнителей, обнаруживаемых в различных добавках для клеточных культуральных сред, авторы настоящего изобретения обнаружили, что присутствие гидролизатов приводит к варьированию концентраций меди в таких культуральных средах. Дальнейшие исследования дали неожиданный результат: добавление меди в культуральные среды до получения общей концентрации меди, составляющей по меньшей мере от приблизительно 1 мкг/л до приблизительно 20 мкг/л, стабильно увеличивало общую и удельную активность rVWF и гA13 и/или также могло приводить к увеличению общего выхода белка. Таким образом, в соответствии с настоящим изобретением предложены способы и композиции для высокопродуктивного получения rVWF и белков гA13 с высокой удельной активностью.

[0095] Согласно одному из аспектов в соответствии с настоящим изобретением предложены способы культивирования клеток и композиции для получения больших количеств rVWF и rA13, обладающих активностью, сравнимой или превышающей активность, проявляемую происходящим из плазмы vWF (pdVWF) или происходящим из плазмы ADAMTS13 (pdA13). Согласно дальнейшим аспектам белки rVWF и rA13, получаемые согласно настоящему изобретению, демонстрируют стабильно более высокую активность по сравнению с белками, получаемыми с применением стандартных способов культивирования клеток в средах без добавления меди или других добавок, подробно

описываемых в настоящей заявке. Удачным образом, согласно определенным вариантам реализации описанных в настоящей заявке способов и композиций, белки rVWF и rA13, полученные согласно настоящему изобретению, проявляют стабильно более высокую удельную активность (т.е. Е/мг белка) по сравнению с белками, полученными с применением стандартных способов культивирования клеток в средах без добавления меди или других добавок, подробно описываемых в настоящей заявке. Сходным образом, предложенные в соответствии с настоящим изобретением способы получения rVWF и rA13 дают больший выход активности на объем культуры (т.е. Е/л/день), по сравнению со стандартными способами культивирования клеток с применением сред без добавления меди или других добавок, подробно описываемых в настоящей заявке.

[0096] Согласно еще одному аспекту в соответствии с настоящим изобретением предложены способы культивирования клеток, согласно которым в основную среду для клеточной культуры добавляют медь до получения общей концентрации, составляющей по меньшей мере приблизительно 1 мкг/л. Согласно другим вариантам реализации в основную среду для клеточной культуры добавляют медь до получения общей концентрации, составляющей по меньшей мере приблизительно 2 мкг/л. Согласно другим вариантам реализации в основную среду для клеточной культуры добавляют медь до получения общей концентрации, составляющей по меньшей мере от приблизительно 1 мкг/л до приблизительно 20 мкг/л. Согласно некоторым вариантам реализации общая концентрация меди составляет приблизительно 1,5–4,5 мкг/л. Согласно определенным вариантам реализации в среду для клеточной культуры добавляют медь до получения приблизительно 1; 1,2; 1,4; 1,6; 1,8; 2,0; 2,2; 2,4; 2,6; 2,8; 3; 3,2; 3,4; 3,6; 3,8; 4; 4,2; 4,4; 4,6; 4,8; 5,0; 5,5; 6,0; 6,5; 7,0; 7,5; 8,0; 8,5; 9,0; 9,5; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20 мкг/л меди или более. Основные среды для клеточных культур как правило, содержат следовые концентрации меди менее 1 мкг/л.

[0097] Согласно некоторым вариантам реализации настоящего изобретения предложены способы культивирования клеток, согласно которым в основную среду для клеточной культуры добавляют от приблизительно 1,0 до приблизительно 20 мкг/л меди для продуцирования rVWF. Согласно дальнейшим вариантам реализации в основную среду для клеточной культуры добавляют приблизительно 1,5–15; 2,0–10; 2,5–8; 3,0–6; 4,0–5,0

мкг/л меди для продуцирования rVWF. Согласно дальнейшим вариантам реализации указанная основная среда для клеточной культуры может, помимо добавленной меди, также содержать один или более гидролизат.

[0098] Согласно другим вариантам реализации настоящее изобретение обеспечивает способы культивирования клеток, согласно которым в основную среду для клеточной культуры добавляют от приблизительно 1,5 до приблизительно 4 мкг/л меди для продуцирования гА13. Согласно дальнейшим вариантам реализации в основную среду для клеточной культуры добавляют приблизительно 1,6–3,8; 1,7–3,6; 1,8–3,4; 1,9–3,2; 2,0–3,0; 2,1–2,8; 2,2–2,6; 2,3–2,4 мкг/л меди для продуцирования гА13. Согласно дальнейшим вариантам реализации указанная основная среда для клеточной культуры может, помимо добавленной меди, также содержать один или более гидролизат. Согласно дальнейшим вариантам реализации указанная основная среда для клеточной культуры включает, помимо меди и/или одного или более гидролизата, от приблизительно 1,0 до приблизительно 30 мкМ цинка. Согласно дальнейшим вариантам реализации указанная основная среда для клеточной культуры также содержит, помимо меди и/или одного или более гидролизата и/или цинка, приблизительно от 0,5 до приблизительно 5,0 мМ кальция.

[0099] Согласно дальнейшему аспекту и в соответствии со всеми вышеизложенными, в соответствии с настоящим изобретением предложены способы культивирования клеток, согласно которым уровни аммония в растворе культуры клеток являются низкими (менее 10 мМ). Согласно определенным вариантам реализации в способах культивирования клеток согласно настоящему изобретению применяют среды для клеточных культур, содержащие более 1, 2, 3, 4 или 5 мкг/л меди в комбинации с низкими уровнями аммония.

[0100] Одним из преимуществ способов и композиций согласно настоящему изобретению является то, что они подходят для крупномасштабного культивирования клеток. Объем указанных крупномасштабных культур клеток составляет по меньшей мере 10 л, 50 л, 100 л, 150 л, 200 л, 250 л, 500 л, 750 л, 1000 л, 1500 л, 2000 л, 10000 л или 200000 л литров.

[0101] Согласно определенным аспектам способы согласно настоящему изобретению не обязательно приводят к получению большего суммарного количества рекомбинантного белка, однако получаемый рекомбинантный белок (rVWF или rA13) демонстрирует более

высокую общую и удельную активность, чем обнаруживаемая у белков, полученных с применением стандартных клеточных культур, в частности, по сравнению с белками, полученными в таких культурах клеток, где среда для клеточной культуры не содержит дополнительных добавок меди. Согласно дальнейшим аспектам белки rVWF и rA13, полученные из клеток, культивируемых в средах с добавлением меди, демонстрируют стабильно повышенную активность на литр культуры клеток по сравнению с клетками, культивируемыми в основных средах для клеточных культур без добавления меди. Согласно дальнейшим аспектам добавление в среды меди согласно настоящему изобретению приводит к повышению выхода белка, увеличению числа клеток в культуре и/или повышению общей активности на литр культуры по сравнению со средами без добавления меди.

[0102] Дальнейшие преимущества способов и композиций согласно настоящему изобретению заключаются в получении популяции белков с высоким процентным содержанием (более 10%) высокомультимеризованного rVWF.

[0103] Хотя значительная часть обсуждения белков ADAMTS в настоящей заявке относится к ADAMTS13 (A13), необходимо понимать, что, так как все белки ADAMTS имеют общую структуру центрального домена и общие структурно-функциональные связи, способы и композиции, описанные в настоящей заявке, применимы для получения любых белков ADAMTS, не ограничиваясь rA13.

I. Определения

[0104] Используемый в настоящей заявке термин «рекомбинантный vWF» включает vWF полученный с применением технологии рекомбинантной ДНК. Согласно определенным вариантам реализации белки vWF согласно настоящему изобретению могут содержать конструкцию, полученную, например, согласно WO 1986/06096, опубликованной 23 окт. 1986 г., и заявке на патент США сер. № 07/559509, поданной 23 июля 1990г. от имени Ginsburg et al., включенных в настоящую заявку посредством ссылки в отношении способов получения рекомбинантного vWF. vWF согласно настоящему изобретению может включать все потенциальные формы, в том числе мономерные и мультимерные формы. Необходимо также понимать, что настоящее изобретение охватывает применение комбинаций разных формы vWF. Например, vWF согласно настоящему изобретению

может включать разные мультимеры, разные производные; как активные биологически производные, так и не активные биологические производные.

[0105] Термин «рекомбинантный» при использовании, *например*, в отношении клетки или нуклеиновой кислоты, белка или вектора, означает, что указанная клетка, нуклеиновая кислота, белок или вектор модифицированы введением гетерологичной(ного) нуклеиновой кислоты или белка, либо изменением нативной(ного) нуклеиновой кислоты или белка, или что указанная клетка получена из модифицированной таким образом клетки. Таким образом, например, рекомбинантные клетки экспрессируют гены, не обнаруживаемые в нативных (не-рекомбинантных) формах указанных клеток или экспрессируют нативные гены, которые в противном случае экспрессируются аномально, экспрессируются недостаточно или не экспрессируются вообще.

[0106] В контексте настоящего изобретения «рекомбинантный vWF» охватывает любые члены семейства vWF, например, от млекопитающих, таких как приматы, человек, обезьяна, кролик, свинья, грызуны, мышь, крыса, хомяк, песчанка, собачьи, кошачьи; и их биологически активные производные. Согласно предпочтительному варианту реализации рекомбинантный VWF представляет собой VWF человека. Мутантные и вариантные белки vWF, обладающие активностью, также включены, как и функциональные фрагменты и гибриды белков vWF. Кроме того, vWF согласно настоящему изобретению могут также содержать метки, облегчающие очистку или определение, или и то, и другое. vWF, описанные в настоящей заявке, могут также быть модифицированы терапевтическим агентом или агентом, подходящим для визуализации in vitro или in vivo.

[0107] Термины «высокомультимерный vWF», «высокомолекулярный vWF» и «НМW VWF» могут использоваться взаимозаменяемо и относятся к ковалентно связанным мультимерам vWF, содержащим более чем 10 димеров VWF. Согласно определенным вариантам реализации HMW VWF содержит по меньшей мере 11 димеров VWF, или по меньшей мере 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 или более димеров VWF.

[0108] Используемый в настоящей заявке термин «белок ADAMTS» относится к полипептиду – дезинтегрину и металлопротеиназе из семейства металлопротеиназ с мотивами тромбоспондина I типа. Члены указанного семейства включают белки человека ADAMTS1 (NM_006988), ADAMTS2 (NM_014244; NM_021599), ADAMTS3

(NM_014243), ADAMTS4 (NM_005099), ADAMTS5 (NM_007038), ADAMTS6 (NM 014273), ADAMTS7 (NM 0142727), ADAMTS8 (NM 007037), ADAMTS9 (NM 182920; NM 182921; NM 020249), ADAMTS10 (NM 030957), ADAMTS12 (NM_030955), ADAMTS13 (NM_139025; NM_139026; NM_139027; NM_139028), ADAMTS14 (NM_139155; NM_080722), ADAMTS15 (NM_139055), ADAMTS16 (NM_139056), ADAMTS17 (NM_139057), ADAMTS18 (NM_199355; NM_139054), ADAMTS19 (NM 133638) и ADAMTS20 (NM 025003, NM 175851). Белки ADAMTS включают и полноразмерные белки, и неполные полипептиды, которые проявляют по меньшей мере частичную биологическую активность, например, по меньшей мере 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% или более, от активности, демонстрируемой полноразмерным белком, в частности, протеазной активности, демонстрируемой полноразмерным белком. В определенных случаях белок ADAMTS подвергается посттрансляционной модификации in vivo или in vitro, например, ферментативным или химическим путем. Понятно, что белки ADAMTS согласно настоящему изобретению включают изоформы альтернативного сплайсинга, консервативно модифицированные белки, идентичные по существу белки, гомологи и т.п.

[0109] В контексте настоящего изобретения термин «белок ADAMTS» охватывает любые члены семейства ADAMTS, происходящие, например, из млекопитающих, таких как приматы, человек, обезьяна, кролик, свинья, грызуны, мышь, крыса, хомяк, песчанка, собачьи, кошачьи, и их биологически активные производные. Мутантные и вариантные белки ADAMTS, обладающие активностью, также включены, как и функциональные фрагменты и гибриды белков ADAMTS. Кроме того, белки ADAMTS согласно настоящему изобретению могут также содержать метки, облегчающие очистку или определение, или и то, и другое. Белки ADAMTS, описанные в настоящей заявке, могут также быть модифицированы терапевтическим агентом или агентом, подходящим для визуализации in vitro или in vivo.

[0110] Используемый в настоящей заявке термин «белок ADAMTS13» относится к любому белку или полипептиду, обладающему активностью ADAMTS13, в частности, способностью расщеплять пептидную связь между остатками Туг-842 и Met-843 в VWF. Согласно типовому варианту реализации «белок ADAMTS13» относится к полипептиду,

содержащему аминокислотную последовательность, в значительной степени сходную с таковой NP 620594 (изоформа 1 ADAMTS13, препробелок) или аминокислотами 75–1427 NP 620594 (изоформа 1 ADAMTS13, зрелый полипептид). Согласно другому варианту реализации «белок ADAMTS13» относится к полипептиду, содержащему аминокислотную последовательность, в значительной степени сходную с таковой NP 620596 (изоформа 2 ADAMTS13, препробелок) или аминокислотами 75–1371 NP 620594 (изоформа 2 ADAMTS13, зрелый полипептид). Согласно еще одному из вариантов реализации ADAMTS13 белки включают полипептиды, содержащие аминокислотную последовательность, в значительной степени сходную с таковой NP 620595 (изоформа 3 ADAMTS13, препробелок) или аминокислотами 75–1340 NP 620595 (изоформа 1 ADAMTS13, зрелый полипептид). Используемый в настоящей заявке термин «белок ADAMTS13» включает природные варианты, обладающие vWFрасщепляющей активностью, и искусственные конструкции, обладающие vWFрасщепляющей активностью. Согласно применению в настоящем описании «ADAMTS13» охватывает любые природные варианты, альтернативные последовательности, изоформы или мутантные белки, сохраняющие некоторую степень основной активности. Примеры мутаций ADAMTS13, обнаруживаемые в популяциях человека, включают без ограничений R7W, V88M, H96D, R102C, R193W, T196I, H234Q, A250V, R268P, W390C, R398H, Q448E, Q456H, P457L, C508Y, R528G, P618A, R625H, I673F, R692C, A732V, S903L, C908Y, C951G, G982R, C1024G, A1033T, R1095W, R1123C, C1213Y, T1226I, G1239V, R1336W, для многих из которых показана связь с тромботической тромбоцитопенической пурпурой (ТТП). Белки ADAMTS13 также включают полипептиды, содержащие посттрансляционные модификации. Например, показано, что ADAMTS13 модифицируется N-ацетилглюкозамином (GlcNAc) по остаткам 614, 667 и 1354, и предсказано, что остатки 142, 146, 552, 579, 707, 828 и 1235 могут также модифицироваться таким образом.

[0111] Протеолитически активный рекомбинантный ADAMTS13 может быть получен посредством осуществления экспрессии в культурах клеток млекопитающих, согласно описанию у Plaimauer et al., (2002, Blood. 15;100(10):3626–32) и в US 2005/0266528, раскрытия которых включены в настоящую заявку посредством ссылки во всей полноте для любых целей. Способы экспрессии рекомбинантного ADAMTS13 в культуре клеток

описаны у Plaimauer B, Scheiflinger F. (Semin Hematol. 2004 Jan;41(1):24–33 и в US 2011/0086413, раскрытия которых включены в настоящую заявку посредством ссылки во всей полноте для любых целей.

[0112] Используемый в настоящей заявке термин «биологически активное производное» при использовании в контексте белка ADAMTS охватывает также полипептиды, полученные с применением технологии рекомбинантной ДНК, что может включать любые известные в данной области техники способы (і) получения рекомбинантной ДНК посредством методов генной инженерии, например, посредством обратной транскрипции РНК и/или амплификации ДНК, (іі) введения рекомбинантной ДНК в прокариотические или эукариотические клетки путем трансфекции, т.е. электропорацией или микроинъекцией, (iii) культивирования указанных трансформированных клеток, например, в непрерывном или периодическом режиме, (iv) экспрессии белка ADAMTS, например, конститутивного или индуцируемого, и (у) выделения указанного белка ADAMTS, например, из культуральной среды или путем сбора трансформированных клеток, (vi) получения существенно очищенного рекомбинантного белка ADAMTS, например, с помощью ионообменной хроматографии, эксклюзионной хроматографии, аффинной хроматографии, хроматографии с гидрофобным взаимодействием и т.п. Термин «биологически активное производное» включает также гибридные молекулы, такие как, например, белок ADAMTS или его функциональный фрагмент, скомбинированный с вторым полипептидом, например, доменом Fc иммуноглобулина или альбуминовым доменом, для улучшения биологических/фармакологических параметров, таких как, например, период полужизни белка ADAMTS в кровотоке млекопитающего, в частности, человека.

[0113] Термины «выделенный», «очищенный» или «биологически чистый » относятся к веществу, практически или по существу не содержащему компонентов, обычно сопутствующих ему в естественном состоянии. Чистоту и гомогенность, как правило, определяют с применением техник аналитической химии, таких как электрофорез в полиакриламидном геле или жидкостная хроматография высокого разрешения. Согласно одному из вариантов реализации rVWF представляет собой преобладающий компонент в существенно очищенном составе. Согласно другому варианту реализации rA13

представляет собой преобладающий компонент в существенно очищенном составе. Термин «очищенный» согласно некоторым вариантам реализации означает, что нуклеиновая кислота или белок дают по существу одну полосу в электрофоретическом геле. Согласно другим вариантам реализации это означает, что чистота указанной(ого) нуклеиновой кислоты или белка составляет по меньшей мере 50%, более предпочтительно – по меньшей мере 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% или более. «Чистота» или «очистка» согласно другим вариантам реализации означает удаление по меньшей мере одного загрязнителя из подвергаемой очищению композиции. В этом смысле очистка не подразумевает, что очищенное соединение будет гомогенным, например, чистым на 100%.

[0114] Биологическая активность vWF может быть измерена посредством известных методов анализа in vitro. Например, ристоцетин-кофакторный анализ основан на агглютинации свежих или фиксированных формалином тромбоцитов, индуцированной антибиотиком ристоцетином в присутствии vWF. Степень агглютинации тромбоцитов зависит от концентрации vWF и может быть измерена турбодиметрическим методом, например, с применением агрегометра (Weiss et al., J. Clin. Invest. 52: 2708–2716, 1973; Масfarlane et al., Thromb. Diath. Наетогтh. 34: 306–308, 1975). В настоящей заявке удельную ристоцетин-кофакторную активность vWF согласно настоящему изобретению выражают в мЕ/мкг vWF согласно оценке с применением методов анализа in vitro.

[0115] Используемый в настоящей заявке термин «одна единица активности ADAMTS» означает уровень активности в 1 мл смешанной нормальной плазмы человека, независимо от того, какой метод анализа применяют. Например, в том случае, если белок ADAMTS представляет собой ADAMTS13, одна единица активности ADAMTS13 FRETS-VWF73 представляет собой уровень активности, необходимый для расщепления такого же количества субстрата FRETS-VWF73 (Kokame et al., Br J Haematol. 2005 Apr; 129(1):93–100), которое расщепляется одним мл смешанной нормальной плазмы человека. Удобно, что активность ADAMTS13 может быть определена методами функционального анализа, такими как функциональный анализ с применением модифицированных пептидов фактора фон Виллебранда в качестве субстрата ADAMTS13 (Tripodi et al. J Thromb Haemost. 2008 Sep;6(9): 1534–41). Предпочтительный способ определения активности рекомбинантного

ADAMTS13 человека описан у Gerritsen et al. (Assay of von Willebrand factor (vWF)cleaving protease based on decreased collagen binding affinity of degraded vWF: a tool for the diagnosis of thrombotic thrombocytopenic purpura (TTP) («Анализ протеазы, расщепляющей фактор фон Виллебранда (vWF), основанный на понижении коллаген-связывающей способности деградированного vWF: инструмент для диагностики тромботической тромбоцитопенической пурпуры (ТТП)»). Thromb Haemost 1999; 82: 1386–1389). Согласно одному из вариантов реализации, чтобы считаться белком ADAMTS13 согласно приведенному выше определению, полипептид или белок должен обладать по меньшей мере 1% vWF-расщепляющей активности нативного ADAMTS13. Согласно другим вариантам реализации белок ADAMTS13 обладает по меньшей мере 10% активности нативного ADAMTS13. Согласно другим вариантам реализации белок ADAMTS13 обладает по меньшей мере 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% или 100% активности нативного ADAMTS13. Количество белка ADAMTS13 также может быть определено измерением антигена ADAMTS13, например, с применением метода ИФА (ELISA), описанного у Rieger et al., (2006, Thromb Haemost. 2006 95(2):212-20). В данной области техники общепризнано, что 1 мл смешанной нормальной плазмы человека содержит 1 мкг ADAMTS13. Таким образом, согласно общепринятому в данной области техники правилу 1 мкг полученного из плазмы ADAMTS13 обладает одной единицей активности ADAMTS13.

[0116] Термины «раствор культуры клеток», «среда или среды для клеточной культуры» и «супернатант культуры клеток» относятся к аспектам процессов культивирования клеток, как правило, общеизвестным в данной области техники. В контексте настоящего изобретения раствор культуры клеток может включать среды для клеточных культур и супернатант культуры клеток. Указанные среды для клеточных культур вводят в раствор культуры клеток извне, необязательно вместе с добавками, для обеспечения питательных веществ и других компонентов для культивирования клеток, экспрессирующих rVWF или гA13. Термин «супернатант культуры клеток» относится к раствору культуры клеток, содержащему питательные вещества и другие компоненты из среды для клеточной культуры, а также продукты, высвобождаемые, метаболизируемые и/или экскретируемые клетками во время культивирования, но не сами клетки. Таким образом, согласно одному контексту «супернатант культуры клеток» может относиться к жидкой фазе раствора

культуры клеток (*т.е.* к раствору культуры клеток, исключая клетки). Например, концентрация аммония культурального супернатанта, как правило, относится к концентрации аммония в растворе культуры клеток. Согласно другим контекстам «супернатант культуры клеток» относится к раствору культуры клеток, из которого указанные клетки были извлечены (*т.е.* отделенному супернатанту культуры клеток).

[0117] Используемые в настоящей заявке термины «витамин ВЗ», «никотинамид», «ниацинамид», «ниацин» и «никотиновая кислота» могут использоваться взаимозаменяемо, относясь к любому члену семейства витаминов ВЗ. Соответственно, любой член указанного семейства может быть использован для добавления в среду, применяемую в способах согласно настоящему изобретению.

[0118] Используемый в настоящей заявке термин «среда с заданным химическим составом» или «среды с заданным химическим составом» относится к синтетической ростовой среде, все компоненты которой идентифицированы и их концентрации известны. Среды с заданным химическим составом не содержат бактериальных, дрожжевых, животных или растительных экстрактов, хотя они могут включать или не включать отдельные компоненты растительного или животного происхождения (иапример, белки, полипептиды, и т.п.). Неограничивающие примеры коммерчески доступных сред с заданным химическим составом включают различные модифицированные по Дульбекко среды Игла (DME) (Sigma-Aldrich Co; SAFC Biosciences, Inc), питательную смесь Хэма (Sigma-Aldrich Co; SAFC Biosciences, Inc), их комбинации, и т.п. Способы получения культуральных сред с заданным химическим составом известны в данной области техники, например, в патентах США № 6171825 и №6936441, WO 2007/077217 и опубликованных заявках на патент США №2008/0009040 и №2007/0212770, раскрытия которых включены в настоящую заявку посредством ссылки во всей полноте для любых целей.

[0119] Используемый в настоящей заявке термин «не содержащая олигопептидов культуральная среда» или «не содержащие олигопептидов культуральные среды» относится к не содержащей белков среде, которая не содержит олигопептиды, такие как, например, олигопептиды, полученные из белкового гидролизата. Согласно одному из вариантов реализации указанная среда не содержит олигопептиды, состоящие из двадцати

или более аминокислот. Согласно одному варианту реализации настоящего изобретения, указанная среда не содержит олигопептиды, содержащие пятнадцати или более аминокислот. Согласно другому варианту реализации настоящего изобретения указанная среда не содержит олигопептиды, содержащие десять или более аминокислот. Согласно одному варианту реализации указанная среда не содержит олигопептиды, содержащие семь или более аминокислот. Согласно другому варианту реализации указанная среда не содержит олигопептиды, содержащие пять или более аминокислот. Согласно еще одному варианту реализации указанная среда не содержит олигопептиды, содержащие три или более аминокислоты. Согласно дальнейшему варианту реализации настоящего изобретения указанная среда не содержит олигопептиды, содержащие две или более аминокислоты. Способы получения не содержащих олигопептидов культуральных сред известны в данной области техники, например в патентах США №6171825 и № 6936441, WO 2007/077217, и опубликованных заявках на патент США №2008/0009040 и №2007/0772170, раскрытия которых включены в настоящую заявку посредством ссылки во всей полноте для любых целей.

[0120] Используемый в настоящей заявке термин «бессывороточная культуральная среда» или «бессывороточная культуральные среды» относится к культуральной среде без добавления животной сыворотки. Несмотря на то, что зачастую бессывороточные среды представляют собой среды с заданным химическим составом, в бессывороточные среды могут быть добавлены отдельные животные или растительные белки или белковые фракции. Способы получения бессывороточных культуральных сред известны в данной области техники, например, в патентах США №6171825 и № 6936441, WO 2007/077217, и опубликованных заявках на патент США №2008/0009040 и №2007/0212770, раскрытия которых включены в настоящую заявку посредством ссылки во всей полноте для любых целей.

[0121] Используемый в настоящей заявке термин «не содержащая животных белков культуральная среда» или «не содержащие животных белков культуральные среды» относится к культуральной среде без добавления животной сыворотки, белка или фракции белка. Хотя зачастую не содержащие животных белков культуральные среды представляют собой среды с заданным химическим составом, не содержащие животных

белков культуральные среды могут содержать растительные или дрожжевые гидролизаты. Способы получения не содержащих животных белков культуральных сред известны в данной области техники, например, в патентах США № 6171825 и №6936441, WO 2007/077217, и опубликованных заявках на патент США №2008/0009040 и №2007/0212770, раскрытия которых включены в настоящую заявку посредством ссылки во всей полноте для любых целей.

[0122] Используемый в настоящей заявке термины «основная (базовая)среда для клеточной культуры» или «основные (базовые) среды для клеточных культур» относятся к культуральной среде с заданным химическим составом, не содержащей олигопептидов культуральной среде, бессывороточной культуральной среде или не содержащей животных белков культуральной среде, в которую не был добавлен гидролизат, например, растительный или дрожжевой гидролизат. Основные среды общеизвестны в данной области техники, например, DMEM, Хэма F12, DMEM/Хэма F12, среда 199, McCoy или RPMI. Указанная основная среда может включать ряд ингредиентов, в том числе аминокислоты, витамины, органические и неорганические соли, и источники углеводов. Каждый ингредиент может присутствовать в количестве, обеспечивающем культивирование клетки; такие количества общеизвестны специалистам в данной области техники. Указанная среда может включать вспомогательные вещества, такие как буферные вещества, например, бикарбонат натрия, антиоксиданты, стабилизаторы для противодействия механическому напряжению или ингибиторы протеазы. При необходимости, могут быть добавлены неионогенные ПАВ, такие как сополимеры и/или смеси полиэтиленгликолей и полипропиленгликолей.

II. Среды для клеточных культур и супернатант культуры клеток

[0123] Согласно одному аспекту настоящее изобретение относится к средам для клеточных культур для получения rVWF и/или rA13, обладающих повышенной активностью по сравнению с rVWF и rA13, полученных с применением основных сред для клеточных культур. Согласно одному аспекту настоящее изобретение относится к средам для клеточных культур для получения rVWF и/или rA13, в которых в основные среды для клеточных культур добавляют одно или более дополнительное вещество. Согласно конкретным вариантам реализации и приведенному ниже более подробному описанию

условия культивирования клеток согласно настоящему изобретению включают основные среды для клеточных культур, в которые добавлена медь до концентрации по меньшей мере 1,0 мкг/л. Согласно дальнейшим вариантам реализации применяемые среды для клеточных культур и супернатанты, полученные с помощью процессов согласно настоящему изобретению, также содержат низкие уровни (менее 10 мМ) аммония. Согласно конкретному варианту реализации условиями культивирования клеток, применяемыми для экспрессии rVWF и/или rA13, управляют таким образом, чтобы поддерживать в супернатанте культуры клеток низкий уровень аммония, *т.е.* менее чем 10 мМ и, предпочтительно, менее чем 5 мМ.

[0124] Культуральная среда согласно настоящему изобретению могут быть основаны на подходящих основных средах, общеизвестных в данной области техники, таких как DMEM, Хэма F12, DMEM/Хэма F12, среда 199, МсСоу или RPMI. Основная среда может включать ряд ингредиентов, включая аминокислоты, витамины, органические и неорганические соли, и источники углеводов. Каждый ингредиент может присутствовать в количестве, содействующем культивированию клетки; такие количества, как правило, известны специалистам в данной области техники. Указанная среда может включать вспомогательные вещества, такие как буферные вещества, например, бикарбонат натрия, антиоксиданты, стабилизаторы для противодействия механическому стрессу, или ингибиторы протеазы. При необходимости может быть добавлено неионогенное ПАВ, например, сополимеры и/или смеси полиэтиленгликолей и полипропиленгликолей.

[0125] Как правило, основные среды содержат менее чем 1 мкг/л меди – например, среда DMEM/Хэма F12 содержит медь в концентрации приблизительно 0,3 мкг/л. Такие концентрации меди не обеспечивают достаточного количества ионов меди для поддержания продуцирования белков rVWF и rA13 согласно настоящему изобретению, которые проявляют высокую удельную активность.

[0126] Медь может быть введена в среды для клеточных культур согласно настоящему изобретению с помощью различных способов, например, введением добавки в среду. Согласно некоторым вариантам реализации указанная добавка в культуральную среду может содержать гидролизат, который можно применять для повышения концентрации меди в указанной среде. Гидролизаты могут включать любой гидролизат из

общеизвестных в данной области техники, таких как растительные гидролизаты, соевые гидролизаты и гидролизат пшеничной клейковины. Согласно определенным вариантам реализации добавление гидролизата может способствовать повышенной концентрации меди, от приблизительно 0,2 до приблизительно 10 мкг/л Cu²⁺. Согласно некоторым вариантам реализации количество меди, обеспеченное гидролизатом, может зависеть от количества меди в указанном гидролизате, а также количества добавленного гидролизата. Содержание меди в гидролизате может быть определено элементным анализом, например, адсорбционной атомной спектроскопией (GFAA: атомной абсорбцией в графитовой печи), или масс-спектрометрическими методами (например, ИСП-МС).

[0127] Согласно определенным вариантам реализации медь может вводиться в культуральные среды, сама по себе или вместе с гидролизатом, путем введения средовой добавки, включая подходящую соль меди или хелат меди. Подходящая медь соли может включать, не ограничиваясь перечисленными, сульфат меди, ацетат меди, карбонат меди, хлорид меди, гидроксид меди, нитрат меди и оксид меди. Подходящие хелаторы меди могут включать, не ограничиваясь перечисленными, альбумин, этилендиаминтетрауксусную кислоту (ЭДТА), полиаминовые хелатирующие агенты, этилендиамин, диэтилентриамин, триэтилентетрамин, триэтилендиамин, тетраэтиленпентамин, аминоэтилэтаноламин, аминоэтилпиперазин, пентаэтиленгексамин, триэтилентетрамин-гидрохлорид, тетраэтиленпентамин-гидрохлорид, пентаэтиленгексамин-гидрохлорид, тетраэтилпентамин, каптоприл, пеницилламин, N,N-бис(3-аминопропил)-1,3-пропандиамин, N,N,бис (2 аминоэтил) 1,3 пропандиамин, 1,7-диокса-4,10-диазациклододекан, 1,4,8,11-тетраазациклотетрадекан-5,7-дион, 1,4,7-триазациклононана тригидрохлорид, 1-окса-4,7,10-триазациклододекан, 1,4,8,12-тетраазациклопентадекан и 1,4,7,10-тетраазациклододекан.

[0128] Согласно определенным вариантам реализации в основные среды для клеточных культур добавляют медь до получения общей концентрации меди от приблизительно 1,0 до приблизительно 20 мкг/л. Согласно конкретному варианту реализации в основные клеточные среды добавляют медь до конечной концентрации от приблизительно 1,0 до приблизительно 10 мкг/л. Согласно дальнейшим вариантам реализации в основные среды для клеточных культур добавляют медь до получения конечной концентрации

приблизительно 1,0-5,0; 1,2-4,0; 1,3-3,0; 1,4-2,9; 1,5-2,8; 1,6-2,7; 1,7-2,6; 1,8-2,5; 1,9-2,4; 2,0-2,3; 2,1-2,2 мкг/л меди. Согласно дальнейшим вариантам реализации основные среды для клеточных культур, применяемые в способах согласно настоящему изобретению, дополняют до получения концентраций меди приблизительно 1,2-9,5; 1,4-9; 1,6-8,5; 1,8-8; 2,0-7,5; 2,2-7; 2,4-6,5; 2,6-6,0; 2,8-5,5; 3,0-5,0; 3,2-4,5; 3,4-4; и 2-4 мкг/л. Согласно другим вариантам реализации основные среды для клеточных культур, применяемые в способах согласно настоящему изобретению, дополняют до получения концентраций меди приблизительно 1-6, 2-5, 3-4 мкг/л. Согласно одному из вариантов реализации в основные среды для клеточных культур добавляют медь до получения общей концентрации меди, составляющей по меньшей мере 1 мкг/л. Согласно другому варианту реализации в основные среды для клеточных культур добавляют медь до получения общей концентрации меди, составляющей по меньшей мере 2 мкг/л. Согласно еще одному из вариантов реализации в основные среды для клеточных культур добавляют медь до получения общей концентрации меди, составляющей по меньшей мере 4 мкг/л. Согласно определенным вариантам реализации в основные среды для клеточных культур добавляют медь до получения общей концентрации меди, составляющей по меньшей мере 1 мкг/л, или по меньшей мере 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 мкг/л меди или более. Согласно определенным вариантам реализации и более подробному описанию ниже в настоящей заявке культуры для получения rA13 могут содержать приблизительно 2-4 мкг/л меди, тогда как культуры для получения rVWF могут содержать по меньшей мере 2 мкг/л меди.

[0129] Вышеуказанные концентрации представляют собой относительные концентрации чистой меди в форме двухвалентного иона меди (Cu²⁺). Если используется производное меди, например, гидратированная соль, или соединение, содержащее медь, например, хелатор меди, указанное количество производного или хелатора добавляют таким образом, что конечная концентрация меди попадает в указанные в настоящей заявке диапазоны. Например, 2 мкг/л CuSO4·5H2O эквивалентны концентрации меди, составляющей приблизительно 0,51 мкг/л (без сульфата и 5H₂O).

[0130] Удачным образом, было обнаружено, что применение в процессе культивирования клеток среды для клеточной культуры, обеспечивающей низкие концентрации (NH_4^+) в

растворе культуры клеток (m.e. в культуральном супернатанте), приводит к экспрессии рекомбинантного VWF и/или rA13 с более высокой удельной активностью.

Соответственно, согласно определенным вариантам реализации концентрация NH_4^+ в указанном супернатанте составляет не более чем 10 мМ. Согласно предпочтительному варианту реализации концентрация NH_4^+ в указанном супернатанте составляет не более чем 5 мМ. Согласно предпочтительному варианту реализации концентрация NH_4^+ в указанном супернатанте составляет не более чем 4 мМ. Согласно другим вариантам реализации концентрация NH_4^+ в указанном супернатанте составляет не более чем 10 мМ, 9 мМ, 8 мМ, 7 мМ, 6 мМ, 5 мМ, 4 мМ, 3 мМ, 2 мМ, 1 мМ или менее.

[0131] Соответственно, согласно определенным вариантам реализации способы и композиции, предложенные в соответствии с настоящим изобретением, основаны на применении основных сред для клеточных культур с добавлением меди (*например*, до конечной концентрации, составляющей меньшей мере 2 мкг/л) для применения в процессе, который приводит к концентрации NH₄⁺ в супернатанте, составляющей не более 10 мМ. Согласно другим вариантам реализации основную среду для клеточной культуры дополняют для получения конечных концентраций меди и аммония согласно любому из вариантов 1–440, приведенных в **табл. 1**.

Таблица 1. Типовые варианты концентраций меди и аммония в культуральных средах и супернатанте, подходящих для экспрессии рекомбинантных белков согласно настоящему описанию.

			Концентрация аммония											
		H.O.	НБЧ	НБЧ	НБЧ	НБЧ	НБЧ	НБЧ	НБЧ	НБЧ	НБЧ	НБЧ		
			10мМ	9мМ	8мМ	7мМ	6мМ	5мМ	4 _M M	3мМ	2мМ	1мМ		
п	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.		
меди	1 мкг/л	1	41	81	121	161	201	241	281	321	361	401		
	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.		
<u>\$</u>	2 мкг/л	2	42	82	122	162	202	242	282	322	362	402		
ba	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.		
\	3 мкг/л	3	43	83	123	163	203	243	283	323	363	403		
Концентрация	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.		
5	4 мкг/л	4	44	84	124	164	204	244	284	324	364	404		
_	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.		
	5 мкг/л	5	45	85	125	165	205	245	285	325	365	405		
	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.		
	6 мкг/л	6	46	86	126	166	206	246	286	326	366	406		
	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.		
	7 мкг/л	7	47	87	127	167	207	247	287	327	367	407		
	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.		
	8 мкг/л	8	48	88	128	168	208	248	288	328	368	408		

ПММ	Вар.	Вар.	Вар.	Bap.	Вар.	Bap.	Вар.	Вар.	Вар.	Bap.	Ва
9 мкг/л	9	49	89	129	169	209	249	289	329	369	40
ПММ	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	B
10 мкг/л	Бар. 10	50	90	130	170	210	250	290	330	370	4
				+			1	-			+
Приблизительно	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	В
1 мкг/л	11	51	91	131	171	211	251	291	331	371	41
Приблизительно	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	В
1,5 мкг/л	12	52	92	132	172	212	252	292	332	372	41
Приблизительно	Bap.	Bap.	Вар.	Bap.	Вар.	Bap.	Bap.	Вар.	Вар.	Вар.	B
2 мкг/л	13	53	93	133	173	213	253	293	333	373	41
Приблизительно	Вар.	Bap.	Вар.	Bap.	Вар.	Bap.	Bap.	Вар.	Вар.	Bap.	В
2,5 мкг/л	14	54	94	134	174	214	254	294	334	374	41
Приблизительно	Вар.	Вар.	Вар.	Bap.	Вар.	Bap.	Bap.	Вар.	Вар.	Bap.	В
3 мкг/л	15	55	95	135	175	215	255	295	335	375	41
Приблизительно	Bap.	Bap.	Вар.	Bap.	Bap.	Bap.	Вар.	Вар.	Вар.	Bap.	В
3,5 мкг/л	16	56	96	136	176	216	256	296	336	376	41
Приблизительно		-	Bap.			+	+				+
	Bap.	Bap.	97	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	B
4 мкг/л	17	57		137	177	217	257	297	337	377	41
Приблизительно	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	B
4,5 мкг/л	18	58	98	138	178	218	258	298	338	378	41
Приблизительно	Вар.	Bap.	Вар.	Bap.	Вар.	Bap.	Bap.	Вар.	Bap.	Bap.	B
5 мкг/л	19	59	99	139	179	219	259	299	339	379	41
Приблизительно	Вар.	Вар.	Вар.	Bap.	Вар.	Bap.	Bap.	Вар.	Вар.	Bap.	В
5,5 мкг/л	20	60	100	140	180	220	260	300	340	380	42
Приблизительно	Вар.	Вар.	Вар.	Bap.	Вар.	Вар.	Bap.	Bap.	Bap.	Bap.	В
6 мкг/л	21	61	101	141	181	221	261	301	341	381	42
Приблизительно	Bap.	Bap.	Вар.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	В
7 мкг/л	22	62	102	142	182	222	262	302	342	382	42
Приблизительно	Bap.	Bap.	Bap.		Bap.	Bap.		Bap.	Bap.	Bap.	В
8 мкг/л	23	63	103	Bap. 143	183	223	Bap. 263	303	343	383	42
				 		+	1	-			+
Приблизительно	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	В
9 мкг/л	24	64	104	144	184	224	264	304	344	384	42
Приблизительно	Вар.	Вар.	Вар.	Bap.	Bap.	Bap.	Bap.	Вар.	Bap.	Вар.	В
10 мкг/л	25	65	105	145	185	225	265	305	345	385	42
1-20 мкг/л	Вар.	Вар.	Вар.	Bap.	Вар.	Bap.	Bap.	Вар.	Вар.	Bap.	B
	26	66	106	146	186	226	266	306	346	386	42
2–20 мкг/л	Вар.	Вар.	Вар.	Вар.	Вар.	Bap.	Вар.	Вар.	Вар.	Bap.	В
	27	67	107	147	187	227	267	307	347	387	42
1–10 мкг/л	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	В
1 10 1111/11	28	68	108	148	188	228	268	308	348	388	42
2–10 мкг/л	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	B
∠-10 MKI/JI											
1 (/	29	69	109	149	189	229	269	309	349	389	42
1–6 мкг/л	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	В
	30	70	110	150	190	230	270	310	350	390	43
2–6 мкг/л	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Ва
	31	71	111	151	191	231	271	311	351	391	43
3-6 мкг/л	Вар.	Вар.	Вар.	Bap.	Bap.	Bap.	Вар.	Bap.	Bap.	Bap.	В
	32	72	112	152	192	232	272	312	352	392	43
4–6 мкг/л	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	В
i O mixi/Ji	33	73	113	153	193	233	273	313	353	393	43
1 5 xmm/-											+
1–5 мкг/л	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	B
2.7	34	74	114	154	194	234	274	314	354	394	43
2-5 мкг/л	Вар.	Вар.	Вар.	Bap.	Вар.	Bap.	Bap.	Вар.	Bap.	Bap.	Ba
	35	75	115	155	195	235	275	315	355	395	43

3-5 мкг/л	Вар.										
	36	76	116	156	196	236	276	316	356	396	436
4-5 мкг/л	Вар.										
	37	77	117	157	197	237	277	317	357	397	437
1–4 мкг/л	Вар.										
	38	78	118	158	198	238	278	318	358	398	438
2–4 мкг/л	Вар.										
	39	79	119	159	199	239	279	319	359	399	439
3–4 мкг/л	Вар.										
	40	80	120	160	200	240	280	320	360	400	440

^{*}H.O. = не определено

[0132] Согласно некоторым вариантам реализации добавление в среды меди согласно настоящему изобретению производится путем дополнения основных сред, не содержащих животных белков и/или сред с заданным химическим составом. Способы получения не содержащих животных белков и культуральных сред с заданным химическим составом известны в данной области техники, например в патентах США № 6171825 и №6936441, WO 2007/077217, и в опубликованных заявках на патент США №№2008/0009040 и 2007/0212770, раскрытия которых включены в настоящую заявку посредством ссылки во всей полноте для любых целей. Согласно одному из вариантов реализации основная культуральная среда, применяемая в способах, описанных в настоящей заявке, представляет собой не содержащую животных белков или не содержащую олигопептидов среду. Согласно определенным вариантам реализации указанная культуральная среда может быть средой с заданным химическим составом. Согласно определенным вариантам реализации указанные культуральные среды могут содержать по меньшей мере один полиамин в концентрации от приблизительно 0,5 мг/л до приблизительно 10 мг/л.

[0133] Согласно дальнейшим вариантам реализации и в дополнение к любым описанным выше согласно настоящему изобретению предложены культуральные среды, для получения которых в основную среду добавляют медь и по меньшей мере что-либо одно из кальция, цинка и/или витамина ВЗ. Согласно определенным вариантам реализации указанная среда может не содержать животных белков, не содержать олигопептидов или представлять собой среду с заданным химическим составом. Согласно определенным вариантам реализации указанная не содержащую животных белков или не содержащую олигопептидов среду получают согласно описанию в патентах США № 6171825 и

^{*}НБЧ= не более чем

^{*}ПММ = по меньшей мере

№6936441, WO 2007/077217, и опубликованных заявках на патент США №№2008/0009040 и 2007/0212770, раскрытия которых включены в настоящую заявку посредством ссылки во всей полноте для любых целей; оба источника включены в настоящую заявку посредством ссылки во всей полноте для любых целей; и добавлением дополнительной меди и необязательно одного или более из кальция, цинка и витамина В3. Согласно конкретному варианту реализации культуральная среда с заданным химическим составом может быть сходной со смесью (1:1) модифицированной по Дульбекко среды Игла и среды Хэма F12 (DMEM/Хэма F12), куда добавлена дополнительная медь и необязательно кальций, цинк и/или витамин ВЗ для увеличения удельной активности rVWF или rA13, экспрессируемых в клетках, культивируемых в указанной среде. Согласно другим вариантам реализации указанная культуральная среда не содержит животных компонентов. Согласно другому варианту реализации указанная культуральная среда содержит белок, например, животный белок из сыворотки, такой как эмбриональная телячья сыворотка. Согласно другому варианту реализации указанная культура содержит добавленные экзогенные рекомбинантные белки. Согласно другому варианту реализации указанные белки получены от сертифицированного свободного от патогенов животного.

[0134] Согласно определенным вариантам реализации указанная культуральная среда содержит по меньшей мере один полиамин в концентрации, составляющей точно или приблизительно от 0,5 мг/л до 30 мг/л. Согласно другому варианту реализации указанная культуральная среда содержит по меньшей мере один полиамин в концентрации точно или приблизительно от 0,5 мг/л до 10 мг/л. Согласно одному из вариантов реализации указанная культуральная среда содержит по меньшей мере один полиамин в концентрации точно или приблизительно от 2 мг/л до 8 мг/л. Согласно определенным вариантам реализации указанный полиамин принадлежит группе из орнитина, путресцина, спермина или спермидина или т.п. Согласно предпочтительному варианту реализации полиамин представляет собой путресцин. Согласно конкретному варианту реализации указанная культуральная среда содержит точно или приблизительно от 2 мг/л до 8 мг/л путресцина.

[0135] Согласно одному из вариантов реализации указанная культуральная среда содержит по меньшей мере один полиамин в концентрации, составляющей точно или

приблизительно от 0,5 мг/л до 30 мг/л, и комбинацию меди и аммония согласно любому из вариантов 1—440, приведенных в табл. 1. Согласно другому варианту реализации указанная культуральная среда содержит по меньшей мере один полиамин в концентрации, составляющей точно или приблизительно от 0,5 мг/л до 10 мг/л, и комбинацию меди и аммония согласно любому из вариантов 1—440, приведенных в табл. 1. Согласно одному из вариантов реализации указанная культуральная среда содержит по меньшей мере один полиамин в концентрации, составляющей точно или приблизительно от 2 мг/л до 8 мг/л, и комбинацию меди и аммония согласно любому из вариантов 1—440, приведенных в табл. 1. Согласно определенным вариантам реализации указанный полиамин входит в группу из орнитина, путресцина, спермина или спермидина, или т.п. Согласно предпочтительному варианту реализации указанный полиамин представляет собой путресцин. Согласно конкретному варианту реализации указанная культуральная среда содержит точно или приблизительно от 2 мг/л до 8 мг/л путресцина и комбинацию меди и аммония согласно любому из вариантов 1—440, приведенных в табл. 1.

[0136] Согласно дальнейшим аспектам помимо меди применяемые согласно настоящему изобретению среды для клеточных культур также могут содержат что-либо одно или более из: дополнительного кальция, цинка, одного или более витамина, и любых их комбинаций.

[0137] Как правило, для добавления в среды согласно настоящему изобретению может применяться любая соль кальция; неограничивающие примеры приемлемых солей включают $CaCl_2$, $CaCl_2$, $CaFPO_3 \cdot 2H_2O$, CaI_2 , $CaBr_2$, $(C_2H_3O_2)_2Ca$, $(CHO_2)_2Ca$, $(C_6H_7O_6)_2Ca$, $(C_6H_5O_7)_2Ca_3 \cdot 2H_2O$ и т.п. Согласно определенным вариантам реализации для добавления в культуральные среды согласно настоящему изобретению применяют фармацевтически приемлемую соль кальция.

[0138] Как правило, для добавления в среды согласно настоящему изобретению может применяться любая соль цинка; неограничивающие примеры приемлемых солей включают $ZnSO_4 \cdot 7H_2O$, $ZnSO_3 \cdot 2H_2O$, $(C_6H_5O_7)_2Zn_3 \cdot 2H_2O$, $ZnBr_2$, $ZnBr_2 \cdot 2H_2O$, $ZnCl_2$, $Zn(NO_3)_2 \cdot 6H_2O$, $Zn(H_2PO_4)_2 \cdot H_2O$, $(C_2H_3O_2)_2Zn \cdot 2H_2O$ и т.п. Согласно определенным вариантам реализации для добавления в культуральные среды согласно настоящему изобретению применяют фармацевтически приемлемую соль цинка. Согласно другим

вариантам реализации цинк-содержащий пептидный или белковый препарат, например, инсулин, может применяться для добавления в описываемую в настоящей заявке культуру.

[0139] Согласно дальнейшим аспектам основные клеточные среды с добавлением меди и одного или более из описанных выше дополнительных веществ можно также применять в культурах с низкими уровнями аммония в супернатанте. Согласно определенным вариантам реализации дополненные среды для клеточных культур для применения согласно настоящему изобретения дают уровни аммония в растворе культуры клеток менее 10 мМ. Согласно дальнейшим вариантам реализации дополненную среду для клеточных культур согласно настоящему изобретению применяют при уровнях аммония в культуре клеток, составляющих приблизительно 0,5–9,5; 1,0–9,0; 1,5–8,5; 2,0–8,0; 2,5–7,5; 3,0–7,0; 3,5–6,5; 4,0–6,0; 4,5–5,5 мМ.

[0140] Согласно одному из вариантов реализации указанные концентрации меди и аммония в среде для клеточных культур и супернатанте культуры клеток поддерживают на протяжении длительного периода времени в течение процесса производства. Согласно конкретному варианту реализации указанные концентрации меди и аммония в культуре клеток поддерживают на протяжении процесса производства, *т.е.* в течение времени, пока rVWF или rA13 экспрессируют и выделяют из крупномасштабной культуры клеток. Согласно определенным вариантам реализации указанные концентрации меди и аммония поддерживают в культуральном растворе на уровне согласно любому из вариантов 1–440, приведенных в табл. 1. Согласно предпочтительному варианту реализации указанные концентрации меди и аммония поддерживают в течение всего периода такого производственного процесса.

[0141] Согласно некоторым вариантам реализации культуральная среда, предложенная согласно настоящему изобретению, может быть представлена жидкой, сухой или порошковой формой. Указанная среда может быть предварительно разделена на аликвоты, содержащие количества, подходящие для однократного применения, либо большие количества, подходящие для более чем одной клеточной культуры. Как правило, среда согласно настоящему изобретению представлена в стерильном виде.

[0142] Ниже обсуждаются характерные особенности сред для клеточных культур, подходящих для получения rVWF или rA13. Несмотря на то, что они описаны применительно либо к rVWF, либо к RA13, необходимо понимать, что любые приведенные ниже описания, относящиеся к rVWF, подходят и для RA13, и наоборот.

A. Среды для клеточных культур для получения рекомбинантного VWF

[0143] Согласно одному аспекту настоящее изобретение относится к раствору культуры клеток для получения рекомбинантных vWF, более конкретно – высокомолекулярных vWF, обладающих высокой удельной активностью, которые описаны ниже в настоящей заявке. Согласно одному из вариантов реализации настоящее изобретение предлагает раствор культуры клеток для получения высокомолекулярного рекомбинантного vWF, содержащий среду для клеточной культуры, содержащую медь в концентрации по меньшей мере приблизительно 2,4 мкг/л, и множество клеток, экспрессирующих высокомультимерные vWF, содержащие от приблизительно 14 до приблизительно 22 димеров и обладающие удельной ристоцетин-кофакторной активностью, составляющей по меньшей мере приблизительно 30 мЕ/мкг.

[0144] Согласно одному из вариантов реализации раствор культуры клеток также содержит аммоний в концентрации менее чем 10 мМ. Согласно предпочтительному варианту реализации указанная культура клеток содержит аммоний в концентрации не выше 5 мМ. Согласно другим вариантам реализации указанная культура клеток содержит аммоний в концентрации не выше 10 мМ, или не выше 9 мМ, 8 мМ, 7 мМ, 6 мМ, 5 мМ, 4 мМ, 3 мМ, 2 мМ, 1 мМ или менее. Согласно другим вариантам реализации указанная культура клеток содержит концентрацию меди и аммония согласно любому из вариантов 1—440, приведенных в табл. 1. Согласно определенным вариантам реализации концентрацию аммония в культуре клеток поддерживают в течение длительного периода на уровне концентрации согласно описанию выше. Например, согласно одному из вариантов реализации концентрацию аммония поддерживают на низком уровне в течение по меньшей мере 3 дней, или по меньшей мере 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне не выше 5

мМ в течение по меньшей мере 7 дней. Согласно другому конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне не выше 4 мМ в течение по меньшей мере 7 дней. Согласно конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне не выше 5 мМ в течение по меньшей мере 14 дней. Согласно другому конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне не выше 4 мМ в течение по меньшей мере 14 дней. Согласно еще одному из вариантов реализации концентрацию аммония в культуре клеток поддерживают на низком уровне на протяжении процесса (*т.е.* в течение всего времени, на протяжении которого указанная культура используется для получения rVWF).

[0145] Согласно одному из вариантов реализации настоящего изобретения среды для клеточных культур могут содержать медь в концентрации по меньшей мере приблизительно 2,4 мкг/л, согласно другому варианту реализации – по меньшей мере приблизительно 3 мкг/л, согласно еще одному варианту реализации – по меньшей мере приблизительно 4 мкг/л, согласно еще одному варианту реализации – по меньшей мере приблизительно 8 мкг/л, согласно еще одному варианту реализации – по меньшей мере приблизительно 10 мкг/л, согласно еще одному варианту реализации – по меньшей мере приблизительно 15 мкг/л, и согласно дальнейшему варианту реализации – по меньшей мере приблизительно 20 мкг/л.

[0146] Согласно другим вариантам реализации концентрация меди в среде для клеточных культур согласно настоящему изобретению может варьировать от приблизительно 2,4 мкг/л до приблизительно 20 мкг г/л, согласно другому варианту реализации – от приблизительно 2,4 мкг г/л до приблизительно 15 мкг г/л, согласно еще одному варианту реализации – от приблизительно 2,4 мкг г/л до приблизительно 10 мкг г/л, согласно еще одному варианту реализации – от приблизительно 2,4 мкг г/л до приблизительно 8 мкг/л, согласно еще одному варианту реализации – от приблизительно 2,4 мкг/л до приблизительно 6 мкг/л, согласно еще одному варианту реализации – от приблизительно 2,4 мкг/л до приблизительно 4 мкг/л до приблизительно 10 мкг/л, согласно еще одному варианту реализации – от приблизительно 4 мкг/л до приблизительно 15 мкг/л, согласно еще одному варианту реализации – от приблизительно 4 мкг/л до приблизительно 15 мкг/л, согласно еще

одному варианту реализации – от приблизительно 4 мкг/л до приблизительно 10 мкг/л, согласно еще одному варианту реализации – от приблизительно 4 мкг/л до приблизительно 8 мкг/л, и согласно дальнейшему варианту реализации – от приблизительно 4 мкг/л до приблизительно 6 мкг г/л.

[0147] Согласно настоящему изобретению также предложены наборы для экспрессии или получения rVWF; указанные наборы содержат культуральную среду, подходящую для экспрессии rVWF, обладающего высокой удельной активностью.

В. Среды для клеточных культур для получения ADAMTS13 (A13)

[0148] Согласно одному из аспектов настоящее изобретение предлагает культуральные среды, подходящие для экспрессии белков ADAMTS, обладающих высокой удельной активностью. Удачным образом, было обнаружено, что добавление в культуральную среду меди значительно повышает активность рекомбинантных ферментов ADAMTS (например, гADAMTS13), экспрессируемых в клетках, культивируемых в указанной дополненной среде, в то время как указанные ферменты экспрессируются на уровнях, равных или превышающих таковые для клеток, культивируемых в среде без добавок.

[0149] Согласно одному из аспектов настоящее изобретение предлагает среды для клеточных культур с добавлением меди для экспрессии рекомбинантного белка ADAMTS13 с высокой удельной активностью. Согласно одному из вариантов реализации указанные среды дополняют до получения общей концентрации меди, составляющей от приблизительно 2 до приблизительно 4 мкг/л. Согласно дальнейшим вариантам реализации указанные среды дополняют до получения общей концентрации меди приблизительно 1–3, 2–3, 3–4 мкг/л. Согласно одному из вариантов реализации указанные среды содержат медь в концентрации по меньшей мере 1 мкг/л. Согласно другому варианту реализации указанная среда содержит по меньшей мере 2 мкг/л меди. Согласно другому варианту реализации указанная среда содержит от 2 мкг/л до 20 мкг/л меди. Согласно другому варианту реализации указанная среда содержит от 1 мкг/л до 6 мкг/л меди. Согласно другому варианту реализации указанная среда содержит от 2 мкг/л до 5 мкг/л меди. Согласно другому варианту реализации указанная среда содержит от 3 мкг/л меди. Согласно другому варианту реализации указанная среда содержит от 3 мкг/л меди. Согласно другому варианту реализации указанная среда содержит от 3 мкг/л меди. Согласно другому варианту реализации указанная среда содержит от 3

по меньшей мере 1 мкг/л меди, или по меньшей мере 2 мкг/л, 3 мкг/л, 4 мкг/л, 5 мкг/л, 6 мкг/л, 7 мкг/л, 8 мкг/л, 9 мкг/л, 10 мкг/л, 11 мкг/л, 12 мкг/л, 13 мкг/л, 14 мкг/л, 15 мкг/л, 16 мкг/л, 17 мкг/л, 18 мкг/л, 19 мкг/л, 20 мкг/л, либо более высокие концентрации меди.

[0150] Согласно одному из вариантов реализации раствор культуры клеток также содержит аммоний в концентрации менее чем 10 мМ. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 5 мМ. Согласно другим вариантам реализации раствор культуры клеток содержит аммоний в концентрации не выше 10 мМ, или не выше 9 мМ, 8 мМ, 7 мМ, 6 мМ, 5 мМ, 4 мМ, 3 мМ, 2 мМ, 1 мМ или менее. Согласно другим вариантам реализации раствор культуры клеток содержит концентрацию меди и аммония согласно любому из вариантов 1–440, приведенных в табл. 1. Согласно определенным вариантам реализации концентрацию аммония в культуре клеток поддерживают в течение длительного периода на уровне концентрации согласно приведенному выше описанию. Например, согласно одному из вариантов реализации концентрацию аммония поддерживают на низком уровне в течение по меньшей мере 3 дней, или по меньшей мере 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне не выше 5 мМ в течение по меньшей мере 7 дней. Согласно другому конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне не выше 4 мМ в течение по меньшей мере 7 дней. Согласно конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне не выше 5 мМ в течение по меньшей мере 14 дней. Согласно другому конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне не выше 4 мМ в течение по меньшей мере 14 дней. Согласно еще одному из вариантов реализации концентрацию аммония в культуре клеток поддерживают на низком уровне на протяжении процесса (т.е. в течение всего времени, на протяжении которого указанная культура используется для получения гА13).

[0151] Согласно одному из вариантов реализации получают культуральную среду для экспрессии рекомбинантного белка ADAMTS (*например*, rADAMTS13), содержащую по меньшей мере 1 мкг/л меди и по меньшей мере 2 мкМ цинка. Согласно другим вариантам

реализации указанная среда содержит по меньшей мере 2 мкг/л меди или по меньшей мере 4 мкг/л меди. Согласно другому варианту реализации, когда в среды добавляют медь, указанная культуральная среда также содержит по меньшей мере точно или приблизительно 5 мкМ цинка. Согласно одному из вариантов реализации указанная культуральная среда также содержит точно или приблизительно от 2 мкМ до 12 мкМ цинка. Согласно другому варианту реализации указанная культуральная среда также содержит точно или приблизительно от 5 мкМ до 12 мкМ цинка. Согласно другим вариантам реализации указанная культуральная среда также может содержать по меньшей мере точно или приблизительно 2 мкМ, или по меньшей мере точно или приблизительно 3 мкМ, 4 мкМ, 5 мкМ, 6 мкМ, 7 мкМ, 8 мкМ, 9 мкМ, 10 мкМ, 11 мкМ, 12 мкМ, 13 мкМ, 14 мкМ, 15 мкМ, 20 мкМ, 25 мкМ, 30 мкМ или более цинка. Согласно одному из вариантов реализации указанная культуральная среда содержит медь и цинк в концентрациях согласно любому из вариантов 441–880, приведенных в табл. 2.

Таблица 2. Типовые варианты реализации концентраций меди и цинка в культуральных средах, подходящих для экспрессии рекомбинантного белка ADAMTS13.

			Концентрация цинка										
		ПММ	ПММ	ПММ	ПММ	ПММ	ПММ	ПММ	ПММ	ПММ	2-12	5-12	
		2	3	4	5	6	7	8	9	10	мкМ	мкМ	
		мкМ	мкМ	мкМ	мкМ	мкМ	мкМ	мкМ	мкМ	мкМ			
И	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Bap.	Вар.	
-	1 мкг/л	441	481	521	561	601	641	681	721	761	801	841	
N R	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Bap.	Вар.	
	2 мкг/л	442	482	522	562	602	642	682	722	762	802	842	
pa	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Bap.	Вар.	
Концентрация меди	3 мкг/л	443	483	523	563	603	643	683	723	763	803	843	
H	ПММ	Вар.	Вар.	Bap.	Вар.	Вар.	Bap.	Вар.	Bap.	Вар.	Bap.	Вар.	
K 01	4 мкг/л	444	484	524	564	604	644	684	724	764	804	844	
-	ПММ	Вар.	Вар.	Bap.	Вар.	Вар.	Вар.	Вар.	Bap.	Вар.	Bap.	Вар.	
	5 мкг/л	445	485	525	565	605	645	685	725	765	805	845	
	ПММ	Вар.	Вар.	Bap.	Вар.	Вар.	Вар.	Вар.	Bap.	Вар.	Вар.	Вар.	
	6 мкг/л	446	486	526	566	606	646	686	726	766	806	846	
	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Bap.	Вар.	Вар.	Вар.	
	7 мкг/л	447	487	527	567	607	647	687	727	767	807	847	
	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Bap.	Вар.	Вар.	Вар.	
	8 мкг/л	448	488	528	568	608	648	688	728	768	808	848	
	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	
	9 мкг/л	449	489	529	569	609	649	689	729	769	809	849	
	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	
	10 мкг/л	450	490	530	570	610	650	690	730	770	810	850	
	Приблизительно	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	
	1 мкг/л	451	491	531	571	611	651	691	731	771	811	851	
	Приблизительно	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Bap.	Вар.	Вар.	Вар.	
	1.5 мкг/л	452	492	532	572	612	652	692	732	772	812	852	
	Приблизительно	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	

2 мкг/л	453	493	533	573	613	653	693	733	773	813	;
Приблизительно	Вар.	Вар.	Bap.	Вар.	Bap.	Bap.	Вар.	Bap.	Bap.	Вар.	I
2.5 мкг/л	454	494	534	574	614	654	694	734	774	814	{
Приблизительно	Вар.	Bap.]								
3 мкг/л	455	495	535	575	615	655	695	735	775	815	Ŀ
Приблизительно	Вар.										
3,5 мкг/л	456	496	536	576	616	656	696	736	776	816	Ŀ
Приблизительно	Вар.	Bap.	Вар.	Вар.]						
4 мкг/л	457	497	537	577	617	657	697	737	777	817	Ŀ
Приблизительно	Bap.	Вар.	Bap.	Вар.	Вар.	Вар.	Вар.	Bap.	Вар.	Вар.	
4.5 мкг/л	458	498	538	578	618	658	698	738	778	818	L
Приблизительно	Вар.	Вар.	Bap.	Вар.	Вар.	Вар.	Вар.	Bap.	Вар.	Вар.	
5 мкг/л	459	499	539	579	619	659	699	739	779	819	L
Приблизительно	Вар.	Вар.	Bap.	Вар.	Вар.	Вар.	Вар.	Bap.	Вар.	Вар.]
5.5 мкг/л	460	500	540	580	620	660	700	740	780	820	L
Приблизительно	Вар.	Вар.	Bap.	Вар.	Вар.	Вар.	Вар.	Bap.	Вар.	Вар.]
6 мкг/л	461	501	541	581	621	661	701	741	781	821	L
Приблизительно	Вар.	Вар.	Bap.	Вар.	Вар.	Bap.	Вар.	Bap.	Вар.	Вар.]
7 мкг/л	462	502	542	582	622	662	702	742	782	822	Ŀ
Приблизительно	Вар.	Вар.	Bap.	Вар.	Bap.	Вар.	Вар.	Вар.	Вар.	Вар.	
8 мкг/л	463	503	543	583	623	663	703	743	783	823	Ŀ
Приблизительно	Вар.	Вар.	Bap.	Вар.	Bap.	Вар.	Вар.	Вар.	Вар.	Вар.	
9 мкг/л	464	504	544	584	624	664	704	744	784	824	Ŀ
Приблизительно	Вар.	Вар.	Bap.	Вар.	Bap.	Вар.	Вар.	Вар.	Вар.	Вар.	
10 мкг/л	465	505	545	585	625	665	705	745	785	825	Ŀ
1–20 мкг/л	Вар.	Вар.	Вар.	Вар.	Вар.	Bap.	Вар.	Вар.	Вар.	Вар.]
	466	506	546	586	626	666	706	746	786	826	Ŀ
2-20 мкг/л	Вар.	Вар.	Bap.	Вар.	Bap.	Bap.	Вар.	Вар.	Bap.	Вар.]
	467	507	547	587	627	667	707	747	787	827	Ŀ
1–10 мкг/л	Вар.	Вар.	Bap.	Вар.	Bap.	Вар.	Вар.	Вар.	Вар.	Вар.	
	468	508	548	588	628	668	708	748	788	828	;
2-10 мкг/л	Вар.	Вар.	Bap.	Вар.	Bap.	Bap.	Вар.	Вар.	Вар.	Bap.]
	469	509	549	589	629	669	709	749	789	829	Ŀ
1–6 мкг/л	Вар.	Вар.	Bap.	Вар.	Bap.	Вар.	Вар.	Вар.	Вар.	Bap.]
	470	510	550	590	630	670	710	750	790	830	
2–6 мкг/л	Вар.	Вар.	Bap.	Вар.	Bap.	Вар.	Вар.	Вар.	Вар.	Bap.]
	471	511	551	591	631	671	711	751	791	831	;
3-6 мкг/л	Вар.	Вар.	Bap.	Вар.	Вар.	Bap.	Вар.	Bap.	Вар.	Вар.]
	472	512	552	592	632	672	712	752	792	832	L
4–6 мкг/л	Вар.	Вар.	Bap.	Вар.	Вар.	Bap.	Вар.	Вар.	Вар.	Вар.]
	473	513	553	593	633	673	713	753	793	833	Ŀ
1-5 мкг/л	Вар.	Вар.	Bap.	Вар.	Вар.	Bap.	Вар.	Вар.	Вар.	Вар.]
	474	514	554	594	634	674	714	754	794	834	;
2-5 мкг/л	Вар.	Вар.	Вар.	Вар.	Bap.	Вар.	Вар.	Вар.	Вар.	Вар.]
	475	515	555	595	635	675	715	755	795	835	
3-5 мкг/л	Вар.]									
	476	516	556	596	636	676	716	756	796	836	;
4-5 мкг/л	Вар.]									
	477	517	557	597	637	677	717	757	797	837	
1–4 мкг/л	Вар.	Bap.	Вар.	Вар.	T						
	478	518	558	598	638	678	718	758	798	838	
2–4 мкг/л	Вар.	Вар.	Bap.	Вар.	Вар.	Bap.	Вар.	Bap.	Вар.	Вар.	1
	479	519	559	599	639	679	719	759	799	839	
3–4 мкг/л	Bap.	Вар.	Bap.	Вар.	Вар.	Bap.	Bap.	Bap.	Bap.	Bap.]
	480	520	560	600	640	680	720	760	800	840	8

*ПММ = по меньшей мере

[0152] Согласно одному из вариантов реализации раствор культуры клеток также содержит низкую концентрацию аммония. Согласно одному из вариантов реализации раствор культуры клеток содержит аммоний в концентрации менее чем 10 мМ, и медь и цинк в концентрациях согласно любому из вариантов 441–880, приведенных в табл. 2. Согласно конкретному варианту реализации концентрацию аммония поддерживают на уровне не выше 10 мМ в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 6 мМ, и медь и цинк в концентрациях согласно любому из вариантов 441-880, приведенных в табл. 2. Согласно конкретному варианту реализации концентрацию аммония поддерживают на уровне не выше 6 мМ в течение по меньшей мере 7 дней. Согласно другому предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 5 мМ, и медь и цинк в концентрациях согласно любому из вариантов 441–880, приведенных в табл. 2. Согласно конкретному варианту реализации концентрацию аммония поддерживают на уровне не выше 5 мМ в течение по меньшей мере 7 дней. Согласно другому предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 4 мМ, и медь и цинк в концентрациях согласно любому из вариантов 441-880, приведенных в табл. 2. Согласно конкретному варианту реализации концентрацию аммония поддерживают на уровне не выше 4 мМ в течение по меньшей мере 7 дней. Согласно другим вариантам реализации раствор культуры клеток содержит аммоний в концентрации не выше 10 мМ, или не выше 9 мМ, 8 мМ, 7 мМ, 6 мМ, 5 мМ, 4 мМ, 3 мМ, 2 мМ, 1 мМ, или менее, и медь и цинк в концентрациях согласно любому из вариантов 441— 880, приведенных в табл. 2. Согласно еще одному конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на низком уровне на протяжении процесса (т.е. в течение всего времени, на протяжении которого указанная культура используется для получения гА13).

[0153] Согласно одному из вариантов реализации получают культуральную среду для экспрессии рекомбинантного белка ADAMTS (*например*, rADAMTS13), содержащую по меньшей мере 1 мкг/л меди и по меньшей мере точно или приблизительно 0,5 мМ

кальция. Согласно другим вариантам реализации указанная среда содержит по меньшей мере 2 мкг/л меди или по меньшей мере 4 мкг/л меди. Согласно другому варианту реализации, когда в среды добавляют медь, указанная культуральная среда также содержит по меньшей мере 1,5 мМ кальция. Согласно одному из вариантов реализации указанная культуральная среда содержит точно или приблизительно от 0,5 мМ до 1,5 мМ кальция. Согласно другим вариантам реализации указанная культуральная среда может содержать по меньшей мере точно или приблизительно 0,5 мМ, или по меньшей мере точно или приблизительно 0,6 мМ; 0,7 мМ; 0,8 мМ; 0,9 мМ; 1,0 мМ; 1,1 мМ; 1,2 мМ; 1,3 мМ; 1,4 мМ; 1,5 мМ; 1,6 мМ; 1,7 мМ; 1,8 мМ; 1,9 мМ; 2,0 мМ; 2,25 мМ; 2,5 мМ; 2,75 мМ; 3,0 мМ; 3,5 мМ; 4,0 мМ; 4,5 мМ; 5,0 мМ, или более, кальция. Согласно одному из вариантов реализации указанная культуральная среда содержит медь и кальция в концентрации согласно любому из вариантов 881–1320, приведенных в табл. 3.

Таблица 3. Типовые варианты реализации концентраций меди и кальция в культуральных

средах, подходящих для экспрессии рекомбинантного белка ADAMTS13.

]	Концент	рация к	альция				
		ПММ	ПММ	ПММ	ПММ	ПММ	ПММ	ПММ	ПММ	ПММ	ПММ	0,5-
		0,5	0,75	1,0	1,25	1,5	2,0	2,5	3,0	4 мМ	5 мМ	1,5
		мМ	мМ	мМ	мМ	мМ	мМ	мМ	мМ			мМ
_ I	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.
ЕД	1 мкг/л	881	921	961	1001	1041	1081	1121	1161	1201	1241	1281
E	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.
	2 мкг/л	882	922	962	1002	1042	1082	1122	1162	1202	1242	1282
ba	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.
#	3 мкг/л	883	923	963	1003	1043	1083	1123	1163	1203	1243	1283
¥	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.
Концентрация меди	4 мкг/л	884	924	964	1004	1044	1084	1124	1164	1204	1244	1284
_	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.
	5 мкг/л	885	925	965	1005	1045	1085	1125	1165	1205	1245	1285
	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.
	6 мкг/л	886	926	966	1006	1046	1086	1126	1166	1206	1246	1286
	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.
	7 мкг/л	887	927	967	1007	1047	1087	1127	1167	1207	1247	1287
	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.
	8 мкг/л	888	928	968	1008	1048	1088	1128	1168	1208	1248	1288
	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.
	9 мкг/л	889	929	969	1009	1049	1089	1129	1169	1209	1249	1289
	ПММ	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.
	10 мкг/л	890	930	970	1010	1050	1090	1130	1170	1210	1250	1290
	Приблизительно	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.
	1 мкг/л	891	931	971	1011	1051	1091	1131	1171	1211	1251	1291
	Приблизительно	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.
	1,5 мкг/л	892	932	972	1012	1052	1092	1132	1172	1212	1252	1292
	Приблизительно	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.
	2 мкг/л	893	933	973	1013	1053	1093	1133	1173	1213	1253	1293

Приблизительно	Вар.	Bap.	Bap.	Вар.	Вар.	Bap.	Вар.	Bap.	Вар.	Bap.	I
2,5 мкг/л	894	934	974	1014	1054	1094	1134	1174	1214	1254	
Приблизительно	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	
3 мкг/л	895	935	975	1015	1055	1095	1135	1175	1215	1255	1
Приблизительно	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	
3,5 мкг/л	896	936	976	1016	1056	1096	1136	1176	1216	1256	+
Приблизительно 4 мкг/л	Bap. 897	Bap. 937	Bap. 977	Bap. 1017	Bap. 1057	Bap. 1097	Bap. 1137	Bap. 1177	Bap. 1217	Bap. 1257	
Приблизительно	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	+
4,5 мкг/л	898	938	978	1018	1058	1098	1138	1178	1218	1258	
Приблизительно	Bap.	Bap.	Bap.	Вар.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	t
5 мкг/л	899	939	979	1019	1059	1099	1139	1179	1219	1259	
Приблизительно	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	t
5,5 мкг/л	900	940	980	1020	1060	1100	1140	1180	1220	1260	
Приблизительно	Bap.	Вар.	Bap.	Вар.	Bap.	Bap.	Вар.	Bap.	Вар.	Bap.	Ť
6 мкг/л	901	941	981	1021	1061	1101	1141	1181	1221	1261	
Приблизительно	Вар.	Вар.	Вар.	Вар.	Вар.	Bap.	Вар.	Bap.	Вар.	Bap.	Ť
7 мкг/л	902	942	982	1022	1062	1102	1142	1182	1222	1262	
Приблизительно	Вар.	Bap.	Вар.	Вар.	Вар.	Вар.	Вар.	Bap.	Вар.	Bap.	Ť
8 мкг/л	903	943	983	1023	1063	1103	1143	1183	1223	1263	
Приблизительно	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Τ
9 мкг/л	904	944	984	1024	1064	1104	1144	1184	1224	1264	
Приблизительно	Вар.	Bap.	Bap.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Bap.	Τ
10 мкг/л	905	945	985	1025	1065	1105	1145	1185	1225	1265	⊥
1–20 мкг/л	Вар.	Вар.	Bap.	Вар.	Вар.	Bap.	Вар.	Вар.	Вар.	Bap.	
	906	946	986	1026	1066	1106	1146	1186	1226	1266	⊥
2-20 мкг/л	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	
	907	947	987	1027	1067	1107	1147	1187	1227	1267	1
$1{-}10$ мкг/л	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	
2.10	908	948	988	1028	1068	1108	1148	1188	1228	1268	+
2-10 мкг/л	Bap. 909	Bap. 949	Bap. 989	Bap. 1029	Bap. 1069	Bap. 1109	Bap. 1149	Bap. 1189	Bap. 1229	Bap. 1269	
1–6 мкг/л	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	\dagger
1-0 MK1/J1	910	950	990	1030	1070	1110	1150	1190	1230	1270	
2–6 мкг/л	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	t
_ 0 11111,01	911	951	991	1031	1071	1111	1151	1191	1231	1271	
3-6 мкг/л	Bap.	Вар.	Bap.	Вар.	Вар.	Bap.	Вар.	Bap.	Bap.	Bap.	+
	912	952	992	1032	1072	1112	1152	1192	1232	1272	
4-6 мкг/л	Вар.	Bap.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Bap.	T
	913	953	993	1033	1073	1113	1153	1193	1233	1273	
1-5 мкг/л	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Bap.	T
	914	954	994	1034	1074	1114	1154	1194	1234	1274	
2-5 мкг/л	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	
	915	955	995	1035	1075	1115	1155	1195	1235	1275	
3-5 мкг/л	Вар.	Bap.	Bap.	Вар.	Вар.	Вар.	Вар.	Bap.	Вар.	Bap.	
	916	956	996	1036	1076	1116	1156	1196	1236	1276	1
4-5 мкг/л	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Bap.	
	917	957	997	1037	1077	1117	1157	1197	1237	1277	1
1–4 мкг/л	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Bap.	
	918	958	998	1038	1078	1118	1158	1198	1238	1278	1
2–4 мкг/л	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	
	919	959	999	1039	1079	1119	1159	1199	1239	1279	1
3–4 мкг/л	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	
	920	960	1000	1040	1080	1120	1160	1200	1240	1280	

*ПММ = по меньшей мере

[0154] Согласно одному из вариантов реализации раствор культуры клеток также содержит низкую концентрацию аммония. Согласно одному из вариантов реализации раствор культуры клеток содержит аммоний в концентрации менее чем 10 мМ, и медь и кальций в концентрациях согласно любому из вариантов 881-1320, приведенных в табл. 3. Согласно конкретному варианту реализации концентрацию аммония поддерживают на уровне, не превышающем 10 мМ, в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации указанная среда для клеточной культуры содержит аммоний в концентрации не выше 6 мМ, и медь и кальций в концентрациях согласно любому из вариантов 881–1320, приведенных в табл. 3. Согласно конкретному варианту реализации концентрацию аммония поддерживают на уровне не выше 6 мМ в течение по меньшей мере 7 дней. Согласно другому предпочтительному варианту реализации указанная среда для клеточной культуры содержит аммоний в концентрации не выше 5 мМ, и медь и кальций в концентрациях согласно любому из вариантов 881-1320, приведенных в табл. 3. Согласно конкретному варианту реализации концентрацию аммония поддерживают на уровне не выше 5 мМ в течение по меньшей мере 7 дней. Согласно другому предпочтительному варианту реализации указанная среда для клеточной культуры содержит аммоний в концентрации не выше 4 мМ, и медь и кальций в концентрациях согласно любому из вариантов 881–1320, приведенных в табл. 3. Согласно конкретному варианту реализации концентрацию аммония поддерживают на уровне не выше 4 мМ в течение по меньшей мере 7 дней. Согласно другим вариантам реализации указанная среда для клеточной культуры содержит аммоний в концентрации не выше 10 мМ, или не выше 9 мМ, 8 мМ, 7 мМ, 6 мМ, 5 мМ, 4 мМ, 3 мМ, 2 мМ, 1 мМ или менее, и медь и кальций в концентрациях согласно любому из вариантов 881–1320, приведенных в табл. 3. Согласно еще одному конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на низком уровне на протяжении процесса (т.е. в течение всего времени, на протяжении которого указанная культура используется для получения rA13).

[0155] Согласно одному из вариантов реализации в среду для клеточной культуры добавляют медь, цинк и

кальций. Согласно конкретному варианту реализации культуральная среда содержит кальций в концентрации по меньшей мере 0,5 мМ, и медь и цинк в концентрациях согласно любому из вариантов 441–880, приведенных в табл. 2. Согласно другому конкретному варианту реализации культуральная среда содержит кальций в концентрации по меньшей мере 1,5 мМ, и медь и цинк в концентрациях согласно любому из вариантов 441–880, приведенных в табл. 2. Согласно другому конкретному варианту реализации указанная культуральная среда содержит кальций в концентрации от 0,5 мМ и 1,5 мМ, и медь и цинк в концентрациях согласно любому из вариантов 441–880, приведенных в табл. 2. Согласно другим вариантам реализации культуральная среда содержит кальций в концентрации по меньшей мере 0,6 мМ; 0,7 мМ; 0,8 мМ; 0,9 мМ; 1,0 мМ; 1,1 мМ; 1,2 мМ; 1,3 мМ; 1,4 мМ; 1,5 мМ; 1,6 мМ; 1,7 мМ; 1,8 мМ; 1,9 мМ; 2,0 мМ; 2,25 мМ; 2,5 мМ; 2,75 мМ; 3,0 мМ; 3,5 мМ; 4,0 мМ; 4,5 мМ; 5,0 мМ или более, и медь и цинк в концентрациях согласно любому из вариантов 441–880, приведенных в табл. 2.

[0156] Согласно одному из вариантов реализации получают культуральную среду для экспрессии рекомбинантного белка ADAMTS (*например*, rADAMTS13), содержащую по меньшей мере 1 мкг/л меди и по меньшей мере 2 мг/л никотинамида (витамин ВЗ). Согласно другим вариантам реализации указанная среда содержит по меньшей мере 2 мкг/л меди или по меньшей мере 4 мкг/л меди. Согласно другому варианту реализации, когда в среды добавляют медь, указанная культуральная среда также содержит по меньшей мере 7 мг/л никотинамида (витамина ВЗ). Согласно одному из вариантов реализации указанная культуральная среда содержит точно или приблизительно от 2 мг/л до 10 мг/л никотинамида (витамина ВЗ). Согласно другим вариантам реализации указанная культуральная среда может содержать по меньшей мере точно или приблизительно 2 мг/л, 3 мг/л, 4 мг/л, 5 мг/л, 6 мг/л, 7 мг/л, 8 мг/л, 9 мг/л, 10 мг/л, 15 мг/л, 20 мг/л, или более высокие концентрации никотинамида (витамина ВЗ). Согласно одному из вариантов реализации указанная культуральная среда содержит медь и никотинамид в концентрациях согласно любому из вариантов 1321–1760, приведенных в табл. 4.

Таблица 4. Типовые варианты реализации концентраций меди и никотинамида в культуральных средах, подходящих для экспрессии рекомбинантного белка ADAMTS13.

					Концен	трация к	альция				
	ПММ	ПММ	ПММ	ПММ	ПММ	ПММ	ПММ	ПММ	ПММ	ПММ	2-10
	2	3	4	5	6	7	8	9	10	15	мг/мл
	мг/мл	мг/мл	мг/мл	мг/мл	мг/мл	мг/мл	мг/мл	мг/мл	мг/мл	мг/мл	

HMM	_	TD 0.4	-	I	I	I	I	I	I		I	I	
ПММ Вар. Вар. Вар. Вар. Вар. Вар. Вар. Вар.	H	ПММ	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.
ПММ Вар. Вар. Вар. Вар. Вар. Вар. Вар. Вар.	Me,										 		
ПММ Вар. Вар. Вар. Вар. Вар. Вар. Вар. Вар.	13		Bap.		Bap.							Вар.	
ПММ Вар. Вар. Вар. Вар. Вар. Вар. Вар. Вар.	R	2 мкг/л	1322	1362	1402	1442	1482	1522	1562	1602	1642	1682	1722
ПММ Вар. Вар. Вар. Вар. Вар. Вар. Вар. Вар.	l E	ПММ	Bap.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.	Вар.
ПММ Вар. Вар. Вар. Вар. Вар. Вар. Вар. Вар.	<u>=</u>	3 мкг/л											
ПММ Вар. Вар. Вар. Вар. Вар. Вар. Вар. Вар.	E	ПММ		 	Bap.	•		1	 		 		
MMM Bap Bap	¥	4 мкг/л									_	_	
SMEY/A 1325 1365 1405 1445 1485 1525 1565 1605 1645 1685 1725		ПММ		+									
ПММ Вар.				_	_	1 -	_					_	
Mar/a 1326 1366 1406 1446 1486 1526 1566 1606 1646 1686 1726				+		-		1			+		
ПММ Вар.					_	1 -		_	1 -		_	_	
ПММ Вар. Вар. Вар. Вар. Вар. Вар. Вар. Вар.								1					
ПММ Вар. Вар. <t< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
8 мкг/п 1328 1368 1408 1448 1488 1528 1568 1608 1648 1688 1728 ПММ Вар. Вар. <td< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></td<>								1					
ПММ Вар. Вар. <t< td=""><th></th><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td></t<>					_	_					_		
9 мкг/л 1329 1369 1409 1449 1489 1529 1569 1609 1649 1689 1729 ПММ Вар. Вар. <td< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></td<>								1					
ПММ І Вар. 10 мкг/л Вар. 1330 Вар. 1410 14450 1490 1530 1570 1610 1650 1690 1730 Приблизительно Вар. 1 мкг/а 1331 1370 1410 1450 1490 1530 1570 1610 1650 1690 1730 Приблизительно Вар. 1 мкг/а 1331 1371 1411 14451 1491 1531 1571 1611 1651 1691 1731 Приблизительно Вар. 1332 1372 1412 1452 1492 1532 1572 1612 1652 1692 1732 Приблизительно Вар. 8ар. 8ар. 8ар. 8ар. 8ар. 8ар. 8ар. 8											_		
10 мкг/л 1330 1370 1410 4450 1490 1530 1570 1610 1650 1690 1730 Приблизительно Вар. Вар. Вар. Вар. Вар. Вар. Вар. Вар.					1409						+		1729
Приблизительно Вар. Вар							_			_			- 1
I мкг/л 1331 1371 1411 1451 1491 1531 1571 1611 1651 1691 1731 Приблизительно 1,5 мкг/л Вар. Вар. Вар. Вар. Вар. Вар. Вар. Вар.		10 мкг/л	1330		1410	1450	1490	1530	1570	1610	1650	1690	1730
Приблизительно Вар. Вар			Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.
1,5 мкг/л13321372141214521492153215721612165216921732Приблизительно 1 мкг/лВар. 1 мкг/лВар. 1 мкг/лВар. 1 мкг/лВар. 1 мкг/лВар. 1 мкг/лВар. 1 мкг/лВар. 1 наВар. 1 наВар. Вар. 1 наВар. Вар. Вар. 		1 мкг/л	1331	1371	1411	1451	1491	1531	1571	1611	1651	1691	1731
1,5 мкг/л13321372141214521492153215721612165216921732Приблизительно 1 мкг/лВар. 1 мкг/лВар. 1 мкг/лВар. 1 мкг/лВар. 1 мкг/лВар. 1 мкг/лВар. 1 мкг/лВар. 1 наВар. 1 наВар. Вар. 1 наВар. Вар. Вар. 		Приблизительно	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.
Приблизительно 2 мкг/л Вар. 1333 Вар. 1373 1413 1453 1493 1533 1573 1613 1653 1693 1733 Приблизительно 2,5 мкг/л 1334 1374 1414 1454 1494 1534 1574 1614 1654 1693 1733 Приблизительно 3 мкг/л 1335 1375 1415 1455 1495 1534 1574 1614 1654 1694 1734 Приблизительно 3 мкг/л 1335 1375 1415 1455 1495 1535 1575 1615 1655 1695 1735 Приблизительно 4 мкг/л 1336 1376 1416 1456 1496 1536 1576 1616 1655 1695 1735 Приблизительно 4 мкг/л 1337 1377 1417 1457 1497 1537 1577 1617 1657 1697 1737 Приблизительно 5 мкг/л 1338 1378 1418 1458 1498 1538 1578 1619		1,5 мкг/л											
2 мкг/л 1333 1373 1413 1453 1493 1533 1573 1613 1653 1693 1733 Приблизительно вар. 2,5 мкг/л 1334 1374 1414 1454 1494 1534 1574 1614 1654 1694 1734 Приблизительно вар. вар. 3 мкг/л 1335 1375 1415 1455 1495 1535 1575 1615 1655 1695 1735 Приблизительно вар. вар. вар. вар. вар. вар. вар. вар.		Приблизительно		+									
Приблизительно 2,5 мкг/л Вар. 1334 Вар. 1414 Вар. 1414 Вар. 1454 Вар. 1494 Вар. 1534 Вар. 1574 Вар. 1614 Вар. 1654 Вар. 1694 Вар. 1734 Приблизительно 3 мкг/л Вар. 1335 Вар. 1375 Вар. 1415 Вар. 1455 Вар. 1455 Вар. 1495 Вар. 1535 Вар. 1575 Вар. 1665 Вар. 1665 Вар. 1735 Вар. 1735 Вар. 1735 Вар. 1736 Вар. 1416 Вар. 1456 Вар. 1496 Вар. 1536 Вар. 1576 Вар. 1616 Вар. 1655 Вар. 1665 Вар. 1736 Вар. 1736 Вар. 1416 Вар. 1457 Вар. 1417 Вар. 1457 Вар. 1497 Вар. 1536 Вар. 1576 Вар. 1616 Вар. 1656 Вар. 1666 1736 Приблизительно 1440 Вар. 1448 Вар. 1448 Вар. 1448 Вар. 1448 Вар. 1445 Вар. 1449 Вар. 1538 Вар. 1538 Вар. 1579 Вар. 1618 Вар. 1658 Вар. 1668 Вар. 1738 Вар. 1669 Вар. 1738 Вар. 1669 Вар. 1739 Вар. 1679 Вар. 1660 Вар. 1660 Вар. 1739 Вар. 1660 Вар. 1660 Вар. 1													
2.5 мкг/л 1334 1374 1414 1454 1494 1534 1574 1614 1654 1694 1734 Приблизительно вар. Змкг/л 1335 1375 1415 1455 1495 1535 1575 1615 1655 1695 1735 Приблизительно вар. 3,5 мкг/л 1336 1376 1416 1456 1496 1536 1576 1616 1655 1696 1735 Приблизительно вар. 4 мкг/л 1337 1417 1457 1497 1537 1616 1656 1696 1736 Приблизительно вар. 4,5 мкг/л 1338 1378 1418 1458 1498 1537 1617 1657 1697 1737 Приблизительно вар. Вар. Вар. Вар. Вар. Вар. Вар. Вар. В		Приблизительно											
Приблизительно Вар. 1335 Вар. 1375 1415 1455 1495 1535 1575 1615 1657 1695 1735 Приблизительно Вар. 1335 1375 1415 1455 1495 1535 1575 1615 1655 1695 1735 Приблизительно Вар. 1336 1376 1416 1456 1496 1536 1576 1616 1655 1695 1735 Приблизительно Вар. 8ар. 8ар. 8ар. 8ар. 8ар. 8ар. 8ар. 8					-	1 -			-			_	
З мкг/л 1335 1375 1415 1455 1495 1535 1575 1615 1655 1695 1735 Приблизительно вар. 3,5 мкг/л 1336 1376 1416 1456 1496 1536 1576 1616 1656 1696 1736 Приблизительно вар. 4 мкг/л 1337 1377 1417 1457 1497 1537 1577 1617 1657 1697 1736 Приблизительно вар. 4,5 мкг/л 1338 1378 1418 1458 1498 1538 1578 1618 1657 1697 1737 Приблизительно вар. 5 мкг/л 1339 1379 1419 1459 1538 1578 1618 1658 1698 1738 Приблизительно вар. 5,5 мкг/л 1339 1379 1419 1459 1459 1539 1579 1619 1659 1699 1739 Приблизительно вар. 6 мкг/л 1340 1380 1420 1460 1500 1540 1580 1620 1				1							1		
Приблизительно Вар. Вар		-											
3,5 мкг/п 1336 1376 1416 1456 1496 1536 1576 1616 1656 1696 1736 Приблизительно Вар. Вар													
Приблизительно Вар. Вар													
4 мкг/л13371377141714571497153715771617165716971737Приблизительно 4,5 мкг/л13381378141814581498153815781618165816981738Приблизительно 5 мкг/л13391379141914591499153915791619165916991739Приблизительно 5,5 мкг/л13401380142014601500154015801620166017001740Приблизительно 6 мкг/л13411381142114611501154115811621166117011741Приблизительно 7 мкг/л13421382142214621502154215821622166217021742Приблизительно 8 мкг/лВар. 1343Вар. 1343Вар. 1383Вар. 1423Вар. 1423Вар. 1463Вар. 1502Вар. 1542Вар. 1582Вар. 1582Вар. 1622Вар. 1662Вар. 1662Вар. 17021742Приблизительно 9 мкг/лВар. 13441384142314631503154315831623166317031743Приблизительно 9 мкг/лВар. 1344138414241464150415841624166417041744Приблизительно 9 мкг/лВар. 1344Вар. 1345Вар. 1385Вар. 1425Вар. 1465Вар. 1466Вар. 15				1									
Приблизительно Вар. Вар												_	
4,5 мкг/л13381378141814581498153815781618165816981738Приблизительно 5 мкг/л13391379141914591499153915791619165916991739Приблизительно 5,5 мкг/л13401380142014601500154015801620166017001740Приблизительно 6 мкг/лВар. 1341Вар. 1381Вар. 1421Вар. 1461Вар. 1501Вар. 1541Вар. 1581Вар. 1620Вар. 1660Вар. 1700Вар. 1740Приблизительно 7 мкг/лВар. 1342Вар. 1382Вар. 1422Вар. 1462Вар. 1502Вар. 1542Вар. 1582Вар. 1621Вар. 1661Вар. 1701Вар. 1741Приблизительно 8 мкг/лВар. 1343Вар. 1383Вар. 1423Вар. 1463Вар. 1503Вар. 1543Вар. 1583Вар. 1623Вар. 1662Вар. 1702Вар. 1742Приблизительно 9 мкг/лВар. 1345Вар. 1385Вар. 1425Вар. 1465Вар. 1505Вар. 1545Вар. 1585Вар. 1623Вар. 1664Вар. 1704Вар. 1744Приблизительно 10 мкг/лВар. 1345Вар. 1385Вар. 1425Вар. 1465Вар. 1505Вар. 1545Вар. 1585Вар. 1625Вар. 1665Вар. 1705Вар. 17451-20 мкг/лВар. 1346Вар. 13								1					
Приблизительно Вар.													
5 мкг/л13391379141914591499153915791619165916991739Приблизительно 5,5 мкг/л13401380142014601500154015801620166017001740Приблизительно 6 мкг/лВар. 1341Вар. 1381Вар. 1421Вар. 1461Вар. 1501Вар. 1541Вар. 1541Вар. 1581Вар. 1621Вар. 1661Вар. 1701Вар. 1741Приблизительно 7 мкг/лВар. 1342Вар. 1382Вар. 1422Вар. 1462Вар. 1502Вар. 1542Вар. 1542Вар. 1582Вар. 1622Вар. 1662Вар. 1662Вар. 1702Вар. 1742Приблизительно 9 мкг/лВар. 1344Вар. 1384Вар. 1424Вар. 1464Вар. 1503Вар. 1543Вар. 1543Вар. 1583Вар. 1623Вар. 1663Вар. 1703Вар. 1743Приблизительно 9 мкг/лВар. 1344Вар. 1385Вар. 1425Вар. 1465Вар. 1505Вар. 1545Вар. 1545Вар. 1586Вар. 1626Вар. 1666Вар. 1706Вар. 17461-20 мкг/лВар. 1346Вар. 1386Вар. 1426Вар. 1466Вар. 1506Вар. 1546Вар. 1546Вар. 1586Вар. 1626Вар. 1666Вар. 1706Вар. 17461-20 мкг/лВар. 1346Вар. 1386Вар. 1426Вар. 1466Вар. 1506<		*			1418								
Приблизительно 5,5 мкг/л Вар. 1340 Вар. 1380 1420 1460 1500 1540 1580 1620 1660 1700 1740 Приблизительно 6 мкг/л Вар. 1341 Вар. Вар. Вар. Вар. Вар. Вар. Вар. Вар.		-											
5,5 мкг/л13401380142014601500154015801620166017001740Приблизительно 6 мкг/лВар. Вар. Вар. Вар. Вар. Вар. Вар. Вар.													
5,5 мкг/л13401380142014601500154015801620166017001740Приблизительно 6 мкг/л13411381142114611501154115811621166117011741Приблизительно 7 мкг/л13421382142214621502154215821622166217021742Приблизительно 8 мкг/л13431383142314631503154315831623166317031743Приблизительно 9 мкг/л13441384142414641504154415841624166417041744Приблизительно 10 мкг/л134513851425146515051545158516251665170517451-20 мкг/л134613861426146615061546158616261666170617462-20 мкг/лВар. <td< td=""><th></th><td></td><td></td><td></td><td>Bap.</td><td>Bap.</td><td></td><td>Bap.</td><td></td><td>Bap.</td><td>Bap.</td><td></td><td></td></td<>					Bap.	Bap.		Bap.		Bap.	Bap.		
6 мкг/л13411381142114611501154115811621166117011741ПриблизительноВар.<		5,5 мкг/л	1340			1460	1500		1580	1620		1700	1740
6 мкг/л13411381142114611501154115811621166117011741ПриблизительноВар.<			Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.
Приблизительно 7 мкг/лВар. 1342Вар. 1382Вар. 1422Вар. 1462Вар. 1502Вар. 1542Вар. 1542Вар. 1582Вар. 1622Вар. 1662Вар. 1702Вар. 1742Приблизительно 8 мкг/лВар. 1343Вар. 1383Вар. 1423Вар. 1463Вар. 1503Вар. 1543Вар. 1583Вар. 1623Вар. 1663Вар. 1703Вар. 1743Приблизительно 9 мкг/лВар. 1344Вар. 1384Вар. 1424Вар. 1425Вар. 1465Вар. 1505Вар. 1545Вар. 1585Вар. 1625Вар. 1665Вар. 1705Вар. 17451-20 мкг/лВар. 1346Вар. 1386Вар. 1426Вар. 1426Вар. 1506Вар. 1546Вар. 1586Вар. 1586Вар. 1626Вар. 1666Вар. 1706Вар. 17462-20 мкг/лВар.<		6 мкг/л										_	
7 мкг/л 1342 1382 1422 1462 1502 1542 1582 1622 1662 1702 1742 Приблизительно в мкг/л Вар. вар. вар. вар. вар. вар. вар. вар. в		Приблизительно											
Приблизительно 8 мкг/л Вар. 1343 Вар. 1423 Вар. 1463 Вар. 1503 Вар. 1543 Вар. 1583 Вар. 1663 Вар. 1703 Вар. 1743 Приблизительно 9 мкг/л Вар. 1344 Вар. 1345 Вар. 1345 Вар. 1345 Вар. 1345 Вар. 1345 Вар. 1346 Вар. 1												_	
8 мкг/л 1343 1383 1423 1463 1503 1543 1583 1623 1663 1703 1743 Приблизительно вар. 9 мкг/л Вар. 1344 1384 1424 1464 1504 1544 1584 1624 1664 1704 1744 Приблизительно вар. 10 мкг/л Вар. вар. вар. вар. вар. вар. вар. вар. в		Приблизительно		1									
Приблизительно Вар.													
9 мкг/л 1344 1384 1424 1464 1504 1544 1624 1664 1704 1744 Приблизительно Вар. 10 мкг/л Вар. 1345 1385 1425 1465 1505 1545 1585 1625 1665 1705 1745 1-20 мкг/л Вар. Вар. Вар. Вар. Вар. Вар. Вар. Вар.		Приблизительно											
Приблизительно 10 мкг/л Вар. 1345 Вар. 1425 1465 1504 1504 1504 1705 1705 1745 1705 1705 1705 1705 1705 1705 1705 1705 1705 1705 1705 1705 1705 1705 1705 1705 1705 1705													
10 мкг/л 1345 1385 1425 1465 1505 1545 1585 1625 1665 1705 1745 1-20 мкг/л Вар. Вар. Вар. Вар. Вар. Вар. Вар. Вар.				+									
1-20 мкг/л Вар. Вар. Вар. Вар. Вар. Вар. Вар. Вар.						1 ^						_	
1346 1386 1426 1466 1506 1546 1586 1626 1666 1706 1746 2-20 мкг/л Вар.													
2-20 мкг/л Вар. Вар. Вар. Вар. Вар. Вар. Вар. Вар.		1-20 MKf/Л										_	
		2.20 /											
		2-20 мкг/л 				1 -	_			_		-	
			1347	1387	1427	1467	1507	1547	1587	1627	1667	1707	1747

1-10 мкг/л	Вар.										
	1348	1388	1428	1468	1508	1548	1588	1628	1668	1708	1748
2-10 мкг/л	Вар.										
	1349	1389	1429	1469	1509	1549	1589	1629	1669	1709	1749
1–6 мкг/л	Вар.										
	1350	1390	1430	1470	1510	1550	1590	1630	1670	1710	1750
2–6 мкг/л	Bap.	Вар.									
	1351	1391	1431	1471	1511	1551	1591	1631	1671	1711	1751
3-6 мкг/л	Bap.	Вар.	Вар.	Bap.							
	1352	1392	1432	1472	1512	1552	1592	1632	1672	1712	1752
4–6 мкг/л	Bap.	Вар.	Bap.	Bap.	Вар.	Вар.	Bap.	Bap.	Bap.	Bap.	Bap.
	1353	1393	1433	1473	1513	1553	1593	1633	1673	1713	1753
1-5 мкг/л	Bap.	Вар.	Bap.	Bap.	Вар.	Вар.	Bap.	Bap.	Bap.	Bap.	Bap.
	1354	1394	1434	1474	1514	1554	1594	1634	1674	1714	1754
2-5 мкг/л	Bap.	Вар.	Bap.	Bap.	Вар.	Вар.	Bap.	Bap.	Bap.	Bap.	Bap.
	1355	1395	1435	1475	1515	1555	1595	1635	1675	1715	1755
3-5 мкг/л	Bap.	Bap.	Bap.	Bap.	Вар.	Bap.	Bap.	Bap.	Bap.	Bap.	Bap.
	1356	1396	1436	1476	1516	1556	1596	1636	1676	1716	1756
4-5 мкг/л	Bap.	Вар.	Bap.	Bap.	Вар.	Вар.	Bap.	Bap.	Bap.	Bap.	Bap.
	1357	1397	1437	1477	1517	1557	1597	1637	1677	1717	1757
1–4 мкг/л	Bap.										
	1358	1398	1438	1478	1518	1558	1598	1638	1678	1718	1758
2–4 мкг/л	Bap.	Вар.									
	1359	1399	1439	1479	1519	1559	1599	1639	1679	1719	1759
3-4 мкг/л	Bap.	Вар.									
	1360	1400	1440	1480	1520	1560	1600	1640	1680	1720	1760

^{*}ПММ = по меньшей мере

[0157] Согласно одному из вариантов реализации раствор культуры клеток также содержит низкую концентрацию аммония. Согласно одному из вариантов реализации указанная культуральная среда содержит аммоний в концентрации менее чем 10 мМ, и медь и никотинамид в концентрациях согласно любому из вариантов 1321–1760, приведенных в табл. 4. Согласно конкретному варианту реализации концентрацию аммония поддерживают на уровне не выше 10 мМ в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 6 мМ, и медь и никотинамид в концентрациях согласно любому из вариантов 1321–1760, приведенных в табл. 4. Согласно конкретному варианту реализации концентрацию аммония поддерживают на уровне не выше 6 мМ в течение по меньшей мере 7 дней. Согласно другому предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 5 мМ, и медь и никотинамид в концентрациях согласно любому из вариантов 1321–1760, приведенных в табл. 4. Согласно конкретному варианту реализации концентрацию аммония поддерживают на уровне не выше 5 мМ в течение по меньшей мере 7 дней. Согласно другому

предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 4 мМ, и медь и никотинамид в концентрациях согласно любому из вариантов 1321–1760, приведенных в табл. 4. Согласно конкретному варианту реализации концентрацию аммония поддерживают на уровне не выше 4 мМ в течение по меньшей мере 7 дней. Согласно другим вариантам реализации раствор культуры клеток содержит аммоний в концентрации не выше 10 мМ, или не выше 9 мМ, 8 мМ, 7 мМ, 6 мМ, 5 мМ, 4 мМ, 3 мМ, 2 мМ, 1 мМ, или менее, и медь и никотинамид в концентрациях согласно любому из вариантов 1321–1760, приведенных в табл. 4. Согласно еще одному конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на низком уровне на протяжении процесса (*т.е.* в течение всего времени, на протяжении которого указанная культура используется для получения гА13).

[0158] Согласно одному из вариантов реализации в среду для клеточной культуры добавляют медь, цинк и никотинамид. Согласно конкретному варианту реализации указанная культуральная среда содержит никотинамид в концентрации по меньшей мере 2 мг/мл, и медь и цинк в концентрациях согласно любому из вариантов 441—880, приведенных в табл. 2. Согласно другому конкретному варианту реализации указанная культуральная среда содержит никотинамид в концентрации по меньшей мере 7 мг/мл мМ, и медь и цинк в концентрациях согласно любому из вариантов 441—880, приведенных в табл. 2. Согласно другому конкретному варианту реализации указанная культуральная среда содержит никотинамид в концентрации от 2 мг/мл и 10 мг/мл, и медь и цинк в концентрациях согласно любому из вариантов 441—880, приведенных в табл. 2. Согласно другим вариантам реализации культуральная среда содержит никотинамид в концентрации по меньшей мере 2 мг/мл, 3 мг/мл, 4 мг/мл, 5 мг/мл, 6 мг/мл, 7 мг/мл, 8 мг/мл, 9 мг/мл, 10 мг/мл, 11 мг/мл, 12 мг/мл, 13 мг/мл, 14 мг/мл, 15 мг/мл или более, и медь и цинк в концентрациях согласно любому из вариантов 441—880, приведенных в табл. 2.

[0159] Согласно одному из вариантов реализации в среду для клеточной культуры добавляют медь, кальций и никотинамид. Согласно конкретному варианту реализации культуральная среда содержит никотинамид в концентрации по меньшей мере 2 мг/мл, и медь и кальций в концентрациях согласно любому из вариантов 881–1320, приведенных в

табл. 3. Согласно другому конкретному варианту реализации культуральная среда содержит никотинамид в концентрации по меньшей мере 7 мг/мл мМ, и медь и кальций в концентрациях согласно любому из вариантов 881–1320, приведенных в **табл. 3**. Согласно другому конкретному варианту реализации культуральная среда содержит никотинамид в концентрации от 2 мг/мл до 10 мг/мл, и медь и кальций в концентрациях согласно любому из вариантов 881–1320, приведенных в **табл. 3**. Согласно другим вариантам реализации культуральная среда содержит никотинамид в концентрации по меньшей мере 2 мг/мл, 3 мг/мл, 4 мг/мл, 5 мг/мл, 6 мг/мл, 7 мг/мл, 8 мг/мл, 9 мг/мл, 10 мг/мл, 11 мг/мл, 12 мг/мл, 13 мг/мл, 14 мг/мл, 15 мг/мл или более, и медь и кальций в концентрациях согласно любому из вариантов 881–1320, приведенных в **табл. 3**.

III. Способы получения факторов крови с высокой удельной активностью

А. Способы культивирования клеток

[0160] Настоящее изобретение обеспечивает способы крупномасштабного производства рекомбинантных белков (таких как rVWF и rA13). Согласно определенным вариантам реализации в таких способах крупномасштабного производства применяют реакторы с мешалкой/перемешиванием для получения указанных терапевтических рекомбинантных белков.

[0161] Согласно определенным вариантам реализации способы согласно настоящему изобретению могут включать применение систем культивирования клеток в периодическом или непрерывном режиме. Например, в случае использования периодических культур клеток к ним может применяться режим однократного периодического культивирования, подпитываемого культивирования или повторного периодического культивирования. Сходным образом, к непрерывным культурам клеток может применяться, например, перфузионный, турбидостатический или хемостатический режим. Периодическое и непрерывное культивирование клеток может проводиться в условиях суспензионной или адгезионной культуры. В условиях суспензионного культивирования клетки свободно суспендированы и распределены в культуральной среде. Альтернативно, в условиях адгезионного культивирования, клетки связаны с твердой фазой, например, микроносителем, пористым микроносителем, дисковым

носителем, керамическим картриджем, полым волокном, плоской пластиной, гельматрицей и т.п.

[0162] Периодическая культура представляет собой, как правило, крупномасштабную культуру клеток, в которой клеточный инокулят культивируют до максимальной плотности в реакторе или ферментере, и собирают и обрабатывают, как при однократном периодическом культивировании. Подпитываемая культура представляет собой, как правило, периодическую культуру, получающую либо свежие питательные вещества (например, ограничивающие рост субстраты), либо добавки (например, предшественники продуктов). Питательный раствор, как правило, является высококонцентрированным, чтобы избежать разбавления в биореакторе. В повторно-периодической культуре клетки помещают в культуральную среду и выращивают до требуемой плотности клеток. Затем, чтобы избежать наступления фазы спада и гибели клеток, культуру разбавляют полной ростовой средой до того, как клетки достигают максимальной концентрации. Количество и частота разведений широко варьирует и зависит от характеристик роста клеточной линии и удобства процесса культивирования. Указанный процесс может повторяться столько раз, сколько потребуется и, если клетки и среда не отбрасываются при пересеве, объем культуры будет увеличиваться ступенчато, по мере каждого следующего разведения. Вопрос увеличивающегося объема может быть решен использованием реактора, имеющего достаточный размер для разбавлений внутри указанного сосуда, либо распределением разбавленной культуры по нескольким сосудам. Принцип указанного типа культивирования состоит в поддержании клеток в экспоненциальной фазе роста. Серийно пересеваемая культура характеризуется тем, что объем указанной культуры всегда постепенно возрастает, может быть несколько сборов, клетки продолжают расти и указанный процесс может продолжаться так долго, как это необходимо. Согласно определенным вариантам реализации рекомбинантный белок ADAMTS (например, гАDAMTS13) может быть выделен после сбора супернатанта периодической культуры. Согласно другим вариантам реализации рекомбинантный VWF может быть выделен после сбора супернатанта периодической культуры.

[0163] Непрерывная культура может представлять собой суспензионную культуру, непрерывно получающую питательные вещества за счет притока свежей среды, где, как

правило, поддерживается постоянный объем культуры за счет сопутствующего удаления отработанной среды. Согласно хемостатическому и турбидостатическому методам извлеченная среда содержит клетки. Таким образом, клетки, остающиеся в сосуде для культивирования клеток, должны расти для поддержания стационарного состояния. Согласно хемостатическому способу скоростью роста, как правило, управляют посредством контроля степени разбавления, т.е. скорости добавления свежей среды. Скорость роста клеток в культуре может поддерживаться, например, на субмаксимальном уровне, изменением степени разбавления. Напротив, при турбидостатическом способе степень разбавления устанавливают таким образом, чтобы обеспечить максимальную скорость роста, которой могут достигнуть клетки при заданных технологических условиях, таких как рН и температура. Согласно определенным вариантам реализации rVWF или rA13 выделяют после сбора супернатанта непрерывной культуры. Типовой способ непрерывного культивирования клеток описан в WO/2011/012725 (Grillberger et al.), содержание которой включено в настоящую заявку посредством ссылки во всей полноте для любых целей.

[0164] При перфузионном культивировании извлеченная среда бедна клетками, которые остаются в культуральном сосуде, например, за счет применения способов фильтрации или центрифугирования, приводящих к повторному внесению клеток в культуру. Однако, как правило, используемые для фильтрации задерживают не 100% клеток, и таким образом часть их удаляется при извлечении среды. Очень высокие скорости роста для культивирования в режиме перфузии не критичны, так как большая часть клеток остается в культуральном сосуде. Согласно определенным вариантам реализации rVWF или rA13 выделяют после сбора супернатанта перфузионной культуры.

[0165] Реакционная система с баком-мешалкой может применяться для периодического и непрерывного культивирования клеток в суспензионном или адгезионном режимах. Как правило, указанная реакционная система с баком-мешалкой может эксплуатироваться так, как любой стандартный реактор с мешалкой с любым типом перемешивающего устройства, например, Rushton, гидравлический, с наклонными лопастями, или типа гребного винта.

[0166] Согласно определенным вариантам реализации способы культивирования клеток согласно настоящему изобретению могут включать применение микроносителя. Согласно некоторым вариантам реализации культивирование клеток согласно вариантам реализации изобретения может проводиться в больших биореакторах в условиях, подходящих для получения высоких удельных значений площадей поверхности относительно объема культуры для достижения высоких плотностей клеток и экспрессии белка. Один из способов обеспечения таких условий роста заключается в применении микроносителей для культивирования клеток в биореакторах с мешалкой. Принцип роста клеток на микроносителях впервые был описан у van Wezel (van Wezel, A.L., Nature 216:64-5 (1967)); он обеспечивает прикрепление клеток к поверхности небольших твердых частиц, взвешенных в ростовой среде. Указанные способы обеспечивают высокое соотношение поверхность-объем и таким образом обеспечивают эффективную утилизацию питательных веществ. Кроме того, при экспрессии секретируемых белков в эукариотических клеточных линиях повышение соотношения поверхность-объем обеспечивает более высокие уровни секреции и таким образом более высокий выход белка в супернатанте культуры. Наконец, указанные способы позволяют легко увеличивать масштаб эукариотических экспрессионных культур.

[0167] Клетки, экспрессирующие vWF и/или rA13, могут быть связаны со сферическим или пористым микроносителем во время роста культуры клеток. Указанный микроноситель может представлять собой микроноситель, выбранный из группы микроносителей на основе декстрана, коллагена, пластика, желатина, целлюлозы и других, согласно описанию у Butler (1988. In: Spier & Griffiths, Animal Cell Biotechnology 3:283–303). Также возможно доращивать клетки до некоторой биомассы на сферических микроносителях, и пересевать указанные клетки при достижении ими конечной для ферментера биомассы, перед получением экспрессированного белка, на пористый микроноситель, или наоборот. Подходящие сферические микроносители могут включать микроносители с гладкой поверхностью, такие как Cytodex^{тм} 1, Cytodex^{тм} 2, и Cytodex^{тм} 3 (GE Healthcare) и крупнопористые микроносители такие как Cytopore^{тм} 1, Cytopore^{тм} 2, Cytoline^{тм} 1 и Cytoline^{тм} 2 (GE Healthcare).

[0168] Согласно приведенному выше описанию настоящее изобретение включает среды для клеточных культур, содержащие повышенную концентрацию меди. Понятно, что все варианты реализации изобретения и концентрации, описанные выше в разделе «Среды для клеточных культур», применимы к способам согласно настоящему изобретению, описываемых в настоящей заявке.

[0169] Согласно определенным вариантам реализации указанная культура может поддерживаться в течение по меньшей мере приблизительно 7 дней, или по меньшей мере приблизительно 14 дней, 21 дня, 28 дней, или по меньшей мере приблизительно 5 недель, 6 недель, 7 недель, 8 недель, 9 недель, или по меньшей мере приблизительно 2 месяцев, или 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 месяцев, или дольше. Плотность клеток, которая поддерживается в культуре клеток для получения рекомбинантного белка vWF или рекомбинантного белка rA13, зависит от условий культивирования и среды, применяемых для экспрессии белка. Специалист в данной области техники легко сможет определить оптимальную плотность клеток для культивирования клеток с получением rVWF или rA13. Согласно одному из вариантов реализации плотность клеток в указанной культуре поддерживают на уровне от приблизительно 0.5×10^6 до 4×10^7 клеток/мл в течение длительного периода времени. Согласно другим вариантам реализации плотность клеток поддерживают на уровне концентрации от приблизительно 1.0×10^6 до приблизительно 1.0×10^7 клеток/мл в течение длительного периода времени. Согласно другим вариантам реализации плотность клеток поддерживают на уровне концентрации от приблизительно 1.0×10^6 до приблизительно 4.0×10^6 клеток/мл в течение длительного периода времени. Согласно другим вариантам реализации плотность клеток поддерживают на уровне концентрации от приблизительно 1.0×10^6 до приблизительно 4.0×10^6 клеток/мл в течение длительного периода времени. Согласно другим вариантам реализации плотность клеток может поддерживаться на уровне концентрации от приблизительно 2.0×10^6 до приблизительно 4.0×10^6 клеток/мл, или от приблизительно $1,0\times10^6$ до приблизительно $2,5\times10^6$ клеток/мл, или от приблизительно $1,5\times10^6$ до приблизительно 3.5×10^6 клеток/мл, или в любом сходном диапазоне, в течение длительного периода времени.

[0170] Согласно одному из вариантов реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 4,0×10⁶ клеток/мл, в течение по меньшей мере 7 дней. Согласно конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 4,0×10⁶ клеток/мл, в течение по меньшей мере 14 дней. Согласно более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 4,0×10⁶ клеток/мл, в течение по меньшей мере 21 дня. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии настоящем изобретением, поддерживают на уровне концентрации, не превышающей 4.0×10^6 клеток/мл, в течение по меньшей мере 28 дней. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии настоящим изобретением, поддерживают на уровне концентрации, не превышающей 4.0×10^6 клеток/мл, в течение по меньшей мере 5 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной согласно настоящему изобретению, поддерживают на уровне концентрации, не превышающей 4.0×10^6 клеток/мл, в течение по меньшей мере 6 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 4,0×10⁶ клеток/мл, в течение по меньшей мере 7 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 4.0×10^6 клеток/мл, в течение по меньшей мере 8 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 4,0×10⁶ клеток/мл, в течение по меньшей мере 9 недель.

[0171] Согласно одному из вариантов реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 3.5×10^6 клеток/мл, в течение по меньшей мере 7 дней. Согласно конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 3,5×10⁶ клеток/мл, в течение по меньшей мере 14 дней. Согласно более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 3.5×10^6 клеток/мл, в течение по меньшей мере 21 дня. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 3.5×10^6 клеток/мл, в течение по меньшей мере 28 дней. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 3.5×10^6 клеток/мл, в течение по меньшей мере 5 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 3.5×10^6 клеток/мл, в течение по меньшей мере 6 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 3,5×10⁶ клеток/мл, в течение по меньшей мере 7 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 3.5×10^6 клеток/мл, в течение по меньшей мере 8 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 3,5×10⁶ клеток/мл, в течение по меньшей мере 9 недель.

[0172] Согласно одному из вариантов реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 3.0×10^6 клеток/мл, в течение по меньшей мере 7 дней. Согласно конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 3,0×10⁶ клеток/мл, в течение по меньшей мере 14 дней. Согласно более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 3,0×10⁶ клеток/мл, в течение по меньшей мере 21 дня. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 3.0×10^6 клеток/мл, в течение по меньшей мере 28 дней. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 3.0×10^6 клеток/мл, в течение по меньшей мере 5 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 3.0×10^6 клеток/мл, в течение по меньшей мере 6 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 3,0×10⁶ клеток/мл, в течение по меньшей мере 7 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 3.0×10^6 клеток/мл, в течение по меньшей мере 8 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 3,0×10⁶ клеток/мл, в течение по меньшей мере 9 недель.

[0173] Согласно одному из вариантов реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 2.5×10^6 клеток/мл, в течение по меньшей мере 7 дней. Согласно конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 2,5×10⁶ клеток/мл, в течение по меньшей мере 14 дней. Согласно более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 2.5×10^6 клеток/мл, в течение по меньшей мере 21 дня. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 2.5×10^6 клеток/мл, в течение по меньшей мере 28 дней. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей $2,5 \times 10^6$ клеток/мл, в течение по меньшей мере 5 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 2.5×10^6 клеток/мл, в течение по меньшей мере 6 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 2.5×10^6 клеток/мл, в течение по меньшей мере 7 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 2.5×10^6 клеток/мл, в течение по меньшей мере 8 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 2,5×10⁶ клеток/мл, в течение по меньшей мере 9 недель.

[0174] Согласно другому варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 2.0×10^6 клеток/мл, в течение по меньшей мере 7 дней. Согласно конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 2,0×10⁶ клеток/мл, в течение по меньшей мере 14 дней. Согласно более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 2,0×10⁶ клеток/мл, в течение по меньшей мере 21 дня. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 2,0×10⁶ клеток/мл, в течение по меньшей мере 28 дней. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 2,0×10⁶ клеток/мл, в течение по меньшей мере 5 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей $2,0\times10^6$ клеток/мл, в течение по меньшей мере 6 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 2.0×10^6 клеток/мл, в течение по меньшей мере 7 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 2,0×10⁶ клеток/мл, в течение по меньшей мере 8 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 2.0×10^6 клеток/мл, в течение по меньшей мере 9 недель.

[0175] Согласно одному из вариантов реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 1.5×10^6 клеток/мл, в течение по меньшей мере 7 дней. Согласно конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 1,5×10⁶ клеток/мл, в течение по меньшей мере 14 дней. Согласно более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 1.5×10^6 клеток/мл, в течение по меньшей мере 21 дня. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 1.5×10^6 клеток/мл, в течение по меньшей мере 28 дней. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей $1,5 \times 10^6$ клеток/мл, в течение по меньшей мере 5 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 1.5×10^6 клеток/мл, в течение по меньшей мере 6 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 1,5×10⁶ клеток/мл, в течение по меньшей мере 7 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей $1,5\times10^6$ клеток/мл, в течение по меньшей мере 8 недель. Согласно еще одному более конкретному варианту реализации плотность клеток непрерывной клеточной культуры, предложенной в соответствии с настоящим изобретением, поддерживают на уровне концентрации, не превышающей 1.5×10^6 клеток/мл, в течение по меньшей мере 9 недель.

[0176] Ниже приведены характерные детали способов получения rVWF и rA13. Следует понимать, что, хотя условия представлены конкретно для rVWF или rA13, указанные условия для rVWF могут применяться для получения rA13, и наоборот.

B. Способы получения высокомолекулярного рекомбинантного vWF

[0177] Согласно другому аспекту настоящее изобретение относится также к способам получения vWF в условиях клеточной культуры, включающих среду для клеточной культуры, содержащую повышенную концентрацию меди. Согласно определенным вариантам реализации указанная культура также содержит низкую концентрацию аммония. Используемый в настоящей заявке термины «культура клеток (клеточная культура)» и «раствор культуры клеток» применяют взаимозаменяемо.

[0178] Согласно одному из вариантов реализации настоящее изобретение обеспечивает способ получения высокомолекулярного рекомбинантного vWF, включающий: a) обеспечение культуры клеток; b) введение последовательности нуклеиновой кислоты, кодирующей vWF; c) отбор клеток, несущих указанную последовательность нуклеиновой кислоты; и d) осуществление экспрессии vWF в указанных клетках в условиях клеточной культуры, включающих среду для клеточной культуры, содержащую медь в концентрации по меньшей мере приблизительно 2,4 мкг/л, и супернатант культуры клеток, содержащий аммоний в концентрации менее чем приблизительно 10 мМ, причем указанный vWF представляет собой высокомультимерный vWF, содержащий от приблизительно 14 до приблизительно 22 димеров и обладающий удельной ристоцетиновой активностью по меньшей мере приблизительно 30 мЕ/мкг. Согласно дальнейшим вариантам реализации мультимерные rVWF, получаемый с применением способов согласно настоящему изобретению, содержат приблизительно 10-30, 12-28, 14-26, 16-24, 18-22, 20-21 димеров. Согласно дальнейшим вариантам реализации rVWF, получаемый согласно настоящему изобретению, обладает удельной активностью по меньшей мере приблизительно 20; 22,5; 25; 27,5; 30; 32,5; 35; 37,5; 40; 42,5; 45; 47,5; 50; 52,5; 55; 57,5; 60; 62,5; 65; 67,5; 70; 72,5; 75; 77,5; 80 или более мЕ/мкг. Согласно конкретному варианту реализации плотность клеток в непрерывной клеточной культуре для получения rVWF поддерживают на уровне концентрации, не превышающей 2,5×10⁶ клеток/мл в течение

длительного периода. Согласно другим конкретным вариантам реализации плотность клеток поддерживают на уровне не выше $2,0\times10^6$ клеток/мл, $1,5\times10^6$ клеток/мл, $1,0\times10^6$ клеток/мл, $0,5\times10^6$ клеток/мл или менее. Согласно одному из вариантов реализации плотность клеток поддерживают в диапазоне от $1,5\times10^6$ клеток/мл и $2,5\times10^6$ клеток/мл.

[0179] Согласно одному из вариантов реализации настоящее изобретение обеспечивает способ получения композиции рекомбинантного фактора фон Виллебранда (rVWF); указанный способ включает этапы: (а) обеспечения основных сред для культуры клеток; (b) добавления в основные среды для клеточных культур меди до конечной концентрации меди по меньшей мере 2,0 мкг/л; (с) обеспечения одной или более клеток, содержащих нуклеиновую кислоту, кодирующую белок rVWF; (d) культивирования указанной одной или более клеток в среде для клеточных культур с добавлением меди таким образом, что происходит экспрессия и экскреция rVWF из клеток в культуральный супернатант; и (e) отделения по меньшей мере части указанного культурального супернатанта, причем указанный отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 30 мЕ/мкг rVWF. Согласно одному из вариантов реализации раствор культуры клеток также содержит аммоний в концентрации менее чем 10 мМ. Согласно другому конкретному варианту реализации концентрация аммония в растворе культуры клеток поддерживают на уровне концентрации аммония, не превышающей 10 мМ, в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации, не превышающей 5 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в растворе культуры клеток поддерживают на уровне концентрации аммония, не превышающей 5 мМ, в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации, не превышающей 4 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне концентрации аммония, не превышающей 4 мМ, в течение по меньшей мере 7 дней. Согласно другим вариантам реализации раствор культуры клеток содержит аммоний в концентрации не выше 10 мМ, или не выше 9 мМ, 8 мМ, 7 мМ, 6 мМ, 5 мМ, 4 мМ, 3 мМ, 2 мМ, 1 мМ, или менее. Согласно еще одному из вариантов реализации концентрацию аммония в культуре клеток поддерживают на низком уровне на

протяжении процесса (*т.е.* в течение всего времени, на протяжении которого указанная культура используется для получения rVWF). Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0180] Согласно одному из вариантов реализации описанного выше способа в основные среды для клеточных культур добавляют медь до конечной концентрации меди по меньшей мере 2,4 мкг/л. Согласно одному из вариантов реализации раствор культуры клеток также содержит аммоний в концентрации менее чем 10 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в растворе культуры клеток поддерживают на уровне концентрации аммония не выше 10 мМ в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 5 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в растворе культуры клеток поддерживают на уровне концентрации аммония не выше 5 мМ в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 4 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в растворе культуры клеток поддерживают на уровне концентрации аммония не выше 4 мМ в течение по меньшей мере 7 дней. Согласно другим вариантам реализации раствор культуры клеток содержит аммоний в концентрации не выше 10 мМ, или не выше 9 мМ, 8 мМ, 7 мМ, 6 мМ, 5 мМ, 4 мМ, 3 мМ, 2 мМ, 1 мМ, или менее. Согласно еще одному из вариантов реализации концентрацию аммония в растворе культуры клеток поддерживают на низком уровне на протяжении процесса (т.е. в течение всего времени, на протяжении которого указанная культура используется для получения rVWF). Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетинкофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0181] Согласно одному из вариантов реализации описанного выше способа в основные среды для клеточных культур добавляют медь до конечной концентрации меди, составляющей по меньшей мере 3 мкг/л. Согласно одному из вариантов реализации раствор культуры клеток также содержит аммоний в концентрации менее чем 10 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в растворе культуры клеток поддерживают на уровне концентрации аммония не выше 10 мМ в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 5 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в растворе культуры клеток поддерживают на уровне концентрации аммония не выше 5 мМ в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 4 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в растворе культуры клеток поддерживают на уровне концентрации аммония не выше 4 мМ в течение по меньшей мере 7 дней. Согласно другим вариантам реализации раствор культуры клеток содержит аммоний в концентрации не выше 10 мМ, или не выше 9 мМ, 8 мМ, 7 мМ, 6 мМ, 5 мМ, 4 мМ, 3 мМ, 2 мМ, 1 мМ, или менее. Согласно еще одному из вариантов реализации концентрацию аммония в растворе культуры клеток поддерживают на низком уровне на протяжении процесса (т.е. в течение всего времени, на протяжении которого указанная культура используется для получения rVWF). Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0182] Согласно одному из вариантов реализации описанного выше способа в основные среды для клеточных культур добавляют медь до конечной концентрации меди, составляющей по меньшей мере 4 мкг/л. Согласно одному из вариантов реализации раствор культуры клеток также содержит аммоний в концентрации менее чем 10 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в растворе культуры клеток поддерживают на уровне концентрации аммония не выше 10 мМ в

течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 5 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в растворе культуры клеток поддерживают на уровне концентрации аммония не выше 5 мМ в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 4 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в растворе культуры клеток поддерживают на уровне концентрации аммония не выше 4 мМ в течение по меньшей мере 7 дней. Согласно другим вариантам реализации среды для клеточных культур содержат аммоний в концентрации не выше 10 мМ, или не выше 9 мМ, 8 мМ, 7 мМ, 6 мМ, 5 мМ, 4 мМ, 3 мМ, 2 мМ, 1 мМ или менее. Согласно еще одному из вариантов реализации концентрацию аммония в растворе культуры клеток поддерживают на низком уровне на протяжении процесса (т.е. в течение всего времени, на протяжении которого указанная культура используется для получения rVWF). Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0183] Согласно одному из вариантов реализации описанного выше способа в основные среды для клеточных культур добавляют медь до конечной концентрации меди, составляющей приблизительно 4,3 мкг/л. Согласно одному из вариантов реализации раствор культуры клеток также содержит аммоний в концентрации менее чем 10 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в растворе культуры клеток поддерживают на уровне концентрации аммония не выше 10 мМ в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 5 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в растворе культуры клеток поддерживают на уровне концентрации аммония не выше 5 мМ в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 4 мМ. Согласно другому

конкретному варианту реализации концентрацию аммония в растворе культуры клеток поддерживают на уровне концентрации аммония не выше 4 мМ в течение по меньшей мере 7 дней. Согласно другим вариантам реализации раствор культуры клеток содержит аммоний в концентрации не выше 10 мМ, или не выше 9 мМ, 8 мМ, 7 мМ, 6 мМ, 5 мМ, 4 мМ, 3 мМ, 2 мМ, 1 мМ или менее. Согласно еще одному из вариантов реализации концентрацию аммония в растворе культуры клеток поддерживают на низком уровне на протяжении процесса (*т.е.* в течение всего времени, на протяжении которого указанная культура используется для получения rVWF). Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0184] Согласно одному из вариантов реализации описанного выше способа в основные среды для клеточных культур добавляют медь до конечной концентрации меди от 2 мкг/л до 20 мкг/л. Согласно одному из вариантов реализации раствор культуры клеток также содержит аммоний в концентрации менее чем 10 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в растворе культуры клеток поддерживают на уровне концентрации аммония не выше 10 мМ в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 5 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне не выше 5 мМ в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 4 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне не выше 4 мМ в течение по меньшей мере 7 дней. Согласно другим вариантам реализации раствор культуры клеток содержит аммоний в концентрации не выше 10 мМ, или не выше 9 мМ, 8 мМ, 7 мМ, 6 мМ, 5 мМ, 4 мМ, 3 мМ, 2 мМ, 1 мМ или менее. Согласно еще одному из вариантов реализации концентрацию аммония в культуре клеток поддерживают на низком уровне на протяжении процесса (т.е. в течение всего времени, на протяжении которого указанная культура используется для

получения rVWF). Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0185] Согласно одному из вариантов реализации описанного выше способа в основные среды для клеточных культур добавляют медь до конечной концентрации меди от 3 мкг/л до 10 мкг/л. Согласно одному из вариантов реализации раствор культуры клеток также содержит аммоний в концентрации менее чем 10 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне не выше 10 мМ в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 5 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в растворе культуры клеток поддерживают на уровне концентрации аммония не выше 5 мМ в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 4 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне не выше 4 мМ в течение по меньшей мере 7 дней. Согласно другим вариантам реализации раствор культуры клеток содержит аммоний в концентрации не выше 10 мМ, или не выше 9 мМ, 8 мМ, 7 мМ, 6 мМ, 5 мМ, 4 мМ, 3 мМ, 2 мМ, 1 мМ или менее. Согласно еще одному из вариантов реализации концентрацию аммония в растворе культуры клеток поддерживают на низком уровне на протяжении процесса (т.е. в течение всего времени, на протяжении которого указанная культура используется для получения rVWF). Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетинкофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0186] Согласно одному из вариантов реализации описанного выше способа в основные среды для клеточных культур добавляют медь до конечной концентрации меди от 4 мкг/л

до 7,5 мкг/л. Согласно одному из вариантов реализации раствор культуры клеток также содержит аммоний в концентрации менее чем 10 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне не выше 10 мМ в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 5 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне не выше 5 мМ в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 4 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне не выше 4 мМ в течение по меньшей мере 7 дней. Согласно другим вариантам реализации раствор культуры клеток содержит аммоний в концентрации не выше 10 мМ, или не выше 9 мМ, 8 мМ, 7 мМ, 6 мМ, 5 мМ, 4 мМ, 3 мМ, 2 мМ, 1 мМ или менее. Согласно еще одному из вариантов реализации концентрацию аммония в культуре клеток поддерживают на низком уровне на протяжении процесса (т.е. в течение всего времени, на протяжении которого указанная культура используется для получения rVWF). Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетинкофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0187] Согласно одному из вариантов реализации настоящее изобретение обеспечивает способ получения композиции рекомбинантного фактора фон Виллебранда (rVWF); указанный способ включает этапы: (а) обеспечения основных сред для культуры клеток; (b) добавления в основные среды для клеточных культур меди; (c) обеспечения одной или более клеток, содержащих нуклеиновую кислоту, кодирующую белок rVWF; (d) культивирования указанной одной или более клеток в среде для клеточных культур с добавлением меди таким образом, что происходит экспрессия и экскреция rVWF из клеток в культуральный супернатант; и (е) отделения по меньшей мере части указанного культурального супернатанта, причем концентрацию NH₄⁺ в указанном супернатанте поддерживают на низком уровне в течение по меньшей мере 7 дней, и при этом указанный

отделенный супернатант также обладает удельной ристоцетин-кофакторной активностью ${
m rVWF}$, составляющей по меньшей мере 30 мЕ/мкг ${
m rVWF}$. Согласно конкретному варианту реализации концентрацию меди и концентрацию ${
m NH_4}^+$ в растворе культуры клеток поддерживают на уровне концентраций согласно любому из вариантов 1–440, приведенных в **табл. 1**. Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью ${
m rVWF}$, составляющей по меньшей мере 50 мЕ/мкг ${
m rVWF}$. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью ${
m rVWF}$.

[0188] Согласно одному из вариантов реализации описанного выше способа концентрацию меди и концентрацию NH₄⁺ в культуре клеток поддерживают на уровне концентрации согласно любому из вариантов 1–440, приведенных в табл. 1, в течение по меньшей мере 14 дней. Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0189] Согласно одному из вариантов реализации описанного выше способа концентрацию меди и концентрацию NH₄⁺ в культуре клеток поддерживают на уровне концентрации согласно любому из вариантов 1–440, приведенных в табл. 1, в течение по меньшей мере 21 дня. Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0190] Согласно одному из вариантов реализации описанного выше способа концентрацию меди и концентрацию NH₄⁺ в культуре клеток поддерживают на уровне концентрации согласно любому из вариантов 1–440, приведенных в **табл. 1**, в течение по меньшей мере 28 дней. Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF,

составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0191] Согласно одному из вариантов реализации описанного выше способа концентрацию меди и концентрацию NH₄⁺ в культуре клеток поддерживают на уровне концентрации согласно любому из вариантов 1–440, приведенных в табл. 1, в течение по меньшей мере 5 недель. Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0192] Согласно одному из вариантов реализации описанного выше способа концентрацию меди и концентрацию NH₄⁺ в культуре клеток поддерживают на уровне концентрации согласно любому из вариантов 1–440, приведенных в табл. 1, в течение по меньшей мере 6 недель. Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0193] Согласно одному из вариантов реализации описанного выше способа концентрацию меди и концентрацию NH₄⁺ в культуре клеток поддерживают на уровне концентрации согласно любому из вариантов 1–440, приведенных в табл. 1, в течение по меньшей мере 7 недель. Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0194] Согласно одному из вариантов реализации описанного выше способа концентрацию меди и концентрацию NH_4^+ в культуре клеток поддерживают на уровне концентрации согласно любому из вариантов 1–440, приведенных в **табл. 1**, в течение по

меньшей мере 8 недель. Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0195] Согласно одному из вариантов реализации описанного выше способа концентрацию меди и концентрацию NH₄⁺ в культуре клеток поддерживают на уровне концентраций согласно любому из вариантов 1–440, приведенных в табл. 1, в течение по меньшей мере 9 недель. Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0196] Согласно одному из вариантов реализации настоящее изобретение обеспечивает способ получения композиции рекомбинантного фактора фон Виллебранда (rVWF); указанный способ включает этапы: (а) обеспечения основных сред для культуры клеток; (b) добавления в основные среды для клеточных культур меди до конечной концентрации меди, составляющей по меньшей мере 2,0 мкг/л; (с) обеспечения одной или более клеток, содержащих нуклеиновую кислоту, кодирующую белок rVWF; (d) культивирования указанной одной или более клеток в среде для клеточных культур с добавлением меди таким образом, что происходит экспрессия и экскреция rVWF из клеток в культуральный супернатант; (е) мониторинга концентрации аммония в указанном культуральном супернатанте; и (f) отделения по меньшей мере части культурального супернатанта, причем указанный культуральный супернатант, содержащий аммоний в концентрации более чем 10 мМ, не используют для получения композиции rVWF, и при этом указанный отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 30 мЕ/мкг rVWF. Согласно определенным вариантам реализации конечная концентрация меди в дополненных основных культуральных средах составляет по меньшей мере 2,4 мкг/л, 3 мкг/л, 4 мкг/л, 5 мкг/л, 6 мкг/л, 7 мкг/л, 8 мкг/л, 9 мкг/л, 10 мкг/л, 15 мкг/л, 20 мкг/л или более. Согласно другим вариантам реализации

конечная концентрация меди в дополненных основных культуральных средах составляет 2–20 мкг/л, 2–10 мкг/л, 3–8 мкг/л или 4–6 мкг/л. Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0197] Согласно одному из вариантов реализации описанного выше способа культуральный супернатант, содержащий аммоний в концентрации более чем 6 мМ, не используют для получения композиции rVWF. Согласно определенным вариантам реализации конечная концентрация меди в дополненных основных культуральных средах составляет по меньшей мере 2,4 мкг/л, 3 мкг/л, 4 мкг/л, 5 мкг/л, 6 мкг/л, 7 мкг/л, 8 мкг/л, 9 мкг/л, 10 мкг/л, 15 мкг/л, 20 мкг/л или более. Согласно другим вариантам реализации конечная концентрация меди в дополненных основных культуральных средах составляет 2–20 мкг/л, 2–10 мкг/л, 3–8 мкг/л, или 4–6 мкг/л. Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0198] Согласно одному из вариантов реализации описанного выше способа культуральный супернатант, содержащий аммоний в концентрации более чем 5 мМ, не используют для получения композиции rVWF. Согласно определенным вариантам реализации конечная концентрация меди в дополненных основных культуральных средах составляет по меньшей мере 2,4 мкг/л, 3 мкг/л, 4 мкг/л, 5 мкг/л, 6 мкг/л, 7 мкг/л, 8 мкг/л, 9 мкг/л, 10 мкг/л, 15 мкг/л, 20 мкг/л или более. Согласно другим вариантам реализации конечная концентрация меди в дополненных основных культуральных средах составляет 2–20 мкг/л, 2–10 мкг/л, 3–8 мкг/л, или 4–6 мкг/л. Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более

предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0199] Согласно одному из вариантов реализации описанного выше способа культуральный супернатант, содержащий аммоний в концентрации более чем 4 мМ, не используют для получения композиции гVWF. Согласно определенным вариантам реализации конечная концентрация меди в дополненных основных культуральных средах составляет по меньшей мере 2,4 мкг/л, 3 мкг/л, 4 мкг/л, 5 мкг/л, 6 мкг/л, 7 мкг/л, 8 мкг/л, 9 мкг/л, 10 мкг/л, 15 мкг/л, 20 мкг/л или более. Согласно другим вариантам реализации конечная концентрация меди в дополненных основных культуральных средах составляет 2–20 мкг/л, 2–10 мкг/л, 3–8 мкг/л, или 4–6 мкг/л. Согласно предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 50 мЕ/мкг rVWF. Согласно более предпочтительному варианту реализации отделенный супернатант обладает удельной ристоцетин-кофакторной активностью rVWF, составляющей по меньшей мере 70 мЕ/мкг rVWF.

[0200] Рекомбинантный vWF может быть получен посредством осуществления экспрессии в подходящей эукариотической системе-хозяине. Примеры эукариотических клеток включают, без ограничения, клетки млекопитающих, такие как CHO, COS, HEK 293, BHK, SK-Hep и HepG2; клетки насекомых, например, клетки SF9, клетки SF21, клетки S2 и клетки High Five; и дрожжевые клетки, например, клетки Saccharomyces или Schizosaccharomyces. Согласно одному из вариантов реализации можно осуществлять экспрессию указанного vWF в дрожжевых клетках, клетках насекомых, клетках птиц, клетках млекопитающих и т.п. Например, в линии клеток человека, линии клеток хомяка или линии клеток мыши. Согласно одному из конкретных вариантов реализации указанная клеточная линия представляет собой клеточную линию CHO, BHK или HEK. Как правило, для экспрессии vWF согласно настоящему изобретению применяют клетки млекопитающих, например, клетки CHO из непрерывной клеточной линии.

[0201] Согласно определенным вариантам реализации последовательность нуклеиновой кислоты, содержащая последовательность, кодирующую vWF, может представлять собой

вектор. Указанный вектор может доставляться вирусом или может представлять собой плазмиду. Последовательность нуклеиновой кислоты, кодирующая указанный белок, может представлять собой конкретный ген или его биологически функциональную часть. Согласно одному из вариантов реализации указанный белок представляет собой по меньшей мере биологически активную часть vWF.

[0202] Для экспрессии указанного vWF могут применяться разнообразные векторы; они могут быть выбраны из эукариотических экспрессионных векторов. Примеры векторов для эукариотической экспрессии включают: (i) векторы для экспрессии в дрожжах, такие как рАО, рРІС, рYES, рМЕТ, с применением таких промоторов, как AOX1, GAP, GAL1, AUG1, и т.п.; (ii) векторы для экспрессии в клетках насекомых, такие как рМТ, рАс5, рІВ, рМІВ, рВАС и т.п, с применением таких промоторов, как PH, р10, МТ, Ас5, ОрІЕ2, др64, роlh и т.п, и (iii) векторы для экспрессии в клетках млекопитающих, такие как рSVL, рСМV, рRс/RSV, ркДНК3, рВРV и т.п, и векторы, происходящие из вирусных систем, таких как вирус осповакцины, аденоассоциированные вирусы, герпесвирусы, ретровирусы и т.п, с применением таких промоторов, как CMV, SV40, EF-1, UbC, RSV, ADV, ВРV и □-актин. Типовой вектор для экспрессии rVWF описан у Kaufman et al. (Mol Cell Biol. 1989 Маг;9(3):1233−42); содержание указанного источника включено в настоящую заявку посредством ссылки во всей полноте для любых целей.

[0203] Согласно некоторым вариантам реализации настоящего изобретения, указанная последовательность нуклеиновой кислоты также содержит другие последовательности, подходящие для контролируемой экспрессии белка, такие как промоторные последовательности, энхансеры, ТАТА-боксы, сайты инициации транскрипции, полилинкеры, сайты рестрикции, поли-А-последовательности, последовательности процессинга белков, маркеры отбора и т.п., которые общеизвестны специалистам в данной области техники.

[0204] Помимо сред для клеточных культур, содержащих повышенную концентрацию меди, условия культивирования клеток согласно настоящему изобретению могут включать концентрацию аммония менее чем приблизительно 25 мМ на протяжении всего подготовительного процесса («upstream»-процесса) в системах культивирования. Согласно одному из вариантов реализации условия культивирования клеток включают

концентрацию аммония менее чем приблизительно 25 мМ, согласно другому варианту реализации менее чем приблизительно 20 мМ, согласно еще одному варианту реализации менее чем приблизительно 15 мМ, согласно еще одному варианту реализации менее чем приблизительно 10 мМ, и согласно дальнейшему варианту реализации менее чем приблизительно 5 мМ.

[0205] Согласно некоторым вариантам реализации концентрации аммония согласно настоящему изобретению поддерживают на постоянном уровне на протяжении всего подготовительного процесса в системе культивирования клеток. Клетки, применяемые согласно настоящему изобретению, могут культивироваться, например, способами, модифицированными относительно стандартных периодического культивирования и непрерывного культивирования, общеизвестных в данной области техники. При этом такие стандартные техники могут приводить к образованию высоких концентраций аммония в конце культивирования. В способах согласно настоящему изобретению эта проблема преодолена за счет применения систем производства, которые могут обеспечить постоянное поступление культуральной среды с помощью таких техник, как, например, перфузионное или хемостатическое культивирование. После культивирования клеток-хозяев vWF может быть выделен из отработанной среды с применением стандартных методик, таких как ультрафильтрация или центрифугирование. При необходимости vWF может быть очищен, например, ионообменной и/или эксклюзионной хроматографией и т.п.

[0206] Непрерывная культура (например, перфузионная или хемостатическая культура) может представлять собой суспензионную культуру, непрерывно получающую питательные вещества за счет притока свежей среды, при этом объем культуры, как правило, неизменен. Сходным образом, непрерывная ферментация может подразумевать процесс, при котором клетки или микроорганизмы в культуре поддерживают в экспоненциальной фазе роста за счет постоянного добавления свежей среды, точно компенсируемом удалением суспензии клеток из биореактора. Кроме того, реакционная система с баком-мешалкой может применяться для суспензионного, перфузионного, хемостатического культивирования и/или культивирования на микроносителях. Как правило, в качестве указанной реакционной системы с баком-мешалкой может работать

любой стандартный реактор с баком-мешалкой с любым типом перемешивающего устройства, например, типа Rushton, гидравлическим, с наклонными лопастями, или типа гребного винта.

С. Способы получения рекомбинантного ADAMTS13 (A13)

[0207] Согласно другому аспекту настоящее изобретение относится также к способам получения гА13 в условиях клеточной культуры, включающих среду для клеточной культуры, содержащую повышенную концентрацию меди. Согласно определенным вариантам реализации указанная культура также содержит низкую концентрацию аммония.

[0208] Согласно одному из вариантов реализации настоящее изобретение обеспечивает способ получения композиции рекомбинантного ADAMTS13 (rA13); указанный способ включает этапы: (а) обеспечения основных сред для культуры клеток; (b) добавления в основные среды для клеточных культур меди до конечной концентрации меди, составляющей по меньшей мере 1,0 мкг/л; (с) обеспечения одной или более клеток, содержащей нуклеиновую кислоту, кодирующую белок rA13; (d) культивирования указанной одной или более клеток в среде для клеточных культур с добавлением меди таким образом, что происходит экспрессия и экскреция гА13 из клеток в культуральный супернатант; и (е) отделения по меньшей мере части указанного культурального супернатанта, при этом в отделенном культуральном супернатанте присутствует по меньшей мере 1500 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день (m.e. 1500 единиц FRETS-VWF73 активности в день на литр культуры клеток; P FRETS). Согласно определенным вариантам реализации конечная концентрация меди в дополненных основных культуральных средах составляет по меньшей мере 2 мкг/л, 3 мкг/л, 4 мкг/л, 5 мкг/л, 6 мкг/л или более. Согласно другим вариантам реализации конечная концентрация меди в дополненных основных культуральных средах составляет 1-6 мкг/л, 2-5 мкг/л, 2-4 мкг/л или 3-4 мкг/л. Согласно предпочтительному варианту реализации в отделенном культуральном супернатанте присутствует по меньшей мере 2000 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно более предпочтительному варианту реализации в отделенном культуральном супернатанте

присутствует по меньшей мере 2500 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно наиболее предпочтительному варианту реализации в отделенном культуральном супернатанте присутствует по меньшей мере 3000 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно определенным вариантам реализации указанные способы обеспечивают устойчивое увеличение объемной продуктивности FRETS-VWF73 (P FRETS). Например, согласно определенным вариантам реализации выделяют по меньшей мере 1500 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно предпочтительному варианту реализации по меньшей мере 2000 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур выделяют ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно более предпочтительному варианту реализации по меньшей мере 2500 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур выделяют ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно наиболее предпочтительному варианту реализации по меньшей мере 3000 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур выделяют ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно конкретному варианту реализации плотность клеток в непрерывной клеточной культуре для продуцирования гА13 поддерживают на уровне концентрации, не превышающей 4,0×10⁶ клеток/мл в течение длительного периода. Согласно другим конкретным вариантам реализации плотность клеток поддерживают на уровне не выше 3.5×10^6 клеток/мл, 3.0×10^6 клеток/мл, 2.5×10^6 клеток/мл, $2,0\times10^6$ клеток/мл, $1,5\times10^6$ клеток/мл, $1,0\times10^6$ клеток/мл или менее. Согласно одному из вариантов реализации плотность клеток поддерживают на уровне от 3.0×10^6 клеток/мл до 4.0×10^6 клеток/мл.

[0209] Согласно одному варианту реализации описанных выше способов отделенный супернатант содержит по меньшей мере 4 единиц активности FRETS-VWF73 на мл супернатанта (FRETS). Согласно предпочтительному варианту реализации отделенный

супернатант содержит по меньшей мере 6 единиц активности FRETS-VWF73 на мл супернатанта. Согласно более предпочтительному варианту реализации отделенный супернатант содержит по меньшей мере 8 единиц активности FRETS-VWF73 на мл супернатанта. Согласно наиболее предпочтительному варианту реализации отделенный супернатант содержит по меньшей мере 10 единиц активности FRETS-VWF73 на мл супернатанта. Согласно определенным вариантам реализации указанные способы обеспечивают устойчивое увеличение продуктивности FRETS. Например, согласно определенным вариантам реализации супернатант, обладающий по меньшей мере 4 единицами активности FRETS-VWF73 на мл, выделяют ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно предпочтительному варианту реализации супернатант, обладающий по меньшей мере 6 единицами активности FRETS-VWF73 на мл, выделяют ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно более предпочтительному варианту реализации супернатант, обладающий по меньшей мере 8 единицами активности FRETS-VWF73 на мл, выделяют ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно наиболее предпочтительному варианту реализации супернатант, обладающий по меньшей мере 10 единицами активности FRETS-VWF73 на мл, выделяют ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней.

[0210] Согласно одному варианту реализации описанных выше способов культивирование клеток позволяет получить по меньшей мере 800 мЕ FRETS-VWF73 активности на 10⁶ клеток культуры в день (*т.е.* q Frets). Согласно предпочтительному варианту реализации культивирование клеток позволяет получить по меньшей мере 1 E FRETS-VWF73 активности на 10⁶ клеток культуры в день. Согласно более предпочтительному варианту реализации культивирование клеток позволяет получить по меньшей мере 1,2 E FRETS-VWF73 активности на 10⁶ клеток культуры в день. Согласно наиболее предпочтительному варианту реализации культивирование клеток позволяет получить по меньшей мере 1,4 E FRETS-VWF73 активности на 10⁶ клеток культуры в день. Согласно определенным вариантам реализации указанные способы обеспечивают устойчивое увеличение удельной продуктивности FRETS-VWF73 на клетку (q Frets). Например, согласно определенным

вариантам реализации культивирование клеток позволяет получить по меньшей мере 800 мЕ FRETS-VWF73 активности на 10⁶ клеток культуры ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно предпочтительному варианту реализации культивирование клеток позволяет получить по меньшей мере 1 Е FRETS-VWF73 активности на 10⁶ клеток культуры ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно более предпочтительному варианту реализации культивирование клеток позволяет получить по меньшей мере 1,2 Е FRETS-VWF73 активности на 10⁶ клеток культуры ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно наиболее предпочтительному варианту реализации культивирование клеток позволяет получить по меньшей мере 1,4 Е FRETS-VWF73 активности на 10⁶ клеток культуры ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 1,4 Е FRETS-VWF73 активности на 10⁶ клеток культуры ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней.

[0211] Согласно одному варианту реализации описанных выше способов культивирование клеток позволяет получить по меньшей мере 1 мг гА13, согласно ИФА-анализу, на литр культуры в день (P ELISA). Согласно предпочтительному варианту реализации культивирование клеток позволяет получить по меньшей мере 1,5 мг гА13, согласно ИФАанализу, на литр культуры в день. Согласно более предпочтительному варианту реализации культивирование клеток позволяет получить по меньшей мере 2 мг гА13, согласно ИФА-анализу, на литр культуры в день. Согласно определенным вариантам реализации указанные способы обеспечивают устойчивое увеличение выработки rA13. Например, согласно определенным вариантам реализации культивирование клеток позволяет получить по меньшей мере 1 мг гА13, согласно ИФА-анализу, на литр культуры ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно предпочтительному варианту реализации культивирование клеток позволяет получить по меньшей мере 1,5 мг гА13, согласно ИФАанализу, на литр культуры ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно более предпочтительному варианту реализации культивирование клеток позволяет получить по меньшей мере 2 мг

гА13, согласно ИФА-анализу, на литр культуры ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней.

[0212] Согласно одному варианту реализации описанных выше способов культивирование клеток позволяет получить по меньшей мере 0.5 мкг rA13, согласно И Φ A-анализу, на 10^6 клеток культуры в день (m.e. q ELISA). Согласно предпочтительному варианту реализации культивирование клеток позволяет получить по меньшей мере 0,7 мкг гА13, согласно ${\rm M}\Phi{\rm A}$ -анализу, на 10^6 клеток культуры в день. Согласно более предпочтительному варианту реализации культивирование клеток позволяет получить по меньшей мере 0,9 мкг rA13, согласно И Φ A-анализу, на 10^6 клеток культуры в день. Согласно определенным вариантам реализации указанные способы обеспечивают устойчивое увеличение выработки согласно q ELISA. Например, согласно определенным вариантам реализации культивирование клеток позволяет получить по меньшей мере 0,5 мкг гА13, согласно ${\rm M}\Phi{\rm A}$ -анализу, на 10^6 клеток культуры ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно предпочтительному варианту реализации культивирование клеток позволяет получить по меньшей мере 0.7 мкг rA13, согласно И Φ A-анализу, на 10^6 клеток культуры ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно более предпочтительному варианту реализации культивирование клеток позволяет получить по меньшей мере 0.9 мкг rA13, согласно И Φ A-анализу, на 10^6 клеток культуры ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней.

[0213] Согласно одному варианту реализации описанных выше способов отделенный супернатант содержит по меньшей мере 3 мкг гА13, согласно ИФА-анализу, на мл супернатанта. Согласно предпочтительному варианту реализации отделенный супернатант содержит по меньшей мере 4 мкг гА13, согласно ИФА-анализу, на мл супернатанта. Согласно более предпочтительному варианту реализации отделенный супернатант содержит по меньшей мере 5 мкг гА13, согласно ИФА-анализу, на мл супернатанта. Согласно наиболее предпочтительному варианту реализации отделенный супернатант содержит по меньшей мере 6 мкг гА13, согласно ИФА-анализу, на мл супернатанта. Согласно определенным вариантам реализации указанные способы

обеспечивают устойчивое увеличение выработки гА13 . Например, согласно определенным вариантам реализации супернатант, обладающий по меньшей мере 3 мкг гА13 на мл, выделяют ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно предпочтительному варианту реализации супернатант, обладающий по меньшей мере 4 мкг гА13 на мл, выделяют ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно более предпочтительному варианту реализации супернатант, обладающий по меньшей мере 5 мкг гА13 на мл, выделяют ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней. Согласно наиболее предпочтительному варианту реализации супернатант, обладающий по меньшей мере 6 мкг гА13 на мл, выделяют ежедневно в течение по меньшей мере 7 дней, или по меньшей мере 14, 21, 28, 35, 42, 49, 56, 63, 70 или более дней.

[0214] Согласно одному варианту реализации описанных выше способов раствор культуры клеток также содержит аммоний в концентрации менее чем 10 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне не выше 10 мМ в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 5 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне не выше 5 мМ в течение по меньшей мере 7 дней. Согласно предпочтительному варианту реализации раствор культуры клеток содержит аммоний в концентрации не выше 4 мМ. Согласно другому конкретному варианту реализации концентрацию аммония в культуре клеток поддерживают на уровне не выше 4 мМ в течение по меньшей мере 7 дней. Согласно другим вариантам реализации раствор культуры клеток содержит аммоний в концентрации не выше 10 мМ, или не выше 9 мМ, 8 мМ, 7 мМ, 6 мМ, 5 мМ, 4 мМ, 3 мМ, 2 мМ, 1 мМ, или менее. Согласно еще одному из вариантов реализации концентрацию аммония в культуре клеток поддерживают на низком уровне на протяжении процесса (т.е. в течение всего времени, на протяжении которого указанная культура используется для получения гА13). Согласно конкретному варианту реализации культуральный раствор

содержит медь и аммоний в концентрации согласно любому из вариантов 1–440, приведенных в **табл. 1.**

[0215] Согласно одному из вариантов реализации настоящее изобретение обеспечивает способ получения композиции рекомбинантного ADAMTS13 (rA13); указанный способ включает этапы: (а) обеспечения основных сред для культуры клеток; (b) добавления в основные среды для клеточных культур меди и цинка; (с) обеспечения одной или более клеток, содержащих нуклеиновую кислоту, кодирующую белок rA13; (d) культивирования указанной одной или более клеток в среде для клеточных культур с добавлением меди таким образом, что происходит экспрессия и экскреция гА13 из клеток в культуральный супернатант; и (е) отделения по меньшей мере части указанного культурального супернатанта, при этом в отделенном культуральном супернатанте присутствует по меньшей мере 1500 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно одному из вариантов реализации указанная культуральная среда содержит по меньшей мере 1 мкг/л меди и по меньшей мере 2 мкМ цинк. Согласно другим вариантам реализации указанная среда содержит по меньшей мере 2 мкг/л меди или по меньшей мере 4 мкг/л меди. Согласно одному варианту реализации, когда в среды добавляют медь, указанная культуральная среда также содержит по меньшей мере точно или приблизительно 5 мкМ цинка. Согласно одному из вариантов реализации указанная культуральная среда также содержит точно или приблизительно от 2 мкМ до 12 мкМ цинка. Согласно другому варианту реализации указанная культуральная среда также содержит точно или приблизительно от 5 мкМ до 12 мкМ цинка. Согласно другим вариантам реализации указанная культуральная среда также может содержать по меньшей мере точно или приблизительно 2 мкМ, или по меньшей мере точно или приблизительно 3 мкМ, 4 мкМ, 5 мкМ, 6 мкМ, 7 мкМ, 8 мкМ, 9 мкМ, 10 мкМ, 11 мкМ, 12 мкМ, 13 мкМ, 14 мкМ, 15 мкМ, 20 мкМ, 25 мкМ, 30 мкМ или более, цинка. Согласно одному из вариантов реализации указанная культуральная среда содержит медь и цинк в концентрациях согласно любому из вариантов 441-880, приведенных в табл. 2. Согласно предпочтительному варианту реализации в отделенном культуральном супернатанте присутствует по меньшей мере 2000 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно более предпочтительному варианту реализации в отделенном культуральном супернатанте

присутствует по меньшей мере 2500 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно наиболее предпочтительному варианту реализации в отделенном культуральном супернатанте присутствует по меньшей мере 3000 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день.

[0216] Согласно одному из вариантов реализации настоящее изобретение обеспечивает способ получения композиции рекомбинантного ADAMTS13 (rA13); указанный способ включает этапы: (а) обеспечения основных сред для культуры клеток; (b) добавления в основные среды для клеточных культур меди и кальция; (с) обеспечения одной или более клеток, содержащих нуклеиновую кислоту, кодирующую белок rA13; (d) культивирования указанной одной или более клеток в среде для клеточных культур с добавлением меди таким образом, что происходит экспрессия и экскреция гА13 из клеток в культуральный супернатант; и (е) отделения по меньшей мере части указанного культурального супернатанта, при этом в отделенном культуральном супернатанте присутствует по меньшей мере 1500 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно одному из вариантов реализации указанная культуральная среда содержит по меньшей мере 1 мкг/л меди и по меньшей мере 0,5 мМ кальция. Согласно другим вариантам реализации указанная среда содержит по меньшей мере 2 мкг/л меди или по меньшей мере 4 мкг/л меди. Согласно другому варианту реализации, когда в среды добавляют медь, указанная культуральная среда также содержит по меньшей мере 1,5 мМ кальция. Согласно одному из вариантов реализации указанная культуральная среда содержит точно или приблизительно от 0,5 мМ до 1,5 мМ кальция. Согласно другим вариантам реализации указанная культуральная среда может содержать по меньшей мере точно или приблизительно 0,5 мМ, или по меньшей мере точно или приблизительно 0,6 мМ; 0,7 мМ; 0,8 мМ; 0,9 мМ; 1,0 мМ; 1,1 мМ; 1,2 мМ; 1,3 MM; 1,4 MM; 1,5 MM; 1,6 MM; 1,7 MM; 1,8 MM; 1,9 MM; 2,0 MM; 2,25 MM; 2,5 MM; 2,75 MM; 3,0 мМ; 3,5 мМ; 4,0 мМ; 4,5 мМ; 5,0 мМ или более, кальция. Согласно одному из вариантов реализации указанная культуральная среда содержит медь и кальция в концентрации согласно любому из вариантов 881–1320, приведенных в табл. 3. Согласно предпочтительному варианту реализации в отделенном культуральном супернатанте присутствует по меньшей мере 2000 единиц активности FRETS-VWF73 на литр

дополненных основных сред для клеточных культур в день. Согласно более предпочтительному варианту реализации в отделенном культуральном супернатанте присутствует по меньшей мере 2500 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно наиболее предпочтительному варианту реализации в отделенном культуральном супернатанте присутствует по меньшей мере 3000 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день.

[0217] Согласно одному из вариантов реализации настоящее изобретение обеспечивает способ получения композиции рекомбинантного ADAMTS13 (rA13); указанный способ включает этапы: (а) обеспечения основных сред для культуры клеток; (b) добавления в основные среды для клеточных культур меди, цинка и кальция; (с) обеспечения одной или более клеток, содержащих нуклеиновую кислоту, кодирующую белок rA13; (d) культивирования указанной одной или более клеток в среде для клеточных культур с добавлением меди таким образом, что происходит экспрессия и экскреция гА13 из клеток в культуральный супернатант; и (е) отделения по меньшей мере части указанного культурального супернатанта, при этом в отделенном культуральном супернатанте присутствует по меньшей мере 1500 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно одному из вариантов реализации культуральная среда содержит кальций в концентрации по меньшей мере 0,5 мМ, и медь и цинк в концентрациях согласно любому из вариантов 441-880, приведенных в табл. 2. Согласно другому конкретному варианту реализации культуральная среда содержит кальций в концентрации по меньшей мере 1,5 мМ, и медь и цинк в концентрациях согласно любому из вариантов 441-880, приведенных в табл. 2. Согласно другому конкретному варианту реализации указанная культуральная среда содержит кальций в концентрации от 0,5 мМ и 1,5 мМ, и медь и цинк в концентрациях согласно любому из вариантов 441–880, приведенных в табл. 2. Согласно другим вариантам реализации культуральная среда содержит кальций в концентрации по меньшей мере 0,6 мМ; 0,7 мМ; 0,8 мМ; 0,9 мМ; 1,0 мМ; 1,1 мМ; 1,2 мМ; 1,3 мМ; 1,4 мМ; 1,5 mM; 1,6 mM; 1,7 mM; 1,8 mM; 1,9 mM; 2,0 mM; 2,25 mM; 2,5 mM; 2,75 mM; 3,0 mM; 3,5 мМ; 4,0 мМ; 4,5 мМ; 5,0 мМ или более, и медь и цинк в концентрациях согласно любому из вариантов 441–880, приведенных в табл. 2. Согласно предпочтительному варианту

реализации в отделенном культуральном супернатанте присутствует по меньшей мере 2000 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно более предпочтительному варианту реализации в отделенном культуральном супернатанте присутствует по меньшей мере 2500 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно наиболее предпочтительному варианту реализации в отделенном культуральном супернатанте присутствует по меньшей мере 3000 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день.

[0218] Согласно одному из вариантов реализации настоящее изобретение обеспечивает способ получения композиции рекомбинантного ADAMTS13 (rA13); указанный способ включает этапы: (а) обеспечения основных сред для культуры клеток; (b) добавления в основные среды для клеточных культур меди и никотинамида; (с) обеспечения одной или более клеток, содержащих нуклеиновую кислоту, кодирующую белок rA13; (d) культивирования указанной одной или более клеток в среде для клеточных культур с добавлением меди таким образом, что происходит экспрессия и экскреция гА13 из клеток в культуральный супернатант; и (е) отделения по меньшей мере части указанного культурального супернатанта, при этом в отделенном культуральном супернатанте присутствует по меньшей мере 1500 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно одному из вариантов реализации указанная культуральная среда содержит по меньшей мере 1 мкг/л меди и по меньшей мере 2 мг/л никотинамида (витамина ВЗ). Согласно другим вариантам реализации указанная среда содержит по меньшей мере 2 мкг/л меди или по меньшей мере 4 мкг/л меди. Согласно другому варианту реализации, когда в среды добавляют медь, указанная культуральная среда также содержит по меньшей мере 7 мг/л никотинамида (витамина ВЗ). Согласно одному из вариантов реализации указанная культуральная среда содержит точно или приблизительно от 2 мг/л до 10 мг/л никотинамида (витамина ВЗ). Согласно другим вариантам реализации указанная культуральная среда может содержать по меньшей мере точно или приблизительно 2 мг/л, 3 мг/л, 4 мг/л, 5 мг/л, 6 мг/л, 7 мг/л, 8 мг/л, 9 мг/л, 10 мг/л, 15 мг/л, 20 мг/л, или более высокие концентрации никотинамида (витамина ВЗ). Согласно одному из вариантов реализации указанная культуральная среда содержит медь и никотинамид в концентрациях согласно любому из вариантов 1321–1760, приведенных в **табл. 4**. Согласно предпочтительному варианту реализации в отделенном культуральном супернатанте присутствует по меньшей мере 2000 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно более предпочтительному варианту реализации в отделенном культуральном супернатанте присутствует по меньшей мере 2500 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно наиболее предпочтительному варианту реализации в отделенном культуральном супернатанте присутствует по меньшей мере 3000 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день.

[0219] Согласно одному из вариантов реализации настоящее изобретение обеспечивает способ получения композиции рекомбинантного ADAMTS13 (rA13); указанный способ включает этапы: (а) обеспечения основных сред для культуры клеток; (b) добавления в основные среды для клеточных культур меди, цинка и никотинамида; (с) обеспечения одной или более клеток, содержащих нуклеиновую кислоту, кодирующую белок rA13; (d) культивирования указанной одной или более клеток в среде для клеточных культур с добавлением меди таким образом, что происходит экспрессия и экскреция гА13 из клеток в культуральный супернатант; и (е) отделения по меньшей мере части указанного культурального супернатанта, при этом в отделенном культуральном супернатанте присутствует по меньшей мере 1500 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно одному из вариантов реализации указанная среда для клеточной культуры содержит никотинамид в концентрации по меньшей мере 2 мг/мл, и медь и цинк в концентрациях согласно любому из вариантов 441–880, приведенных в табл. 2. Согласно другому конкретному варианту реализации указанная культуральная среда содержит никотинамид в концентрации по меньшей мере 7 мг/мл мМ, и медь и цинк в концентрациях согласно любому из вариантов 441-880, приведенных в табл. 2. Согласно другому конкретному варианту реализации указанная культуральная среда содержит никотинамид в концентрации от 2 мг/мл и 10 мг/мл, и медь и цинк в концентрациях согласно любому из вариантов 441-880, приведенных в табл. 2. Согласно другим вариантам реализации указанная культуральная среда содержит никотинамид в концентрации по меньшей мере 2 мг/мл, 3 мг/мл, 4 мг/мл, 5 мг/мл, 6 мг/мл, 7 мг/мл, 8 мг/мл, 9 мг/мл, 10 мг/мл, 11 мг/мл, 12 мг/мл, 13 мг/мл, 14

мг/мл, 15 мг/мл или более, и медь и цинк в концентрациях согласно любому из вариантов 441–880, приведенных в табл. 2. Согласно предпочтительному варианту реализации в отделенном культуральном супернатанте присутствует по меньшей мере 2000 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно более предпочтительному варианту реализации в отделенном культуральном супернатанте присутствует по меньшей мере 2500 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно наиболее предпочтительному варианту реализации в отделенном культуральном супернатанте присутствует по меньшей мере 3000 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день.

[0220] Согласно одному из вариантов реализации настоящее изобретение обеспечивает способ получения композиции рекомбинантного ADAMTS13 (rA13); указанный способ включает этапы: (а) обеспечения основных сред для культуры клеток; (b) добавления в основные среды для клеточных культур меди, кальция и никотинамида; (с) обеспечения одной или более клеток, содержащих нуклеиновую кислоту, кодирующую белок rA13; (d) культивирования указанной одной или более клеток в среде для клеточных культур с добавлением меди таким образом, что происходит экспрессия и экскреция гА13 из клеток в культуральный супернатант; и (е) отделения по меньшей мере части указанного культурального супернатанта, причем в отделенном культуральном супернатанте присутствует по меньшей мере 1500 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно одному из вариантов реализации среда для клеточной культуры содержит никотинамид в концентрации по меньшей мере 2 мг/мл, и медь и кальций в концентрациях согласно любому из вариантов 881–1320, приведенных в табл. 3. Согласно другому конкретному варианту реализации культуральная среда содержит никотинамид в концентрации по меньшей мере 7 мг/мл мМ, и медь и кальций в концентрациях согласно любому из вариантов 881–1320, приведенных в табл. 3. Согласно другому конкретному варианту реализации указанная культуральная среда содержит никотинамид в концентрации от 2 мг/мл и 10 мг/мл, и медь и кальций в концентрациях согласно любому из вариантов 881-1320, приведенных в табл. 3. Согласно другим вариантам реализации указанная культуральная среда содержит никотинамид в концентрации по меньшей мере 2 мг/мл, 3

мг/мл, 4 мг/мл, 5 мг/мл, 6 мг/мл, 7 мг/мл, 8 мг/мл, 9 мг/мл, 10 мг/мл, 11 мг/мл, 12 мг/мл, 13 мг/мл, 14 мг/мл, 15 мг/мл или более, и медь и кальций в концентрациях согласно любому из вариантов 881–1320, приведенных в табл. 3. Согласно предпочтительному варианту реализации в отделенном культуральном супернатанте присутствует по меньшей мере 2000 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно более предпочтительному варианту реализации в отделенном культуральном супернатанте присутствует по меньшей мере 2500 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день. Согласно наиболее предпочтительному варианту реализации в отделенном культуральном супернатанте присутствует по меньшей мере 3000 единиц активности FRETS-VWF73 на литр дополненных основных сред для клеточных культур в день.

[0221] Рекомбинантные белки ADAMTS могут быть получены посредством осуществления экспрессии в любой подходящей прокариотической или эукариотической системе-хозяине. Примеры эукариотических клеток включают, без ограничения, клетки млекопитающих, такие как CHO, COS, HEK 293, BHK, SK-Hep, и HepG2; клетки насекомых, например SF9 клетки, SF21 клетки, S2 клетки, и High Five клетки; и дрожжевые клетки, например, клетки Saccharomyces или Schizosaccharomyces. Согласно одному из вариантов реализации указанные белки ADAMTS можно экспрессировать в бактериальных клетках, дрожжевых клетках, клетках насекомых, клетках птиц, клетках млекопитающих и т.п. Например, в линии клеток человека, линии клеток хомяка или линии клеток мыши. Согласно одному из конкретных вариантов реализации указанная клеточная линия представляет собой клеточную линию СНО, ВНК или НЕК. Согласно предпочтительному варианту реализации клеточная линия представляет собой клеточную линию СНО. Согласно конкретному варианту реализации клоны СНО, способные к стабильной экспрессии гА13, получают ко-трансфекцией клетки СНО кодирующими последовательностями rA13 и дигидрофолатредуктазы (например, мышиного гена dhfr) и отбором при росте в присутствии возрастающих уровней метотрексата.

[0222] Согласно одному из вариантов реализации указанные клетки могут представлять собой любые клетки млекопитающих, пригодные для культивирования, предпочтительно в ходе производственного процесса (*m.e.* по меньшей мере в 10 литрах, предпочтительно

по меньшей мере в 100 литрах), для получения требуемого белка ADAMTS, такого как ADAMTS13. Примеры включают линию клеток почки обезьяны CV1, трансформированную SV40 (COS-7, ATCC CRL 1651); линию эмбриональных клеток почек человека (клетки 293 или 293 субклонированные для роста в суспензионной культуре, Graham et al., J. Gen Virol., 36:59 (1977)); клетки почки новорожденного хомяка (BHK, ATCC CCL 10); клетки яичника китайского хомячка/-DHFR, такие как субклон DUKX-B11 (CHO, Uriaub and Chasin, Proc. Natl. Acad. Sci. USA, 77:4216 (1980)); клетки Сертоли мыши (ТМ4, Mather, Biol. Reprod, 23:243–251 (1980)); клетки почки обезьяны (CV1 ATCC CCL 70); клетки почки африканской зеленой мартышки (VERO-76, ATCC CRL-1587); клетки карциномы шейки матки человека (HeLa, ATCC CCL 2); клетки почки собаки (MDCK, ATCC CCL 34); клетки печени крыс Буффало (BRL 3A, ATCC CRL 1442); клетки легкого человека (W138, ATCC CCL 75); клетки печени человека (Hep G2, HB 8065); опухоли молочной железы мышей (MMT 060562, ATCC CCL51); клетки TRI (Mather et al., Annals N. Y. Acad. Sci., 383:44-68 (1982)); клетки MRC 5; клетки FS4; и линию гепатомы человека (Нер G2). Предпочтительно, клеточная линия представляет собой линию клеток грызунов, в частности, линию клеток хомяка, такую как СНО или BHK.

[0223] Значительное число векторов может применяться для экспрессии белка ADAMTS (например, ADAMTS13) и может быть выбрано из эукариотических и прокариотических экспрессионных векторов. Согласно определенным вариантам реализации плазмидный вектор предназначен для применения в экспрессии белка ADAMTS (например, ADAMTS13). Как правило, плазмидные векторы, содержащие репликон и управляющие последовательности, полученные из видов, совместимых с клеткой-хозяином, применяют в соединении с указанными хозяевами. Указанный вектор может нести сайт репликации, а также маркерные последовательности, способные обеспечивать фенотипический отбор в трансформированных клетках. Плазмида содержит нуклеотидную последовательность, кодирующую белок ADAMTS (например, ADAMTS13), функционально связанную с одной или более контрольной последовательностью, например, промотором.

[0224] Предпочтительный способ получения стабильных клонов клеток CHO, экспрессирующих рекомбинантный белок ADAMTS, следующий. Дефицитную по DHFR

клеточную линию CHO DUKX-B11 трансфицируют DHFR-экспрессионным вектором, чтобы обеспечить экспрессию соответствующего рекомбинантного белка. Типовой способ описан у Plaimauer et al. (Blood. 2002 Nov 15;100(10):3626–32. Epub 2002 Jul 12), содержание которого включено в настоящую заявку посредством ссылки во всей полноте для любых целей. Отбор проводят культивированием в не содержащих гипоксантин/тимидин (HT) средах; амплификации соответствующей области, кодирующей экспрессию рекомбинантного белка ADAMTS и DHFR гена, достигают размножением клеток в возрастающих концентрациях метотрексата. При необходимости клеточные линии CHO могут быть адаптированы для роста в не содержащей сыворотки и/или белков среде, по существу согласно описанию в US 6100061 (Reiter et al., Immuno Aktiengesellschaft).

[0225] Согласно другому предпочтительному варианту реализации стабильные НЕК 293 клетки получают, трансфицируя их конструкцией, содержащей селектируемый маркер устойчивости к гигромицину, и отбирая трансформанты по устойчивости к антибиотику.

[0226] Способность определенных вирусов инфицировать клетки или проникать в клетки посредством опосредованного рецепторами эндоцитоза, встраиваться в геном клетки-хозяина и стабильно и эффективно экспрессировать вирусные гены, делает их привлекательными кандидатами для переноса чужеродных нуклеиновых кислот в клетки (например, клетки млекопитающих). Соответственно, согласно определенным вариантам реализации вирусный вектор применяют для введения нуклеотидной последовательности, кодирующей белок ADAMTS (например, ADAMTS13) в клетку-хозяина для экспрессии. Указанный вирусный вектор должен содержать нуклеотидную последовательность, кодирующую белок ADAMTS (например, ADAMTS13), функционально связанную с одной или более контрольной последовательностью, например, промотором. Как вариант, указанный вирусный вектор может не содержать контрольную последовательность, вместо этого используя контрольную последовательность клетки-хозяина для управления экспрессией белка ADAMTS. Неограничивающие примеры вирусных векторов, которые могут применяться для доставки нуклеиновой кислоты, включают аденовирусные векторы. ААV-векторы и ретровирусные векторы.

[0227] Согласно одному из вариантов реализации аденовирусный экспрессионный вектор включают конструкции, содержащие аденовирусные последовательности, достаточные для осуществления упаковки указанной конструкции и гарантированной экспрессии клонированной в нее конструкции ADAMTS. Аденовирусные векторы позволяют вводить чужеродные последовательности размером до 7 т.п.н. (Grunhaus et al., Seminar in Virology, 200(2):535–546, 1992)).

[0228] Согласно другому варианту реализации аденоассоциированный вирус (AAV) может применяться для введения нуклеотидной последовательности, кодирующей белок ADAMTS (например, ADAMTS13), в клетку-хозяина для экспрессии. AAV-системы описывались ранее и, как правило, общеизвестны в данной области техники (Kelleher and Vos, Biotechniques, 17(6):1110−7, 1994; Cotten et al., Proc Natl Acad Sci USA, 89(13):6094−6098, 1992; Curiel, Nat Immun, 13(2−3):141−64, 1994; Muzyczka, Curr Top Microbiol Immunol, 158:97−129, 1992). Детали получения и применения гААV-векторов описаны, например, в патентах США №5139941 и №4797368, включенных в настоящую заявку посредством ссылки во всей полноте и для любых целей.

[0229] Согласно одному из вариантов реализации ретровирусный экспрессионный вектор может применяться для введения нуклеотидной последовательности, кодирующей белок ADAMTS (*например*, ADAMTS13), в клетку-хозяина для экспрессии. Указанные системы были описаны ранее и в целом общеизвестны в данной области техники (Mann et al., Cell, 33:153–159, 1983; Nicolas and Rubinstein, в: Vectors: A survey of molecular cloning vectors and their uses, Rodriguez and Denhardt, eds., Stoneham: Butterworth, pp. 494–513, 1988; Temin, в: Gene Transfer, Kucherlapati (ed.), New York: Plenum Press, pp. 149–188, 1986). Согласно конкретному варианту реализации ретровирусный вектор представляет собой лентивирусный вектор (*см.*, например, Naldini et al., Science, 272(5259):263–267, 1996; Zufferey et al., Nat Biotechnol, 15(9):871–875, 1997; Blomer et al., J Virol., 71(9):6641–6649, 1997; патенты США №6013516 и №5994136).

[0230] Неограничивающие примеры векторов для прокариотической экспрессии включают плазмиды, такие как pRSET, pET, pBAD и т.п, при этом промоторы, применяемые в прокариотических экспрессионных векторах, включают lac, trc, trp, recA, агаВАD и т.п. Примеры векторов для эукариотической экспрессии включают: (i) векторы

для экспрессии в дрожжах, такие как pAO, pPIC, pYES, pMET, с применением таких промоторов, как AOX1, GAP, GAL1, AUG1, и т.п.; (ii) векторы для экспрессии в клетках насекомых, такие как pMT, pAc5, pIB, pMIB, pBAC и т.п, с применением таких промоторов, как PH, p10, MT, Ac5, OpIE2, gp64, polh и т.п, и (iii) векторы для экспрессии в клетках млекопитающих, такие как pSVL, pCMV, pRc/RSV, pкДНК3, pBPV и т.п, и векторы, происходящие из вирусных систем, таких как вирус осповакцины, аденоассоциированные вирусы, герпесвирусы, ретровирусы и т.п, с применением таких промоторов, как CMV, SV40, EF-1, UbC, RSV, ADV, BPV и β-актина. Типовой вектор для экспрессии гА13 описан у Plaimauer et al. (Blood. 2002 Nov 15;100(10):3626–32. Ериb 2002 Jul 12); содержание указанного источника включено в настоящую заявку посредством ссылки во всей полноте для любых целей.

[0231] Согласно определенным вариантам реализации способы культивирования клеток согласно настоящему изобретению могут включать применение микроносителя. Настоящее изобретение обеспечивает, наряду с прочими аспектами, способы крупномасштабной экспрессии белка ADAMTS. Согласно некоторым вариантам реализации культивирование клеток согласно вариантам реализации изобретения может проводиться в больших биореакторах в условиях, подходящих для получения высокого отношения поверхности к объему в культуре для достижения высокой плотности клеток и экспрессии белка. Одним из способов обеспечения таких условий роста является применение микроносителей для культивирования клеток в биореакторах с мешалкой. Согласно другому варианту реализации указанные ростовые потребности удовлетворяются посредством применения суспензионной культуры клеток.

IV. Конкретные варианты реализации

А. Рекомбинантный фактор фон Виллебранда (rVWF)

[0232] Рекомбинантный vWF можно экспрессировать в клетках млекопитающих, но удельная активность vWF может широко варьировать в зависимости от условий культивирования клеток; не было показано, что она сравнима или равна таковой vWF, выделенного из плазмы крови. Настоящее изобретение основано частично на неожиданном открытии, что среды для клеточных культур, содержащие по меньшей мере

2,4 мкг/л меди, обеспечивают благоприятный эффект, способствую экспрессии высокомолекулярного vWF, имеющего высокую удельную активность. В частности, высокомолекулярный рекомбинантный vWF согласно настоящему изобретению может включать высокомультимерную форму, содержащую от приблизительно 14 до приблизительно 22 димеров и обладающую удельной ристоцетиновой активностью, составляющей по меньшей мере приблизительно 30 мЕ/мкг. Процессы культивирования клеток согласно настоящему изобретению также позволяют поддерживать низкие уровни NH₄⁺ (например, менее чем 10 мМ) во время подготовительного процесса в системах культивирования клеток, уменьшая таким образом пагубные эффекты на посттрансляционные модификации. Предполагается, что согласно настоящему изобретению впервые предложены условия клеточных культур, включающие среду с подходящей концентрацией меди в комбинации с подходящими уровнями аммония в супернатанте, для экспрессии высокомультимерных vWF с высокой удельной активностью.

[0233] Согласно одному аспекту настоящее изобретение относится к условиям культивирования клеток для получения рекомбинантного высокомолекулярного vWF с высокой удельной активностью. Условия культивирования клеток согласно настоящему изобретению могут включать, например, среду для клеточной культуры с повышенной концентрацией меди и/или супернатант культуры клеток с низкой концентрацией аммония (NH4⁺). Согласно настоящему изобретению также предложены способы культивирования клеток в условиях клеточной культуры для экспрессии высокомолекулярного vWF с высокой удельной активностью.

[0234] Согласно одному из аспектов настоящее изобретение обеспечивает раствор культуры клеток для получения высокомолекулярного рекомбинантного белка vWF; указанный раствор культуры клеток содержит: среду для клеточной культуры, содержащую медь в концентрации по меньшей мере приблизительно 2,4 мкг/л; супернатант культуры клеток, содержащий аммоний в концентрации менее чем 10 мМ; и множество клеток, экспрессирующих высокомультимерный белок vWF, причем указанный белок vWF обладает удельной ристоцетиновой активностью, составляющей по меньшей мере приблизительно 30 мЕ/мкг.

- [0235] Согласно одному из конкретных вариантов реализации описанных выше культур клеток раствор культуры клеток содержит средовую добавку, содержащую медь.
- [0236] Согласно одному из конкретных вариантов реализации описанных выше культур клеток указанная средовая добавка содержит гидролизат, необязательно соевый гидролизат.
- [0237] Согласно одному из конкретных вариантов реализации описанных выше культур клеток указанная средовая добавка содержит соль меди, хелат меди или их комбинации.
- [0238] Согласно одному из конкретных вариантов реализации описанных выше культур клеток указанная соль меди выбрана из группы, состоящей из сульфата меди, ацетата меди, карбоната меди, хлорида меди, гидроксида меди, нитрата меди и оксида меди.
- [0239] Согласно одному из конкретных вариантов реализации описанных выше культур клеток концентрация меди составляет по меньшей мере приблизительно 4 мкг/л.
- [0240] Согласно одному из конкретных вариантов реализации описанных выше культур клеток концентрация меди составляет от приблизительно 2,4 мкг/л до приблизительно 20 мкг/л.
- [0241] Согласно одному из конкретных вариантов реализации описанных выше культур клеток белок vWF содержит от приблизительно 14 до приблизительно 22 димеров.
- [0242] Согласно одному аспекту настоящее изобретение обеспечивает способ получения высокомолекулярного рекомбинантного белка vWF; указанный способ включает этапы: а) обеспечения культуры клеток, содержащих нуклеиновую кислоту, кодирующую рекомбинантный белок vWF; b) экспрессии белка vWF в указанных клетках в условиях клеточной культуры, включающих среду для клеточной культуры, содержащую медь в концентрации по меньшей мере приблизительно 2,4 мкг/л, и супернатант культуры клеток, содержащий аммоний в концентрации менее чем приблизительно 10 мМ, причем указанный белок vWF представляет собой высокомультимерный белок vWF и имеет удельную ристоцетиновую активность, составляющую по меньшей мере приблизительно 30 мЕ/мкг.

- [0243] Согласно одному из конкретных вариантов реализации описанных выше способов указанные клетки представляют собой клетки млекопитающих.
- [0244] Согласно одному из конкретных вариантов реализации описанных выше способов указанные клетки взяты из непрерывной клеточной линии.
- [0245] Согласно одному из конкретных вариантов реализации описанных выше способов указанные клетки представляют собой клетки СНО.
- [0246] Согласно одному из конкретных вариантов реализации описанных выше способов концентрация меди составляет по меньшей мере приблизительно 4 мкг/л.
- [0247] Согласно одному из конкретных вариантов реализации описанных выше способов концентрация меди составляет от приблизительно от 2,4 мкг/л до приблизительно 20 мкг/л.
- [0248] Согласно одному из конкретных вариантов реализации описанных выше способов рекомбинантный белок vWF обладает удельной ристоцетин-кофакторной активностью, составляющей по меньшей мере приблизительно 50 мЕ/мкг.
- [0249] Согласно одному из конкретных вариантов реализации описанных выше способов рекомбинантный белок vWF обладает удельной ристоцетин-кофакторной активностью, составляющей от приблизительно 30 мЕ/мкг до приблизительно 100 мЕ/мкг.
- [0250] Согласно одному из конкретных вариантов реализации описанных выше способов рекомбинантный белок vWF содержит приблизительно 14 до приблизительно 22 димеров.
- [0251] Согласно одному из аспектов настоящее изобретение обеспечивает высокомолекулярный рекомбинантный белок vWF, получаемый при помощи процесса, включающего этапы: а) обеспечения культуры клеток, содержащих нуклеиновую кислоту, кодирующую рекомбинантный белок vWF; и b) экспрессии белка vWF в указанных клетках в условиях клеточной культуры, включающих среду для клеточной культуры, содержащую медь в концентрации по меньшей мере 2,4 мкг/л, и супернатант культуры клеток, содержащий аммоний в концентрации менее чем 10 мМ, причем указанный белок vWF представляет собой высокомультимерный белок vWF и обладает удельной ристоцетиновой активностью, составляющей по меньшей мере приблизительно 30 мЕ/мкг.

[0252] Согласно одному из конкретных вариантов реализации вышеописанных композиций rVWF рекомбинантный белок vWF обладает удельной ристоцетин-кофакторной активностью, составляющей по меньшей мере приблизительно 50 мЕ/мкг.

[0253] Согласно одному из конкретных вариантов реализации вышеописанных композиций rVWF рекомбинантный белок vWF обладает удельной ристоцетин-кофакторной активностью, составляющей от приблизительно 30 мЕ/мкг до приблизительно 100 мЕ/мкг.

[0254] Согласно одному из конкретных вариантов реализации вышеописанных композиций rVWF рекомбинантный белок vWF содержит приблизительно от 14 до приблизительно 22 димеров.

[0255] Согласно одному из аспектов настоящее изобретение обеспечивает раствор культуры клеток для получения высокомолекулярного рекомбинантного белка vWF, при этом указанный раствор культуры клеток включает: среду для клеточной культуры, содержащую медь в концентрации по меньшей мере приблизительно 2,4 мкг/л; супернатант культуры клеток, содержащий аммоний в концентрации менее чем 10 мМ; и множество клеток, экспрессирующих высокомультимерный белок vWF, причем указанный белок vWF содержит от приблизительно 14 до приблизительно 22 димеров и обладает удельной ристоцетиновой активностью по меньшей мере приблизительно 30 мЕ/мкг.

[0256] Согласно одному аспекту настоящее изобретение относится к условиям культивирования клеток для получения рекомбинантного высокомолекулярного vWF, находящегося в высокомультимерной форме с высокой удельной активностью. Условия культивирования клеток согласно настоящему изобретению могут включать, например, среду для клеточной культуры с повышенной концентрацией меди и супернатант культуры клеток с низкой концентрацией аммония (NH₄⁺). Согласно настоящему изобретению также предложены способы культивирования клеток в условиях клеточной культуры для экспрессии высокомолекулярного vWF с высокой удельной активностью.

[0257] Согласно одному аспекту настоящее изобретение включает раствор культуры клеток для получения высокомолекулярного рекомбинантного vWF, содержащего среду

для клеточной культуры, содержащую медь в концентрации по меньшей мере приблизительно 2,4 мкг/л; супернатант культуры клеток, содержащий аммоний в концентрации менее чем 10 мМ; и множество клеток, экспрессирующих высокомультимерные vWF, содержащие от приблизительно 14 до приблизительно 22 димеров, и обладающие удельной ристоцетиновой активностью, составляющей по меньшей мере приблизительно 30 мЕ/мкг. Согласно одному из вариантов реализации описанных выше растворов культур клеток по меньшей мере 10% rVWF присутствует в виде высокомолекулярного VWF мультимера из более чем 10 димеров. Согласно конкретному варианту реализации по меньшей мере 15% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно другому конкретному варианту реализации по меньшей мере 20% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно другому конкретному варианту реализации по меньшей мере 25% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно другому конкретному варианту реализации по меньшей мере 30% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно определенным вариантам реализации концентрация меди может составлять по меньшей мере приблизительно 4 мкг/л, либо концентрация меди может варьировать от приблизительно 2,4 мкг/л до приблизительно 20 мкг/л. Согласно некоторым вариантам реализации среды для клеточных культур содержат средовую добавку, содержащую медь. Согласно определенным вариантам реализации указанная средовая добавка может содержать гидролизат или а соль меди, хелат меди или их комбинации. Согласно некоторым вариантам реализации указанная соль меди может включать сульфат меди, ацетат меди, карбонат меди, хлорид меди, гидроксид меди, нитрат меди или оксид меди. Согласно определенным вариантам реализации клетки могут быть взяты из непрерывной клеточной линии и могут включать клетки млекопитающих, такие как клетки СНО. Согласно некоторым вариантам реализации указанный рекомбинантный vWF обладает удельной ристоцетин-кофакторной активностью, составляющей по меньшей мере приблизительно 50 мЕ/мкг, либо удельная ристоцетин-кофакторная активность может варьировать от приблизительно 30 мЕ/мкг до приблизительно 100 мЕ/мкг.

[0258] Согласно другому аспекту настоящее изобретение включает способ получения высокомолекулярного рекомбинантного vWF, включающий а) обеспечение культуры клеток; b) введение последовательности нуклеиновой кислоты, кодирующей vWF; c) отбор клеток, несущих указанную последовательность нуклеиновой кислоты; и, d) осуществление экспрессии vWF в указанных клетках в условиях клеточной культуры, включающих среду для клеточной культуры, содержащую медь в концентрации по меньшей мере приблизительно 2,4 мкг/л, и супернатант культуры клеток, содержащий аммоний в концентрации менее чем приблизительно 10 мМ, причем указанный vWF представляет собой высокомультимерный vWF, содержащий от приблизительно14 до приблизительно 22 димеров и обладающий удельной ристоцетиновой активностью по меньшей мере приблизительно 30 мЕ/мкг. Согласно одному варианту реализации супернатанта культуры клеток, описанной выше, по меньшей мере 10% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно конкретному варианту реализации по меньшей мере 15% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно другому конкретному варианту реализации по меньшей мере 20% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно другому конкретному варианту реализации по меньшей мере 25% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно другому конкретному варианту реализации по меньшей мере 30% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно некоторым вариантам реализации клетки, которые могут быть взяты из непрерывной клеточной линии, могут включать клетки млекопитающих, такие как клетки СНО. Согласно определенным вариантам реализации концентрация меди может составлять по меньшей мере приблизительно 4 мкг/л, либо концентрация меди может варьировать от приблизительно 2,4 мкг/л до приблизительно 20 мкг/л. Согласно некоторым вариантам реализации среды для клеточных культур содержат средовую добавку, содержащую медь. Согласно определенным вариантам реализации указанная средовая добавка может содержать гидролизат или соль меди, хелат меди или их комбинации. Согласно некоторым вариантам реализации указанная соль меди может включать сульфат меди, ацетат меди, карбонат меди, хлорид меди, гидроксид меди, нитрат меди или оксид меди.

Согласно некоторым вариантам реализации указанный рекомбинантный vWF обладает удельной ристоцетин-кофакторной активностью, составляющей по меньшей мере приблизительно 50 мЕ/мкг, либо удельная ристоцетин-кофакторная активность может варьировать от приблизительно 30 мЕ/мкг до приблизительно 100 мЕ/мкг.

[0259] Согласно еще одному аспекту настоящее изобретение охватывает высокомолекулярный рекомбинантный vWF, получаемый с помощью процесса, включающего этапы: а) обеспечения культуры клеток; b) введения последовательности нуклеиновой кислоты, кодирующей vWF; c) отбора клеток, несущих указанную последовательность нуклеиновой кислоты; и d) экспрессии vWF в указанных клетках в условиях клеточной культуры, включающих среду для клеточной культуры, содержащую медь в концентрации по меньшей мере 2,4 мкг/л, и супернатант культуры клеток, содержащий аммоний в концентрации менее чем 10 мМ, причем указанный vWF представляет собой высокомультимерный vWF, содержащий от приблизительно 14 до приблизительно 22 димеров и обладающий удельной ристоцетиновой активностью по меньшей мере приблизительно 30 мЕ/мкг. Согласно одному варианту реализации описанного выше супернатанта культуры клеток по меньшей мере 10% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно конкретному варианту реализации по меньшей мере 15% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно другому конкретному варианту реализации по меньшей мере 20% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно другому конкретному варианту реализации по меньшей мере 25% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно другому конкретному варианту реализации по меньшей мере 30% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно некоторым вариантам реализации клетки могут быть из непрерывной клеточной линии и могут включать клетки млекопитающих, такие как клетки СНО. Согласно определенным вариантам реализации концентрация меди может составлять по меньшей мере приблизительно 4 мкг/л, либо концентрация меди может варьировать от приблизительно 2,4 мкг/л до приблизительно 20 мкг/л. Согласно некоторым вариантам реализации среды для клеточных культур содержат средовую добавку, содержащую медь. Согласно

определенным вариантам реализации указанная средовая добавка может содержать гидролизат или соль меди, хелат меди или их комбинации. Согласно некоторым вариантам реализации указанная соль меди может включать сульфат меди, ацетат меди, карбонат меди, хлорид меди, гидроксид меди, нитрат меди или оксид меди. Согласно некоторым вариантам реализации указанный рекомбинантный vWF обладает удельной ристоцетин-кофакторной активностью, составляющей по меньшей мере приблизительно 50 мЕ/мкг, либо указанная удельная ристоцетин-кофакторная активность может варьировать от приблизительно 30 мЕ/мкг до приблизительно 100 мЕ/мкг.

[0260] Согласно одному из аспектов в соответствии с настоящим изобретением предложена композиция, содержащая рекомбинантный фактор фон Виллебранда (rVWF), обладающий удельной ристоцетин-кофакторной активностью, составляющей по меньшей мере 30 мЕ/мкг. Согласно предпочтительному варианту реализации указанная композиция обладает удельной ристоцетин-кофакторной активностью, составляющей по меньшей мере 40 мЕ/мкг. Согласно более предпочтительному варианту реализации указанная композиция обладает удельной ристоцетин-кофакторной активностью, составляющей по меньшей мере 50 мЕ/мкг. Согласно более предпочтительному варианту реализации указанная композиция обладает удельной ристоцетин-кофакторной активностью, составляющей по меньшей мере 60 мЕ/мкг. Согласно более предпочтительному варианту реализации указанная композиция обладает удельной ристоцетин-кофакторной активностью, составляющей по меньшей мере 70 мЕ/мкг. согласно еще более предпочтительному варианту реализации указанная композиция обладает удельной ристоцетин-кофакторной активностью, составляющей по меньшей мере 80 мЕ/мкг.

[0261] Согласно одному из вариантов реализации вышеописанных композиций по меньшей мере 10% rVWF в указанной композиции присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно конкретному варианту реализации по меньшей мере 15% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно другому конкретному варианту реализации по меньшей мере 20% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно другому конкретному варианту реализации по меньшей мере 25% rVWF присутствует в виде

высокомолекулярного мультимера VWF из более чем 10 димеров. Согласно другому конкретному варианту реализации по меньшей мере 30% rVWF присутствует в виде высокомолекулярного мультимера VWF из более чем 10 димеров.

[0262] Согласно одному из вариантов реализации вышеописанных композиций указанная композиция содержит культуральный супернатант. Согласно одному из конкретных вариантов реализации указанный культуральный супернатант представляет собой супернатант культуры клеток млекопитающих. Согласно более конкретному варианту реализации указанный супернатант культуры клеток млекопитающих представляет собой супернатант клеток СНО.

[0263] Согласно одному из вариантов реализации вышеописанных композиций, rVWF экспрессируется в культуре клеток, содержащей по меньшей мере 2,4 мкг/л меди. Согласно конкретному варианту реализации указанная культура клеток содержит по меньшей мере 4 мкг/л меди. Согласно более конкретному варианту реализации указанная культура содержит от 2,4 мкг/л до 20 мкг/л меди. Согласно одному из вариантов реализации медь представлена в виде соли меди, хелата меди или их комбинации. Согласно конкретному варианту реализации указанная соль меди выбрана из группы, состоящей из сульфата меди, ацетата меди, карбоната меди, хлорида меди, гидроксида меди, нитрата меди и оксида меди.

[0264] Согласно одному из вариантов реализации вышеописанных композиций указанная культура клеток представляет собой периодическую культуру.

[0265] Согласно одному из вариантов реализации вышеописанных композиций указанная культура клеток представляет собой непрерывную культуру. Согласно конкретному варианту реализации указанное непрерывное культивирование производится в хемостатическом режиме. Согласно другому конкретному варианту реализации указанное непрерывное культивирование производится в режиме перфузии.

[0266] Согласно одному из вариантов реализации вышеописанных композиций уровень $N{\rm H_4}^+$ в указанной культуре поддерживают на уровне концентрации ниже 4 мМ.

[0267] Согласно одному из вариантов реализации вышеописанных композиций плотность клеток в культуре поддерживают на уровне менее чем 2.5×10^6 клеток/мл.

[0268] Согласно одному из вариантов реализации вышеописанных композиций плотность клеток в культуре поддерживают на уровне менее чем $2,0 \times 10^6$ клеток/мл.

[0269] Согласно одному из вариантов реализации вышеописанных композиций указанную культуру поддерживают на уровне менее чем $1,5 \times 10^6$ клеток/мл.

[0270] Согласно одному из вариантов реализации вышеописанных композиций, rVWF коэкспрессируется с рекомбинантным фактором VIII (rFVIII). Согласно конкретному варианту реализации бо́льшую часть коэкспрессируемого rFVIII удаляют. Согласно более конкретному варианту реализации отношение rVWF к rFVIII в указанной композиции составляет по меньшей мере 10:1.

[0271] Согласно одному из вариантов реализации вышеописанных композиций указанную композицию получают в форме для фармацевтического введения. Согласно конкретному варианту реализации указанную композицию получают в форме для внутривенного, подкожного или внутримышечного введения.

[0272] Согласно одному из вариантов реализации вышеописанных композиций указанную композицию лиофилизируют.

[0273] Согласно еще одному аспекту настоящее изобретение включает высокомолекулярный рекомбинантный vWF, получаемый с помощью процесса, включающего этапы: а) обеспечения культуры клеток; b) введения последовательности нуклеиновой кислоты, кодирующей vWF; c) отбора клеток, несущих указанную последовательность нуклеиновой кислоты; и d) осуществление экспрессии vWF в указанных клетках в условиях клеточной культуры, включающих среду для клеточной культуры, содержащую медь в концентрации по меньшей мере 2,4 мкг/л, и супернатант культуры клеток, содержащий аммоний в концентрации менее чем 10 мМ, причем указанный vWF представляет собой высокомультимерный vWF, содержащий от приблизительно 14 до приблизительно 22 димеров и обладающий удельной ристоцетиновой активностью по меньшей мере приблизительно 30 мЕ/мкг. Очевидно, что здесь могут применяться все варианты реализации и концентрации, описанные в разделах «Среды для клеточных культур» и «Способы получения рекомбинантного vWF» выше.

[0274] Рекомбинантный vWF согласно настоящему изобретению может включать высокомолекулярный рекомбинантный белок vWF, обладающий высокой удельной активностью. Согласно одному из вариантов реализации vWF согласно настоящему изобретению представляет собой высокомультимерную форму vWF. Согласно некоторым вариантам реализации указанная высокомультимерная форма vWF содержит по меньшей мере до приблизительно 14 димеров, а согласно другим вариантам реализации – по меньшей мере до приблизительно 22 димера. Согласно другим вариантам реализации высокомультимерная форма vWF может варьировать от приблизительно 10 до приблизительно 20 димеров, или от приблизительно 15 до приблизительно 25 димеров, или от приблизительно 40 димеров. Согласно определенным вариантам реализации рекомбинантный vWF сопоставим с vWF плазмы.

[0275] Согласно приведенному в настоящей заявке описанию в соответствии с настоящим изобретением получен неожиданный результат, состоящий в том, что повышенная концентрация меди в культуре клеток среды позволяет получать высокомолекулярный vWF с высокой удельной активностью. Среды для клеточных культур, содержащие медь в концентрации, например, выше, чем приблизительно 2,4 мкг/л, могут повышать выход рекомбинантного мультимерного vWF по сравнению с не содержащими медь средами. Согласно определенным вариантам реализации процент мультимерного vWF (*m.e.* rVWF, содержащего по меньшей мере 2 димера) может быть выше, чем приблизительно 50%, или выше, чем приблизительно 90%. Уровень мультимеризации vWF может быть проанализирован с применением стандартных техник, таких как, например, in электрофорез в агарозе в невосстанавливающих условиях.

[0276] Согласно настоящей заявке рекомбинантный vWF, полученный при помощи способов согласно настоящему изобретению, может обладать высокой удельной активностью, например, высокой удельной ристоцетин-кофакторной активностью. Согласно одному из вариантов реализации рекомбинантный vWF, полученный при помощи способов согласно настоящему изобретению, может обладать удельной ристоцетин-кофакторной активностью, составляющей по меньшей мере 30 мЕ/мкг, а согласно другому варианту реализации – по меньшей мере 50 мЕ/мкг. Согласно другим вариантам реализации удельная ристоцетин-кофакторная активность может варьировать

от приблизительно 30 мЕ/мкг до приблизительно 100 мЕ/мкг или от приблизительно 50 мЕ/мкг до приблизительно 100 мЕ/мкг.

В. Рекомбинантный ADAMTS13 (rA13)

[0277] Белки ADAMTS (*т.е.* ADAMTS-1–ADAMTS-20) представляют собой семейство секретируемых цинковых металлопротеиназ, имеющих общую модулярную доменную организацию (для ознакомления см. Flannery C.R., Front Biosci. 2006 Jan 1;11:544–69). Все белки ADAMTS имеют общее строение центрального домена, состоящего из сигнального пептида, за которым следует продомен, цинк-зависимый металлопротеиназный каталитический домен, дезинтегрин-подобный домен, повтор тромбоспондина типа I, цистеин-богатый домен и спейсерный домен (Apte S.S., J Biol Chem. 2009 Nov 13;284(46):31493–7). Помимо этого, все они, кроме ADAMTS-4, содержат по меньшей мере еще один домен повтора тромбоспондина типа I, и многие из белков ADAMTS содержат один или более дополнительный вспомогательный домен. В частности, сообщалось, что все белки ADAMTS, по всей видимости, содержат по меньшей мере один кальций-связывающий сайт и по меньшей мере один цинк-связывающий сайт, расположенные внутри металлопротеиназного каталитического домена (Andreini et al., J. Proteome Res., 2005, 4 (3), pp 881–888).

[0278] Описана биологическая роль белков ADAMTS при различных заболеваниях и состояниях, включая антиангиогенез, интерстициальный фиброз почек, перестройку костной ткани, фолликулогенез в яичниках, атеросклероз, развитие мочеполовой системы и рост/ремоделирование опухолей (ADAMTS-1); синдром Элерса—Данлоса типа 7С и бычий дерматоспараксис (ADAMTS-2); артрит, атеросклероз и тендинопатия (ADAMTS-4); артрит и глиобластома (ADAMTS-5); артрит (ADAMTS-7); антиангиогенез, злокачественные новообразования мозга, артрит и атеросклероз (ADAMTS-8); артрит (ADAMTS-9, -12); тромботическая тромбоцитопеническая пурпура (ADAMTS-13); и антитромбоз/инсульт (ADAMTS18) (для ознакомления см. Lin and Liu, Open Access Rheumatology Research and Reviews 2009:1 121–131).

[0279] Рекомбинантный ADAMTS13 (A13) экспрессировали в клетках млекопитающих и прежде, однако удельная активность широко варьирует в зависимости от условий

культивирования клеток. Было обнаружено, что многие коммерчески доступные культуральные среды непригодны для экспрессии гА13 с высокой удельной активностью, выражаемой как отношение активности, измеренной посредством анализа FRETS-VWF73, к содержанию антигена, согласно оценке с применением ELISA. Согласно одному аспекту способы, предложенные согласно настоящему изобретению, основаны на нескольких полезных открытиях, позволяющих осуществлять экспрессию в культуре клеток белка гА13, обладающего повышенными уровнями общей и удельной активности.

[0280] Соответственно, благодаря общим структурно-функциональным связям семейства ADAMTS секретируемых металлопротеиназ, предлагаемые согласно настоящему изобретению способы позволяют экспрессировать в культуре клеток и выделять из клеточной среды все белки ADAMTS.

[0281] Согласно одному из аспектов в соответствии с настоящим изобретением предложена композиция, содержащая рекомбинантный ADAMTS13 (rA13), обладающий удельной FRETS-VWF активностью, составляющей по меньшей мере 1600 мЕ/мкг.

[0282] Согласно одному из вариантов реализации вышеописанных композиций указанный гА13 обладает удельной FRETS-VWF активностью, составляющей по меньшей мере 800 мЕ/мкг.

[0283] Согласно одному из вариантов реализации вышеописанных композиций указанная композиция содержит культуральный супернатант. Согласно конкретному варианту реализации указанный культуральный супернатант представляет собой супернатант культуры клеток млекопитающих. Согласно более конкретному варианту реализации указанный супернатант культуры клеток млекопитающих представляет собой супернатант клеток СНО.

[0284] Согласно одному варианту реализации вышеописанных композиций указанный гА13 экспрессируется в культуре клеток, содержащей по меньшей мере 1 мкг/л меди. Согласно конкретному варианту реализации указанная культура клеток содержит по меньшей мере 2 мкг/л меди. Согласно более конкретному варианту реализации указанная культура содержит от 2 мкг/л до 20 мкг/л меди.

[0285] Согласно одному из вариантов реализации вышеописанных композиций медь представлена в виде соли меди, хелата меди или их комбинации. Согласно конкретному варианту реализации указанная соль меди выбрана из группы, состоящей из сульфата меди, ацетата меди, карбоната меди, хлорид меди, гидроксид меди, нитрата меди и оксида меди.

[0286] Согласно одному из вариантов реализации вышеописанных композиций указанная культура клеток представляет собой периодическую культуру.

[0287] Согласно одному из вариантов реализации вышеописанных композиций указанная культура клеток представляет собой непрерывную культуру. Согласно конкретному варианту реализации непрерывное культивирование производится в хемостатическом режиме. Согласно другому конкретному варианту реализации непрерывное культивирование производится в режиме перфузии.

[0288] Согласно одному из вариантов реализации вышеописанных композиций уровень NH_4^+ в указанной культуре поддерживают на уровне концентрации ниже 5 мМ.

[0289] Согласно одному из вариантов реализации вышеописанных композиций уровень NH_4^+ в указанной культуре поддерживают на уровне концентрации ниже 4 мМ.

[0290] Согласно одному из вариантов реализации вышеописанных композиций плотность клеток в культуре поддерживают на уровне менее чем $4,0\times10^6$ клеток/мл. Согласно конкретному варианту реализации плотность клеток в культуре поддерживают на уровне менее чем $3,0\times10^6$ клеток/мл. Согласно конкретному варианту реализации плотность клеток в культуре поддерживают на уровне менее чем $2,0\times10^6$ клеток/мл. Согласно более конкретному варианту реализации плотность клеток в культуре поддерживают на уровне менее чем $1,5\times10^6$ клеток/мл.

[0291] Согласно одному из вариантов реализации вышеописанных композиций указанную композицию получают в форме для фармацевтического введения. Согласно конкретному варианту реализации указанную композицию получают в форме для внутривенного, подкожного или внутримышечного введения.

[0292] Согласно одному из вариантов реализации вышеописанных композиций указанную композицию лиофилизируют.

V. Составы

[0293] Согласно одному аспекту составы, содержащие рекомбинантные терапевтические белки rVWF или rA13 согласно настоящему изобретению, лиофилизируют перед введением. Лиофилизация проводится с применением общеизвестных в данной области техники методик и должна быть оптимизирована для разрабатываемой композиции [Tang et al., Pharm Res. 21:191–200, (2004) и Chang et al., Pharm Res. 13:243–9 (1996)].

[0294] Способы получения фармацевтических составов может включать один или более следующий этап: добавление стабилизирующего агента согласно описанию в настоящей заявке к указанной смеси перед лиофилизацией, добавление по меньшей мере одного агента, выбранного из объемообразующего агента, регулирующего осмолярность агента и ПАВ, каждый из которых соответствует приведенному в настоящей заявке описанию, к указанной смеси перед лиофилизацией. Лиофилизированный состав состоит, согласно одному аспекту, по меньшей мере из чего-либо одного или более из: буфера, объемообразующего агента и стабилизатора. Согласно этому аспекту оценивают полезность поверхностно-активного вещества и используют его в случаях, когда слипание на этапе процесса лиофилизации или восстановления представляет собой проблему. Для поддержания стабильности рН состава во время лиофилизации вводят подходящий буферизирующий агент.

[0295] Стандартный способ восстановления лиофилизированного материала заключается в повторном добавлении объема чистой воды или стерильной воды для инъекций (WFI) (как правило, эквивалентного объему, удаленному во время лиофилизации), хотя при получении фармацевтиков для парентерального введения иногда применяют разбавленные растворы антибактериальных агентов [Chen, Drug Development and Industrial Pharmacy, 18:1311–1354 (1992)]. Соответственно, предложены способы получения восстановленных композиций рекомбинантного VWF, включающие этап добавления разбавителя к лиофилизированной композиции рекомбинантного VWF согласно настоящему изобретению.

[0296] Лиофилизированный материал может быть восстановлен в виде водного раствора. Различные водные носители, например, стерильная вода для инъекций, вода с консервантами для многодозового применения или вода с подходящим количеством поверхностно-активных веществ (например, водная суспензия, которая содержит активное соединение в смеси с вспомогательными веществами, подходящими для получения водных суспензий). Согласно различным аспектам такие вспомогательные вещества представляют собой суспендирующие агенты, например, и без ограничения, карбоксиметилцеллюлозу натрия, метилцеллюлозу, гидроксипропилметилцеллюлозу, альгинат натрия, поливинилпирролидон, трагакантовую камедь и аравийскую камедь; диспергирующие или смачивающие агенты представляют собой встречающиеся в природе фосфатиды, например, и без ограничения, лецитин или продукты конденсации алкиленоксида с жирными кислотами, например, и без ограничения, полиоксиэтиленстеарат, или продукты конденсации этиленоксида с длинноцепочечными алифатическими спиртами, например, и без ограничения, гептадекаэтил-еноксицетанолом, или продукты конденсации этиленоксида с неполными эфирами, полученными из жирных кислот и гексита, такими как полиоксиэтиленсорбитмоноолеат, или продукты конденсации этиленоксида с неполными эфирами, полученными из жирных кислот и ангидридов гексита, например, и без ограничения, такими как полиэтиленсорбитанмоноолеат. Согласно различным аспектам указанные водные суспензии также содержат один или более консервант, например, и без ограничения, этил, или н-пропил, п-гидроксибензоат.

[0297] Для введения композиций человеку или экспериментальным животным, согласно одному аспекту, указанные композиции содержат один или более фармацевтически приемлемый носитель. Выражения «фармацевтически» или «фармакологически» приемлемый относятся к молекулярным субстанциям и композициям, которые стабильны, подавляют разложение белков, например, агрегацию и продукты расщепления, и, кроме того, не вызывают аллергических или другие нежелательных реакций при введении с применением путей, общеизвестных в данной области техники, согласно приведенному ниже описанию. «Фармацевтически приемлемые носители» включают любые и все из клинически полезных растворителей, дисперсионных сред, покрытий, антибактериальных

и противогрибковых агентов, изотонических и задерживающих абсорбцию агентов и т.п, включая агенты, описанные выше.

[0298] Указанные фармацевтические составы вводят внутривенно, перорально, местно, трансдермально, парентерально, путем ингаляции, вагинально, ректально или путем внутричерепной инъекции. Используемый в настоящей заявке термин «парентеральный» включает подкожные инъекции, внутривенные, внутримышечные, интрацистернальные инъекции или инфузионные техники. Также включено введение путем внутривенной, внутрикожной, внутримышечной, интрамаммарной, внутрибрюшинной, интратекальной, ретробульбарной, внутрилегочной инъекции и/или хирургической имплантации в конкретный участок. Как правило, композиции по существу не содержат пирогенов, а также других примесей, которые могут быть вредными для реципиента.

[0299] Однократное или многократное введение указанных композиций выполняют с применением дозировок и схем, выбранных лечащим врачом. Подходящая для предотвращения или лечения заболевания дозировка зависит от типа заболевания, лечение которого проводят, тяжести и течения заболевания, от того, вводится ли лекарственное средство с профилактической или терапевтической целью, от предшествующей терапии, истории болезни пациента и реакции на лекарственное средство, и на основании выбора лечащего врача.

[0300] Согласно одному аспекту составы согласно настоящему изобретению вводят сначала в виде болюса, а затем следует непрерывная инфузия для поддержания терапевтических циркулирующих уровней лекарственного продукта. В другом примере соединение согласно настоящему изобретению вводят в виде однократной дозы. Специалисты в данной области техники смогут легко оптимизировать эффективные дозировки и схемы введения в соответствии с надлежащей медицинской практикой и клиническим состоянием пациента. Частота введения доз зависит от фармакокинетических параметров агентов и пути введения. Оптимальный фармацевтический состав определяет специалист в данной области техники в зависимости от пути введения и требуемой дозировки. См., например, Remington's Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton, Pa. 18042), стр. 1435–1712, включенные в настоящую заявку посредством ссылки. Такие составы влияют на

физическое состояние, стабильность, скорость высвобождения in vivo и скорость клиренса in vivo введенных агентов. В зависимости от путь введения подходящую дозу вычисляют в соответствии с массой тела, площадью поверхности тела или размером органа. Подходящие дозировки могут быть уточнены посредством стандартных способов определения уровней дозы в крови в сочетании с подходящими данными о зависимости доза-эффект. Окончательный режим дозирования определяет лечащий врач с учетом различных факторов, модифицирующих действие лекарственных средств, например, удельной активности лекарственного средства, тяжести поражения и отклика пациента, возраста, состояния, массы тела, пола и рациона питания пациента, тяжести любой инфекции, времени введения и других клинических факторов. Например, типичная доза рекомбинантного vWF согласно настоящему изобретению составляет приблизительно 50 Е/кг, что равно 500 мкг/кг. По мере проведения исследований появляется дополнительная информация относительно подходящих уровней дозировок и продолжительности лечения различных заболеваний и состояний.

VI. Способы лечения

[0301] Настоящее изобретение также охватывает способы лечения пациента, нуждающегося в rVWF или rA13, полученных согласно способам, описанным в настоящей заявке. Такие способы лечения могут включать введение фармацевтических составов, содержащих рекомбинантный rA13 или высокомолекулярный рекомбинантный vWF согласно настоящему изобретению.

[0302] Согласно другому аспекту настоящее изобретение обеспечивает способы терапевтического или профилактического лечения, включающие введение композиции rVWF или rA13, предложенной в настоящем изобретении. Как правило, для терапевтического применения составы вводят пациенту с заболеванием или состоянием, связанным с дисфункцией ADAMTS13 или VWF, или нуждающемуся в этом по иной причинам, в «терапевтически эффективной дозе». Составы и количества, эффективные для указанного применения, зависят от тяжести указанного заболевания или состояния, и от общего состояния здоровья пациента. В зависимости от дозировки и частоты, требуемых и переносимых пациентом, может осуществляться однократное или многократное введение указанных составов.

[0303] Согласно одному из вариантов реализации в соответствии с настоящим изобретением предложены способы лечения или предотвращения заболеваний или состояний, связанных с дисфункцией ADAMTS13 или VWF. Согласно дальнейшему варианту реализации фармацевтические составы, содержащие рекомбинантный vWF, могут вводиться для лечения заболеваний, связанных с vWF, таких как болезнь Виллебранда или гемофилия. Согласно другому варианту реализации в соответствии с настоящим изобретением предложены способы лечения или предотвращения заболеваний или состояний, связанных с образованием и/или присутствием одного или более тромба, включающие введение композиции гА13, предложенной в настоящей заявке. Согласно другому варианту реализации настоящее изобретение обеспечивает способы разрушения одного или более тромба у нуждающегося в этом пациента. Согласно другим вариантам реализации настоящее изобретение обеспечивает способы лечения или предотвращения инфаркта у нуждающегося в этом пациента. Как правило, предложенные в соответствии с настоящим изобретением способы включают введение композиции гАDAMTS13 согласно настоящему изобретению нуждающемуся в этом пациенту.

[0304] Неограничивающими примерами расстройств, связанных с образованием и/или присутствием одного или более тромба, являются наследственная тромботическая тромбоцитопеническая пурпура (ТТП), приобретенная ТТП, артериальный тромбоз, острый инфаркт миокарда (ОИМ), инсульт, сепсис и диссеминированное внутрисосудистое свертывание (ДВС).

[0305] Неограничивающие примеры расстройств, связанных с инфарктом, включают без ограничения инфаркт миокарда (сердечный приступ), эмболию легких, цереброваскулярные нарушения, такие как инсульт, окклюзионная болезнь периферических артерий (например, гангрена), антифосфолипидный синдром, сепсис, гигантоклеточный артериит (ГКА), грыжа и заворот кишок.

VII. Примеры

[0306] Настоящее изобретение будет также проиллюстрировано следующими примерами, не ограничиваясь ими.

Пример 1

[0307] Эксперименты $\bf c$ непрерывной культурой клеток проводили $\bf c$ применением культуры рекомбинантной клеточной линии CHO, экспрессирующей vWF. Основная среда представляла собой DMEM/F12, содержащую приблизительно 0,3 мкг/л Cu²⁺. В указанную среду был добавлен соевый гидролизат и сульфат меди (CuSO₄·5H₂O) $\bf c$ получением конечной концентрации меди $\bf b$ среде выше, чем по меньшей мере 2,4 мкг/л.

[0308] Рекомбинантные клетки СНО, экспрессирующие vWF, культивировали в непрерывной клеточной культуре таким образом, что уровни аммония (NH_4^+) находились на уровне концентрации менее чем приблизительно 10 мМ. Было обнаружено, что системы производства, обеспечивающие непрерывное поступление среды (например, перфузионные или хемостатические культуры) предпочтительны, так как стандартные техники периодических или подпитываемых культур приводят к высоким концентрациям NH_4^+ в конце культивирования. В конце культивирования выделяли высокомультимерный vWF и измеряли удельную ристоцетин-кофакторную активность vWF.

Пример 2

[0309] Рекомбинантный фактор VIII (rFVIII) и фактор фон Виллебранда (rVWF) коэкспрессировали в периодических культурах клеток GD8/6 для определения эффекта состава культуральной среды на экспрессию и активность VWF. Вкратце, клетки GD8/6 культивировали в непрерывном режиме в среде BAV-SP, состоящей из порошка модифицированной основной среды DMEM/F12 (табл. 5) и дополнительных добавок, также содержащих 4 г/л соевого гидролизата, см. табл. 6, с добавлением или без добавления дополнительной меди. Для исследования эффекта низких концентраций меди на экспрессию и активность rVWF использовали основные BAV-SP среды. Указанные основные среды содержали 0,3 мкг/л меди и добавленный соевый гидролизат, что добавляло еще 0,7 мкг/л меди, как было установлено экспериментально, с получением конечной концентрации меди 1,0 мкг/л. Для сравнения в среды BAV-SP, используемые для периодических культур, также добавляли дополнительно 3,3 мкг/л Cu²⁺, что давало конечную концентрацию меди 4,3 мкг/л, для определения действия высоких концентраций меди на экспрессию и активность VWF.

Таблица 5. Состав культуральных сред BAV-SP

Компоненты мг/л Аминокислоты 4,45 L-Аланин 4,45 L-Аспарагин-Н ₂ O 30,21 L-Аспарагин-Овая кислота 6,65 L-Цистин 2HCl 57,35 L-Глутаминовая кислота 7,35 Глицин 18,75 L-Гистидин-Н2O HCl 31,48 Гидрокси-L-Пролин 54,47 L-Изолейцин 59,05 L-Лизин HCl 91,25 L-Метионин 17,24 L-Фенилаланин 35,48 L-Пролин 52,24 L-Серин 26,25 L-Треонин 53,45 L-Трирозин 2Na 2H2O 55,79 L-Валин 52,85 Витамин 3,499 Биотин 0,003 Холинхлорид 8,980 D-Са-Пантотенат 2,650 I-Инозитол 12,600 Никотинамид 2,020 Пиридоксин HCl 2,031 Рибофлавин 0,219 Тиамин HCl 2,170 Витамин HC	Среда BAV-SP	
Аминокислоты 4,45 L-Аланин 4,45 L-Аргинин HCl 147,50 L-Аспарагин-Р₂О 30,21 L-Аспарагиновая кислота 6,65 L-Цистин HCl-H₂O 32,55 L-Цистин 2HCl 57,35 L-Глутаминовая кислота 7,35 Глицин 18,75 L-Гистидин-H₂O HCl 31,48 Гидрокси-L-Пролин 2-44 L-Лазонйцин 54,47 L-Лайин 59,05 L-Лайин 17,24 L-Метионин 17,24 L-Фенилаланин 35,48 L-Пролин 52,24 L-Серин 26,25 L-Треонин 53,45 L-Триптофан 29,01 L-Триптофан 29,01 L-Триптофан 29,01 L-Триптофан 29,01 L-Триозин 2Na 2H2O 55,79 L-Валин 3,499 Битамин 3,499 Битамин 0,0035 Холинхлорид 8,980 D-Са-Пантотенат		мг/п
L-Аланин 4,45 L-Аргинин HCI 147,50 L-Аспарагин-И₂О 30,21 L-Аспарагиновая кислота 6,65 L-Цистеин HCI-И₂О 32,55 L-Гистин 2HCI 57,35 L-Гутаминовая кислота 7,35 Гистидин 18,75 L-Гистидин-И₂О HCI 31,48 Гидрокси-L-Пролин		WII73I
L-Аргинин HCI 147,50 L-Аспарагин-H₂O 30,21 L-Аспарагиновая кислота 6,65 L-Цистенн HCI-H₂O 32,55 L-Гдутаминовая кислота 7,35 Глицин 18,75 L-Гистидин-H₂O HCI 31,48 Гидрокси-L-Пролин		4.45
L-Аспарагин-Н₂О 30,21 L-Аспарагиновая кислота 6,65 L-Цистеин HCl-Н₂О 32,55 L-Пистин 2HCl 57,35 L-Гиутаминовая кислота 7,35 Глицин 18,75 L-Гистидин-Н₂О HCl 31,48 Гидрокси-L-Пролин 1-12,42 L-Изолейцин 54,47 L-Люйцин 59,05 L-Лизин HCl 91,25 L-Метионин 17,24 L-Фенилаланин 35,48 L-Пролин 52,24 L-Серин 26,25 L-Треонин 53,45 L-Тирозин 2Na 2H2O 55,79 L-Валин 52,85 Витамин 3,499 Вотин 0,0035 Холинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 2,650 1-Инозитол 12,600 Никотинамид 2,020 Пиридоксин HCl 2,031 Рибофлавин 0,219 Витамин B12 0,680 <		
L-Аспарагиновая кислота 6,65 L-Цистин HCl-H ₂ O 32,55 L-Путаминовая кислота 7,35 Глицин 18,75 L-Гистидин-H ₂ O HCl 31,48 Гидрокси-L-Пролин		
L-Цистин HCl-H2O 32,55 L-Цистин 2HCl 57,35 L-Глутаминовая кислота 7,35 Глицин 18,75 L-Гистидин-H2O HCl 31,48 Гидрокси-L-Пролин		
L-Цистин 2HCl 57,35 L-Глутаминовая кислота 7,35 Глицин 18,75 L-Гистидин-Н ₂ O HCl 31,48 Гидрокси-L-Пролин 1 L-Изолейцин 54,47 L-Лейцин 59,05 L-Лизин HCl 91,25 L-Метионин 17,24 L-Фенилаланин 35,48 L-Пролин 52,24 L-Серин 26,25 L-Треонин 53,45 L-Триотофан 29,01 L-Тирозин 2Na 2H2O 55,79 L-Валин 52,85 Витамин 52,85 Витамин 0,0035 Холинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 2,650 I-Инозитол 12,600 Никотинамид 2,020 Пиридоксин HCl 2,031 Рибофлавин 0,219 Тиамин HCl 2,170 Витамин в12 0,680 Неорганические соли Кальция хлорид (СаС12) 116,600		
L-Глутаминовая кислота 7,35 Глицин 18,75 L-Гистидин-Н ₂ O HCl 31,48 Гидрокси-L-Пролин 31,48 L-Изолейцин 54,47 L-Лейцин 59,05 L-Лизин HCl 91,25 L-Метионин 17,24 L-Фенилаланин 35,48 L-Пролин 52,24 L-Серин 26,25 L-Треонин 53,45 L-Тирозин 2Na 2H2O 55,79 L-Валин 52,85 Витамин 4 Аскорбиновая кислота 3,499 Биотин 0,0035 Холинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 12,600 Никотинамид 2,020 Пиридоксин HCl 2,031 Рибофлавин 0,219 Тиамин HCl 2,170 Витамин B12 0,680 Неорганические соли Кальция хлорид (СаС12) 116,600 Сульфат медиз (Fe(NO ₃)3-9H ₂ O) 0,0013 Нитрат желез		
Глицин 18,75 L-Гистидин-Н₂О НСІ 31,48 Гидрокси-L-Пролин 31,48 L-Изолейцин 59,05 L-Лизин НСІ 91,25 L-Метионин 17,24 L-Фенилаланин 35,48 L-Пролин 52,24 L-Серин 26,25 L-Треонин 53,45 L-Триптофан 29,01 L-Тирозин 2Na 2H2O 55,79 L-Валин 52,85 Витамин		
L-Гистидин-Н₂О НСІ 31,48 Гидрокси-L-Пролин 54,47 L-Лайцин 59,05 L-Лизин НСІ 91,25 L-Метионин 17,24 L-Фенилаланин 35,48 L-Пролин 52,24 L-Серин 26,25 L-Треонин 53,45 L-Тирозин 2Na 2H2O 55,79 L-Валин 52,85 Витамин 4 Аскорбиновая кислота 3,499 Биотин 0,0035 Холинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 12,600 Никотинамид 2,020 Пиридоксин НСІ 2,031 Рибофлавин 0,219 Тиамин НСІ 2,170 Витамин В12 0,680 Неорганические соли Кальция хлорид (CaCl2) 116,600 Сульфат медя (Fe(NO ₃)3-9H ₂ O) 0,0013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 </td <td></td> <td></td>		
Гидрокси-L-Пролин L-Изолейцин 54,47 L-Лейцин 59,05 L-Лизин HCl 91,25 L-Метионин 17,24 L-Фенилаланин 35,48 L-Пролин 52,24 L-Серин 26,25 L-Треонин 53,45 L-Триптофан 29,01 L-Тирозин 2Na 2H2O 55,79 L-Валин 52,85 Витамин 3,499 Биотин 0,0035 Холинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 2,650 I-Инозитол 12,600 Никотинамид 2,020 Пиридоксин HCl 2,031 Рибофлавин 0,219 Тиамин B12 0,680 Неорганические соли Кальция хлорид (CaCl2) 116,600 Сульфат меди (CuSO ₄ ,5H ₂ O) 0,0013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфа		
L-Изолейцин 54,47 L-Лейцин 59,05 L-Лизин HCl 91,25 L-Метионин 17,24 L-Фенилаланин 35,48 L-Пролин 52,24 L-Серин 26,25 L-Треонин 53,45 L-Триптофан 29,01 L-Тирозин 2Na 2H2O 55,79 L-Валин 52,85 Витамин 0,0035 Колинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 2,650 I-Инозитол 12,600 Никотинамид 2,020 Пиридоксин HCl 2,031 Рибофлавин 0,219 Тиамин HCl 2,170 Витамин B12 0,680 Неорганические соли Кальция хлорид (CaCl2) 116,600 Сульфат меди (CuSO ₄ ,5H ₂ O) 0,0013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840		31,46
L-Лизин HCl 91,25 L-Метионин 17,24 L-Фенилаланин 35,48 L-Пролин 52,24 L-Серин 26,25 L-Треонин 53,45 L-Триптофан 29,01 L-Тирозин 2Na 2H2O 55,79 L-Валин 52,85 Витамин 34,99 Биотин 0,0035 Холинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 2,650 I-Инозитол 12,600 Никотинамид 2,020 Пиридоксин HCl 2,031 Рибофлавин 0,219 Тиамин HCl 2,170 Витамин B12 0,680 Неорганические соли Кальция хлорид (CaCl2) 116,600 Сульфат медаз (Fe(NO3)3-9H2O) 0,0013 Нитрат железа (Fe(NO3)3-9H2O) 0,050 Сульфат железа (FeSO4-7H2O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (КСl) 311,800		51.47
L-Лизин HCl 91,25 L-Метионин 17,24 L-Фенилаланин 35,48 L-Пролин 52,24 L-Серин 26,25 L-Треонин 53,45 L-Триптофан 29,01 L-Тирозин 2Na 2H2O 55,79 L-Валин 52,85 Витамин 0,0035 Колинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 2,650 I-Инозитол 12,600 Никотинамид 2,020 Пиридоксин HCl 2,031 Рибофлавин 0,219 Тиамин B12 0,680 Неорганические соли Кальция хлорид (CaCl2) 116,600 Сульфат меда (Fe(NO3)3-9H2O) 0,0013 Нитрат железа (Fe(NO3)3-9H2O) 0,050 Сульфат железа (FeSO4-7H2O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (КСl) 311,800 Хлорид натрия (NaCl) 6995,500 Фосфат натрия (NaH2PO4)		
L-Метионин 17,24 L-Фенилаланин 35,48 L-Пролин 52,24 L-Серин 26,25 L-Треонин 53,45 L-Триптофан 29,01 L-Тирозин 2Na 2H2O 55,79 L-Валин 52,85 Витамин Аскорбиновая кислота 3,499 Биотин 0,0035 Холинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 2,650 І-Инозитол 12,600 Никотинамид 2,020 Пиридоксин НСІ 2,031 Рибофлавин 0,219 Тиамин НСІ 2,170 Витамин В12 0,680 Неорганические соли Кальция хлорид (CaCl2) 116,600 Сульфат меди (CuSO ₄₋ 5H ₂ O) 0,0013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (КСІ) 311,800 Хлорид натрия (NaCl) 6995,500 <tr< td=""><td></td><td></td></tr<>		
L-Фенилаланин 35,48 L-Пролин 52,24 L-Серин 26,25 L-Треонин 53,45 L-Триптофан 29,01 L-Тирозин 2Na 2H2O 55,79 L-Валин 52,85 Витамин Аскорбиновая кислота 3,499 Биотин 0,0035 Холинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 12,600 Никотинамид 2,020 Пиридоксин HCl 2,031 Рибофлавин 0,219 Тиамин HCl 2,170 Витамин B12 0,680 Неорганические соли 116,600 Сульфат меди (CuSO ₄ ,5H ₂ O) 0,0013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (КСl) 311,800 Хлорид натрия (NaCl) 6995,500 Фосфат натрия (NaCl) 62,500		_
L-Пролин 52,24 L-Серин 26,25 L-Треонин 53,45 L-Триптофан 29,01 L-Тирозин 2Na 2H2O 55,79 L-Валин 52,85 Витамин Аскорбиновая кислота 3,499 Биотин 0,0035 Холинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 2,650 I-Инозитол 12,600 Никотинамид 2,020 Пиридоксин НСІ 2,031 Рибофлавин 0,219 Тиамин НСІ 2,170 Витамин В12 0,680 Неорганические соли 116,600 Сульфат меди (CuSO _{4.5} H ₂ O) 0,0013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (КСІ) 311,800 Мосфат натрия (NaCl) 6995,500 Фосфат натрия (NaCl) 62,500		
L-Серин 26,25 L-Треонин 53,45 L-Триптофан 29,01 L-Тирозин 2Na 2H2O 55,79 L-Валин 52,85 Витамин Аскорбиновая кислота 3,499 Биотин 0,0035 Холинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 2,650 I-Инозитол 12,600 Никотинамид 2,020 Пиридоксин НСІ 2,031 Рибофлавин 0,219 Тиамин НСІ 2,170 Витамин В12 0,680 Неорганические соли 116,600 Сульфат меди (CuSO ₄ -5H ₂ O) 0,0013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (КСІ) 311,800 Фосфат натрия (NaCl) 6995,500 Фосфат натрия (NaCl) 62,500		
L-Треонин 53,45 L-Тирозин 2Na 2H2O 55,79 L-Валин 52,85 Витамин Аскорбиновая кислота 3,499 Биотин 0,0035 Холинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 12,600 Никотинамид 2,020 Пиридоксин НСІ 2,031 Рибофлавин 0,219 Тиамин НСІ 2,170 Витамин В12 0,680 Неорганические соли Кальция хлорид (CaCl2) 116,600 Сульфат меди (CuSO ₄₋ 5H ₂ O) 0,013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (КСІ) 311,800 Хлорид натрия (NaCl) 6995,500 Фосфат натрия (Na2HPO4) 71,020 Фосфат натрия (NaH2PO4) 62,500		
L-Триптофан 29,01 L-Тирозин 2Na 2H2O 55,79 L-Валин 52,85 Витамин Аскорбиновая кислота 3,499 Биотин 0,0035 Холинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 12,650 I-Инозитол 12,600 Никотинамид 2,020 Пиридоксин НСІ 2,031 Рибофлавин 0,219 Тиамин НСІ 2,170 Витамин В12 0,680 Неорганические соли 116,600 Сульфат меди (CuSO ₄₋ 5H ₂ O) 0,0013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (КСІ) 311,800 Хлорид натрия (NaCl) 6995,500 Фосфат натрия (Na2HPO4) 71,020 Фосфат натрия (NaH2PO4) 62,500		
L-Тирозин 2Na 2H2O 55,79 L-Валин 52,85 Витамин 3,499 Биотин 0,0035 Холинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 2,650 І-Инозитол 12,600 Никотинамид 2,020 Пиридоксин НСІ 2,031 Рибофлавин 0,219 Тиамин НСІ 2,170 Витамин В12 0,680 Неорганические соли 16,600 Сульфат меди (CuSO ₄₋ 5H ₂ O) 0,0013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (КСІ) 311,800 Фосфат натрия (NaCl) 6995,500 Фосфат натрия (Na2HPO4) 71,020 Фосфат натрия (NaH2PO4) 62,500		
L-Валин 52,85 Витамин Аскорбиновая кислота 3,499 Биотин 0,0035 Холинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 2,650 І-Инозитол 12,600 Никотинамид 2,020 Пиридоксин НСІ 2,031 Рибофлавин 0,219 Тиамин НСІ 2,170 Витамин В12 0,680 Неорганические соли 116,600 Сульфат меди (CuSO ₄₋ 5H ₂ O) 0,0013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат мелеза (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (KCl) 311,800 Хлорид натрия (NaCl) 6995,500 Фосфат натрия (Na2HPO4) 71,020 Фосфат натрия (NaH2PO4) 62,500		
Витамин Аскорбиновая кислота 3,499 Биотин 0,0035 Холинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 2,650 І-Инозитол 12,600 Никотинамид 2,020 Пиридоксин НСІ 2,031 Рибофлавин 0,219 Тиамин НСІ 2,170 Витамин В12 0,680 Неорганические соли 116,600 Сульфат меди (CuSO ₄₋ 5H ₂ O) 0,0013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (КСІ) 311,800 Хлорид натрия (NaCl) 6995,500 Фосфат натрия (Na2HPO4) 71,020 Фосфат натрия (NaH2PO4) 62,500	•	
Аскорбиновая кислота 3,499 Биотин 0,0035 Холинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 2,650 І-Йнозитол 12,600 Никотинамид 2,020 Пиридоксин НСІ 2,031 Рибофлавин 0,219 Тиамин НСІ 2,170 Витамин В12 0,680 Неорганические соли 8 Кальция хлорид (CaCl2) 116,600 Сульфат меди (CuSO ₄₋ 5H ₂ O) 0,013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (КСІ) 311,800 Хлорид натрия (NaCl) 6995,500 Фосфат натрия (Na2HPO4) 71,020 Фосфат натрия (NaH2PO4) 62,500		52,85
Биотин 0,0035 Холинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 2,650 І-Инозитол 12,600 Никотинамид 2,020 Пиридоксин НСІ 2,031 Рибофлавин 0,219 Тиамин НСІ 2,170 Витамин В12 0,680 Неорганические соли 116,600 Сульфат меди (CuSO ₄₋ 5H ₂ O) 0,013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (КСІ) 311,800 Хлорид натрия (NaCl) 6995,500 Фосфат натрия (Na2HPO4) 71,020 Фосфат натрия (NaH2PO4) 62,500		
Холинхлорид 8,980 D-Са-Пантотенат 2,240 Фолиевая кислота 2,650 I-Инозитол 12,600 Никотинамид 2,020 Пиридоксин НСІ 2,031 Рибофлавин 0,219 Тиамин НСІ 2,170 Витамин В12 0,680 Неорганические соли 116,600 Сульфат меди (CuSO ₄₋ 5H ₂ O) 0,013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (КСІ) 311,800 Хлорид натрия (NaCl) 6995,500 Фосфат натрия (Na2HPO4) 71,020 Фосфат натрия (NaH2PO4) 62,500	Аскорбиновая кислота	
D-Са-Пантотенат 2,240 Фолиевая кислота 2,650 I-Инозитол 12,600 Никотинамид 2,020 Пиридоксин НСІ 2,031 Рибофлавин 0,219 Тиамин НСІ 2,170 Витамин В12 0,680 Неорганические соли 116,600 Сульфат меди (CuSO ₄₋ 5H ₂ O) 0,013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (КСІ) 311,800 Хлорид натрия (NaCl) 6995,500 Фосфат натрия (Na2HPO4) 71,020 Фосфат натрия (NaH2PO4) 62,500		
Фолиевая кислота 2,650 І-Инозитол 12,600 Никотинамид 2,020 Пиридоксин НСІ 2,031 Рибофлавин 0,219 Тиамин НСІ 2,170 Витамин В12 0,680 Неорганические соли 116,600 Сульфат меди (CuSO ₄₋ 5H ₂ O) 0,0013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (КСІ) 311,800 Хлорид натрия (NaCl) 6995,500 Фосфат натрия (Na2HPO4) 71,020 Фосфат натрия (NaH2PO4) 62,500		
I-Инозитол 12,600 Никотинамид 2,020 Пиридоксин HCl 2,031 Рибофлавин 0,219 Тиамин HCl 2,170 Витамин B12 0,680 Неорганические соли 116,600 Сульфат меди (CuSO ₄₋ 5H ₂ O) 0,0013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (KCl) 311,800 Хлорид натрия (NaCl) 6995,500 Фосфат натрия (Na2HPO4) 71,020 Фосфат натрия (NaH2PO4) 62,500		
Никотинамид 2,020 Пиридоксин HCl 2,031 Рибофлавин 0,219 Тиамин HCl 2,170 Витамин B12 0,680 Неорганические соли 116,600 Кальция хлорид (CaCl2) 116,600 Сульфат меди (CuSO ₄₋ 5H ₂ O) 0,013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (KCl) 311,800 Хлорид натрия (NaCl) 6995,500 Фосфат натрия (Na2HPO4) 71,020 Фосфат натрия (NaH2PO4) 62,500		
Пиридоксин HCl2,031Рибофлавин0,219Тиамин HCl2,170Витамин B120,680Кальция хлорид (CaCl2)116,600Сульфат меди (CuSO ₄₋ 5H ₂ O)0,0013Нитрат железа (Fe(NO ₃)3-9H ₂ O)0,050Сульфат железа (FeSO ₄ -7H ₂ O)0,417Хлорид магния (MgCl2)28,640Сульфат магния (MgSO4)48,840Хлорид калия (KCl)311,800Хлорид натрия (NaCl)6995,500Фосфат натрия (Na2HPO4)71,020Фосфат натрия (NaH2PO4)62,500		
Рибофлавин 0,219 Тиамин HCl 2,170 Витамин B12 0,680 Неорганические соли		
Тиамин HCl 2,170 Витамин B12 0,680 Неорганические соли Кальция хлорид (CaCl2) 116,600 Сульфат меди (CuSO ₄ .5H ₂ O) 0,0013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (KCl) 311,800 Хлорид натрия (NaCl) 6995,500 Фосфат натрия (Na2HPO4) 71,020 Фосфат натрия (NaH2PO4) 62,500		
Витамин В12 0,680 Неорганические соли Кальция хлорид (CaCl2) 116,600 Сульфат меди (CuSO ₄ -5H ₂ O) 0,0013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (KCl) 311,800 Хлорид натрия (NaCl) 6995,500 Фосфат натрия (Na2HPO4) 71,020 Фосфат натрия (NaH2PO4) 62,500		0,219
Неорганические солиКальция хлорид (CaCl2)116,600Сульфат меди (CuSO4-5H2O)0,0013Нитрат железа (Fe(NO3)3-9H2O)0,050Сульфат железа (FeSO4-7H2O)0,417Хлорид магния (MgCl2)28,640Сульфат магния (MgSO4)48,840Хлорид калия (КСl)311,800Хлорид натрия (NaCl)6995,500Фосфат натрия (Na2HPO4)71,020Фосфат натрия (NaH2PO4)62,500	Тиамин НС1	
Кальция хлорид (CaCl2)116,600Сульфат меди (CuSO4,5H2O)0,0013Нитрат железа (Fe(NO3)3-9H2O)0,050Сульфат железа (FeSO4-7H2O)0,417Хлорид магния (MgCl2)28,640Сульфат магния (MgSO4)48,840Хлорид калия (КСl)311,800Хлорид натрия (NaCl)6995,500Фосфат натрия (Na2HPO4)71,020Фосфат натрия (NaH2PO4)62,500	Витамин В12	0,680
Сульфат меди (CuSO ₄₋ 5H ₂ O) 0,0013 Нитрат железа (Fe(NO ₃)3-9H ₂ O) 0,050 Сульфат железа (FeSO ₄ -7H ₂ O) 0,417 Хлорид магния (MgCl2) 28,640 Сульфат магния (MgSO4) 48,840 Хлорид калия (KCl) 311,800 Хлорид натрия (NaCl) 6995,500 Фосфат натрия (Na2HPO4) 71,020 Фосфат натрия (NaH2PO4) 62,500	Неорганические соли	
Нитрат железа (Fe(NO3)3-9H2O)0,050Сульфат железа (FeSO4-7H2O)0,417Хлорид магния (MgCl2)28,640Сульфат магния (MgSO4)48,840Хлорид калия (KCl)311,800Хлорид натрия (NaCl)6995,500Фосфат натрия (Na2HPO4)71,020Фосфат натрия (NaH2PO4)62,500		
Сульфат железа (FeSO4-7H2O)0,417Хлорид магния (MgCl2)28,640Сульфат магния (MgSO4)48,840Хлорид калия (KCl)311,800Хлорид натрия (NaCl)6995,500Фосфат натрия (Na2HPO4)71,020Фосфат натрия (NaH2PO4)62,500		0,0013
Хлорид магния (MgCl2)28,640Сульфат магния (MgSO4)48,840Хлорид калия (KCl)311,800Хлорид натрия (NaCl)6995,500Фосфат натрия (Na2HPO4)71,020Фосфат натрия (NaH2PO4)62,500		0,050
Сульфат магния (MgSO4)48,840Хлорид калия (KCl)311,800Хлорид натрия (NaCl)6995,500Фосфат натрия (Na2HPO4)71,020Фосфат натрия (NaH2PO4)62,500		0,417
Хлорид калия (КСІ)311,800Хлорид натрия (NaCl)6995,500Фосфат натрия (Na2HPO4)71,020Фосфат натрия (NaH2PO4)62,500		28,640
Хлорид натрия (NaCl)6995,500Фосфат натрия (Na2HPO4)71,020Фосфат натрия (NaH2PO4)62,500		
Фосфат натрия (Na2HPO4) 71,020 Фосфат натрия (NaH2PO4) 62,500		
Фосфат натрия (NaH2PO4) 62,500	Хлорид натрия (NaCl)	6995,500
Фосфат натрия (NaH2PO4) 62,500	Фосфат натрия (Na2HPO4)	
	Фосфат натрия (NaH2PO4)	
, ur	Гептагидрат сульфата цинка (ZnSO4-7H2O)	0,432
Селенит натрия 0,0131		
Другие		
D-Глюкоза 3151		3151

Линолевая кислота	0,042
Липоевая кислота	0,105
Путресцин 2НС1	0,081
Тимидин	0,365
Гипоксантин Na	2,390
Пируват натрия	55,000

Таблица 6. Состав добавки для BAV-SP

Компоненты конечного состава	
L-Глутамин	600,00
Этаноламин	1,530
Synperonic F68	250,000
Бикарбонат натрия (NaHCO3)	2000,000
Соевый пептон	4000,00
Общий состав	18596,8

[0310] Клетки GD8/6, экспрессирующие rVWF, культивировали либо в среде с низким содержанием меди (табл. 7), либо в среде с высоким содержанием меди (табл. 8) в течение 7 дней. Через 2 дня культуры пересевали для проведения периодического культивирования на протяжении 5 дней. Образцы указанного культурального супернатанта ежедневно исследовали на содержание rVWF (vWF ELISA), общую (ристоцетин) и удельную (удельную активность) с применением ристоцетинкофакторного анализа. Различные параметры культивирования, включая количество клеток, жизнеспособность клеток и концентрация аммония также отслеживали ежедневно (кроме дней периодического культивирования 3 и 4).

[0311] Неожиданно было обнаружено, что культуры клеток, росшие при высоких концентрациях меди, давали супернатанты, имеющие значительно более высокую общую и удельную rVWF-активность (ср. результаты в табл. 7 и табл. 8). Например, на 4 день периодического культивирования культура клеток, росшая при высоких концентрациях меди, имела 1,52 МЕ rVWF активности/мл, по сравнению с 0,2 МЕ rVWF активности/мл для культуры с низким содержанием меди, несмотря на тот факт, что культура с низким содержанием меди клеток давала почти в два раза большее количество rVWF по сравнению с культурой клеток с высоким содержанием меди. Кроме того, удельная активность супернатанта, полученного из культуры с высоким содержанием меди, была более чем в 13 раз выше, чем у супернатанта культуры с низким содержанием меди (831 мЕ/10мкг rVWF к 62 мЕ/10мкг rVWF).

[0312] Как видно из табл. 7 и табл. 8, общая и удельная ристоцетин-кофакторная активность культуры с высоким содержанием меди была в два раза выше таковой культуры с низким содержанием меди, на 1 день периодического культивирования. Кроме того, в отличие от последующего увеличения активности, наблюдаемого в культуре с высоким содержанием меди, в культуре клеток с низким содержанием меди не было отмечено увеличения ристоцетин-кофакторной активности после 1 дня периодического культивирования. В соответствии с этим результатом анализ мультимерного статуса rVWF электрофорезом в агарозном геле показал, что в супернатанте культуры клеток с низким содержанием меди в 1-ый день периодического культивирования присутствовала низкая относительно концентрации низкомолекулярных видов rVWF концентрация высокомолекулярного rVWF, и также что указанная относительная концентрация снижалась с течением времени (Фиг. 1А и 1В). Напротив, добавление в культуральную среду Cu²⁺ стабильно приводило к образованию антигена с ристоцетин-кофакторной (RiCoF) активностью на протяжении четвертого дня. В соответствии с этим, уменьшения количества стабильных высокомолекулярных мультимеров rVWF в течение дня 4 периодической культуры не происходило (Фиг. 1А и 1В). Результаты денситометрии агарозного электрофоретического геля, приведенные на Фиг. 1В, показали, что при условии низкого уровня меди культура способна продуцировать только популяцию rVWF, более чем 10% rVWF которой (*m.e.* 16,3%) представлено молекулами из более чем 10 димеров, в течение одного дня периодического культивирования (т.е. образец «дня 3» в 2 полосе агарозного геля на Фиг. 1А); примечательно, что эта популяция опускалась до всего лишь 4% на день 5 периодического культивирования (образец «дня 7» в полосе 6). Напротив, в условиях высокого содержания меди относительное количество мультимеров VWF, состоящих из более чем 10 димеров, стабильно составляет около 30% на протяжении дня 4 в периодической культуре («день 3»-«день 6» в полосах 7-10; 28%-31,4%).

[0313] Примечательно, что начиная с 5-го дня периодического культивирования культуры с высоким содержанием меди, когда уровни NH₄⁺ превышали 100 мг/л (выше, чем приблизительно 5,0 мМ), экспрессия дополнительного антигена (18,3–35,4 мкг/л; ср. дни периодического культивирования 4 и 5 в табл. 8) не приводила к сопутствующему увеличению RiCoF-активности в супернатанте. В соответствии с этим результатом

уровень высокомолекулярных мультимеров rVWF на 5 день периодического культивирования (7 день культивирования) снижался относительно концентрации низкомолекулярных мультимеров rVWF. Также только на 5 день периодического культивирования (образец «дня 7» культуры в полосе 11) относительное количество vWF, состоящего из более чем 10 димеров, снижается до 21,4%.

[0314] В совокупности приведенные выше данные показывают, что дополнительная концентрация меди в культурах клеток, экспрессирующих rVWF, существенно увеличивает общую и удельную ристоцетин-кофакторную активность rVWF, а также стабильную выработку высокомолекулярных мультимеров rVWF. Кроме того, эти данные выявляют корреляцию между высокими концентрациями NH₄⁺ в культуре клеток и снижением ристоцетин-кофакторной активности rVWF и выработки высокомолекулярного мультимерного rVWF.

Таблица 7. Экспрессия rVWF в культурах клеток млекопитающих при периодическом режиме культивирования с применением сред BAV-SP с низкой концентрацией меди (1,0 мкг/л).

111111111111111111111111111111111111111						
день периодического культивирования	Количество клеток [10Е6 клеток/мл]	NH4 ⁺ [мг/л]	ІЖ изнеспособность	vWF ELISA [мкг/мл]	Ристоцетин [МЕ/мп]	Удельная активность мЕ/10мкг
0	0,42	21	98,8	н.о.	н.О.	н.о.
1	0,78	43	н.о.	6,3	0,23	365
2	1,24	64	99,1	12,8	0,23	180
3	1,86	H.O.	н.о.	22,7	0,21	93
4	2,49	H.O.	н.о.	32,2	0,20	62
5	3,11	106	98,3	44,4	0,20	45

Таблица 8. Экспрессия rVWF в культурах клеток млекопитающих, культивируемых в периодическом режиме с применением BAV-SP сред с высокой концентрацией меди (4,3) мкг/л).

день периодического культивирования	Количество клеток [10Е6 клеток/мл]	NH4 ⁺ [мг/л]	Жизнеспособность	vWF ELISA [мкг/мл]	Ристоцетин [МЕ/мп]	Удельная активность мЕ/10мкг
0	0,40	21	99,3	H.O.	Н.О.	н.о.
1	0,71	42	Н.О.	4,8	0,40	833
2	1,23	63	99,5	8,7	0,62	713
3	1,85	н.о.	н.о.	15,0	1,07	713
4	2,54	н.о.	Н.О.	18,3	1,52	831

I	la 22	400 000	- دا ب- دا	- 1.00
5	13 37	109 98,9	135.4 11.5	5 438
D	13,34	1102 120,2	122,4 11,2	J 1 30

Пример 3

[0315] Рекомбинантный фактор VIII (rFVIII) и фактор фон Виллебранда (rVWF) коэкспрессировали в непрерывных культурах клеток GD8/6, эксплуатируемых в хемостатических условиях, для определения эффекта состава культуральной среды на экспрессию и активность VWF. Вкратце, клетки GD8/6 культивировали в среде BAV-SP, содержащей 4 г/л соевого гидролизата с добавлением и без добавления меди согласно описанию в примере 2. Для исследования эффекта низких концентраций меди на экспрессию и активность rVWF применяли основные среды BAV-SP. Указанные основные среды содержали 0,3 мкг/л меди и добавленный соевый гидролизат, что давало дополнительные 0,7 мкг/л меди с получением конечной концентрации меди 1,0 мкг/л. Для сравнения в периодических культурах применяли среды BAV-SP также с добавлением дополнительных 3,3 мкг/л Cu²⁺, с получением конечной концентрации меди 4,3 мкг/л, для определения эффекта высоких концентраций меди на экспрессию и активность VWF. Культуры, растущие в присутствии высоких и низких концентраций меди, культивировали как при высокой (2,8×10⁶ клеток/мл), так и при низкой (прибл. 1,4×10E06 клеток/мл) плотности клеток.

[0316] Как и ранее, образцы указанного культурального супернатанта исследовали на rVWF содержание (vWF ELISA), общую (ристоцетиновую) и удельную (удельную активность) активность посредством ристоцетин-кофакторного анализа. Также отслеживали различные параметры культуры, включая количество клеток, жизнеспособность клеток и концентрацию аммония. Данные получали на основании фазы стационарного состояния недель 2 и 3 хемостатической культуры (табл. 9–13).

Таблица 9. Средние данные по экспрессии rVWF в хемостатической культуре клеток на протяжении недель 2 и 3.

		Количество					
'	1	клеток		'	vWF		удельная
Количество	Концентрация	[10E6	NH4+	Жизнеспособность	ELISA	Ристоцетин	активност
клеток	меди	клеток/мл]	[mM]	[%]	[мкг/мл]	[МЕ/мл]	[мЕ/10мкг
большое	низкая	2,88	3,88	97,74	44,56	0,10	21,62
большое	высокая	2,79	4,04	98,25	38,38	0,19	53,11
маленькое	низкая	1,55	3,33	98,63	18,96	0,10	50,16
маленькое	высокая	1,43	3,17	98,59	11,76	0,70	598,76

Таблица 10. Экспрессия rVWF в хемостатической культуре клеток в условиях большого количества клеток и низкого уровня меди на протяжении недель 2 и 3.

	Количество клеток [10E6	NH4+	Жизнеспособность	vWF ELISA	Ристоцетин	удельная активность
День	клеток/мл]	[мМ]	[%]	[мкг/мл]	[МЕ/мл]	[мЕ/10мкг]
8	2,54	3,7	98,20	39,8	0,095	23,86934673
9	3,02	4,2	97,40			
10	2,97	3,9	97,90	41,3	0,095	23,00242131
11	2,78					
13	2,91	3,8	97,60	41,7	0,095	22,78177458
14	2,90	3,8	97,40			
15	3,05	3,9	97,70	44,7	0,095	21,25279642
16	2,99	3,8	98,30			
17	2,76	3,9	97,40	55,3	0,095	17,17902351
	2,88	3,88	97,74	44,56	0,10	21,62

Таблица 11. Экспрессия rVWF в хемостатической культуре клеток в условиях большого количества клеток и высоких уровней меди на протяжении недель 2 и 3.

	Количество					
	клеток			\mathbf{vWF}		удельная
	[10E6	NH4+	Жизнеспособность	ELISA	Ристоцетин	активность
День	клеток/мл]	[MM]	[%]	[мкг/мл]	[МЕ/мл]	[мЕ/10мкг]
8	2,52	3,9	98,30	31,8	0,35	110,0628931
9	2,92	4,3	98,50			
10	2,80	4,2	98,60	37,4	0,32	85,56149733
11	2,57					
13	2,81	3,9	98,50	37,6	0,095	25,26595745
14	2,92	3,9	97,80			
15	2,77	3,9	97,80	43,0	0,095	22,09302326
16	2,72	4,0	98,30			
17	3,04	4,1	98,20	42,1	0,095	22,56532067
	2,79	4,04	98,25	38,38	0,19	53,11

Таблица 12. Экспрессия rVWF в хемостатической культуре клеток в условиях маленького количества клеток, низкого уровня меди на протяжении недель 2 и 3.

День	Количество клеток [10Е6 клеток/мл]	NН ₄ ⁺ [мМ]	Жизнеспособность [%]	vWF ELISA [мкг/мл]	Ристоцетин [МЕ/мл]	удельная активность [мЕ/10мкг]
8	1,61	3,3	99,10	19,3	0,095	49,22279793
9	1,65	3,3	98,00			
10	1,49	3,3	98,90	18,6	0,095	51,07526882
11	1,58					
13	1,58	3,4	98,10	18,1	0,095	52,48618785
14	1,56	3,3	99,30			
15	1,52	3,3	98,50	18,9	0,095	50,26455026
16	1,50	3,3	98,40			
17	1,50	3,4	98,70	19,9	0,095	47,73869347

1.55	3.33	98.63	18.96	0.10	50.16

Таблица 13. Экспрессия rVWF в хемостатической культуре клеток в условиях маленького количества клеток, высокого уровня меди на протяжении недель 2 и 3.

	Количество					
	клеток			vWF		удельная
	[10E6	NH4+	Жизнеспособность	ELISA	Ристоцетин	активность
День	клеток/мл]	[MM]	[%]	[мкг/мл]	[МЕ/мл]	[мЕ/10мкг]
8	1,46	3,2	98,80	11,6	0,73	629,3103448
9	1,45	3,2	98,20			
10	1,37	3,1	98,90	11,0	0,7	636,3636364
11	1,43					
13	1,33	3,2	98,10	11,1	0,68	612,6126126
14	1,39	3,2	97,20			
15	1,51	3,2	99,70	12,4	0,69	556,4516129
16	1,49	3,2	98,60			
17	1,43	3,2	99,20	12,7	0,71	559,0551181
	1,43	3,17	98,59	11,76	0,70	598,76

[0317] Как показано на фиг. 2A, супернатант, собранный из непрерывной гVWF-культуры клеток, выращенной при низкой плотности клеток и высоких концентрациях меди, имел высокую удельную активность (в среднем 600 мЕ/10 мкг), в то время как супернатанты, собранные из гVWF-культур клеток, выращенных при высокой плотности клеток в присутствии высоких или низких концентраций меди, и гVWF-культур клеток, выращенных при низкой плотности клеток в присутствии низкой концентрации меди, имели низкие удельные активности (менее чем 100 мЕ/10 мкг). В соответствии с результатами, полученными для периодических культур, как видно из Фиг. 2B, непрерывные культуры клеток млекопитающих, экспрессирующие rVWF с высокой удельной активностью, содержат более низкие NH₄⁺ концентрации, чем культуры, продуцирующие rVWF с низкой удельной активностью. Эти данные также подтверждают корреляцию между концентрацией NH₄⁺ в культуре клеток и удельной активностью rVWF, продуцируемого указанной культурой. Примечательно, что комбинация высокой концентрации меди и низкой концентрации аммония в культуре клеток позволяла добиться значительного повышения активности rVWF.

[0318] В соответствии с этим результатом, анализ мультимерного статуса rVWF в хемостатических культурах с помощью электрофореза в агарозном геле (Фиг. 6) показал, что только супернатанты культур, эксплуатируемых при высоком содержании меди и низкой плотности клеток и, таким образом, низком содержании аммония, обеспечивали

устойчивую экспрессию высокомультимерного vWF (приблизительно 23%–27% в дни CST 8, 17 и 24, полосы 4, 8, и 12, соответственно). Все прочие условия не обеспечивали устойчивого достижения большого количества – более чем 10% vWF, содержащего более чем 10 димеров, на протяжении длительного периода культивирования.

Пример 4

[0319] Для определения эффекта концентрации меди в культуральной среде на экспрессию и удельную активность гА13 культуры клеток млекопитающих для экспрессии гА13 культивировали в течение 4 недель в условиях хемостатической непрерывной культуры в среде ADAMTS13, включающей модифицированные основные среды DMEM/F12 BESP845 и дополнительные добавки (табл. 14), содержащие медь в диапазоне концентраций от 0,66 мкг/л (без дополнительного добавления меди) и с дополнительным добавлением меди до 4 мкг/л. Как видно из табл. 15, возрастающая концентрация меди в среде для клеточных культур приводила к значительному увеличению объемной (Р) и удельной (q) продуктивности, выражаемой в виде общей активности гА13, полученного на литр культуры в день, и общей активности полученного гА13 на клетку в день, соответственно.

Таблица 14. Состав среды для получения ADAMTS13

DMEM/F12 BESP845	
Аминокислоты	мг/л
L-Аланин	13,3500
L-Аргинин HCl	147,5000
L-Аспарагин-H ₂ O	45,1600
L-Аспарагиновая кислота	19,9500
L-Цистеин HCl-H ₂ O	32,5500
L-Цистин 2HCl	102,3500
L-Глутаминовая кислота	22,0500
Глицин	26,2500
L-Гистидин-H ₂ O HCl	51,4800
L-Изолейцин	74,4700
L-Лейцин	119,0500
L-Лизин HC1	146,2500
L-Метионин	100,0000
L-Фенилаланин	60,4800
L-Пролин	63,7400
L-Серин	36,7500
L-Треонин	53,4500
L-Триптофан	29,0100
L-Тирозин 2Na 2H2O	75,7900
L-Валин	82,8500

соли	мг/л
Кальция хлорид (CaCl2)	116,6000
Сульфат меди (CuSO ₄₋ 5H ₂ O)	0,0026
Нитрат железа (Fe(NO ₃)3-9H ₂ O)	0,0500
Сульфат железа (FeSO ₄ -7H ₂ O)	1,0170
Хлорид магния (MgCl2)	28,6400
Сульфат магния (MgSO4)	48,8400
Хлорид калия (KCl)	311,8000
Хлорид натрия (NaCl)	5495,5000
Na2HPO4 Безводный	213,0200
NaH2PO4 Безводный	54,3500
Гептагидрат сульфата цинка (ZnSO4-27H2O)	0,4320
Селенит натрия, безводный	0,0087
Витамин	мг/л
Аскорбиновая кислота	3,4990
Биотин	0,2035
Холинхлорид	26,9800
D-Ca-Пантотенат	6,2400
Фолиевая кислота	6,6500
І-Инозитол	36,6000
Никотинамид	7,0200
Пиридоксин HCl	6,0310
Рибофлавин	0,6590
Тиамин НСІ	6,5100
Витамин В12	2,6800
другое	мг/л
D-Глюкоза	5000,0000
Линолевая кислота	0,0420
Липоевая кислота	1,0050
Путресцин 2НС1	3,6810
Тимидин	0,3650
Гипоксантин Na	2,3900
Пируват натрия	55,0000
DMEM/F12 BESP845: всего	12738,3
ADAMTS-13 Средовые добавки	мг/л
L-Глутамин	1300,0000
Pluronic F68	1000,0000
Этаноламин	1,5300
ZnSo4*7 H2O	1,0000
Na-Гидрокарбонат	1500,0000
Всего добавок	3802,5
Общее количество ингредиентов	16540,8

[0320] Чтобы определить, влияют ли повышенные концентрации меди на сохранность экспрессируемого rA13, супернатант, собранный от rA13-культур клеток, выращенных в среде, содержащей 0,66 мкг/л, 1 мкг/л и 4 мкг/л меди, исследовали с помощью анализа ДСН-ПААГ. Как видно из Фиг. 3A (окрашивание серебром) и Фиг. 3B (анти-A13 вестернблоттинг), очевидных изменений в качестве продукта при гель-электрофорезе не

наблюдается. Так, экспрессия гА13 в присутствии повышенных концентраций меди не приводит к повышению уровня усеченного 170 кДа или других низкомолекулярных вариантов гА13, и к появлению дополнительных или увеличению полос, соответствующих НСР(белкам клеток-хозяев).

[0321] При расчете оптимальной концентрации меди для активности rA13 экстраполирование данных из табл. 15 о зависимости P Frets от концентрации меди (Фиг. 4) показывает, что оптимальный эффект, очевидно, достигается при приблизительно 2 мкг/л, с негативным влиянием по консервативной оценке при более чем приблизительно 4 мкг/л.

Таблица 15. Экспрессия rA13 в культурах клеток млекопитающих при хемостатическом режиме непрерывного культивирования с применением среды содержащей различные концентрации меди.

R&D (НИР)	ZZ – NC	P Frets	la Frets	Уд. активность
	[10E6 клеток/мл]	[Е/(л*д)]	[Е/(10Е9 клетки* д)]	Е/мг
0,66 мкг/л Cu ²⁺	1,35	1322	1028	1759
1 мкг/л Cu ²⁺	1,64	1962	1247	1690
4 мкг/л Cu ²⁺	2,26	2960	1338	1768

[0322] На основании полученных результатов, описанных выше, был проведен дополнительный эксперимент для сравнения экспрессии гА13 в среде для клеточных культур, содержащей 0,66 мкг/л меди и содержащих 2,0 мкг/л меди. Как видно из табл. 16, добавление в основные клеточные среды меди до конечной концентрации 2,0 мкг/л меди приводило к значительному повышению объемной (Р) и удельной (q) продуктивности, выраженной в виде общей активности гА13, полученного на литр культуры в день и общей активности гА13, полученного на клетку в день, соответственно, на протяжении 8 недель. Конкретные данные для каждой недели выработки гА13 в двух указанных культурах приведены на Фиг. 5. Из этих данных очевидно следует, что

добавление меди оказывает измеряемый благоприятный эффект на метаболизм клеток, удельную скорость роста и выработку rA13.

Таблица 16. Экспрессия rA13 в культурах клеток млекопитающих при хемостатическом режиме непрерывного культивирования с применением среды, содержащей различные концентрации меди.

Объем 10 л Среднее за 8 недель CST	ZZ – NC	P Frets	q Frets	Уд. активность
	[10Е6 кл./мл]	[Е/(л*д)]	[E/(10E9 кл.*д)]	Е/мг
0,66 мкг/л Cu ²⁺	1,29	1049	821	1862
2 мкг/л Cu ²⁺	2,17	2470	1146	1749

[0323] Понятно, что примеры и варианты реализации, описанные в настоящей заявке, приведены исключительно для наглядности, и что различные модификации или изменения с учетом таковых будут понятны специалистам в данной области техники, подлежат включению в суть и объем настоящей заявки и подпадают под действие прилагаемой формулы изобретения. Все упоминаемые в настоящей заявке публикации, патенты и патентные заявки включены в настоящую заявку посредством ссылки во всей полноте для любых целей.

ФОРМУЛА ИЗОБРЕТЕНИЯ

- 1. Способ получения композиции рекомбинантного фактора фон Виллебранда (rVWF), отличающийся тем, что указанный способ включает этапы:
 - а) обеспечения основной среды для культуры клеток;
 - b) добавления в указанную основную среду для клеточных культур меди для обеспечения конечной концентрации меди по меньшей мере 2,4 мкг/л;
 - с) обеспечения одной или более клеток, содержащих нуклеиновую кислоту, кодирующую белок rVWF;
 - d) культивирования указанной одной или более клеток в указанной среде для клеточных культур с добавлением меди таким образом, что происходит экспрессия и экскреция rVWF из указанных клеток в культуральный супернатант; и
 - е) отделения по меньшей мере части указанного культурального супернатанта,

причем указанный отделенный супернатант обладает удельной ристоцетинкофакторной активностью rVWF, составляющей по меньшей мере 30 мЕ/мкг rVWF.

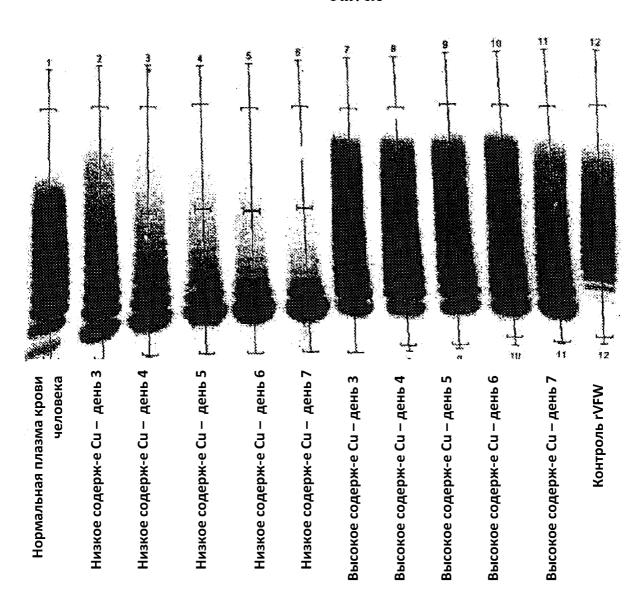
- 2. Способ по п. 1, дополнительно включающий этап добавления гидролизата в основную среду для культуры клеток перед культивированием указанной одной или более клеток.
- 3. Способ по п. 2, отличающийся тем, что указанный гидролизат представляет собой растительный гидролизат.
- 4. Способ по п. 3, отличающийся тем, что указанный гидролизат представляет собой соевый гидролизат.
- 5. Способ по любому из пп. 1–4, отличающийся тем, что указанная основная среда для культуры клеток представляет собой не содержащую животных белков культуральную среду.
- 6. Способ по любому из пп. 1–4, отличающийся тем, что указанная основная среда для культуры клеток представляет собой не содержащую белков культуральную

среду.

- 7. Способ по любому из пп. 1–6, отличающийся тем, что указанная основная среда для культуры клеток представляет собой культуральную среду с заданным химическим составом.
- 8. Способ по любому из пп. 1–7, отличающийся тем, что конечная концентрация меди в указанной основной среде для клеточных культур с добавлением меди составляет по меньшей мере 4 мкг/л меди.
- 9. Способ по любому из пп. 1–8, отличающийся тем, что конечная концентрация меди в указанной основной среде для клеточных культур с добавлением меди составляет от 2,4 мкг/л до 20 мкг/л меди.
- 10. Способ по любому из пп. 1–9, отличающийся тем, что медь, которую добавляют в основные среды для клеточных культур обеспечивают в виде соли меди, хелата меди или их комбинации.
- 11. Способ по п. 10, отличающаяся тем, что указанная соль меди выбрана из группы, состоящей из сульфата меди, ацетата меди, карбоната меди, хлорида меди, гидроксида меди, нитрата меди и оксида меди.
- 12. Способ по любому из пп. 1–11, отличающийся тем, что указанная одна или более клеток представляют собой клетки млекопитающего.
- 13. Способ по п. 12, отличающийся тем, что указанные клетки млекопитающего представляют собой клетки CHO.
- 14. Способ по любому из пп. 1–13, отличающийся тем, что культивирование указанной одной или более клеток включает периодическое культивирование указанных клеток.
- 15. Способ по любому из пп. 1–13, отличающийся тем, что культивирование указанной одной или более клеток включает непрерывное культивирование указанных клеток.

- 16. Способ по п. 15, отличающийся тем, что указанное непрерывное культивирование клеток осуществляют в хемостатическом режиме.
- 17. Способ по п. 15, отличающийся тем, что указанное непрерывное культивирование клеток осуществляют в режиме перфузии.
- 18. Способ по любому из пп. 1–17, отличающийся тем, что указанную одну или более клеток культивируют по меньшей мере в 100 л указанной дополненной основной среды для клеточных культур.
- 19. Способ по любому из пп. 1–18, отличающийся тем, что плотность клеток поддерживают на уровне менее чем $2,5\times10^6$ клеток/мл на протяжении этапа культивирования указанной одной или более клеток.
- 20. Способ по п. 19, отличающийся тем, что плотность клеток поддерживают на уровне менее чем 2.0×10^6 клеток/мл на протяжении этапа культивирования указанной одной или более клеток.
- 21. Способ по п. 19, отличающийся тем, что плотность клеток поддерживают на уровне менее чем $1,5\times10^6$ клеток/мл на протяжении этапа культивирования указанной одной или более клеток.
- 22. Способ по любому из пп. 1–21, отличающийся тем, что этап отделения по меньшей мере части указанного культурального супернатанта включает фильтрацию или центрифугирование для удаления клеток из указанной части культурального супернатанта.
- 23. Способ по любому из пп. 1–22, отличающийся тем, что указанный отделенный супернатант имеет удельную ристоцетин-кофакторную активность rVWF, составляющую по меньшей мере 40 мЕ/мкг rVWF.
- 24. Способ по п. 23, отличающийся тем, что указанный отделенный супернатант имеет удельную ристоцетин-кофакторную активность rVWF, составляющую по меньшей мере 50 мЕ/мкг rVWF.

- 25. Способ по п. 23, отличающийся тем, что указанный отделенный супернатант имеет удельную ристоцетин-кофакторную активность rVWF, составляющую по меньшей мере 60 мЕ/мкг rVWF.
- 26. Способ по п. 23, отличающийся тем, что указанный отделенный супернатант имеет удельную ристоцетин-кофакторную активность rVWF, составляющую по меньшей мере 70 мЕ/мкг rVWF.
- 27. Способ по п. 23, отличающийся тем, что указанный отделенный супернатант имеет удельную ристоцетин-кофакторную активность rVWF, составляющую по меньшей мере 80 мЕ/мкг rVWF.
- 28. Способ по любому из пп. 1–27, отличающийся тем, что по меньшей мере 10% rVWF в указанном супернатанте представлено высокомолекулярными мультимерами VWF, состоящими более чем из 10 димеров.
- 29. Способ по любому из пп. 1–27, отличающийся тем, что по меньшей мере 20% rVWF в указанном супернатанте представлено высокомолекулярными мультимерами VWF, состоящими более чем из 10 димеров.
- 30. Способ по любому из пп. 1–27, отличающийся тем, что по меньшей мере 30% rVWF в указанном супернатанте представлено высокомолекулярными мультимерами VWF, состоящими более чем из 10 димеров.
- 31. Способ по любому из пп. 1–30, отличающийся тем, что указанный супернатант содержит высокомолекулярные мультимеры VWF, состоящие из 14–22 димеров.
- 32. Способ по любому из пп. 1–31, отличающийся тем, что содержание NH_4^+ в указанном супернатанте культуры клеток поддерживают на уровне концентрации ниже 10 мM.
- 33. Способ по п. 32, отличающийся тем, что содержание NH_4^+ в указанном супернатанте культуры клеток поддерживают на уровне концентрации ниже 4 мМ.
- 34. Способ по любому из пп. 1–33, отличающийся тем, что rVWF коэкспрессируют с

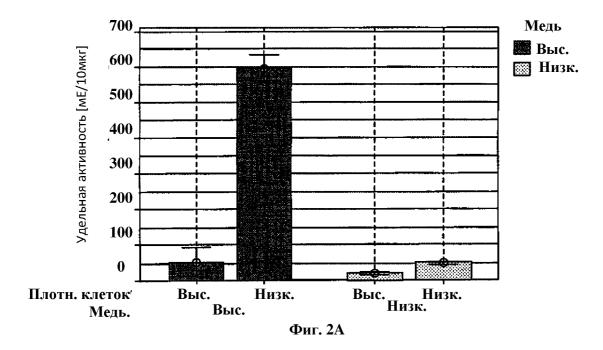

- рекомбинантным фактором VIII (rFVIII).
- 35. Способ по п. 34, дополнительно включающий этап очистки rVWF от по меньшей мере 50% rFVIII, присутствующего в отделенном супернатанте.
- 36. Способ по п. 35, отличающийся тем, что отношение rVWF к rFVIII после очистки составляет по меньшей мере 10:1
- 37. Способ по любому из пп. 1–36, отличающийся тем, что указанный способ дополнительно включает этап обогащения rVWF.
- 38. Супернатант культуры клеток, содержащий рекомбинантный фактор фон Виллебранда (rVWF), отличающийся тем, что указанный супернатант получают способом по любому из предшествующих пунктов.
- 39. Супернатант культуры клеток, содержащий рекомбинантный фактор фон Виллебранда (rVWF), отличающийся тем, что по меньшей мере 20% rVWF в указанном супернатанте представлено высокомолекулярным мультимером VWF, состоящим более чем из 10 димеров.
- 40. Супернатант культуры клеток, содержащий рекомбинантный фактор фон Виллебранда (rVWF), отличающийся тем, что указанный супернатант обладает по меньшей мере 0,5 МЕ ристоцетин-кофакторной активности на мл.
- 41. Композиция рекомбинантного фактора фон Виллебранда (rVWF), полученного способом по любому из пп. 1–37.
- 42. Композиция по п. 41, отличающаяся тем, что указанная композиция дополнительно содержит рекомбинантный фактор VIII (rFVIII).
- 43. Композиция по п. 41, отличающаяся тем, что отношение rVWF к rFVIII составляет по меньшей мере 10:1.
- 44. Композиция по п. 42 или 43, отличающаяся тем, что указанную композицию получают в форме для фармацевтического введения .

№ в патентном реестре: 008073-5024-WO

45. Композиция по любому из пп. 1–37, отличающаяся тем, что указанную композицию получают в форме для внутривенного введения.

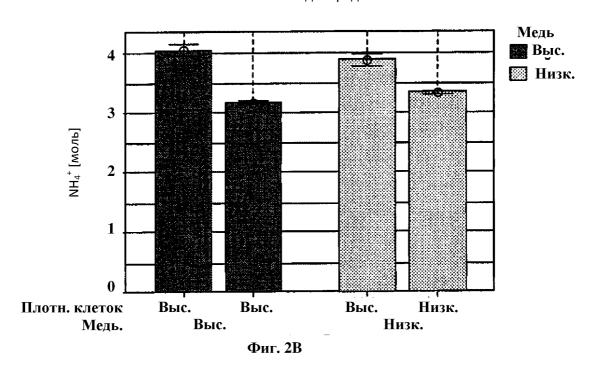
По доверенности

Фиг. 1А

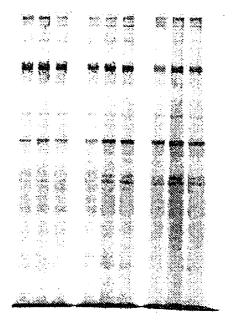


Фиг. 1В

Номер полосы	Номер зоны	Примеси	Относит. кол-во
		Int ×mm	
1	1	809715,2	74,5
1	2	277519,7	25,5
2	1	681110,1	83,7
2	2	132376,5	16,3
3	1	568177	90,2
3	2	61619,3	9,8
4	1	500725,4	94,0
4	2	31815,3	6,0
5	1	433194,4	95,9
5	4	18307,3	4,1
6	1	412190,2	95,9
6	2	17441	4,1
7	1	842215,1	72,0
7	2	327960,1	28,0
8	1	723836,4	70,5
8	2	303095,4	29,5
9	1	739912,7	68,7
9	2	337575,1	31,3
10	1	929848,4	68,6
10	2	425784,2	31,4
11	1	684679,9	78,6
11	2	185964,5	21,4
12	3	512298,6	66,7
12	4	256326,7	33,3


Интервальный график удельной активности [mE/10мкг]

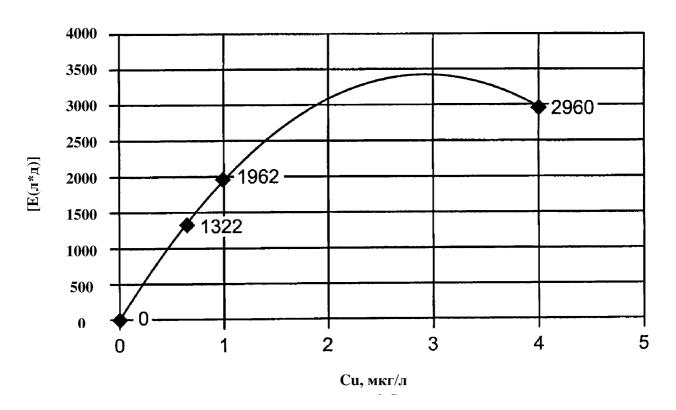
90% СL для среднего



Интервальный график NH_4^+ [ммоль/г]

90% СL для среднего

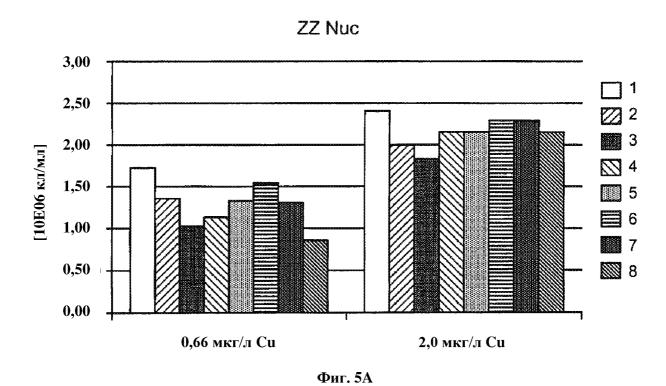
4 мкг/л 1 мкг/л 0,66 мкг/л


Фиг. 3А

4 мкг/л 1 мкг/л 0,66 мкг/л

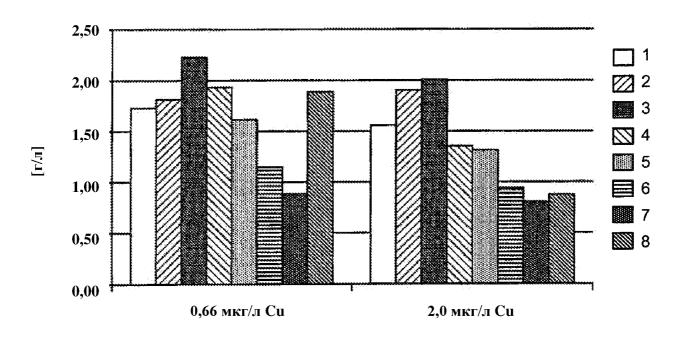
Фиг. 3В

P Frets/Медь

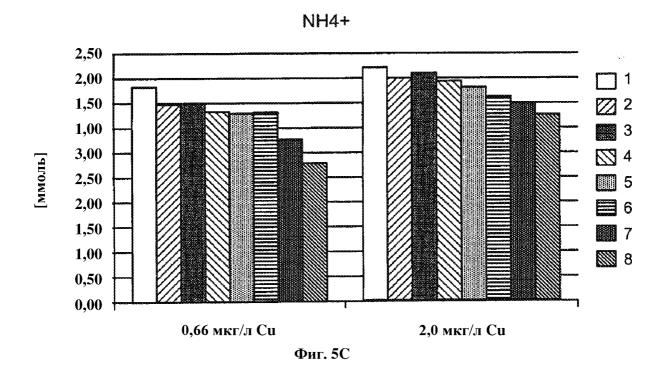


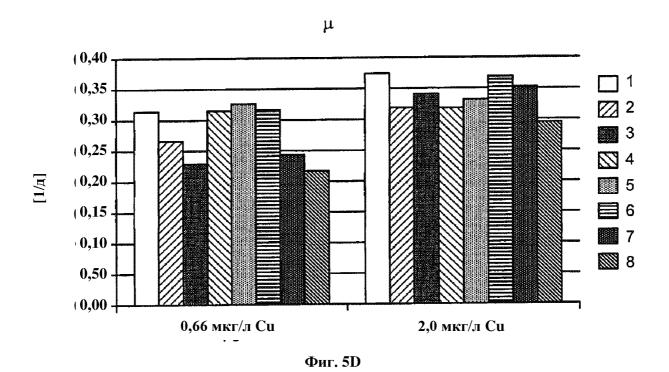
$$y = -400,37x^2 + 2344,5x - 11,267$$

 $R^2 = 0,9994$

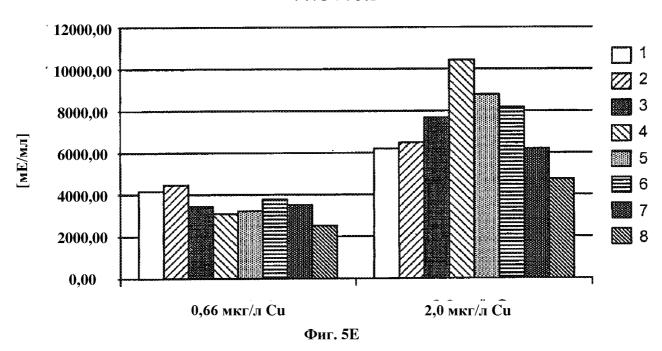

◆ среднее по 4-м неделям СЅТ

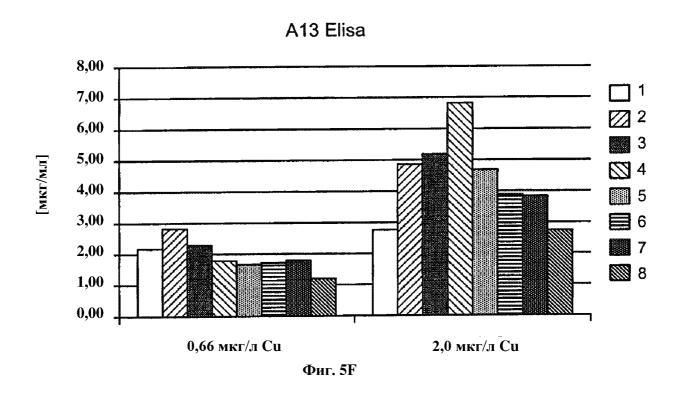
_____Poly. (среднее по 4 нед. CST)

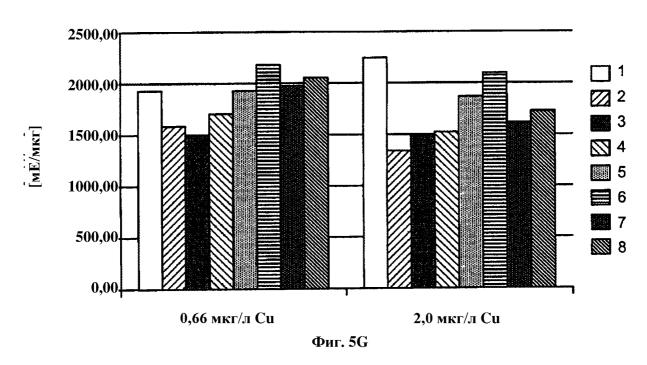

Фиг. 4

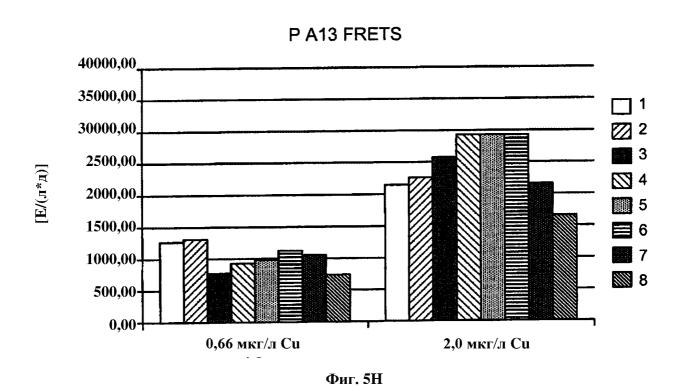


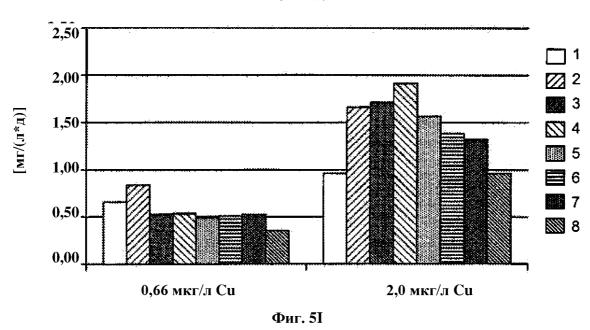
Остаточная глюкоза



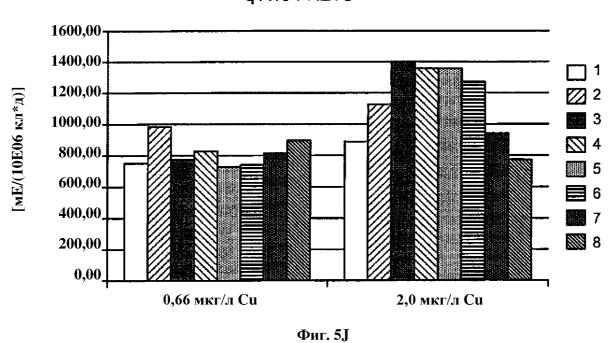

Фиг. 5В

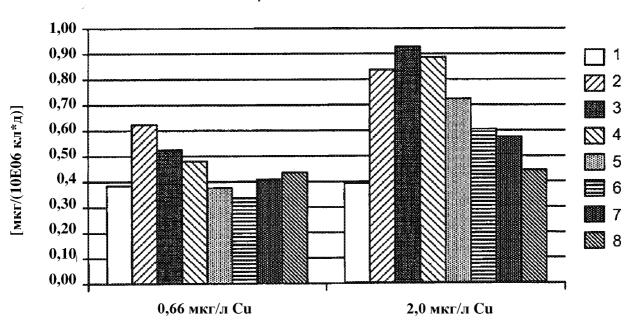


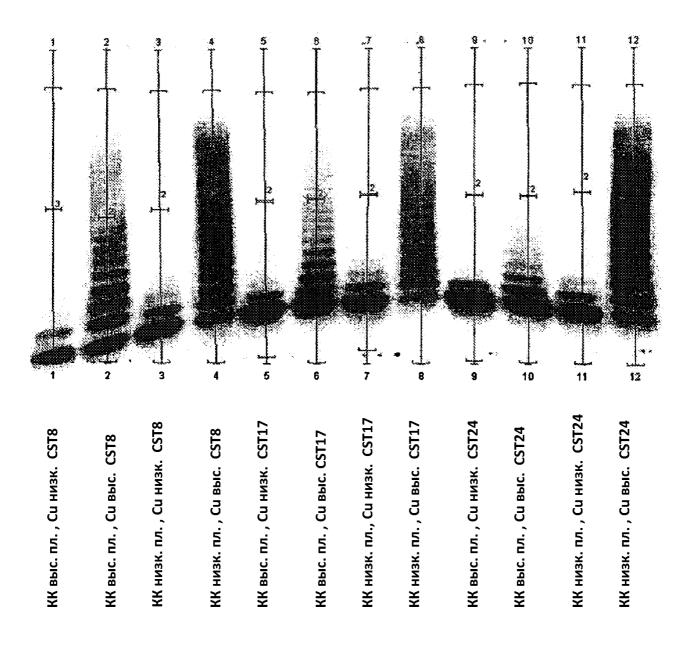




Удельная активность






q A13 FRETS

q A13 ELISA

Фиг. 5К

Фиг. 6А

Процент gIFN секретирую щих CD8+-

Номер полосы	Номер зоны	Примеси	Относит. кол-во
		Int×mm	
1	1	155657,0	97,2
1	2	4453,3	2,8
2	1	419998,6	87,6
2 3	2	59416,6	12,4
	1	225344,4	97,4
3	2	5898,2	2,6
4	1	557340,0	73,2
4	2	203807,5	26,8
5	1	248653,8	97,8
5	2	5599,8	2,2
6	1	434040,2	95,4
6	2	20823,4	4,6
7	1	238580,2	97,9
7	2	5159,7	2,1
8	1	322940,6	77,3
8	2	94677,8	22,7
9	1	250356,6	98,0
9	2	5183,5	2,0
10	1	275819,1	97,7
10	2	6469,7	2,3
11	1	207447,3	97,3
11	2	5687,5	2,7
12	1	604779,1	76,2
12	2	189356,4	23,8

Фиг. 6В