СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ СИГНАЛЬНЫХ ТОНОВ ПО СЕТИ С ПАКЕТНОЙ КОММУТАЦИЕЙ

Область техники, к которой относится изобретение

Настоящее изобретение, в общем, относится к области тональной сигнализации. Более конкретно, настоящее изобретение относится к области передачи тональных сигналов по сети системы передачи данных с пакетной коммутацией.

Уровень техники

Технологии тональной сигнализации, такие, как "двухтональный многочастотный набор телефонного номера" (DTMF) известны и используются в телефонных сетях, по меньшей мере, последние двадцать лет. Развитие и расширение использования телефонных сетей с пакетной коммутацией данных привело к появлению определенных барьеров при использовании тональных сигналов. В некоторых ситуациях кодирующие устройства, используемые для кодирования человеческой речи, могут изменять частотный состав тона до такой степени, что, этот тон не распознается устройством, в которое передают сигнал. В других случаях кодирующее устройство может изменить тон так, что устройство, в которое подают сигналы, принимает один тон за другой или может принять тон за два или больше тонов.

Для устранения этой проблемы используют DTMF ретранслятор. DTMF ретранслятор состоит из DTMF детектора тона и DTMF генератора тона. Детектор отслеживает поступающие звуковые сигналы, и при обнаружении сигнального тона генерирует сигнал управления, который передает инструкцию в генератор на приемной станции на генерирование сигнального тона. К сожалению, детектирование сигнального тона занимает определенное время, и канал передачи сигнала через ретранслятор иногда вводит задержку по отношению к каналу передачи голосовых данных, в результате чего сигнальный тон дважды детектируется на приемной станции. Это явление известно как детектирование двойной цифры. Было предложено заглушать канал передачи голосовых данных после детектирования сигнального тона, однако, из-за временной задержки, связанной с природой процесса детектирования, отключение канала передачи голосовых данных происходит с задержкой и некоторые остаточные DTMF сигналы проходят через канал передачи голосовых данных на приемную станцию, что приводит к детектированию двойной цифры.
Сущность изобретения

Настоящее изобретение, в частности, направлено на блок оценки частоты, который анализирует звуковой сигнал, выполняя поиск частотного компонента сигнального тона, и передает информацию, относящуюся к подвергаемому сомнению компоненту частоты сигнального тона в блок искажения тона в течение, по существу, короткого периода времени. Сигнальный тон может представлять собой одиночный тон или комбинацию двух или большее тонов. Блок искажения тона может модифицировать частотный состав подвергаемого сомнению сигнального тона в звуковом сигнале. Модификация частотного состава подвергаемого сомнению сигнального тона в блоке искажения тона может сделать такой тон нераспознаваемым для детектора тона, функционально связанного с устройством, в которое предполагается передавать сигнал с помощью этого сигнального тона.

В соответствии с некоторыми аспектами настоящего изобретения, модификация частотного состава подвергаемого сомнению сигнального тона с помощью блока искажения тона оказывает минимальное искажающее влияние на речевые сигналы.

В частности, настоящее изобретение направлено на детектор тона, который может подтверждать, действительно ли в звуковом сигнале присутствует подвергаемый сомнению сигнальный тон, детектируемый с помощью блока оценки частоты, и таким образом представляет собой истиный сигнальный тон. В результате детектирования истиного сигнального тона, детектор тона может передавать в генератор тона инструкцию на генерирование детектируемого сигнального тона.

Краткое описание чертежей

Предмет настоящего изобретения, в частности, указан и определенно заявлен в заключительной части настоящего описания. Однако изобретение, как в отношении организации, так и способа работы, вместе с его целями, свойствами и преимуществами лучше всего может быть понято со ссылкой на следующее подробное описание, которое следует читать с рассмотрением прилагаемых чертежей, на которых:

на фиг. 1 показана блок-схема системы передачи сигнального тона в соответствии с настоящим изобретением;

на фигуре 2 показана блок-схема блока оценки частоты в соответствии с настоящим изобретением;

на фиг. 3A показана блок-схема одного варианта выполнения блока искажения тона в соответствии с настоящим изобретением;
на фиг. 3В показана блок-схема второго варианта выполнения блока искажения тона в соответствии с настоящим изобретением;
на фиг. 4А представлена диаграмма частот частотного компонента, подвергаемого сокращению тона, с уменьшенным уровнем;
на фиг. 4В показана диаграмма частот частотного компонента, подвергаемого сокращению тона, со сдвигом по частоте; и
на фиг. 4С показана частотная диаграмма частотного компонента подвергаемого сокращению тона, замаскированного между соседними компонентами.
Следует понимать, что для упрощения и ясности представления, элементы, показанные на чертежах, не обязательно представлены в масштабе. Например, размеры некоторых элементов могут быть преувеличены по отношению к другим элементам для ясности изложения. Кроме того, в соответствующих случаях, номера ссылок могут повторяться на чертежах для обозначения соответствующих или аналогичных элементов.

Подробное описание изобретения

В следующем подробном описании множество конкретных деталей представлено в определенном порядке для обеспечения полного понимания настоящего изобретения. Однако для специалистов в данной области техники будет понятно, что настоящее изобретение можно применять на практике без использования этих конкретных деталей. В других случаях хорошо известные способы, процедуры, компоненты и цепи не были подробно описаны, чтобы не затенять суть настоящего изобретения.
Если только конкретно не указано другое, как будет очевидно из следующего описания, во всем описании использование таких терминов, как "обработка", "вычисления", "расчеты", "определение" или тому подобное, относится к действиям и/или процессам, выполняемым в компьютере или в вычислительной системе, или аналогичном электронно-вычислительном устройстве, которое управляет и/или преобразует данные, представленные как физические величины, такие, как электронные величины, с использованием регистров вычислительной системы и/или запоминающих устройств, в другие данные, представленные аналогично, как физические величины, в запоминающих устройствах вычислительной системы, регистрах или других таких устройствах накопления, передачи или отображения информации.
Варианты выполнения настоящего изобретения могут включать устройства, предназначенные для выполнения описанных здесь операций. Такое устройство может быть специально построено для требуемых целей, или может содержать компьютер общего назначения или цифровой процессор сигналов (DSP) выборочно активируемый
или реконфигурируемый с помощью с компьютерной программы, записанной в компьютер. Такая компьютерная программа может быть записана на носитель данных, считываемый компьютером, такой как, без ограничений, диск любого типа, включая гибкие диски, оптические диски, CD-ROM (компакт-диски с постоянно записанными данными), магнитно-оптические диски, постоянное запоминающее устройство (ПЗУ), оперативное запоминающее устройство (ОЗУ), электрически программируемое постоянное запоминающее устройство (СППЗУ), электрически стираемое и программируемое постоянное запоминающее устройство (ЭСППЗУ), магнитные или оптические карты или носители любого другого типа, пригодные для записи электронных инструкций, которые можно подключать к системнойшине компьютера.

Процессы и представления, описанные здесь, не следует полностью относить к какому-либо конкретному компьютеру или другому устройству. Различные системы общего назначения можно использовать с программами, в соответствии с представленным здесь описанием, или для выполнения требуемого способа может оказаться удобным построить более специализированное устройство. Требуемая структура множества таких систем будет очевидна из приведенного ниже описания. Кроме того, варианты выполнения настоящего изобретения не описаны со ссылкой на какой-либо конкретный язык программирования. Следует понимать, что множество языков программирования можно использовать для выполнения описанных здесь принципов настоящего изобретения.

Если только конкретно не будет указано другое, как очевидно из дальнейшего описания, следует понимать, что во всем описании используемые термины, такие, как "теп", "сигнальный тон", "уровень", "частота" или "частотный компонент" или тому подобные, могут относиться к одному или больше блоку или блокам, содержащим вышеуказанные компоненты и элементы.

В частности, в настоящем изобретении, используется блок оценки частоты, который анализирует звуковой сигнал, выполняя поиск частотного компонента сигнального тона, и передает информацию, относящуюся к подвергаемому сомнению частотному компоненту сигнального тона в блок искажения тона. Блок искажения тона модифицирует частотный состав подвергаемого сомнению сигнального тона в звуковом сигнале. Детектор тона определяет, действительно ли сигнальный тон присутствует в звуковом сигнале, и в ответ на присутствие сигнального тона, передает в генератор тона на приемной станции инструкцию на генерирование детектированного сигнального тона.

Блок оценки частоты используется в комбинации с детектором тона так, что детектирование сигнального тона происходит в пределах периода времени, достаточно
для искажения тона. Блоки оценки частоты имеют меньшую точность, чем детекторы тона, из-за чего они имеют более высокий уровень ложного детектирования. Однако блок оценки частоты обладает более быстрым откликом, чем детектор тона, и, таким образом, позволяет детектировать подвергаемый сомнению сигналный тон в течение достаточного периода времени для искажения частотного состава, подвергаемого сомнению сигнального тона.

В случае, когда в блоке оценки частоты произошло ложное детектирование сигнального тона, то есть, блок определил наличие в звуковом сигнале подвергаемого сомнению сигнального тона, когда он в действительности отсутствует, в блок искажения тона поступает сигнал для искажения ложно детектированного тона. В настоящем изобретении, в частности, блок искажения тона так искажает частотный состав звукового сигнала, в котором произошло ложное детектирование сигнального тона, что речь в звуковом сигнале остается восприимчивой. В предпочтительном варианте выполнения настоящего изобретения блок искажения тона так искажает частотный состав звукового сигнала, в котором сигнальный тон был ложно детектирован, что качество речи звукового сигнала ухудшается незначительно.

На фиг. 1 показана блок-схема системы передачи сигнального тона в соответствии с настоящим изобретением. Звуковой сигнал, который может содержать сигнальный тон, может поступать в систему с левой стороны схемы, показанной на фиг. 1. Звуковой сигнал, совместно с сигнальным тоном, может быть сформирован в любом из множества устройств, включая, без ограничения, телефон с блоком тонового набора номера. Сигнал принимают с помощью блока 10 искажения тона и блока 30 оценки частоты, который предназначен для анализа частотного состава звукового сигнала, в частности, поиска одного или больше частотных компонентов, скоррелированных с одним или больше сигнальными тонами. Блок 20 кодирования речи кодирует звуковой сигнал и передает пакеты данных через систему передачи данных в блок 50 декодирования, где пакеты декодируют, и реконструируют звуковой сигнал. Сеть передачи данных может быть сконфигурирована для передачи данных с использованием одного из протоколов ATM (асинхронный режим передачи данных), IP (идентификация положения), TCP (протокол управления передачей), UDP (пользовательский протокол данных) или RTP (транспортный протокол реального времени), любой их комбинации и с использованием любой другой соответствующей технологии передачи данных.

В случае, когда блок 30 оценки частоты детектирует в звуковом сигнале сигнальный тон (независимо от того, присутствует ли он в действительности), блок 30 оценки частоты генерирует и передает в блок 10 искажений одно или больше значений частоты и
амплитуды, подвергаемых сомнению частотных компонентов тона. Блок 10 искажений искажает подвергаемый сомнению тон в звуковом сигнале так, что подвергаемый сомнению тон не будет распознаваться в детекторе 70 сигнального тона, который формирует часть декодера 50. Поскольку блок 30 оценки частоты может ошибочно детектировать сигнал, используется искажение такого типа, которое в минимальной степени влияет на качество речи. Детектор 70 сигнала может быть включен в систему передачи сигнального тона в соответствии с некоторыми вариантами выполнения настоящего изобретения, однако другие варианты выполнения системы передачи сигнального тона, в соответствии с настоящим изобретением, можно использовать на практике без детектора 70 сигнального тона.

Детектор 40 сигнального тона также принимает неискаженный звуковой сигнал и детектирует тон. Детекторы 40 тона хорошо известны и, при этом они более медленно работают, детектируя присутствие тона в звуковом сигнале, чем блок 30 оценки частоты. Однако, детекторы тона, такие, как DTMF детектор 40 по фиг. 1, более точно определяют наличие или отсутствие сигнального тона в звуковом сигнале, чем блок 30 оценки частоты. Когда детектор 40 тона детектирует тон в звуковом сигнале, он передает управляющий сигнал в генератор 60 тона, содержащий инструкцию для генератора тона на генерирование детектированного тона. Генератор 60 тона соединен с декодером 50, так, что выходной сигнал генератора 60 накладывают на выходной звуковой сигнал детектора 50.

Блок 20 кодирования речи (фиг. 1) преобразует сигнал в течение определенного промежутка времени в пакеты данных, предназначенные для передачи по сети передачи данных. Блок 20 кодирования речи 20 затем передает пакеты данных в адрес назначения по сети. Блок 50 декодирования речи 50 в месте назначения преобразует пакеты данных, переданные блоком 20 кодирования обратно в звуковой сигнал данного промежутка времени с искаженным тоном, который не распознается устройством 70, в которое должен быть передан этот тон в качестве сигнала.

Блок оценки частоты может быть построен с использованием одной из множества схем, например, такой, как показана на фиг. 2. Сигнал проходит через преобразователь 32 времени в частотную область, такой, как процессор преобразования Фурье, линейный предиктивный генератор коэффициента, процессор косинусоидального преобразования и т.д. Также можно использовать набор фильтров или банки фильтров, каждый из которых настроен на определенную частоту, связанную с представляющимися интерес тонами. Уровень выходного сигнала каждого фильтра представляет уровень или силу частотного компонента в звуковом сигнале, на который настроен фильтр. Выходной сигнал
преобразователя 32 анализируют с помощью блока 34 спектрального анализа, который делает попытку идентификации частотных компонентов в звуковом сигнале, присутствие которых могло бы указывать, что сигнальный тон также присутствует. Поскольку каждый сигнальный тон имеет один или больше частотный компонент, связанный с ним, высокий или средний уровень присутствующего частотного компонента тона может привести к определению блоком 34 анализа спектра, что соответствующий тон присутствует в звуковом сигнале. В случае, когда блок 30 оценки частоты определяет, что тон может присутствовать в звуковом сигнале, он передает сигнал в блок 10 искажения с указанием частоты или частот и амплитуды частотных компонентов тона, в отношении которого имеется сомнение, присутствует ли он в звуковом сигнале.

На фиг. 3А показана блок-схема одного варианта выполнения блока 10 искажения тона в соответствии с настоящим изобретением. Блок 10 искажения содержит переключатель или реле 12, который по умолчанию передает звуковой сигнал, поступающий из источника, по обводной цепи вокруг других элементов блока искажения. В случае, когда блок 30 оценки частоты передает в блок 10 искажения указание на то, что звуковой сигнал может содержать тон, реле 12 переключается так, что поступающий звуковой сигнал проходит в преобразователь 14 времени в частотную область, блок 16 модификации спектра, и в преобразователь 18 частоты в промежуток времени. Преобразователи 14 времени в частотную область являются известными устройствами и могут включать без ограничений процессор преобразования Фурье, линейный предиктивный генератор коэффициента, процессор косинусоидального преобразования или банк фильтров. Выходной сигнал преобразователя 14 времени в частотную область можно назвать спектральным представлением звукового сигнала.

Блок 16 модификации спектра может принимать от блока 30 оценки частоты частоту и амплитуду подвергаемого сомнению частотного компонента тона, и может модифицировать или искажать частотный компонент, связанный с подвергаемым сомнению тоном так, что тон не будет распознаваться устройством, как тон, предназначенный для передачи сигналов. Искажение подвергаемого сомнению частотного компонента сигнального тона может быть выполнено путем снижения амплитуды соответствующего частотного компонента или компонентов, пример которого показан на фиг. 4А. На фиг. 4А (с левой стороны) показана частота f₈, подвергаемого сомнению частотного компонента сигнального тона, как имеющая наибольшую амплитуду среди всех других частотных компонентов. Хотя на фиг. 4А (с правой стороны) показана частота f₈, здесь подвергаемый сомнению частотный компонент сигнального тона, имеет более низкую амплитуду после его искажения.
Искажение подвергаемого сомнению частотного компонента сигнального тона также может быть выполнено путем сдвига с повышением или понижением частоты подвергаемых сомнению частотных компонентов тона. Например, если подвергаемый сомнению сигнальный тон имеет частотный компонент на частоте f_8, (коррелируемый, например, с частотой 900Гц), блок модификации спектра может сдвинуть этот частотный компонент с понижением частоты, как показано на фиг. 4В. На фиг. 4В (с правой стороны) показана частота f_8, которая представляет собой подвергаемый сомнению частотный компонент сигнального тона, сдвинутый с понижением на два дискретных значения частоты до частоты f_6. В примере, показанном на фиг. 4В, частоты f_8 и f_6 взаимно меняют между собой. Однако, в другом примере, f_8 может просто заменять f_6.

Блок модификации спектра также может вводить шумы или может усиливать частотные компоненты в диапазонах частот, расположенных рядом с частотой частотного компонента подвергаемого сомнению тона, например, как показано на фиг. 4С. На фиг. 4С показаны частотные компоненты, окружающие значение f_8 после усиления, так, что значение f_8 больше не представляет собой доминирующий частотный компонент.

В случаях, когда сигнальный тон состоит из двух или больше тонов (напри мер, тонов DTMF), могут быть искажены все компоненты или могут быть искажены некоторые из компонентов, или может быть искажен только один из компонентов. Обычно лучше искажать компонент с меньшей амплитудой.

Эти и другие технологии модификации спектра можно использовать для изменения спектрального состава подвергаемого сомнению тона, так, что он не будет распознаваться как сигнальный тон с помощью устройства, в которое предполагается передача тона в качестве сигнала. Преобразователь 18 частоты в промежуток времени (фиг. 3А) может преобразовывать модифицированное спектральное представление звукового сигнала обратно в сигнал временного промежутка.

На фиг. 3В показан альтернативный вариант выполнения блока 10 искажения тона в соответствии с настоящим изобретением. Блок 10 искажения по фиг. 3В содержит только блок 16 модификации спектра, который изменяет частотный состав сигнала, содержащего сигнальный тон, без первоначального преобразования сигнала в частотную область. В варианте выполнения, показанном на фиг. 3В блок 16 модификации спектра может, в частности, содержать фильтр, блок сдвига частоты с понижением или с понижением или любое другое устройство с соответствующей характеристикой преобразования частотной области или с соответствующей амплитудно-частотной характеристикой.
Ниже приведен пример выполнения других блоков искажения частот, таких как блок искажения DTMF тона: для получения достаточного искажения, исключающего распознавание DTMF сигнала как действительно DTMF сигнала с помощью стандартного DTMF детектора, можно использовать характеристики DTMF детектирования, в соответствии с определением стандарта TIA-464B. Стандарт DTMF содержит, например, такие определения, как Объемная мощность (Twist) - требуется, чтобы отношение мощности между высокочастотными и низкочастотными компонентами в сигнале DTMF составляло от +4 дБ до -8 дБ для обеспечения приема или распознавания сигнала DTMF; Пределы мощности на компонент (Power limits per component) - мощность компонента должна составлять от 0 до -25 дБ для, чтобы компонент был принят; и Девиация частоты (Frequency deviation) - девиация частоты компонентов должна быть меньше 1,5%, чтобы они были приняты.

Помимо стандарта TIA-464B, существуют другие общие для всех DTMF детекторов характеристики, которые можно использовать для обмана DTMF детектора: Стационарность мощности (Power stationarity) – для выделения DTMF из сигналов речи, при работе DTMF детекторов требуется, чтобы в течение короткого времени мощность сигнала была постоянной, чтобы такой сигнал был принят как DTMF сигнал; Концентрация мощности (Power concentration) – для выделения DTMF из сигналов речи, при работе DTMF детекторов требуется, чтобы спектр мощности был сконцентрирован вокруг DTMF частот, чтобы сигнал был принят как DTMF сигнал.

Принимая во внимание, приведенные выше характеристики или требования к DTMF детектору, DTMF блоки искажения могут быть построены в соответствии с использованием одного или больше следующих параметров:

Блок искажения степени отклонения - такой блок искажения может ослаблять частотный компонент с более низким уровнем с минимальной степенью ослабления, в результате чего отклонение будет находиться за пределами разрешенного DTMF диапазона. При этом можно использовать узкополосный режекторный фильтр вокруг частотного компонента, который обеспечивает ослабление только DTMF компонента. Узкополосный режекторный фильтр может представлять собой либо фильтр с конечной импульсной характеристикой ("Finite Impulse Response" (FIR)) или фильтр с бесконечной импульсной характеристикой ("Infinite Impulse Response" (IIR)). При этом можно использовать IIR фильтр со следующей функцией передачи:

\[H(z) = \frac{z^2 - 2\cos\theta \cdot z + 1}{z^2 - 2r\cos\theta \cdot z + r^2} \]
Здесь Z обозначает комплексную переменную преобразования Z, параметр Тета (Theta) управляет центральной частотой узкополосного режекторного фильтра, и параметр γ управляет степенью ослабления тона так, что отклонение будет находиться за пределами принятого диапазона. Ослабление 15 дБ в отношении частотного компонента может быть достаточным для обеспечения того, что кручение будет находиться за пределами принятого диапазона. Благодаря монотонности частотного отклика фильтра ниже и выше номинальной частоты, ослабление на номинальной частоте +/-1,5% может быть даже больше, чем 15 децибел.

Ниже приведена таблица, в которой описана конструкция блока искажения степени отклонения с использованием 1 узкополосного режекторного фильтра (для более слабого из 2-x DTMF компонентов, оценка которых выполняется с помощью блока оценки частоты) из набора, включающего 8 возможных узкополосных режекторных фильтров в соответствии с 8 номинальными DTMF частотами. Номинальная частота f_0 находится в центре полосы пропускания, f_0 используют для расчета параметра Тета в дифференциальном уравнении фильтра. Значение радиуса γ представляет собой расстояние полюсов фильтра от исходного значения, γ используют в дифференциальном уравнении фильтра для управления степенью ослабления на частоте полосы пропускания.

<table>
<thead>
<tr>
<th>Номинальная частота</th>
<th>R</th>
<th>Ослабление на частоте</th>
<th>Ослабление на частоте</th>
<th>Частота на -3 дБ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-2,5%</td>
<td>+ 2,5%</td>
<td>Низкая частота</td>
</tr>
<tr>
<td>697 Гц</td>
<td>0,92</td>
<td>-15 дБ</td>
<td>-15 дБ</td>
<td>605</td>
</tr>
<tr>
<td>770 Гц</td>
<td>0,91</td>
<td>-15 дБ</td>
<td>-15 дБ</td>
<td>668</td>
</tr>
<tr>
<td>852 Гц</td>
<td>0,90</td>
<td>-15 дБ</td>
<td>-15 дБ</td>
<td>740</td>
</tr>
<tr>
<td>941 Гц</td>
<td>0,89</td>
<td>-15 дБ</td>
<td>-15 дБ</td>
<td>820</td>
</tr>
<tr>
<td>1209 Гц</td>
<td>0,85</td>
<td>-15 дБ</td>
<td>-15 дБ</td>
<td>1050</td>
</tr>
<tr>
<td>1336 Гц</td>
<td>0,84</td>
<td>-15 дБ</td>
<td>-15 дБ</td>
<td>1170</td>
</tr>
<tr>
<td>1477 Гц</td>
<td>0,82</td>
<td>-15 дБ</td>
<td>-15 дБ</td>
<td>1295</td>
</tr>
<tr>
<td>1633 Гц</td>
<td>0,79</td>
<td>-15 дБ</td>
<td>-15 дБ</td>
<td>1428</td>
</tr>
</tbody>
</table>
Для каждой частоты показана степень ослабления на номинальной частоте +/- 2,5%. Значение г может быть рассчитано так, что ослабление будет составлять, по меньшей мере, 15 дБ. Это может обеспечить, что после обработки фильтром степень отклонения будет неразрешенной для детектирования, с учетом полосы пропускания соответствующего детектора. Чтобы показать, что при этом искажение речевого сигнала будет минимальным (в случае, когда блок оценки частоты ложно детектирует сигнал как DTMF), представим низкую и высокую частоты, в случае, когда ослабление составляет 3 дБ и рассчитаем значение Дельта полосы, представляющее полосу, в которой, по существу, происходит ослабление. Значение дельта полосы в худшем случае составляет 412 Гц из диапазона речи 3 КГц, что приблизительно составляет 13%.

Полосовой фильтр может быть выполнен во временном интервале с использованием следующего дифференциального уравнения:

\[y[n] = 2r \cos \theta \cdot y[n-1] - r^2 y[n-2] + x[n] - 2\cos \theta \cdot x[n-1] + x[n-2] \]

Параметры г и Тета в таблице используют в соответствии с более слабым подвергаемым сомнению частотным DTMF компонентом, оценка которого была проведена с помощью блок оценки частоты.

Где:
\(x[n] \) представляет собой значение n-той входной выборки на фильтре
\(y[n] \) представляет собой значение n-той выходной выборки на фильтре.

Блок искажения с модуляцией частоты - такой блок искажения может сдвигать частотные компоненты путем перемешивания сигнала с помощью синусоидального или косинусоидального модулятора с фиксированной частотой модуляции. Результат модуляции представляет собой сумму сигнала, который сместит сначала один раз вперед по частоте и один раз назад по частоте на величину частоты модуляции. Частота модуляции может быть выбрана так, что, по меньшей мере, один DTMF компонент будет иметь девиацию частоты больше 3,5%, что приведет к неприятно сигнала детектором 70 тона.

\[y[n] = x[n] \cdot \cos(w_1n) \]

Где:
\(x[n] \) представляет величину n-того значения выборки звукового сигнала
\(y[n] \) представляет величину n-той выходной выборки модулятора

\[w_1 = 2\pi f_1 / f_s \]

\(f_1 \) представляет смещение частоты, \(f_s \) представляет частоту выборки.
Блок искажения со сдвигом частоты — такой блок искажения свдвигает частотные компоненты путем вычитания произведения сигнала, полученного с помощью косинусоидального модулятора с фиксированной частотой модуляции (синусоидальные/косинусоидальные модуляторы перемножают сигнал на синусоидальный/косинусоидальный сигнал с фиксированной частотой, в результате чего происходит сдвиг исходного спектра сигнала на частоту модулятора) и произведения сигнала после преобразования Гилберта, полученного с помощью модулятора сигнала. В результате получают сдвиг вперед по частоте на величину частоты модуляции. Частота модуляции может быть выбрана такой, что, по меньшей мере, один компонент получает отклонение частоты больше чем 3,5%, так что он не будет принят.

\[y[n] = x[n] \cdot \cos(w,n) - \text{Hilbert}\{x[n]\} \cdot \sin(w,n) \]

Где: \text{Hilbert}\{x[n]\} обозначает преобразование Гилберта сигнала \(x[n] \).

Преобразование Гилберта может быть выполнено с использованием соответствующего, пропускающего все компоненты FIR фильтра.

Блок искажения с концентрацией спектра мощности — такой блок искажения снижает относительную концентрацию спектра мощности DTMF компонентов путем добавления гармонических компонентов к исходным частотным компонентам. Такая обработка может быть выполнена с помощью нелинейного преобразования сигнала. В качестве нелинейного преобразования можно использовать функцию абсолютного значения.

\[y[n] = |x[n]| \]

Помимо нелинейного преобразования также можно использовать другие преобразования. Например:

\[y[n] = x^2[n] \]

Где:

- \(x[n] \) представляет \(n \)-ю выборку звукового сигнала
- \(y[n] \) представляет \(n \)-ю выборку выходного сигнала блока искажения

Результат таких преобразований состоит в том, что спектр преобразованного сигнала содержит гармоники (кратные целому числу) компонентов спектра исходного сигнала. Это приводит к тому, что детектор 70 определяет, что спектр является менее концентрированным на DTMF частотах (поскольку некоторые из них сконцентрированы на частотах, кратных DTMF частотам), и поэтому детектор 70 отбраковывает сигнал и не выполняет его детектирование.
Блок искажения концентрации спектра может усиливать один или больше компонентов частоты, расположенных рядом с компонентом сигнального тона. В результате сигнальный тон будет скрыт внутри звукового сигнала, что, таким образом, делает тон нераспознаваемым с помощью детектора сигнала.

Частотный компонент звукового сигнала вместе с сигнальным тоном, содержащимся в нем, может быть произвольно изменен в частотной области. Использование преобразования временной интервал-частотная область хорошо известно. Может быть проведена выборка звукового сигнала, содержащего сигнальный тон, и выборки могут быть разделены на перекрывающиеся или не перекрывающиеся сегменты или рамки выборок. Каждый сегмент может быть преобразован в частотную область спектрального представления сегмента. Конкретные частотные компоненты в пределах каждой рамки могут быть либо усилены, ослаблены, сдвинуты, или по-другому изменены, и измененное представление сигнала может быть преобразовано обратно во временной интервал. Каждый из способов искажения, описанных выше, вместе с любыми другими способами, которые могут быть применены в настоящем изобретении, может быть выполнен в частотной области с использованием преобразования временной интервал-частотная область.

В варианте выполнения настоящего изобретения блок 10 искажения, может иметь ограниченное влияние на речь, представленную звуковым сигналом. В случае, когда блок 30 оценки частоты передает сигнал о наличии подвергаемого сомнению сигнального тона, когда фактически истиный сигнальный тон отсутствует, модификация звукового сигнала с помощью блока искажения тона может незначительно ухудшить качество речи, представленной звуковым сигналом. То есть, искажение, производимое блоком 10 искажения тона, может иметь незначительное влияние на компонент речи звукового сигнала, так, что речевые сигналы остаются понятными для слушателя. Это может быть получено путем выполнения только ограниченной спектральной модификации с использованием одной из описанных выше методик.

Хотя в настоящем описании были представлены и описаны определенные свойства настоящего изобретения, множество модификаций, замен, изменений и эквивалентов будут очевидны для специалистов в данной области. Поэтому следует понимать, что приложенная формула изобретения предназначена для охвата всех таких модификаций и изменений, как находящихся в пределах истиинной сущности настоящего изобретения.
ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ, содержащий:
детектирование в звуковом сигнале частотного компонента, коррелированного с
сигнальным тоном, и искажение этого тона в звуковом сигнале.

2. Способ по п. 1, отличающийся тем, что указанное искажение содержит сдвиг
частотного компонента, скоррелированного с тоном.

3. Способ по п. 1, отличающийся тем, что указанное искажение содержит изменение
амплитуды частотного компонента, скоррелированного с тоном.

4. Способ по п. 1, отличающийся тем, что указанное искажение содержит
маскирование частотного компонента, скоррелированного с тоном.

5. Способ по п. 1, отличающийся тем, что тон в звуковом сигнале искажают путем
изменения одного или большей величины одного или больше его частотных компонентов.

6. Способ по п. 1, отличающийся тем, что тон в звуковом сигнале искажает путем
изменения уровня частотных компонентов рядом с частотным компонентом,
скоррелированным с тоном.

7. Способ по п. 1, отличающийся тем, что дополнительно содержит передачу
звукового сигнала с искаженным тоном в место его назначения.

8. Способ по п. 7, отличающийся тем, что дополнительно содержит кодирование
звукового сигнала перед передачей сигнала в место его назначения.

9. Способ по п. 8, дополнительно содержащий детектирование тона в звуковом
сигнале и передачу в генератор тона сигнала управления с инструкцией для генератора на
генерирование детектируемого тона.

10. Устройство передачи тона, содержащее блок оценки частоты, предназначенный
для детектирования в звуковом сигнале частотного компонента, скоррелированного с
тоном, и блок искажения тона, предназначенный для модификации одного или больших
частотных компонентов, ассоциированных с тоном, при минимальном искажении речи в
звуковом сигнале.

11. Устройство по п. 10, отличающийся тем, что блок искажения тона выбирают из
группы, состоящей из блока искажения степени отклонения, блока искажения с
модуляцией частоты, блока искажения со сдвигом частоты и блока искажения
концентрации мощности.

12. Устройство по п. 11, отличающийся тем, что дополнительно содержит блок
кодирования, предназначенный для преобразования звукового сигнала в один или больше
пакетов данных.
13. Устройство по п. 12, отличающийся тем, что дополнительно содержит блок детектирования тона, предназначенный для детектирования тона в звуковом сигнале и для генерирования сигнала управления, который передает инструкцию в генератор тона на генерирование детектируемого тона.

14. Система передачи, содержащая:
 устройство передачи тона, содержащее детектор частоты, предназначенный для детектирования в звуковом сигнале частотного компонента, скоррелированного с тоном, и блок искажения тона, предназначенный для модификации одного или больше частотных компонентов, ассоциированных с тоном, при минимальном искажении речи в звуковом сигнале; и
 блок кодирования, предназначенный для кодирования и передачи звукового сигнала по сети передачи данных.

15. Система по п. 14, отличающаяся тем, что передачу данных выбирают из группы, состоящей из сети ATM, протокола TCP, сети I.P., протокола UDP и протокола RTP.

16. Способ, содержащий:
 детектирование в звуковом сигнале частотного компонента, скоррелированного с сигналным тоном; изменение частотного компонента, ассоциированного с тоном так, что речь в звуковом сигнале получает минимальное искажение; и кодирование звукового сигнала с измененным частотным компонентом.

17. Способ по п. 16, отличающийся тем, что дополнительно содержит детектирование тона и передачу сигнала управления в генератор тона.

18. Устройство передачи тона, содержащее детектор частоты, предназначенный для детектирования в звуковом сигнале частотного компонента, скоррелированного с тоном; блок искажения тона, предназначенный для модификации одного или больше частотных компонентов, ассоциированных с тоном; блок кодирования, предназначенный для кодирования звукового сигнала с искаженным тоном; и детектор тона, предназначенный для детектирования тона и для генерирования сигнала управления, который передает в генератор тона инструкцию на генерирование тона.

19. Устройство передачи тона по п. 18, отличающееся тем, что блок искажения тона в минимальной степени искажает речь в звуковом сигнале.
ФИГ. 1
ФИГ. 3В

ЗВУКОВОЙ СИГНАЛ

ПОД-ВЕРГАЕТСЯ ЛИ ТОН СОМНЕ-НИЮ?
12

ДА
БЛЮК МОДИФИКАЦИИ СПЕКТРА

16
БЛОК КОДИРОВАНИЯ ГОЛОСА

БЛОК ОЦЕНКИ ЧАСТОТЫ

3/4
ФИГ. 4А

ФИГ. 4Б

ФИГ. 4С