ТРУБНОЕ РЕЗЬБОВОЕ СОЕДИНЕНИЕ

Настоящее изобретение относится к соединениям труб, используемым в бурении, в частности, к резьбовым соединениям для соединения труб, используемых при поиске и разработке нефти и газа, в частности, обсадных труб для нефтяных и газовых скважин, для разведки и/или добычи. Соединения относятся к типу с входящим и охватывающим другую деталь элементами с наружной и внутренней резьбой соответственно, где особая конструкция резьбы и поверхностей, создающих герметичное уплотнение, совместно с резервуаром для избытка смазочного материала предотвращают пики давления, вызываемые смазкой во время свинчивания соединения, и обеспечивают превосходную герметичность даже при больших осевых нагрузках на растяжение. Такие трубы могут быть использованы в качестве обсадных труб буровых скважин и в качестве трубопроводов для перекачки нефти и газа.

В нефте- и газодобывающей отрасли начальные стадии бурения выполняют на морском дне или суше до достижения месторождений газа или нефтяного пласта, которые могут находиться на глубине нескольких тысяч метров. Во время такого предварительного бурения для введения и защиты буровой штанги, скважину укрепляют обсадными трубами заранее определенной длины, которые соединяют друг с другом на концах посредством резьбовых соединений по мере увеличения глубины бурения.

Когда бурение закончено, внутрь таким образом укрепленной обсадными трубами скважины вводят другую трубчатую колонну, которую используют для откачки газа или сырой нефти к поверхности из подземного пласта. Такую колонну, пролегающую вдоль скважины по всей глубине, и которая, следовательно, достигает нескольких тысяч метров в длину, также формируют при помощи соединений того же типа, что и вышеупомянутые, из труб длиной около десяти метров.

Трубы, выполненные из углеродистой стали или устойчивых к коррозии сплавов, если бурение проводится в условиях агрессивной среды в присутствии
элементов, вызывающих коррозию, должны выдерживать высокое давление в нижней части скважины, такое как давление жидкости, которую откачивают, сопутствующие температуры, в особенности на больших глубинах, и соответствующие изменения размера труб, механические напряжения, обусловленные массой колонны и тому подобным, и препятствовать утечке газа или нефти. Необычайно важно, следовательно, чтобы соединение обладало теми же характеристиками, что и основная часть трубы, являлось герметичным для жидкостей и также обеспечивало целность стенок скважины даже в неблагоприятных условиях, обусловленных внешней средой, глубиной и конструкцией скважины, которая может быть наклонной или горизонтальной. Чтобы сделать операции свинчивания соединений более безопасными и надежными и обеспечить их герметичность и целостность, постоянно испытывают новые конструкции резьбовых соединений и проверяются свойства смазочных средств, используемых либо для того, чтобы избежать свивчивания (смазки или присадки; или обсадные трубы, чтобы облегчить свивчивание) или улучшить герметичность.

Такие смазочные вещества вводят в свободное пространство между охватывающим другую деталь элементом и входящим в другую деталь элементом соединения и к местам соприкосновения металлических поверхностей, обеспечивающих уплотнение, так чтобы не оставалось участков без смазки. Однако если не принять соответствующих мер, использование смазочных средств может быть чрезвычайно опасным для целостности соединения. В самом деле, при уплотнении колонны, в особенности, когда создающие герметичное уплотнение поверхности соприкасаются друг с другом, и начинается уплотнение соединения, смазка оказывается захваченной в пространстве между вершинами резьбы и создающим герметичное уплотнение участком и резьбой и, следовательно, подвергается сильному сжатию. Однако так как смазка является несжимаемым веществом, возникают очень высокие и чрезвычайно вредные пики давления, которые могут вызвать деформацию соединения, и, в частности, металлических поверхностей, создающих герметичное уплотнение.
Для разрешения этой проблемы в патенте США 4.830.411 предлагается увеличить пространство между резьбами для стекания смазки; однако, было замечено, что в процессе уплотнения соединения давление все-таки может достигать очень высоких пиковых значений, даже в том случае, если со временем смазка может вытекать, и давление в результате понижается, таким образом, проблемы, возникающие благодаря высоким пикам давления, остаются неразрешенными.

В патенте США 5.649.725 предложен резервуар для стекания смазочного вещества, вытекающего из резьбы во время уплотнения соединения. В соединении такого типа, однако, внимание сосредоточено на определении длины участка L_s, на протяжении которого в процессе удлинения колонны происходит проскальзывание создающих герметичное уплотнение поверхностей, чтобы избежать схватывания, при этом длину этого участка определяют, как специфическую функцию внешнего диаметра трубы. С другой стороны, в этом документе не решена проблема, связанная с высокими пиками давления, возникающими при уплотнении, в частности из-за неоптимальной конструкции резервуара, для которого предлагается только промежуток, длина которого может изменяться в зависимости от шага резьбы. В этом случае, однако, проблема возникновения пиков высокого давления во время сборки соединения также не преодолена удовлетворительным образом.

Другое решение, например, в патенте США 5.137.310 предусматривает уменьшение до минимума временного интервала с момента соприкосновения участков, обеспечивающих герметичное уплотнение, до конечного уплотнения соединения посредством сведения на конус относительно оси соединения обеспечивающих герметичное уплотнение участков, таким образом, сводя к минимуму объем захватываемой резьбой смазки. Эти решения, хотя и оказывают эффективными с точки зрения понижения пиков давления в смазке, приводят к ухудшению герметичности при высоких осевых растяжениях из-за значительной конусности обеспечивающих герметичное уплотнение участков.

Следовательно, до настоящего времени, проблема создания простого в сборке с использованием смазки соединения, которое можно плотно затягивать без
отрицательных побочных эффектов, и которое будет обеспечивать герметичность даже при сильных осевых растягивающих нагрузках, не является решенной.

Целью настоящего изобретения является резьбовое соединение с превосходными эксплуатационными характеристиками, в котором после затягивания смазка не создает высоких пиков давления.

Еще одной целью изобретения является соединение, сохраняющее отличные эксплуатационные качества даже при применении слишком большого количества смазки, что иногда имеет место на практике при ошибке оператора.

Также целью настоящего изобретения является соединение, простое для сборки и затягивания в рабочих условиях при монтаже и которое, вследствие этого, может быть использовано в автоматическом оборудовании.

Также целью настоящего изобретения является соединение, которое может быть изготовлено и использовано как с применением углеродистых сталей, так и устойчивых к коррозии сплавов, таких как нержавеющие стали с высоким содержанием хрома или хромоникелевых сплавов, в которых присутствие хрома способствует схватыванию обеспечивающих герметичное уплотнение поверхностей и, следовательно, требует особых мер предосторожности при планировании и практической реализации.

1. Эти и другие цели, которые станут очевидными из настоящего описания, достигнуты в настоящем изобретении посредством резьбового соединения труб, которое, в соответствии с п. 1 формулы изобретения включает в себя, в общем варианте, входящий в другую деталь элемент в виде трубы с номинальным внешним диаметром, имеющий соответствующую наружную резьбу около одного конца с вершинами, имеющими каждая ведущую и нагружаемую рабочие стороны с впадинами между ними, и между указанным концом и указанной соответствующей резьбой первую поверхность без резьбы на конце с первым участком герметичного
уплотнения, и, в общем варианте, охватывающий другую деталь элемент в виде трубы с соответствующей внутренней резьбой на одном из его концов, имеющей вершины, каждая с ведущей и нагружаемой рабочими сторонами с впадинами между ними, и между указанным концом и указанной соответствующей резьбой со вторым участком герметического уплотнения, соответствующим упомянутому первому участку герметического уплотнения, упомянутые наружную и внутреннюю резьбы в месте контакта при свинчивании элементов друг с другом, пространство для смазки, упомянутые входящий в другую деталь и охватывающий другую деталь элементы, определяющие общую ось симметрии соединения, упомянутый охватывающий другую деталь элемент, имеющий далее выемку между упомянутой соответствующей внутренней резьбой и упомянутым вторым участком герметического уплотнения, по существу, торондальной формы, создающую резервуар для смазки, вытекающей из пространства между внутренней резьбой входящего в другую деталь элемента и наружной резьбой охватывающего другую деталь элемента, соответственно, в процессе свинчивания соединения, характеризуется тем, что упомянутая выемка при измерении параллельно оси соединения имеет длину от 4 до 10 мм, а также тем, что она начинается на расстоянии от 5 до 12 мм от поверхности подкожа охватывающего другую деталь элемента и имеет объем, выраженный в мм³, по абсолютной величине не менее, чем в 25 раз превышающий численное значение выраженного в мм номинального внешнего диаметра упомянутого входящего в другую деталь элемента.

В частном варианте изобретения наряду с вышеупомянутым резервуаром, соединение характеризуется наличием свободного пространства между выступами профиля внутренней резьбы и впадинами внешней резьбы, а также зазора между ведущими рабочими сторонами соответствующих вершин, площадь которого в плоскости продольного осевого сечения соединения превышает 0,4 мм².

Более того, выбор очень маленького значения, которое существенно меньше длины выемки, для расстояния по оси между точкой первого соприкосновения между соответствующими поверхностями герметического уплотнения на концах входящего в другую деталь и охватывающего другую деталь элементов во время
сборки соединения и конечным положением этих поверхностей после уплотнения обеспечивает задержку герметизации, что приводит к тому, что выемка, которая функционирует в качестве резервуара для смазочного масла или пасты, закрывается позже, что уменьшает количество оставшейся в ней смазки.

Наконец, конструкция соединения, особенно в отношении взаимного расположения резьб и выемки, такова, что, когда соединение полностью затянуто, вершина резьбы входящего в другую деталь элемента, ближайшая к резервуару, не занимает полностью пространство самого резервуара.

Сочетание элементов, составляющих соединение в заявлении изобретении, и оригинальные геометрические формы этих элементов обеспечивают резьбовое соединение с улучшенными эксплуатационными характеристиками, потребность в которых указана в вводной части.

Таким образом, удалось достичь как понижения давления смазочного вещества в соединении, так и улучшения режима создания герметичного уплотнения между двумя элементами соединения, в то же время, сохранен высокий уровень эксплуатационных характеристик, что позволяет использовать соединение даже в присутствии высоких напряжений, в частности, осевых, что в определенных случаях может являться преимуществом.

Различные варианты изобретения описаны в соответствующих пунктах формулы изобретения.

Далее настоящее изобретение описано со ссылкой на предпочитительный вариант изображения, проиллюстрированный посредством неограничивающего примера целей и области техники, к которой относится изобретение, с помощью прилагаемых чертежей, в которых:

Фиг. 1 представляет собой вид сбоку в разрезе собранного соединения в соответствии с данным изобретением;
Фиг. 2 представляет собой увеличенный вид части Фиг.1, показывающий, в частности, концевую часть резьбы, резервуара для смазки и поверхности, создающие герметичное уплотнение.

Фиг.3 представляет собой увеличенный вид части Фиг.2.

Согласно чертежам, соединение в соответствии с настоящим изобретением далее описано посредством неограничивающего примера.

Резьбовое соединение в соответствии с настоящим изобретением, используемое для соединения труб номинальным диаметром D, включает в себя входящий в другую деталь элемент, имеющий внешнюю резьбу 1', и охватывающий другую деталь элемент 2, имеющий внутреннюю резьбу 2'. Общая ось трубы, входящего в другую деталь и охватывающего другую деталь элементов обозначена буквой "A".

Все вершины 1", 1"' и 2" резьб 1' и 2', соответственно, имеют ведущие стороны, соответственно, 5 и 6, имеющие наклон влево, как показано на фиг. 2, угол которого β к перпендикуляр P к оси A составляет от 10° до 25°, и нагружаемые стороны 4 и 3, соответственно, с наклоном, как показано на Фиг.2, под углом α к перпендикуляр P к оси A от -4° до 3°. Гребни 8 и впадины 7 составляют с осью A трубы угол γ от 0° до 4°.

Внутренняя часть входящего в другую деталь элемента 1 включает в себя коническую поверхность без резьбы 12, оканчивающуюся участком 10. Основной объем внутренней части охватывающего другую деталь элемента 2 занимает выемка 13 с концевой поверхностью 11, которая при полном уплотнении соединения соприкасается с поверхностью 10. Внутренний конец входящего в другую деталь элемента 1 имеет поверхность подкosa 14 в виде усеченного конуса, параллельную соответствующей поверхности усеченного конуса 15 охватывающего другую деталь элемента 2, которые должны соприкасаться друг с другом при полном свинчивании элементов 1 и 2.
Во время свинчивания соединения, рабочие стороны резьбы 6, 5 и 8, 7 находятся на некотором расстоянии друг от друга, так как между ними имеется зазор для смазки с площадью сечения S, показанный на продольном осевом сечении соединения между гребнями 8 резьбы входящего в другую деталь элемента, впадинами резьбы 7 охватывающего другую деталь элемента и поверхностями ведущих сторон 5 и 6. Эта площадь S превышает 0,4 мм2 и предпочтительно составляет от 0,4 до 0,6 мм2.

Во время свинчивания соединения, густая смазка, находящаяся на резьбах, стекает в пространство между резьбами в области S по направлению к выемке, или резервуару, которая начинается на заранее определенном расстоянии L от 5 до 12 мм от поверхности подкоса 15 охватывающего другую деталь элемента. Указанная выемка имеет длину X, измеряемую параллельно оси соединения, от 4 до 10 мм, предпочтительно от 5 до 8 мм. Объем резервуара 13 в мм3 по абсолютной величине как минимум в 25 раз превышает численное значение выраженного в мм номинального внешнего диаметра (D) трубы 1 и предпочтительно в 30 раз больше D.

В соединении преимущественно предусмотрено, что профиль создающих герметичное уплотнение поверхностей 10 и 11 таков, что в процессе свинчивания расстояние δ, измеренное в осевом направлении между точкой, в которой происходит первое соприкосновение между двумя участками герметичного уплотнения 10 и 11, и конечным положением при уплотнении двух элементов 1 и 2, меньше чем длина X, и, предпочтительно, меньше, чем 0,6X, и даже, более предпочтительно, меньше чем 0,5X. После первого соприкосновения поверхностей герметичного уплотнения 10 и 11 во время свинчивания, смазка, находящаяся между участком герметизации и резьбой, больше не может вытекать наружу и скапливается в выемке резервуара 13. Минимизация расстояния δ позволяет отодвинуть закрытие резервуара 13 и, следовательно, уменьшить количество захваченной смазки.

При полном уплотнении соединения, поверхности 10 и 11 скользят относительно друг друга, образуя зону герметичности, обеспечиваемую контактом двух металлических поверхностей, до тех пор, пока опорные поверхности 14 и 15 не
придет в плотное соприкосновение, указывая на завершение уплотнения соединения, что дает дополнительный вклад в его герметичность.

В наиболее предпочтительном варианте изобретения, при полностью собранном соединении вершина 1 резьбы входящего в другую деталь элемента, ближайшая к поверхности герметичного уплотнения 10, не занимает пространство резервуара 13; другими словами, сторона 6 будет, при наиболее продвинутом положении резьбы входящего в другую деталь элемента, лучше всего совмещена по окружности с рабочей стороной (3'), таким образом, оставляя весь объем резервуара (13) доступным для смазки, что, следовательно, предотвращает возникновение вредных пиков давления.

Благодаря размеру и объему, предложенным в данном изобретении, при закрывании канала для вытекания, объем смазочного вещества, которое остается внутри соединения, не превышает предназначенного для него пространства. Таким образом, смазка внутри соединения не подвергается сжатию, и пики давления не возникают. Оптимальный объем резервуара 13 обеспечивает это преимущество, не вызывая неприемлемого ослаблению соединения.
ФОРМУЛА

1. Трубное резьбовое соединение, включающее в себя, в общем варианте, входящий в другую деталь элемент (1) в виде трубы с номинальным внешним диаметром (D), имеющий около одного конца соответствующую наружную резьбу с вершинами (1'), имеющими каждая ведущую (6) и нагружающую (4) рабочие стороны с впадинами между ними, и между указанным концом и указанной соответствующей резьбой первую поверхность без резьбы на конце (12) с первым участком герметического уплотнения (10), и, в общем варианте, охватывающий другую деталь элемент (2) в виде трубы с соответствующей внутренней резьбой на одном из его концов, имеющей вершины (2'), каждая с ведущей (5) и нагружающей (3) рабочей стороной с впадинами между ними, и между указанным концом и указанной соответствующей резьбой со вторым участком герметического уплотнения (11), соответствующим упомянутому первому участку герметического уплотнения (10), упомянутые наружную и внутреннюю резьбы в месте контакта при свинчивании элементов друг с другом, пространство для смазки, упомянутые входящий в другую деталь (1) и охватывающий другую деталь (2) элементы, определяющие общую ось симметрии (A) соединения, упомянутый охватывающий другую деталь элемент (2) имеющий далее выемку (13) между упомянутой соответствующей внутренней резьбой и упомянутым вторым участком герметического уплотнения (11), по существу, торOIDальной формы, создающей емкость для смазки, вытекающей из пространства между внутренней резьбой охватывающего другую деталь элемента (2) и наружной резьбой и входящего в другую деталь элемента (1) соответственно в процессе свинчивания соединения, характеризуется тем, что упомянутая выемка (13) при измерении параллельно оси соединения имеет длину (X) от 4 до 10 мм, а также тем, что она начинается на расстоянии (L) от 5 до 12 мм от поверхности подкоса (15) охватывающего другую деталь элемента и имеет объем, выраженный в мм³, по абсолютной величине не менее, чем в 25 раз превышающий численное значение выраженного в мм номинального внешнего диаметра (D) упомянутого входящего в другую деталь элемента (1).
2. Трубное резьбовое соединение по п.1, в котором указанная выемка (13) имеет длину (X) от 4 до 8 мм.

3. Трубное резьбовое соединение по п.2, в котором указанная выемка (13) имеет длину (X) от 5 до 8 мм.

4. Трубное резьбовое соединение по п.1, в котором объем выемки (13) более чем в 30 раз превышает численное значение выраженного в мм номинального внешнего диаметра (D) входящего в другую деталь элемента (1).

5. Трубное резьбовое соединение по п. 1, в котором между пиком (8) вершины резьбы входящего в другую деталь элемента (1) и выемкой (7) между примыкающими вершинами резьбы охватывающего другую деталь элемента (2) и между ведущими рабочими сторонами (6) и (5) тех же вершин имеется зазор, площадь которого (S) в плоскости продольного осевого сечения соединения превышает 0,4 мм², и в котором профиль создающих герметичное уплотнение поверхностей (10) и (11) таков, что во время свинчивания точка, в которой происходит первое соприкосновение между двумя участками герметичного уплотнения, удалена по оси от конечного положения свинчивания входящего в другую деталь (1) и охватывающего другую деталь (2) элементов на величину δ, меньше, чем длина (X) упомянутой выемки (13).

6. Трубное резьбовое соединение по п.5, в котором площадь (S) указанного пространства составляет от 0,4 до 0,6 мм².

7. Трубное резьбовое соединение по п.5, в котором значение δ в 0,6 раза меньше, чем длина (X) упомянутой выемки (13).

8. Трубное резьбовое соединение по п.5, в котором значение δ в 0,5 раза меньше, чем длина (X) упомянутой выемки (13).
9. Трубное резьбовое соединение по п.1, в котором при полном уплотнении соединения, когда поверхности (14) и (15) соприкасаются друг с другом, рабочая сторона (6) вершины резьбы входящего в другую деталь элемента (1), ближайшая к первой создающей уплотнение поверхности (10), является, чаще всего, выровненной по окружности с рабочей стороной (3') резьбы упомянутого охватывающего другую деталь элемента (2), ближайшей к упомянутой выемке, таким образом оставляя весь объем резервуара (13) доступным для смазки.

10. Трубное резьбовое соединение по п.1, в котором вершины (1", 1"') и (2") резьб входящего в другую деталь (1) и охватывающего другую деталь (2) элементов, соответственно, имеют ведущие рабочие стороны, соответственно, (6) и (5), образующие с плоскостью (Р) перпендикулярной к оси (А), угол β; величиной от 10 до 25°, и нагруженные стороны, соответственно, (4) и (3), образующие с плоскостью (Р), перпендикулярной к оси (А), угол α, величиной от -4° до 3°.
Фиг. 3