Изобретение относится к медицине, а именно к инфузионным солевым растворам, обладающим детоксицирующими свойствами за счет проявления антигипоксических, антиоксидантных и гепатопротекторных свойств.

1

Известны широко применяемые в медицинской практике солевые инфузионные растворы: 0,9% изотонический раствор хлорида натрия, раствор «Дисоль» (0,6% хлорида натрия, 0,2% ацетата натрия), «Трисоль» (0,5% хлорида натрия, 0,1% хлорида калия, 0,2% гидрокарбоната натрия), «Квартасоль» (0,6% хлорида натрия, 0,15% хлорида калия, 0,1% гидрокарбоната натрия, 0,20% ацетата натрия), раствор Рингера-Локка (0,9% хлорида натрия, 0,2% гидрокарбоната натрия, 0,2% хлорида кальция, 0,2% хлорида калия, 0,1% раствора глюкозы) (Машковский М.Д. Лекарственные средства. Изд. 13-е, Харьков: Торинг, 1997, т. 2, с. 143-146).

Детоксицирующая активность этих инфузионных растворов обусловлена главным образом за счет нормализации электролитного баланса организма, усилением диуреза с удалением эндотоксинов с мочой через почки.

Известные инфузионные растворы не устраняют гипоксических явлений в организме, возникающих при интоксикации, и не оказывают существенного влияния на детоксицирующую функцию печени.

В настоящее время в биологии и медицине в качестве биологически активного вещества, обладающего широким спектром фармакологических свойств, предлагают использовать янтарную кислоту и ее различные производные сукцинаты (Янтарная кислота в медицине, пищевой промышленности и сельском хозяйстве. Сборник научных трудов под редакцией М.Н. Кондрашевой, - Пущино, ОНТИ РАМН, 1996, 300 с.; патент России № 2043101 «Способ повышения адаптации человека при физической нагрузке», МКИ: А 61К 31/20 от 02.11.93).

Янтарная кислота и сукцинаты также широко используются в качестве компонента препаратов адаптогенного характера и пищевых добавок (Булдаков А.С. Пищевые добавки. Справочник, - Санкт-Петербург: "VG", с. 75.; патент России № 2012350 «Средство для снятия алкогольного опьянения», МКИ: А 61К35/78 от 17.05.93; патент России № 2032421 «Стимулирующее и тонизирующее средство», МКИ: А 61К 35/78 от 27.12.93; патент России № 2056842 «Сукцинат для лечения внутриутробной патологии, связанной с гипоксией и инфекцией», МКИ: А 61К 31/19 от 30.06.92.; заявка Японии 56-125,313 «Лекарственный препарат», МКИ: А 61К 31/19 от 09.03.80; патент России № 2039556 «Фармацевтическая композиция противоалкогольного, стимулирующего энергетический обмен, кислотообразующую и секреторную функцию слизистой желудка, радиопротективного и противохолерного действия, способ профилактики и лечения алкогольного абстинентного

синдрома, способ стимуляции и диагностики кислотообразующей и секреторной функции желудка и способ защиты от радиационного поражения теплокровных животных», МКИ: А 61К 31/19 от 07.07.93).

Известны также различные сукцинаты, обладающие гепатопротекторной активностью (Патент США 4,320,146 «Лечение заболеваний печени и почек солями арнитина или оргинина с кетокислотами, имеющими разветвленные цепи», МКИ: А 61К 31/22, А 61К 31/195 от 02.10.80; патент Японии 09/188,664 «Получение производных алкилтиоянтарной кислоты для лечения болезней печени и почек», МКИ: С 07С 323/51 от 22.07.97).

Известно также, что сукцинат натрия в комбинации с естественным метаболитом аденозином и ферментом Цитохром Р используется в качестве антигипоксанта в комплексных противокатарактальных глазных каплях «Офтан-Катахром» и «Витафакол» (Справочник ВИ-ДАЛЬ - М., Астрофармсервис, 1998, с. 132,490).

В настоящее время в патентной и научнотехнической литературе неизвестны инфузионные растворы, содержащие в качестве компонента в составе янтарную кислоту или ее солисукцинаты.

Ближайшим аналогом заявляемого соединения по фармакологическому действию и медицинскому назначению является солевой инфузионный раствор «Мафусол» (Патент России № 1630043, приоритет от 01.06.84, опубликован 28.02.94), содержащий мас.%: 0,55-0,65 хлорида натрия, 0,025-0,035 хлорида калия, 0,005-0,015 хлорида магния и 1,2-1,4 фумарата натрия в качестве биологически активного компонента. Активный компонент в прототипе - фумарат натрия - получают непосредственно в процессе приготовления инфузионного раствора из расчетных количеств фумаровой кислоты и едкого натра.

«Мафусол» обладает детоксицирующими свойствами за счет нормализации водноэлектролитического баланса и слабого антигипоксического эффекта. Прототип не нормализует детоксицирующую функцию печени. Кроме того, известно, что фумарат натрия (Европейский индекс Е 365) обладает токсичностью и его суточная доза не должна превышать 6 мг/кг веса (Булдаков А.С. Пищевые добавки. Справочник. - Санкт-Петербург, «VG», 1996, с. 75).

Соответственно, учитывая содержание фумарата натрия в «Мафусоле»-1,2-1,4 мас.% и средний вес человека 70 кг, безопасная суточная доза солевого инфузионного раствора не должна превышать 33 мл, в то время как при тяжелых формах интоксикации (сепсис, ожоги, химиотерапия опухолей) необходимый суммарный суточный объем вводимых инфузионных растворов может достигать 10 л.

Существенным недостатком «Мафусола» является высокая осмолярность данного раство-

ра, равная 480-490 мосмоль/л, в то время, как осмолярность плазмы крови составляет всего 290-310 мосмоль/л. Такая высокая осмолярность «Мафусола» резко ограничивает скорость инфузии и терапевтическое применение ввиду возможных негативных реакций организма в виде резкого скачка давления, спазма сосудов, отека легких и головного мозга при увеличении скорости инфузии.

Таким образом, препарат «Мафусол» мало пригоден для применения в интенсивной терапии и в реанимации ввиду потенциальной опасности развития токсических явлений в организме больного при введении больших доз инфузионного раствора.

Задача изобретения - создание детоксицирующего солевого инфузионного раствора, обладающего антигипоксической, антиоксидантной и гепатопротекторной активностью при низкой токсичности и имеющего осмолярность, близкую к осмолярности плазмы крови.

Решение поставленной задачи достигается тем, что инфузионный раствор, содержащий хлориды натрия, калия и магния, растворитель и биологически активный компонент, а в качестве растворителя содержит воду для инъекций, а в качестве биологически активного компонента натрия глюкамина сукцинат (номенклатурное название: H-(1-дезокси-d-глюцитол-1-ил)-N-метиламмония-натрия сукцинат) общей формулы:

$Na^{+}[HOCH_{2}(CHOH)_{4}CH_{2}NH_{2}CH_{3}]^{+}[OOCCH_{2}CH_{2}COO]^{2-}$ (1)

при следующем соотношении компонентов, мас. %:

, ••	
Хлорид натрия	0,4-0,6
Хлорид магния	0,011-0,013
Хлорид калия	0,027-0,033
Натрия глюкамина сукцинат	1,4-1,6
Вода для инъекций	Остальное

Заявляемый инфузионный раствор в процессе детоксикации организма позволяет не только нормализовать водно-электролитный баланс, но и существенно снизить гипоксию органов и тканей, а также усилить выделение токсинов клетками печени (гепатопротекторная активность).

Кроме того, заявляемый препарат обладает выраженным антиоксидантным действием, защищая мембраны клеток организма от свободно-радикальных частиц, возникающих в процессе интоксикации.

В заявляемом растворе гепатопротекторная функция и выраженное антигипоксическое и антиоксидантное действия обусловлены за счет использования в качестве активного компонента натрия глюкамина сукцината формулы (1).

Пример конкретного получения «Реамберина».

Активный компонент заявляемого инфузионного раствора натрия глюкамина сукцинат получается непосредственно в процессе приготовления инфузионного раствора путем растворения расчетных количеств янтарной кислоты, едкого натра и N - метилглюкамина в воде для инъекций. Например, берут:

5,28 г янтарной кислоты $HOOCCH_2CH_2$ COOH, $\Gamma OCT 6341-75$, х. ч.,

8,73 г N - метилглюкамина [CH₃NHCH₂ (CHOH)₄CH₂OH], (Ф.С. 42-2265-97),

1,8 г едкого натра

и растворяют в 900 мл воды. При этом образуется активное вещество натрия глюкамина сукцинат согласно химической реакции:

 $HOOCCH_2CH_2COOH+NaOH+CH_3NHCH_2$ $(CHOH)_4CH_2OH\rightarrow Na^{\dagger}[HOCH_2(CHOH)_4CH_2NH_2$ $CH_3]^{\dagger}[OOCCH_2CH_2COO]^{2-}+2H_2O$.

Физико-химические свойства натрия глюкамина сукцината приведены в таблице 1.

Затем к полученному раствору добавляют 6,0 г хлорида натрия, 0,12 г хлорида магния и 0,3 г хлорида калия, доводят объем полученного раствора до 1000 мл водой для инъекций, раствор фильтруют через стерилизующий фильтр типа «Сарториус», герметически закрывают и выдерживают в автоклаве 20 мин при 120° С.

Полученный раствор имеет следующий состав (мас.%):

Хлорид натрия	0,5
Хлорид магния	0,012
Хлорид калия	0,03
Натрия глюкамина сукцинат	1,5
Вода для инъекций	Остальное

Количественный и качественный состав инфузионного раствора был подобран заявителем экспериментально таким образом, чтобы:

- 1) соотношение ионов калий натрий магний было близким к естественной концентрации в плазме крови человека;
- 2) осмолярность полученного раствора была близка к осмолярности плазмы крови и находилась в пределах 310-320 мосмоль/л;
- 3) раствор при этом обладал высокой детоксицирующей активностью за счет проявления антигипоксических, антиоксидантных и гепатопротекторных свойств.

Полученный детоксицирующий инфузионный раствор «Реамберин» не обладает мутагенным, тератогенным, эмбриотоксическим, аллергенным и иммунотоксическим действием. Острая токсичность LD₅₀ «Реамберина» при парентеральном введении составляет 5600 мг/кг массы в пересчете на активное вещество натрия глюкамина сукцинат, в то время как острая токсичность активного компонента «Мафусола» на основе фумарата натрия составляет 640 мг/кг массы. Таким образом, заявляемый препарат в 8,75 раза менее токсичен, чем «Мафусол» в условиях острого опыта.

Изучение фармакологической активности раствора «Реамберин» проведено в эксперименте на различных видах животных по сравнению с прототипом «Мафусол» и с солевым изотоническим раствором хлорида натрия, при этом выявлен широкий спектр фармакологической активности в сочетании с низкой токсичностью и хорошей переносимостью.

Опыт А. Изучение эффективности при острой кровопотере.

В качестве экспериментального состава использовали раствор «Реамберин», содержащий 1,5% натрия глюкамина сукцината.

Эффективность «Реамберина» в качестве солевого плазмозамещающего инфузионного раствора в остром опыте проводили на 64 линейных крысах Вистар (4 группы по 16 животных).

У всех животных тонкой иглой медленно отбирали кровь из сердца в объеме 10 мл. У первой группы животных (контрольной) никакой терапии после забора крови не проводили.

Животным второй, третьей и четвертой групп сразу после забора крови внутрибрюшинно вводили по 5 мл соответственно «Реамберина», «Мафусола» или 0,9% физиологического раствора хлорида натрия. За животными всех групп вели наблюдение в течение 24 ч после введения препаратов, оценивая выживаемость каждые шесть часов. Эффективность препаратов оценивали по проценту выживаемости в течение суток.

Данные по изучению препарата при острой кровопотере представлены в табл.2.

Как видно из данных, приведенных в таблице 2, максимальная эффективность - 24-часовая выживаемость при острой кровопотере - наблюдалась у «Реамберина» (37,5%), по сравнению с «Мафусолом» (25,0%) и изотоническим раствором хлорида натрия (18,75%).

Опыт Б. Детоксицирующая активность.

Детоксицирующую активность «Реамберина» в сравнении с «Мафусолом» и 0,9%-м изотоническим раствором хлорида натрия исследовали на модели летального отравления гепатотоксином - четыреххлористым углеродом на 48 линейных крысах Вистар. В качестве экспериментального состава использовали «Реамберин», содержащий 1,5% натрия глюкамина сукцината.

Четыреххлористый углерод вводили ежедневно в сублетальной дозе 2 мг/кг в 2 мл физиологического раствора подкожно животным трех групп в течение 7 дней. В четвертой группе четыреххлористый углерод не вводили (контроль).

В первой группе (14 животных) за два часа до введения гепатотоксина вводили «Реамберин» внутрибрющинно в объеме 2 мл.

Во второй группе (14 животных) за два часа до введения гепатотоксина вводили внутрибрюшинно «Мафусол» в объеме 2 мл. В третьей группе (14 животных) за два часа до введения гепатотоксина вводили внутрибрюшинно 0,9% изотонический раствор хлорида натрия в объеме 2 мл.

За всеми группами животных наблюдали в течение 10 дней от начала опыта. Через 10 дней оценивали детоксицирующую активность «Реамберина» по сравнению с «Мафусолом» и 0,9% изотоническим раствором хлорида натрия по выживаемости животных. Экспериментальные данные опыта представлены в табл. 3.

Как видно из данных, представленных в табл. 3, «Реамберин» оказывал гораздо более выраженное детоксицирующее действие при отравлении четыреххлористым углеродом, чем «Мафусол» или 0,9% изотонический раствор хлорида натрия: процент выживаемости крыс при введении раствора «Реамберина» был на 14,28% выше, чем у «Мафусола» и на 28,57% выше, чем у изотонического раствора хлорида натрия.

Опыт В. Гепатопротекторная и антиоксидантная активности.

Общеизвестно, что соли аммония являются мощными нейро- и гепатотоксинами. Их действие основано на обратимых изменениях энергетического обмена в клетках органов животного.

Опыт по изучению гепатопротекторной активности «Реамберина» проводили на 46 линейных крысах Вистар, разделенных на 4 группы животных. В качестве экспериментального состава использовали «Реамберин», содержащий 1,5% натрия глюкамина сукцината.

В первой группе животных в течение 7 дней вводили внутрибрющинно хлорид аммония однократно в суточной дозе 125 мг/кг (1/3 $\Pi \Pi_{50}$) в двух мл 0,9 %-го изотонического раствора хлорида натрия.

Во второй группе хлорид аммония вводили аналогично в 2 мл «Реамберина».

В третьей группе хлорид аммония вводили аналогично в 2 мл «Мафусола».

В четвертой (контрольной) группе крысам вводили только 0,9%-й изотонический раствор хлорида натрия.

За всеми группами животных вели наблюдение в течение 10 дней, отмечали 7 - дневную и 10 - дневную выживаемость. Оставшихся в живых животных в группах забили электротоком и в печени определяли распределение внутриклеточных метаболитов, отражающих степень поражения печени: пирувата, 3-Д-гидроксибутирата, оксоглутарата, фосфоенолпирувата, креатинфосфата, АТФ.

Степень жировой инфильтрации печени оценивали по содержанию гликогена, а пигментообразующую функцию - по содержанию билирубина в сыворотке крови. Антиоксидантную активность оценивали по содержанию продукта окисления клеточных мембран - малонового диальдегида.

Все биохимические исследования проводились по стандартным методикам (Справочник по клиническим лабораторным методам исследования под ред. Кост Е.А. - М., Медицина, 1975).

7

Полученные экспериментальные данные обрабатывались методами математической статистики с использованием критерия Стьюдента и Вилкоксона - Манна - Уитни при P<0,05.

Результаты, полученные в опыте, представлены в табл. 4.

Как видно из данных, представленных в табл. 4, «Реамберин» в большей степени, чем «Мафусол» способствует сохранению биохимических показателей функционирования печени и ее пигментообразующей функции, на модели химической интоксикации хлористым аммонием, что свидетельствует о выраженной гепатопротекторной активности. Так, например, как видно из строки 5 табл. 4, содержание билирубина при совместном применении «Реамберина» с хлористым аммонием близко к норме (контрольная группа). Содержание билирубина при применении «Мафусола» и изотонического раствора ниже нормы, что говорит о подавлении функции пигментообразования и общих нарушениях функции печени. О нормализации работы печени свидетельствуют и биохимические показатели, в частности, содержание гликогена, пирувата, 3-Д-гидроксибутирата, оксоглутарата, фосфоенолпирувата, креатинфосфата и АТФ. Все эти показатели при использовании раствора «Реамберина» имеют значения, близкие к показателям нормы в контрольной группе.

О мембраностабилизирующем действии «Реамберина», антиоксидантной активности свидетельствует более низкое содержание основного продукта перекисного окисления липидов - малонового диальдегида - в клетках печени по сравнению с «Мафусолом» и, тем более, с изотоническим раствором.

Опыт Γ . Антигипоксическая активность «Реамберина».

Острую гистотоксическую гипоксию моделировали на крысах с использованием известного тканевого яда - фторида натрия, блокирующего тканевое дыхание на уровне гликоли-

Опыт проводили на 48 линейных крысах Вистар. В качестве экспериментального состава

использовали «Реамберин», содержащий 1,5% натрия глюкамина сукцината.

8

В первой группе из 16 животных вводили фторид натрия внутрибрюшинно в дозе 50 мг/кг в 5 мл 0,9 %-го изотонического раствора хлорида натрия (контроль).

Во второй группе из 16 крыс вводили фторид натрия в дозе 50 мг/кг в 5 мл «Реамберина».

В третьей группе из 16 крыс вводили фторид натрия в дозе 50 мг/кг в 5 мл «Мафусола». По мере всасывания фторида натрия происходило блокирование тканевого дыхания и животные погибали.

Об антигипоксической активности «Реамберина» в сравнении с «Мафусолом» судили по средней продолжительности жизни крыс. Экспериментальные данные по опыту представлены в табл. 5.

Таким образом, «Реамберин» оказывает более выраженную антигипоксическую активность, увеличивая продолжительность жизни на модели гистотоксической гипоксии на 77% по сравнению с контролем, тогда как «Мафусол» только на 33%.

Учитывая, что инфузионные растворы используются в терапии неотложных состояний, и часто необходимо не только капельное, но и струйное введение инфузионного раствора, заявителем были экспериментально установлены пределы оптимального содержания основного активного компонента - натрия глюкамина сукцината для создания раствора с осмолярностью, близкой к осмолярности плазмы крови в пределах 300-350 мосмоль/л.

Такая осмолярность «Реамберина» позволяет вводить больным любой необходимый объем инфузионного раствора.

Экспериментальные данные по осмолярности «Реамберина», представленные в табл. 6, показывают, что оптимальным является содержание натрия глюкамина сукцината в пределах 1.4-1.6%.

Таким образом, заявляемый детоксицирующий инфузионный раствор «Реамберин» обладает антигипоксической, антиоксидантной и гепатопротекторной активностями благодаря наличию нового биологически активного компонента - натрия глюкамина сукцината. Таблица 1. Физико-химические свойства натрия глюкамина сукцината

№ пп	Параметр	Значение	
1	Внешний вид	Аморфное гигроскопичное вещество белого цвета	
2	Растворимость	Хорошо растворимо в воде, диметилформамиде, диметилсуль-	
		фоксиде, малорастворимо в спиртах, не растворимо в ацетоне,	
		эфире, бензоле, хлороформе	
3	Температура плавления, °С	69 - 70 (с разложением)	
4	Ультрафиолетовый спектр, нм	Прозрачен	
5	Спектр ПМР(DMCO- d_6) м.д.	2,25c(3H ₁ CH ₃), 2,35c(4H ₁ CH ₂), 2,52л(2H ₁ CH ₂), 3,45M(6H ₁ CH)	
6	Спектр ЯМР 13 С(DMCO- d_6) м.д.	28,2(CH ₂), 34,2(CH ₃), 52,5(CH ₂), 63,8(CH), 70,2(CH), 70,5(CH),	
		71,0(CH), 71,4(CH), 173,5(COOH)	
7	Брутто-формула	$C_{11}H_{22}NO_9Na$	
8	Элементный анализ	Найдено, %: C 39,86; H 7,36; N 4,07; O 43,04	
		Вычислено,% С 39,40; Н 6,91; N 4,17; О 42,93	
9	Молекулярная масса	Найдено: 339 (криоскопически в диметилсульфоксиде)	
		Вычислено: 335,3	

Таблица 2 Плазмозамещающий эффект «Реамберина»

Препарат	-	«Реамберин»	«Мафусол»	0,9% p-р хлори- да натрия
Число крыс в опыте	16	16	16	16
Число выживших крыс в течение 6 ч	14	16	16	14
Число выживших крыс в течение 12 ч	2	9	4	6
Число выживших крыс в течение 18ч	0	7	4	3
Число выживших крыс в течение 24 ч	0	6	4	3
Процент выживаемости в течение 24 ч	0	37,50	25,00	18,75

Таблица 3. Детоксицирующая активность «Реамберина»

Tacoma s. Actoromatic from antinotic state control				
Препарат	«Реамберин»	«Мафусол»	Изотонический 0,9% р-р хлорида натрия	Контроль
Число животных в опыте	14	14	14	6
Число выживших животных за 7 дней	9	7	6	6
Число выживших животных за 10 дней	6	4	2	6
Процент выживае мости за 10 дней	42,8	28,57	14,28	100

Таблица 4. Гепатопротекторная и антиоксидантная активность «Реамберина»

таолица ч. т спатопротекто	0,9% изотониче-	«Реамберин»	1	0,9% изотони-
Проценат	ский р-р хлорида	+ хлорид ам-	хлорид ам-	ческий р-р хло-
Препарат	натрия + хлорид	мония 125	мония125	рида натрия
	аммония 125 мг/кг	мг/кг	мг/кг	(контроль)
Число крыс в опыте	12	12	12	10
Число крыс, выживших на 7-й день	10	12	12	10
Число крыс, выживших на 10-й день	7	12	12	10
% 10-дневной выживаемости	58,3	100	100	100
Билирубин в сыворотке крови, мкМ/л	$2,5 \pm 0,61$	$6,2 \pm 0,3$	$4,8 \pm 0,7$	7.8 ± 1.3
Гликоген в печени, %	$46,3 \pm 1,9$	$29,9 \pm 2,8$	$36,7 \pm 8,5$	$29,2 \pm 0,5$
Пируват в печени, моль/г	$49,2 \pm 6,5$	$77,4 \pm 8,3$	$62,7 \pm 3,9$	$85,7 \pm 1,1$
3-Д-гидроксибутират в печени, нмоль/г	$48,8 \pm 3,2$	$98,6 \pm 9,9$	$92,4 \pm 8,5$	$156,3 \pm 8,6$
Оксоглутарат в печени, нмоль/г	$21,7 \pm 2,4$	$91,2 \pm 4,9$	$89,6 \pm 12,9$	$86,4 \pm 7,2$
Фосфоенолпируват, нмоль/г	$106,8 \pm 12,3$	$72,7 \pm 4,6$	$93,6 \pm 6,7$	$78,4 \pm 1,2$
Креатинфосфат, мкМ/г	0.92 ± 0.05	$2,2 \pm 0,14$	$1,74 \pm 0,22$	$2,4 \pm 0,08$
АТФ, нмоль/г	659 ± 16	1490 ± 42	1376 ± 66	1806 ± 45
Малоновый диальдегид, нмоль/г	$5,7 \pm 0,68$	$3,2 \pm 0,46$	$4,9 \pm 0,9$	$2,2 \pm 0,7$

Таблица 5. Антигипоксическая активность «Реамберина»

	0,9 % изотонический р-р	«Реамберин» +	«Мафусол» +
Препарат	хлорида натрия + фторид		фторид натрия
	натрия (контроль)		
Число животных в опыте	16	16	16
Число выживших крыс	0	0	0
Средняя продолжительность жизни, мин	48 ± 4	85 ± 6	64 ± 6
Продолжительность жизни по отношению к контролю, %	100	177	133

Таблица 6. Зависимость величины осмолярности от содержания активного вещества в растворе «Реамберина»

		1
Содержание натрия глю-	Осмолярность «Реам-	Комментарии
камина сукцината, мас. %	берина», мосмоль/л	Комментарии
1,0	260	Гипоосмолярный раствор
1,4	300	Осмолярность, близкая к осмолярности плазмы крови
1,5	320	Осмолярность, близкая к осмолярности плазмы крови
1,6	350	Осмолярность, близкая к осмолярности плазмы крови
2,0	430	Гиперосмолярный раствор
6,0	580	Гиперосмолярный раствор

ФОРМУЛА ИЗОБРЕТЕНИЯ

Детоксицирующий инфузионный раствор, содержащий хлориды натрия, калия и магния, растворитель и биологически активный компонент, отличающийся тем, что в качестве растворителя содержит воду для инъекций, а в качестве биологически активного компонента содержит натрия глюкамина сукцинат общей формулы:

Na⁺[HOCH₂(CHOH)₄CH₂NH₂CH₃]⁺[OOCCH₂CH₂COO]²⁻

при следующем соотношении компонентов, мас.%:

Хлорид натрия	0,4-0,6
Хлорид магния	0,011-0,013
Хлорид калия	0,027-0,033
Натрия глюкамина	
сукцинат	1,4-1,6
Вода для инъекций	Остальное