Изобретение относится к стекольной промышленности, а именно к производству стеклотары зеленых и коричневых тонов.

Известно стекло для стеклотары следующего состава, мас.%: SiO_2 - 60,40; Al_2O_3 - 11,80; Fe_2O_3 - 1,40; CaO - 8,00; MgO - 0,30; Na_2O - 13,90; K_2O - 2,50; SO_3 - 0,30; Mn_3O_4 - 1,34, TiO_2 - 1,40 [1]. Такой материал обладает недостаточно высокой водоустойчивостью.

Стекло для стеклотары, включающее компоненты, мас.%: SiO_2 68,00-75,00; Al_2O_3 0-5,00; оксиды железа 0,5-1,5 при соотношении FeO/Fe_2O_3 =0,233; Na_2O 10,00-18,00; K_2O 0-5,00; CaO 5,00-15,00; MgO 0-10,00; TiO_2 0-1,00; MnO 0,10-2,00, SO_3 0,10-0,30 и Cr_2O_3 0-0,20, является наиболее близким аналогом изобретения [2]. Недостатком этого состава являются невысокие показатели химической устойчивости к щелочным растворам.

Задачей, которую решает предполагаемое изобретение, является повышение водоустойчивости и щелочестойкости стекла, а также расширение сырьевой базы применяемых материалов за счет применения в качестве шихтного материала породообразующих минералов. Сущность изобретения заключается в том, что в стекле для стеклотары, включающем SiO₂, Al₂O₃, Fe₂O₃, Na₂O, K₂O, CaO, MgO, FeO, TiO₂, MnO, SO₃, Cr₂O₃, соотношение FeO/Fe₂O₃ составляет 0,21, при следующем соотношении компонентов, мас.%: SiO₂ 71,50-73,50; Al₂O₃ 1,00-2,10; Fe₂O₃ 0,20-0,50; CaO 10,00-12,00; MgO 0,50-1,00; Na₂O 12,30-13,50; K₂O 0,01-0,15; FeO 0,10-0,33; TiO₂ 0,05-0,20; MnO 0,01-0,10; SO₃ 0,10-0,30; Cr₂O₃ 0,21-0,25.

Технический результат изобретения заключается в повышении физико-химических свойств стекла для стеклотары, снижении производственных затрат, улучшении качества продукции и расширении сырьевой базы в стекольной промышленности.

Составы предложенного стекла для стеклотары предоставлены в табл. 1.

Таблина 1

			таоли	
	Содержание масс % в составах			
Компоненты	1	2	3	
SiO ₂	72,40	71,50	73,50	
Al ₂ O ₃	1,20	2,10	1,00	
Fe₂O₃	0,20	0,50	0,40	
Na ₂ O	13,00	12,30	13,50	
K ₂ O	0,10	0,15	0,01	
CaO	11,50	12,00	10,00	
MgO	0,80	0,50	1,00	
TiO ₂	0,15	0,20	0,05	
Cr ₂ O ₃	0,21	0,25	0,10	
SO ₃	0,25	0,30	0,1	
FeO	0,20	0,10	0,33	
MnO,	0,05	0,10	0,01	

Для приготовления шихты используют шихтные материалы: песок кварцевый, соду кальцинированную, глинозем, гипс, известняк, углерод, портафер (Fe_2O_3 +FeO), портахром (Cr_2O_3), марганцевую пасту, двуокись титана, калиевую селитру и окись магния.

С целью экономии дорогостоящих материалов (глинозема, песка кварцевого, окиси магния, портафера, калиевой селитры и др.) в технологии изготовления стекла для стеклотары предусматривают вариант приготовления шихты с использованием следующего состава, мас.%: SiO_2 48-50; Al_2O_3 14-15; Fe_2O_3 4-5; CaO 8-8,5; MgO 5-5,5; Na_2O 12,30-13,50; K_2O 0,01-0,15; FeO 0,10-0,33; TiO_2 0,05-0,20; MnO 0,01-0,10; TiO_2 1-2; P_2O_5 0,1-0,2.

В этом случае в шихту добавляют базальт, размолотый до фракции 0-3 мм, выдерживая с помощью микропроцессоров режим плавки, при котором компоненты, входящие в стекло, находятся в области составов предполагаемого изобретения. Из сравнения стекла и базальта следует, что все составляющие ингредиенты, синтетизированного стекла, корме Cr_2O_3 , полностью или частично вводятся природным базальтом.

Шихту и молотый базальт подают в стекловаренную печь непрерывного действия. Температуры в зоне максимума стекловаренной печи должна быть не ниже 1450°С. Из выработочной части стекловаренной печи специальные питатели обеспечивают подачу порций стекломассы на формование в стеклоформующие машины.

Пример реализации изобретения.

Шихта для получения стекла для стеклотары включает следующие материалы:

песок кварцевый - 1581, сода кальцинированная - 491, глинозём - 22,72, гипс - 14,8, известняк - 486,4, карбон - 3,2, портахром - 6, оксид магния - 3, базальт молотый -37,5.

Отформованные стеклянные изделия устанавливают на транспортный конвейер и перемещают в отжигательные печи (леры). После выхода из лера стеклянную тару сортируют и упаковывают.

Свойства предлагаемых составов стёкол для стеклотары представлены в табл. 2.

Таблица

Свойства	Показателн для состява стекла		
	1	2	3
Плотность, кг/м3	2570	2250	2610
микротвёрдость, МПа	4300	4450	4200
Коэффициент термичного расширения (о.10 ⁷) град ¹	90	91	93
Температура стеклования Tg°, C	550	545	558
Температура начала	625	620	630

Размягчения Tf ⁰ , C			
Водоустойчивость 0,01 н НСL, мл	0,35	0,35	0,32
Щелочеустойчивость, %	99,93	99,92	99,93

Лабораторные плавки и промышленные испытания показали возможность получения из предложенных составов стекла для стеклотары зеленых и коричневых тонов.

Использование предлагаемого стекла позволяет улучшить качество продукции в стекольной промышленности, снизить производственные затраты, расширить сырьевую базу применяемых дефицитных материалов для производства стекла для стеклотары.

Библиографические данные источников информации

- 1. «Стекло». Под редакцией Н.М. Павлушина. Стройиздат Москва, 1973, стр. 374, табл.2;
 - 2. US 5776845.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Стекло для стеклотары, включающее SiO_2 , Al_2O_3 , Fe_2O_3 , Na_2O , K_2O , CaO, MgO, FeO, TiO_2 , MnO, SO_3 , Cr_2O_3 , отличающееся тем, что соот-

ношение FeO/Fe_2O_3 составляет 0,21, при следующем соотношении компонентов, мас.%:

SiO_2	71,50-73,50
Al_2O_3	1,00-2,10
Fe_2O_3	0,20-0,50
CaO	10,00-12,00
MgO	0,50-1,00
Na_2O	12,30-13,50
K_2O	0,01-0,15
FeO	0,10-0,33
TiO_2	0,05-0,20
MnO	0,01-0,10
SO_3	0,10-0,30
Cr_2O_3	0,21-0,25