СПОСОБ ПРОХОДКИ ВТОРИЧНЫХ БОКОВЫХ СТВОЛОВ
В СИСТЕМЕ СКВАЖИНЫ

Предшествующий уровень техники

Настоящее изобретение относится к способу проходки вторичных боковых стволов в системе скважины, которая содержит основную скважину, от которой ответвляется один или большее количество боковых стволов.

Такая система скважины известна из публикации Международной заявки WO 98/49424.

Трудность, которая возникает при проходке такой системы скважины, состоит в том, что обычная скважина имеет телескопическую структуру, которая является следствием того, что на различных этапах процесса бурения в основную скважину вводят обсадную трубу, и последующие секции обсадной трубы, должны иметь меньший внешний диаметр, чем внутренний диаметр предыдущих установленных секций обсадной трубы, а также того, что хвостовик, который устанавливают в первичный ствол скважины, должен иметь внешний диаметр, значительно меньший, чем внутренний диаметр обсадной трубы основной скважины в точке ответвления для того, чтобы можно было выполнить плавный ввод хвостовика из основного ствола скважины в первичный боковой ствол скважины.

В результате хвостовик первичного бокового ствола должен иметь такой малый диаметр, что он становится технически трудно выполнимым, и бурение вторичных боковых стволов от первичного бокового ствола становится экономически невыгодным.

Целью настоящего изобретения является эффективный и экономичный способ проходки одного или большего количества боковых стволов в системе скважины.

Краткое описание изобретения

Настоящее изобретение направлено на способ проходки вторичных боковых стволов в системе скважины для добычи углеводородных жидкостей и газов, которая содержит основной ствол скважины и первичный боковой ствол, который ответвляется от основного ствола скважины, причем этот способ содержит:

ввод расширяемого хвостовика в нерасширенном состоянии в первичный боковой ствол;
радиальное расширение хвостовика;
сверление отверстия в стенке расширенного хвостовика;
бурение вторичного бокового ствола в углеводородной формации через указанное отверстие.

Предпочтительно, расширяемый хвостовик представляет собой стальной хвостовик, который расширяется при протягивании или проталкивании через этот хвостовик расширительной оправки, которая имеет коническую износостойкую внешнюю поверхность и/или ролики.

Расширенный хвостовик имеет достаточно большой внутренний диаметр, который позволяет проводить дальнейшее бурение и/или вводить оборудование в первичный боковой ствол для бурения одного или большего количества вторичных боковых стволов, которые также имеют внутреннюю ширину, достаточно большую для того, чтобы ствол скважины мог служить в качестве ответвления, через которое углеводородная жидкость или газы могут протекать в систему скважин.

Таким образом способ, в соответствии с настоящим изобретением, позволяет создавать корневидную систему скважины, которая обеспечивает оптимальный дренаж углеводородных жидкостей и газов из формации, несущей углеводороды, даже если формация имеет низкую проницаемость.

В предпочтительном варианте воплощения способа, в соответствии с настоящим изобретением, расширяемый хвостовик формируется из витой трубы, через которую прокачивается буровая жидкость по направлению к буровому узлу, расположенному внизу скважины, который используется для бурения первичного бокового ствола скважины, и эта витая труба радиально расширяется после завершения проходки первичного бокового ствола.

Бурение вторичного бокового ствола также может выполняться с использованием витой трубы, которая расширяется так, что после выполнения работ по бурению будет сформирован расширенный хвостовик. В качестве альтернативы вторичный боковой ствол может быть снабжен хвостовиком с использованием расширяемого хвостовика с прорезями, причем эти прорези расположены зигзагообразно и при расширении хвостовика раскрываются с формированием ромбовидных отверстий. Такой расширяемый хвостовик с прорезями известен из американского патента US, A, 5 366 012. Такой хвостовик с прорезями может быть установлен в области притока вторичного бокового ствола с использованием расширяемого экрана из песка, такого как экран из песка, описанный в международной заявке на патент PCT/EP96/04887.
В стабильных формациях нефтеносного слоя второй боковой ствол может быть выполнен без обсадной трубы, в то же время, если форма нефтеносного слоя очень нестабильна, второй боковой ствол может иметь хвостовик, без первоначальной установки обсадной трубы, который может представлять собой расширенный или нерасширенный хвостовик, перфорации в котором выполняются способом прострела с использованием перфораторной пушки, которая известна в данной области техники.

Настоящее изобретение также относится к корневидной системе скважины, которая была создана в соответствии с настоящим изобретением и которая содержит основной ствол скважины, от которого ответвляются один или большее количество первичных боковых стволов, содержащих расширяемый хвостовик в расширенном виде и один или большее количество вторичных боковых стволов, которые выходят в первичный боковой ствол или в боковые стволы через одно или большее количество отверстий в стенке расширенного хвостовика или хвостовиков.

Следует понимать, что использование расширяемых труб в многосторонней системе скважины позволяет использовать трубы в первичной или материнской скважине и в первичных и вторичных боковых стволях или ответвлениях скважины, по существу, равными внутренней ширине ствола, так, что создается многоствольная система скважины с одинаковым диаметром ствола. В такой системе скважины с одинаковым размером ствола становится возможным производить бурение третичных боковых стволов, отходящих от вторичных боковых стволов, причем этот процесс бурения боковых стволов может повторяться снова и снова так, что будет создана действительно корневидная система скважины.

Краткое описание чертежей

Предпочтительные варианты воплощения способа и системы в соответствии с настоящими изобретением будут описаны со ссылкой на чертежи, на которых:

фиг. 1 изображает схематически продольный разрез системы скважины в соответствии с настоящим изобретением;

фиг. 2 – схематически продольный разрез системы скважины в соответствии с настоящим изобретением, которая содержит первичный боковой ствол, от которого ответвляются два вторичных боковых ствола.
Подробное описание предпочтительных вариантов воплощения

На фиг. 1 изображена система 1 скважины в соответствии с настоящим изобретением, которая содержит вертикальный основной ствол 2 скважины, проходящий от устья 3 скважины, расположенного на поверхности 4 земли или вблизи от нее, в подземную формуацию 5. Три первичных боковых ствола 6 ответвляются от основного ствола 2 скважины. Вторичный боковой ствол 7 ответвляется от каждого первичного бокового ствола 6 через отверстие 8 в стенке расширенного расширяемого стального хвостовика 9, только одна секция которого показана в области каждого отверстия 8.

Использование расширяемых хвостовиков 9 позволяет обеспечить максимальные внутренние размеры хвостовика 9. При этом, если скважина каждого бокового ствола имеет ширину приблизительно 10 см, расширенный хвостовик может иметь внутреннюю ширину, составляющую приблизительно от семи до восьми сантиметров.

Такой размер внутренней ширины является минимальным, позволяющим вводить буровой уzel в первичный боковой ствол 6, который может использоваться для бурения вторичных боковых стволов 7 достаточной ширины, необходимой для того, чтобы углеводородные жидкости или газы могли протекать в достаточных количествах через вторичные боковые стволы 7 в первичные боковые стволы.

Предпочтительно также, чтобы основной ствол 2 скважины был выполнен с обсадной трубой в виде расширяемой стальной обсадной трубы, которая армирует стенки скважины во время процесса расширения, аналогично тому, как расширяемый хвостовик 9 армирует ствол скважины первичного бокового ствола 6.

Это позволяет дополнительно увеличить внутреннюю ширину хвостовика 9, и вторичных боковых стволов 7.

Первичные и вторичные боковые стволы 6 и 7 проходят в формуацию 10, несущую углеводородную жидкость или газ, которые представлены на чертеже в виде защищированных областей.

Следует понимать, что изображенная система скважины формирует корневидную конфигурацию скважины, которая обеспечивает оптимальный дренаж углеводородных жидкостей и газов из формуации 10, несущей углеводородные жидкости и газы.

На фиг. 2 изображен вертикальный первичный ствол 20 скважины, в сторону от которого в горизонтальном направлении был пробурен первичный боковой ствол 21.
Первичный боковой ствол 21 имеет хвостовик, выполненный в виде расширяемого стального хвостовика 22. Предпочтительно, хвостовик 22 сформирован из витой трубы, которая использовалась при бурении для подачи бурильной жидкости на буровое долото (не показано) и для гидравлического забойного двигателя (не показан), помещаемого внутри скважины, которая используется для вращения бурового долota.

После завершения бурения витая труба расширяется таким образом, что из нее формируется арматура стенок скважины, которая впоследствии служит в качестве стального хвостовика первичного бокового ствола 21 скважины.

Далее, вблизи дна 24 первичного бокового ствола 21 скважины, внутри хвостовика 22, устанавливается башмак 22А размером 4,5 дюйма (приблизительно 12 см) и заглушка 23.

Затем внутрь хвостовика 22 вводится и закрепляется отклонитель 25, и проушина 27, имеющая внутреннюю ширину приблизительно 7 см, при этом расширенный хвостовик 22, имеет внутреннюю ширину приблизительно 10 см. Затем буровой узел (не показан) вводится через проушину 27 и отклоняется скважинным отклонителем 25 так, что он начинает сверлить отверстие 29 в стенке хвостовика 22 и затем бурить вторичный боковой ствол 30 внутри формации 31, несущей углеводородную жидкость или газ.

В изображенном примере во вторичный боковой ствол 30 скважины был введен обычный стальной хвостовик 31А, который имеет внешний диаметр приблизительно 7 см и который выполнен с перфорациями в зоне притока скважины с помощью перфорирующей пушки (не показана).

После выполнения проходки первого вторичного бокового ствола 30 скважины второй скважинный отклонитель 32 вводится и закрепляется внутри расширенного хвостовика 22 вблизи от начала изогнутой части поперечного первичного бокового ствола 21 скважины, после чего выполняется проходка еще одного вторичного бокового ствола 33, которая завершается таким же образом, как описано по отношению к первому вторичному боковому стволу 30 скважины.

После ввода стального хвостовика 34 во второй вторичный боковой ствол скважины, либо высверливается отверстие в стенке хвостовика 34 (не показано) и через скважинный отклонитель 32, либо используется уже существующий проход для жидкости и газов в скважинном отклонителе, и проход для жидкости и газа в заглушке
35 используется для прохода углеводородной жидкости и газов из первого вторичного бокового ствола 30 и через первичный боковой ствол 21 в основной ствол 20 скважины.
ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ проходки вторичного бокового ствола скважины в системе скважины, предназначенной для добычи углеводородной жидкости и газов из углеводородной формации, в котором система скважины содержит основной ствол скважины и первичный боковой ствол скважины, который ответвляется от основного ствола скважины, причем способ содержит ввод нерасширенного расширяемого хвостовика в первичный боковой ствол скважины и радиальное расширение этого хвостовика, отличающийся тем, что в стенке расширенного хвостовика первичного ствола скважины создают отверстие и вторичный боковой ствол скважины бурят в формации, несущей углеводороды через это отверстие.

2. Способ по п. 1, отличающийся тем, что расширяемый хвостовик формируют с помощью витой трубы, через которую прокачивается буровая жидкость по направлению к установленному внутри скважины буровому узлу, который используется для проходки первичного бокового ствола скважины, и эту витую трубу радиально расширяют после бурения первичного бокового ствола скважины.

3. Способ по п. 1 или 2, отличающийся тем, что вторичный боковой ствол бурят с помощью бурильного узла, который соединен с витой трубой, причем эту трубу расширяют после того, как будет пройден вторичный боковой ствол для формирования хвостовика в этом вторичном боковом стволе.

4. Способ по п. 1 или 2, отличающийся тем, что во вторичном боковом стволе производят крепление ствола вдоль, по меньшей мере, части его длины с помощью расширяемого хвостовика с пазами, который расширяют внутри вторичного бокового ствола таким образом, что в хвостовике формируется последовательность зигзагообразных щелей, раскрывающихся с формированием ромбовидных отверстий.

5. Способ по п. 4, отличающийся тем, что расширяемый экран из песка устанавливают вокруг расширяемого хвостовика, выполненного с пазами, в зоне, где углеводородные жидкости и газы протекают внутрь системы скважины.

6. Способ по п. 1, отличающийся тем, что нерасширенный хвостовик вводят во вторичный боковой ствол и производят перфорирование хвостовика в зоне, где углеводородные жидкости или газы втекают внутрь системы скважины.

7. Способ по п. 1, отличающийся тем, что капиллярный боковой ствол скважины выполняют без обсадной трубы вдоль, по меньшей мере, части его длины.

8. Способ по п. 1, отличающийся тем, что формируют множество первичных боковых стволов скважины, ответвляющихся от первичного ствола скважины, и
множество вторичных боковых стволов в скважине, ответвляющихся от, по меньшей
мере, одного первичного бокового ствола скважины.

9. Система скважины, содержащая, по меньшей мере, один первичный боковой
ствол скважины, и, по меньшей мере, один вторичный боковой ствол скважины, в
которой первичный боковой ствол скважины содержит не расширенный расширяемый
хвостовик, имеющий отверстие, от которого ответвляется вторичный боковой ствол
скважины.

10. Система скважины по п. 9, отличающийся тем, что расширенный хвостовик в
первичном боковом стволе скважины имеет внутреннюю ширину, которая, по
существу, равна внутренней ширине обсадной трубы первичного ствола скважины.

11. Система скважины по п. 10, отличающийся тем, что один или большее
количество третичных боковых стволов скважины ответвляются от, по меньшей мере,
одного вторичного ствола скважины так, что создается корневидная система скважины.